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Yibin Xieb, Debiao Lia,b,∗

aDepartment of Bioengineering, University of California, Los Angeles, CA, U.S.A
bBiomedical Imaging Research Institute, Cedars-Sinai Medical Center, CA, U.S.A

Abstract

High-resolution (HR) magnetic resonance imaging (MRI) provides detailed anatom-
ical information that is critical for diagnosis in the clinical application. However,
HR MRI typically comes at the cost of long scan time, small spatial coverage,
and low signal-to-noise ratio (SNR). Recent studies showed that with a deep
convolutional neural network (CNN), HR generic images could be recovered
from low-resolution (LR) inputs via single image super-resolution (SISR) ap-
proaches. Additionally, previous works have shown that a deep 3D CNN can
generate high-quality SR MRIs by using learned image priors. However, 3D
CNN with deep structures, have a large number of parameters and are compu-
tationally expensive. In this paper, we propose a novel 3D CNN architecture,
namely a multi-level densely connected super-resolution network (mDCSRN),
which is light-weight, fast and accurate. We also show that with generative
adversarial network (GAN)-guided training, the mDCSRN-GAN provides ap-
pealing sharp SR images with rich texture details that are highly comparable
with the referenced HR images. Our results from experiments on a large pub-
lic dataset with 1,113 subjects showed that this new architecture outperformed
other popular deep learning methods in recovering 4x resolution-downgraded
images in both quality and speed.

Keywords: Super-Resolution, Deep Learning, 3D Convolutional Neural
Network, MRI

1. Introduction

High spatial resolution MRI provides important structural details for clini-
cians to detect disease and make better diagnostic decisions (Pruessner et al.,
2000). It provides accurate tissue and organ measurements that benefit quanti-
tative image analysis for better diagnosis and therapeutic monitoring (Greenspan,
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2008; Park et al., 2003; Xie et al., 2016). However, limited by hardware capacity
and patient cooperation, HR imaging is burdened by long scan time, small spa-
tial coverage, and low signal-to-noise ratio (SNR) (Shi et al., 2015). HR MRI is
also susceptible to respiratory or internal organ motion (Pang et al., 2016; Zhou
et al., 2017), thus it is very difficult if not impossible to perform on moving
part of the body (Stucht et al., 2015; Yang et al., 2016). In MRI, the duration
between phase encodes is the most time-consuming part of the acquisition pro-
cess, so scan time increases as spatial resolution improves along phase-encoded
dimensions. For example, A 4x resolution-degraded LR MRI would be 4x faster
than full-resolution HR, at the cost of losing fine local details. Therefore, with
the capability to restore resolution loss in HR from just a single LR image,
Singe Image Super-Resolution (SISR) (Glasner et al., 2009) is an appealing ap-
proach as it promises a reconstructed HR image without adding extra scans or
additional multi-image combination processing.

However, the SISR problem is very challenging. Since multiple HR images
can be resolution-degraded to the same LR image, SISR is an ill-posed inverse
problem. To correctly recover high-frequency details such as local textures and
edges from its LR counterparts, an intricate image prior is essential. Previous
SISR approaches focus on creating a convex optimization process to find the
most likely mapping between LR and HR images (Shi et al., 2015). Constraints
are usually applied to regularize such processes. However, the prior knowl-
edge presumed by those constraints does not always hold. One of the popular
regularization methods, total variation (Rudin et al., 1992), assumes that the
HR image is constant in a small neighborhood, which usually violates the fact
that the HR image often carries rich local details and tiny structures, such as
intracranial vessels in brain MRI.

In 2D generic images, Dong et al. (2016a,b) show that by utilizing a CNN, the
SISR puzzles can be solved with an end-to-end learning-based method. Though
a larger neural network with more capacity could help improve the overall per-
formance (Sun et al., 2016), training such a deep CNN has been proven to
be difficult (Glorot and Bengio, 2010). Recently, with skip connections (He
et al., 2016; Srivastava et al., 2015), embedding (Szegedy et al., 2017), and
normalization (Ioffe and Szegedy, 2015), effective training for a deep neural net-
works is now made possible. Kim et al. (2016) showed that a deeper network
using all these advanced techniques could achieve significant improvement in
SR image quality, showing that the CNN’s architecture is the key to obtain
high-quality SR outputs. However, as the network grows deeper, the high-level
portion of the network is less likely to make full use of the low-level features
due to the vanishing gradient phenomenon (He et al., 2016). Residual learning
via skip connection (Ledig et al., 2017) helps to ease the effect. Later, Huang
et al. (2017) proved that directly stacking all inputs with CNN feature maps
strengthens the information flow, and further reduces gradient vanishing. Ad-
ditionally, these concatenated layers share features more efficiently, lessen the
requirement for the immense amount of parameters usually found in deep neu-
ral networks. Hence, Densely connected network (DenseNet), can outperform
deep CNNs despite its lighter weight. In SISR, Tong et al. (2017) proposed
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SRDenseNet which combines different hierarchy level features into the final re-
construction layer. Their work demonstrates a significant improvement over
networks only using high-level features, indicating that multi-level feature fu-
sion is indeed beneficial for the SISR problem. However, there is still room for
SRDenseNet to improve, as we will show in the later section.

