
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Instrumental Representations of Sensorimotor Control: Representations at 
Intermediate Level

Permalink
https://escholarship.org/uc/item/3jv7f47b

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 39(0)

Author
Liu, Hsi-wen Daniel

Publication Date
2017
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3jv7f47b
https://escholarship.org
http://www.cdlib.org/


Instrumental Representations of Sensorimotor Control: Representations at 

Intermediate Level 
 

Hsi-wen Daniel Liu (hwliu@pu.edu.tw) 
Center for General Education, Providence University 

Taichung, Taiwan 

 

 

Abstract 

In cognitive science, computation is largely accompanied 
with representational theory of mind.  Yet, it remains unclear 
whether this companionship also appears in the realm of 
sensorimotor control.  Grush’s (2004) and Pezzulo’s (2008, 
2011) account of anticipatory representations provide a 
limited answer, as they are only suitable for forward models, 
but not the entire sensorimotor control.  Rescorla’s (2016) 
representational explanation for sensorimotor psychology 
addresses several intentional states considered in Bayesian 
inference and optimal modeling.  However