Following the wave of the rapid progress in natural images, SISR has also
been adapted into medical image fields (Litjens et al., 2017; Oktay et al., 2016;
You et al., 2019). Most of the existing studies directly borrow the 2D network
structure and apply it to medical images slice by slice (Oktay et al., 2016; Wang
et al., 2016). However, medical images like Computed Tomography (CT), MRI,
and Positron Emission Tomography (PET), often carry anatomy information
in 3D. To fully resolve the ill-posed SR problem, a 3D model is more natu-
ral and preferable as it can directly extract 3D structural information. Recent
studies (Chen et al., 2018; Pham et al., 2017) show that in brain MRI SR,
a 3D CNN outperforms its 2D counterpart by a large margin. However, due
to the extra dimension introduced by 3D CNN, the parameter number of a
deep model also grows at a staggering rate, the so-called curse of dimensional-
ity. For example, a 3D Fast Super-Resolution CNN (FSRCNN) (Dong et al.,
2016b) has 5x parameters than a 2D FSRCNN. Almost all recent SISR methods
obtain improved performance by adding more weights and layers (Lim et al.,
2017; Tai et al., 2017). However, borrowing such idea to 3D is not ideal. An
over-parameterized 3D model is much more heavily weighted, computationally
expensive, and less practical with the potential of exceeding the computer’s
memory limitation. Besides, most of the previous CNN SISR approaches are
optimized by the pixel/voxel-wise rectilinear or Euclidean distance (L1/L2 loss)
between model output and ground truth image. As noticed in Ledig et al.
(2017), this loss and its derived Peak Signal to Noise Ratio (PSNR) cannot
accurately reflect the perceptual quality of the reconstructed image (Johnson
et al., 2016). Therefore, merely taking account of the intensity difference results
in suboptimal fuzzy output.

In this paper, we propose a 3D Multi-Level Densely Connected Super-Resolution
Network (mDCSRN) and mDCSRN-GAN with an adversarial loss guided train-
ing. Our goal is to build a small, fast, but accurate network structure for the
SISR system that can recover 3D details from resolution-reduced MRI. We first
experimented with our mDCSRN with L1 loss. Measured by numeric metrics,
our mDCSRN outperformed interpolation and popular neural networks while us-
ing minimal computational resources. Then we experimented that when trained
with a Generative Adversarial Network (GAN) (Goodfellow et al., 2014), our
mDCSRN-GAN provided even sharper and abundant detailed texture SR im-
ages that are highly comparable with the HR images.

We summarize four main contributions of this work:

• We proposed a 3D multi-level densely connected super-resolution neural
network (mDCSRN) which has multi-level direct access to all former image
features. It is efficient in memory usage yet provides high-quality SR
images, making it practical for 3D medical image data.
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• We proposed a bottleneck compressor module with a fixed-number width
before each DenseBlock, which helps balance the layer size in different
conceptual levels. The compressor greatly reduces memory usage and
increases runtime speed without sacrificing performance.

• We proposed a direct combination mechanism that actively feeds all lev-
els’ image feature to the final output. This design enables unobstructed
gradient flow for easier training and faster convergence. It also makes use
of the effect of model ensemble, further boosting performance.

• We proposed an mDCSRN-GAN that can produce accurate and realistic-
looking SR images by applying a 3D generative adversarial network (GAN)
during training. Testing on real-world data showed that our GAN network
is robust across different platforms and scanners.

2. Related Work

Single Image Super-Resolution. As a classic problem in computer vi-
sion, SISR has been studied for decades. Before deep learning approaches dom-
inated the state-of-the-art performance, SISR techniques mostly relied on inter-
polation, edge-preservation, statistical analysis, and sparse dictionary learning,
which have been well-summarized by Yang et al. (2014). Dong et al. (2016a)
were the first to propose a SISR based on a three-layer CNN. They showed that
a neural network, namely a Super-Resolution Convolutional Neural Network
(SRCNN), is naturally capable of handling feature extraction, feature space
building, and image reconstruction together through end-to-end training. SR-
CNN and its recent version Fast SRCNN (FSRCNN) achieved remarkable per-
formance. Their work has inspired many follow-up studies with more advanced
network structures (Kim et al., 2016; Lim et al., 2017; Tai et al., 2017; Tong
et al., 2017).

Efficient Network with Skip Connections. The performance of the
deep learning model keeps improving. However, most of the achievement is
built upon the significantly increased model size, wherein the depth of the net-
work becomes a practical issue. As the back-propagated gradients often vanish
in the long pathway, it is unlikely to train very deep CNNs. To address this prob-
lem, Srivastava et al. (2015) (Highway Network) and He et al. (2016) (ResiNet)
proposed the bypassing path, or the skip connection, to add the previous layer
to the next for smoother information flows. Huang et al. (2017) discovered
that by concatenating previous layers, the network is more efficient and outper-
forms ResiNet with less number of parameters. As all segments in a DenseNet
are directly linked, the gradient can flow unobstructed. Additionally, the dense
connections encourage layers to share their features. It dramatically reduces the
number of parameters, making the model computational efficient, more robust
to new data, and faster to converge.

Super Resolution with Perceptual Loss. The most straightforward
objective for a super-resolution model to optimize would be the voxel-wise dif-
ference between model output and the ground-truth image like L1 or L2 loss.

4



Fig. 1. Visual quality comparison between Nearest Neighbor Interpolation, deep neural
network optimized for intensity difference, deep neural network optimized for a loss with
perceptual penalty, and original HR image with PSNR and SSIM shown above the images. (2
x 2 x 1 resolution degrading)

However, this difference only takes account of the intensity values’ dissimilar-
ity between the reconstructed image and the original image, but not the visual
quality which more focuses on sharpness and validity of restored structures.
Optimizing the voxel-wise difference will force the model to stack and average
all the possible HR candidates in image space. Since a voxel-wise loss doesn’t
account for the perceptual level of information, despite its results have less in-
tensity error on average, it provides over-blurred and implausible results for the
human eye. Therefore, as shown in Fig. 1, though the voxel-wise loss guided
SR model provides a better score in PSNR and SSIM, the model with percep-
tual loss estimated by a Generative Adversarial Network (GAN) provides more
realistic-looking images.

3. Method

We designed our SISR model to learn an accurate inverse mapping of the LR
image to the reference HR image during an end-to-end training process. The
network is fed with LR images, and it outputs resolution-restored SR images.
The HR images were only used in training as the target for the system to opti-
mize. A loss function calculated from SR and HR is back-propagated through
layers to adjust weights during training. In the deployment phase, the model
only reads LR images and produces SR outputs. We will detail our proposed
mDCSRN and the GAN-guided training process in the following sections.
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3.1. SISR Background

A SISR system is a feed-forward model to transform an LR image Y into
an HR image X. A mathematical representation of the resolution downgrading
process from X to Y can be written as:

Y = f(X), (1)

where f is an arbitrary continuous or discrete function that causes the resolution
loss. The SR process is to find an optimal inverse mapping function g(·) ≈
f−1(·), where f−1 represents the inverse of f . The recovered HR image, or SR,
X̃ will be:

X̃ = g(Y ) = f−1(Y ) + r, (2)

where r is the reconstruction residual. A true inverse f−1(·) does not generally
exist, so SISR represents an ill-posed inverse problem.

Despite being ill-posed, the reason why SISR can successfully restore res-
olution is that both X and Y share information that can be represented in a
low-dimensional manifold. A well-trained SISR model should be able to extract
visual features from Y and map it into an image feature space. Then X can
be reconstructed from the manifold with correct feature mapping. Dong et al.
(2016a) have shown that CNNs have a built-in nature for the above processes.
In a CNN-based SISR technique, all three different steps are trained together:
feature extraction, manifold learning, and image reconstruction. This mingling
of different components requires the network to extract the representative low-
level feature, construct representative feature space, and precisely reconstruct
images from features, which makes CNN based approach achieves state-of-art
performance (Dong et al., 2016b; Kim et al., 2016).

3.2. GAN-based Super-Resolution

Most of the previous SISR approaches optimize the reconstruction by min-
imizing the voxel-wise difference (L1 or L2 loss) between X̃ and X. However,
Ledig et al. (2017) points out that merely taking care of local voxel-wise dif-
ferences cast extreme difficulty in restoring important small details due to the
ambiguity of the mapping between X and Y . We demonstrate one toy example
in Fig. 2, where the HR image is 2× 2 down-sampled to an LR image, and the
neighborhood is only in 2 × 2 pixels. When only guided with L1 loss, the SR
model doesn’t have enough contextual information to recover local neighbors
fully. By minimizing the Euclidean loss, it tends to average all possible HR
candidates, resulting in a blurred output. However, if we put global perceptual
constraints into the account, the SR model is guided by both local intensity in-
formation and patch-wise perceptual information, possibly making SR sharper
and better-looking. However, such guiding is impossible to be handcrafted be-
cause there is no well-adapted mathematical definition of good perceptual qual-
ity for images. Based on this observation, Ledig et al. (2017) proposed to use a
Generative Adversarial Network (GAN) for its unsupervised-learning potential
of capturing perceptually important image features.
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Fig. 2. An example when an SR model is optimized by L1 vs. perceptual loss in a 2 × 2
neighborhood. The down-sampled LR is the same from two HR patches. Instead of voxel-
wisely averaging all possible HR candidates which causes over-smoothing, GAN drives towards
perceptual favorable SR solutions by taking account of other informations (i.e. positions) and
features in the image manifolds.

The GAN framework proposed by Goodfellow et al. (2014) has two networks:
a generator G and a discriminator D. The principle of a GAN is to train
a G that generates fake images as real as possible, while simultaneously to
train a D to distinguish the genuine of them. After training, D becomes very
good at separating real and generated images, while the G learns to produce
realistic-looking images by the ”instruction” from D. GAN can model the image
representation in an unsupervised manner that doesn’t require a pre-designed
objective. It is a perfect fit for a SISR. SRGAN (Ledig et al., 2017) was proposed
and shows that the SR model yields unprecedented perceptual quality with the
help of GAN.

However, training a GAN could be very challenging. The balance between
G and D has to be carefully maintained so that both of them evolve together.
Otherwise, if either side of the lever is too strong, the training quickly land-
slides to one side, resulting in an under-trained generator G (Salimans et al.,
2016). A lot of efforts have been made to stabilize the GAN’s training. However,
those approaches are highly dependent on the specific network structure, and
barely any research has investigated a 3D GAN network. Arjovsky et al. (2017)
observed that the collapse of vanilla GAN training is caused by its optimiza-
tion toward Kullback-Leibler (KL) divergence between the real and generated
probability when there is little or no overlap between them, which is very com-
mon at the early stage of training; the gradient from D vanishes, which causes
the training to halt. To address this issue, they proposed Wasserstein GAN
(WGAN), whose objective is to minimize an efficient approximation of Earth
Mover (EM) distance. They proved that this change could remove the difficult-
to-achieved requirement for balancing D and G. The WGAN enables almost
fail-free training in any situation while keeping the quality as good as a vanilla
GAN. Additionally, the EM distance from D can also indicate the output im-
age’s quality, which is very useful for training.
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Fig. 3. mDCSRN-GAN overview. The Generator is our proposed mDCSRN. The Discrimi-
nator is adapted from Ledig et al. (2017).

3.3. Proposed 3D Multi-Level Densely Connected Super-Resolution Network (mD-
CSRN)

Our proposed mDCSRN uses a DenseNet (Huang et al., 2017) as the start-
ing point. By adding a multi-level densely connection and compressor in each
Densely Connected Block (DenseBlock), our network is even more memory-
efficient than the original DenseNet and provides excellent images in 3D SISR.
An overview of our framework is shown in Fig. 3. All DenseUnits have a
growth rate k = 12. We chose exponential linear units (ELU) (Clevert et al.,
2015) as the activation layer to make use of negative values of normalized MRI.
We placed a stem module that contains a convolution layer with 2k filters before
the feature mapping network, which is a set of densely connected DenseBlocks.
The last part of our mDCSRN is the reconstruction module, which forms the
final output. All convolutional layers are using 3×3×3 kernels, except those in
the compressor within the DenseBlock and the direct combination layer in the
reconstruction module, where kernel size is 1× 1× 1. There is no up-sampling
layer in mDCSRN. As the resolution loss in LR MRI is not in the spatial do-
main but the k-space, both LR and HR MRI are often generated with the same
matrix size when directly fetched from a scanner. We want to discuss structure
details as following:

Fully Densely Connected Block. The backbone of the mDCSRN is the
DenseBlock from DenseNet (Huang et al., 2017). We fully connected all layers
within DenseBlocks. It helps to increase feature sharing, making the neural
network fewer parameters to keep the same representation capacity. As shown
in Fig. 4, in our implementation, the input feature map is always directly con-
nected to every convolutional layer, including the output within the DenseBlock,
while in Tong et al. (2017) these connections are missing. Those direct links en-
sure that each DenseUnit can access not only preceding layers within the same
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Fig. 4. Two connectivity ways of a DenseNet: (a) our proposed mDCSRN vs (b) SR-
DenseNet (Tong et al., 2017). Dense connections from the input(red lines in (a)) are missing
in (b), which eliminates the direct link to the preceding DenseBlocks.

DenseBlock but also those in the preceding DenseBlocks, and lead to higher
efficiency in parameter usage. To further reduce memory usage, as mentioned
in DenseNet-bc (Huang et al., 2017), we also put a 1 × 1 × 1 bottleneck layer
with 4k width before each 3× 3× 3 convolution when needed.

Multiple Hierarchy Level with Fully Dense Connections. Veit et al.
(2016) found that Highway Network (Srivastava et al., 2015) and ResiNet (He
et al., 2016) with skip connections act equally as an ensemble of multiple shal-
low networks with many paths instead of a giant deep network. Each small
network processes some tasks on a different visual level depends on their posi-
tion. This hierarchical structure harmonizes the animal’s visual system discov-
ered by Hubel and Wiesel (1962), which might explain deep ResiNet’s excellent
performance. As the links within a DenseNet are more effective than ResiNet,
this effect is more obvious: all convolutional layer can access all other levels of
information and contributes together to the final output. Hence, DenseNet SR
is more powerful, as shown in SRDenseNet (Tong et al., 2017).

Densely Connected DenseBlocks and Compressor. Though a deep
learning model with a single DenseBlock is already capable of providing high-
quality SR images (Chen et al., 2018), a more sophisticatedly designed archi-
tecture still promises better performance. Yet even memory-efficient DenseNets
have too many parameters when constructed in 3D. To reduce memory usage
while keeping the inter-links strong, we followed the principles of DenseNet and
proposed a multi-level densely connected structure. We grouped DenseUnits
into DenseBlocks with extra levels of dense connections, as shown in Fig. 3(G).
Then a 1× 1× 1 convolutional layer (compressor) is applied before each Dense-
Block with a fixed output filter number of 2k. According to (Szegedy et al.,
2016), this compressor does not negatively affect performance but reduces the
weights dramatically. We believe that it brings us at least two advantages: 1)
It greatly lessens the parameter number and computation cost; 2) It evens out
the weights of different DenseBlocks, forcing the model to focus on low-level
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Fig. 5. Reconstruction network: (a) Directed Feature Combination as proposed in mDCSRN
(b) Reconstruction with a bottleneck (8k) followed by a BatchNorm and convolutional layer
as proposed in Tong et al. (2017).

features.
Direct Feature Combination. To further shrink down the model size and

improve running speed, in the last module of mDCSRN, we replaced conven-
tional spatial convolutional layers with a 1x1x1 convolutional layer to directly
combine all feature maps to the final SR output. This reconstruction process
acts as an adaptive feature selection to jointly fuse all the DenseBlock’s out-
put. Besides efficiency, as a single DenseBlock is already powerful enough to
produce high-quality SR images, our design boosts the ensemble effects of small
networks dealing with different visual level information (Liu et al., 2016), which
conceivably improves SR image quality.

GAN-Guided Training (mDCSRN-GAN). To achieve plausible-looking
SR results, we utilized the adversarial loss from a discriminator in a GAN. The
discriminator D is built based on the structures of the D in SRGAN (Ledig
et al., 2017). For the type of GAN, we chose WGAN for its excellent stability.
Moreover, we use the gradient penalty variant of WGAN, known as WGAN-
GP (Gulrajani et al., 2017), to accelerate converging in training. As suggested
by WGAN-GP, we replace the batch normalization(BN) layer with layer nor-
malization(LN) in the discriminatorD.

Loss Function. Our loss function is composed of two parts: intensity loss,
lossint, and adversarial loss from GAN’s discriminator, lossadv:

loss = lossint + λlossadv, (3)

where λ is a hyper-parameter, set to 0.1 in experiments. We used the absolute
different (L1 loss) between the network output SR and ground-truth HR as the
intensity loss:

lossint = lossL1
=

∑L
z=1

∑H
y=1

∑W
x=1 |IHRx,y,z − ISRx,y,z|
LHW

, (4)

where ISRx,y,z is the SR and IHRx,y,z is the ground-truth image patch. WGAN’s
discriminator loss is used as an additional loss in SRGAN network training:

lossadv = lossWGAN,D = −DWGAN,θ(I
SR), (5)

where DWGAN,θ(I
SR) is WGAN’s discriminator output digit for generated SR

image patch.
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3.4. LR Image Generation

An approach to generate LR images from original resolution HR images is
required to evaluate the SISR technique. We follow the same steps as in Chen
et al. (2018): 1) apply 3D FFT to transform HR image into k-space; 2) reduce
the resolution by truncating outer part of k-space with a factor of 2x2 in both
phase-encoding directions (2 × 2 × 1 ratio in total); 3) convert back to image
space by applying inverse FFT and then linearly interpolate to the original
image size. This process mimics the actual acquisition of LR and HR images
by MRI scanners.

4. Experiments

We first describe our experimental settings. Then we conduct a set of exper-
iments to demonstrate that the proposed mDCSRN is not only memory-efficient
but also provides state-of-the-art SR results by quantitative metrics. Next, we
show that our mDCSRN-GAN provides encouraging qualitative results that are
comparable with the ground-truth HR images, as demonstrated by the percep-
tual scores.

4.1. Settings

Datasets. To demonstrate the generalization of mDCSRN, we used the
data from the Human Connectome Project (HCP) (Van Essen et al., 2013),
which is a comprehensive publicly accessible brain MRI database with 1113
subjects. The 0.7 mm isotropic high-resolution 3D T1W images with a matrix
size of 320×320×256 were acquired via Siemens 3T Prisma platform on multiple
centers. The high-quality ground truth HR images with detailed small structures
make this dataset a perfect case to test SISR approaches. The whole dataset
is subject-wise split into 780 training, 111 validation, 111 evaluation, and 111
test samples. No subjects nor image patches are overlapped in any subsets.
The validation set is used for monitoring and getting the best model checkpoint
that has the highest performance during training, measured using mean square
error (MSE) for non-GAN training, and EM-distance for GAN training. The
evaluation set was used for hyper-parameter searching. The test set is only used
for final performance analysis to avoid making model favorable to test data.

Training Details. The model was implemented in Tensorflow (Abadi et al.,
2016) on a workstation with Nvidia GTX 1080 TI GPUs. For non-GAN net-
works, ADAM (Kingma and Ba) optimizer with a learning rate of 10−4 was
used to minimize the L1 loss. The batch size was set to 6. We followed a similar
process of patching and data augmentation as in Chen et al. (2018), except, the
patch size during training was set as 40 × 40 × 40. We trained mDCSRN for
800k iterations, which is about 300 epochs, as 18 randomly sampled patches were
fetched from a patient during training, lasting from 5 to 14 days depending on
network size. For GAN experiments, we transfer the weights from well-trained
mDCSRN above as the initial G of mDCSRN-GAN. We first trained D for the
initial 10k steps without updating G. After then, for 5 iterations of training the
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D, G was trained once. Additionally, after every 500 iterations of G training,
D was trained for an extra 200 steps. It is solely to make sure D is always
ahead of G, as suggested in WGAN (Arjovsky et al., 2017). Adam optimizer
with 5× 10−6 was used to optimize G for a total of 200k steps.

SR Generation. Once training was finished, LR images from the evalua-
tion/test set were fed into the model to generate SR outputs. A patch size of
70× 70× 70 with a margin 3 was used in testing to avoid artifacts on the edges.
The merging of the output patches was done without averaging. Because the
batch size is 1 during testing, we set the batch normalization layers in the model
to ”train” mode instead of ”test” mode for better estimation. We recorded the
runtime speed on a single Nvidia GTX 1080 TI GPU.

Quality Metrics. To quantitatively measure mDCSRN’s recovery accu-
racy, we used three reference-based image similarity metrics: structural sim-
ilarity index (SSIM) (Wang et al., 2004), peak signal to noise ratio (PSNR),
and normalized root mean squared error (NRMSE). Numbers were calculated
in the most resolution degraded cross-section (2× 2) slice by slice. Scores were
reported in its subject-wise slice-averaged numbers. For mDCSRN-GAN mea-
surement, we list its numeric metrics as well. But we need to point out that
PSNR could not fully represent the visual quality. Hence, we measured the
perceptual quality via non-reference metrics: PIQE (Venkatanath et al., 2015),
Ma’s score (Ma et al., 2017), NIQE (Mittal et al., 2012), and perceptual index
(PI, used in PRIM-SR Challenge (Blau et al., 2018)). To efficiently calculate the
perceptual scores, we only processed the 2D slices where the foreground (brain
region) occupies more than 25% of the whole image. All perceptual scores were
calculated in MATLAB R2019 software.

Segmentation Evaluation. In the testing stage, to further exemplify the
benefits from our SR for the automatic medical image processing system, we con-
ducted a fully automated segmentation on 159 brain tissues from a pre-trained
high-performance neural network: HighRes3D (Li et al., 2017). We performed
the test on the output of bicubic interpolation, SRResNet, mDCSRN b8u4, and
mDCSRN-GAN b8u4. We first interpolated all images from the original 0.7mm3

spatial resolution into 1.0mm3 since the HighRes3D network was trained on the
latter resolution. Then, we performed an N4 bias correction (Tustison et al.,
2010) with ANTS (Avants et al., 2009) toolbox. Then we ran the inferences of
HighRes3D on the NiftyNet (Gibson et al., 2018) open-platform. We used two
similarity metrics, Dice Similarity Coefficient (DSC) (Sørensen, 1948) and Jac-
card Index (JACC) (Jaccard, 1901), to quantitatively measure the agreement of
segmentation between the up-sampled/super-resolution and the high-resolution
images. Numbers were average among those 159 different anatomical structures.

4.2. Results

We first demonstrate that the compressor in our multi-level densely connec-
tion does improve memory efficiency. We show that by replacing spatial convo-
lutional layers with a single direct feature combination, we further reduce the
model size without sacrificing performance. We show how the depth and width
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Table 1: Ablation experiment results of mDCSRN on the evaluation set

PSNR‡ SSIM‡ NRMSE† #Parm time(s)

Exp. 1 k=12
b1u16-r 35.84± 0.86 0.9408± 0.0060 0.0866± 0.0036 0.35M 18.69
b4u4-r 35.84± 0.86 0.9410± 0.0060 0.0866± 0.0037 0.26M 12.93
b1u12-r 35.76± 0.86 0.9396± 0.0060 0.0874± 0.0036 0.25M 12.74

Exp. 2 k=12
b4u4-r 35.84± 0.86 0.9410± 0.0060 0.0866± 0.0037 0.26M 12.93
b4u4 35.88± 0.85 0.9408± 0.0060 0.0864± 0.0037 0.22M 12.06

Exp. 3 k=12
b4u4 35.88± 0.85 0.9408± 0.0060 0.0864± 0.0037 0.22M 12.06
b6u4 36.06± 0.86 0.9431± 0.0059 0.0845± 0.0037 0.35M 19.14
b8u4 36.14± 0.87 0.9442± 0.0059 0.0836± 0.0037 0.49M 28.52

Exp. 4 b4u4
k=8 35.57± 0.85 0.9382± 0.0060 0.0894± 0.0036 0.10M 7.95
k=12 35.88± 0.85 0.9408± 0.0060 0.0864± 0.0037 0.22M 12.06
k=16 35.96± 0.87 0.9424± 0.0059 0.0854± 0.0037 0.41M 15.37

Exp. 5
b4u4k12 35.88± 0.85 0.9408± 0.0060 0.0864± 0.0037 0.22M 12.06
b8u4k8 35.85± 0.86 0.9415± 0.0059 0.0863± 0.0037 0.22M 18.43
b4u4k16 35.96± 0.87 0.9424± 0.0059 0.0854± 0.0037 0.41M 15.37
b8u4k12 36.14± 0.87 0.9442± 0.0059 0.0836± 0.0037 0.49M 28.52

‡: The higher the better, †: The lower the better
b:# DenseBlock, u:# DenseUnit per Block, k: Growth rate -r: with reconstruction layer;
default is using direct combination layer

of mDCSRN affect performance, and we compare mDCSRN with other popu-
lar SISR models. Qualitatively, we show the results from the mDCSRN-GAN
side by side with other up-sampling methods. The mDCSRN-GAN provides
realistic-looking images while running at the same time as our mDCSRN. We
further investigate the perceptual quality with quantitative non-reference met-
rics. To demonstrate our model’s clinical value in automatic systems, we use the
brain tissue segmentation as an example to demonstrate the benefits brought
by SR models. Last, we show that in the real-world scan, our mDCSRN-GAN
exhibits its fantastic stability across different platforms.

Multi-Level Connectivity and Compressor. As shown in Table 1 Exp.
1, with the same total number of DenseUnit, mDCSRN b4u4-r had fewer param-
eters, ran faster, and achieved the same performance as the original DenseNet
design b1u16-r; with the same amount of parameters, b4u4-r significantly out-
performed b1u12-r; proving that multi-level connectivity and compressor to-
gether helped improve memory efficiency and runtime speed.

Direct Feature Combination vs Extra Reconstruction Layer. As
shown in Table 1 Exp. 2, with the same depth, b4u4 with our introduced
direct feature combination achieved similar to slightly better performance than
b4u4-r with reconstruction layers while decreasing model size by 15%.

Depth vs Width. The results with different depth and width configuration
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Table 2: mDCSRN vs. interpolation and previous CNN based SISRs on the test set

Intensity-based similarity metrics

PSNR‡ SSIM‡ NRMSE† #parm time(s)
NN 29.48± 0.81 0.8219± 0.0113 0.2007± 0.0071 N/A N/A
Bicubic 30.30± 0.82 0.8420± 0.0105 0.1830± 0.0067 N/A N/A
FSRCNN 34.33± 0.81 0.9207± 0.0062 0.1142± 0.0050 0.06M 15.57
SRResNet 36.09± 0.82 0.9425± 0.0052 0.0939± 0.0043 2.01M 107.16
SRDenseNet 35.93± 0.82 0.9413± 0.0052 0.0955± 0.0044 0.39M 17.95
b4u4k12 36.08± 0.82 0.9418± 0.0052 0.0935± 0.0044 0.23M 12.54
b6u4k12 36.31± 0.82 0.9438± 0.0051 0.0915± 0.0043 0.35M 19.60
b8u4k12 36.39± 0.82 0.9448± 0.0050 0.0906± 0.0043 0.49M 27.86

Perceptual quality metrics

PIQE† NIQE† MA’s Score‡ PI†
Bicubic 99.54± 1.39 5.53± 0.13 3.20± 0.06 6.17± 0.08
SRResNet 80.85± 7.51 5.92± 0.19 5.06± 0.03 5.43± 0.08
mDCSRN b8u4 81.04± 7.79 6.01± 0.19 5.06± 0.03 5.48± 0.09
mDCSRN-GAN b8u4 71.86± 7.24 5.00± 0.16 5.04± 0.04 4.98± 0.07
Original Resolution 69.70± 7.02 5.52± 0.14 5.05± 0.03 5.23± 0.06

‡: The higher the better, †: The lower the better

are shown in Table 1 Exp. 3 and Exp. 4. The performance was improved by ei-
ther making the network deeper or wider, at the cost of more extensive memory
consumption and slower inference speed. As shown in Table 1 Exp. 5, when
models are in a similar size, the deeper network, the better the performance.
Although the weight-saving mechanism is more effective in the deep and narrow
network, it runs slower, due to the extra computational cost from additional
bottleneck layers. Therefore, given a fixed memory constraint, a shallow mDC-
SRN is preferable for a fast application, while a deep mDCSRN is excellent for
better results.

Baseline. As baseline models, FSRCNN (Dong et al., 2016b), SRRes-
Net (Ledig et al., 2017), and SRDenseNet (Tong et al., 2017) were implemented
and extended to 3D. As there is no image-size changing in our SISR, the up-
sampling CNNs (transposed-convolutional layers or sub-pixel layers) in those
original designs were replaced with the same scale convolutional layers. For
SRDenseNet, we adjusted the hyperparameters as similiar as possible to mD-
CSRN b8u4 (i.e. reduced DenseUnit number from 8 to 4, changed activation
function to ELU, and set growth-rate k=12). All models were trained for 300
epochs. With respect to quantitative similarity metrics, as shown in Table 2,
the lightest mDCSRN b4u4 ran fastest among all CNN approaches with com-
petitive results. The deepest mDCSRN b8u4 as shown in Fig. 6 outperformed
all previous SISR approaches by a considerable margin. It did run slower than
SRDenseNet but was still 4x faster than the SRResNet. Both SRDenseNet
and mDCSRN b6u4 are similar in model size and running speed, but the later
significantly outperformed the former, proving the advantage of our efficient
architecture design.
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Fig. 6. Example results from the test set of Nearest Neighbor, SRResNet, mDCSRN b8u4,
mDCSRN-GAN b8u4 in the 2× 2 resolution degraded plane. PSNR and SSIM of this subject
are shown on the top. Despite performing worse in PSNR and SSIM, GAN SR images appear
to have recovered more spatial details.

Table 3: Segmentation accuracy on the test set

Bicubic SRResNet mDCSRN b8u4 mDCSRN-GAN b8u4

DSC 0.810± 0.107 0.946± 0.047 0.949± 0.045 0.929± 0.056
JACC 0.691± 0.127 0.899± 0.061 0.905± 0.059 0.871± 0.071

Perceptual Quality. An example output is shown in Fig. 6. mDCSRN
b8u4 provides slightly better SR reconstruction accuracy than SRResNet, but it
is mDCSRN-GAN b8u4 that more closely shapes the small vessel pointed by the
red arrows. Though mDCSRN-GAN’s PSNR is lower than its non-GAN sibling,
it provides more structural details that are more plausible by the human eye.
As shown in Table 2, the quantitative perceptual quality numbers suggest that
while non-GAN SR shows slightly closer to HR only in the MA’s metric, the
GAN SR model shows much better performance in all other three measurements.
GAN even obtained a higher score in NIQE and PI than HR, since SR images
were generated from less noisy LR input, making the SR more plausible for
noise-sensitive perceptual metrics. Wang et al. (2018) has shown similar results
in their SR and HR perceptual comparison.

Segmentation Task. We investigated the segmentation results on the out-
put of interpolation, SRResiNet, mDCSRN, and mDCSRN-GAN. As shown in
the Table 3, the segmentation results are more aligned with similarity metrics.
That’s because the segmentation task is more focused on the contrast instead
of realistic patterns. Overall, segmentation from the SR models’ output is more
consistent with the segmentation of the original resolution. The high overlap-
ping between those two indicates that segmentation on SR images are not be
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Fig. 7. An sample test case of segmentation from HighRes3DNet (Li et al., 2017) on the out-
put of bicubic interpolation, SRResiNet, mDCSRN b8u4, mDCSRN-GAN b8u4, and Original
Resolution. Average similarity metrics of this subject among 159 structures are shown on the
top.

Table 4: Perceptual image quality metrics in real-world scans (N=7)

NIQE† MA’s Score‡ PI†
Low-resolution 7.44± 0.52 3.83± 0.19 6.80± 0.18
mDCSRN-GAN 5.66± 0.77 4.92± 0.05 5.37± 0.39
Full-resolution 5.17± 0.16 4.97± 0.03 5.10± 0.07

‡: The higher the better, †: The lower the better

greatly different from those on HR. An example is shown in Fig. 7.
Prospective MR Scans. Additionally, we also performed a real-world test

on seven volunteers in our on-site 3T Siemens Verio MRI scanner, which is dif-
ferent to those Prisma scanners utilized in the HCP dataset. We followed the
same protocol as in Van Essen et al. (2013) except for reducing the phase encod-
ing and slice resolution by half, which effectively reduced spatial resolution by
4x. As shown in Fig. 8 and Table 4, the mDCSRN-GAN model showed excel-
lent ability in recovering edge details that hardly seen in the fast low-resolution
scan. Besides noticeable sharpness improvement, the SR output seems to have a
lower noise level and cleaner image than the original full-resolution scan because
of the low-resolution image that has a better SNR than HR. It’s an extra gain
from super-resolution techniques in addtion to the time- and cost-saving. As
the real scan was performed on a completely different machine on a different
site and subject, the noise pattern and image quality were considerably different
than the training dataset. It displays our model’s robustness and performance
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Fig. 8. Two real-world examples are shown in 2 × 2 resolution-reduced plane. There
are slight mismatches between LR and HR, because they are from two separate scans. These
scans were done on a different version of Siemens MRI scanner at Cedars-Sinai Medical Center.
mDCSRN-GAN provides a comparable image quality to high-resolution scan.

in a real-world scenario.

5. Conclusions

In this paper, we developed and evaluated a highly efficient architecture
mDCSRN for 3D MRI SISR. We showed that the proposed mDCSRN could
outperform common existing methods in voxel-based similarity matrics and seg-
mentation accuracy with a smaller model size. We also demonstrated that with
GAN-guided training, our mDCSRN-GAN could successfully recover fine details
and further improve perceptual quality. Testing on prospectively acquired data
showed that our model is capable of real-world clinical application. In summary,
the new technique would allow a 4-fold reduction in scan time with minimal loss
in image details and perceptual quality, which would substantially improve the
clinical practicality of high-resolution MRI.
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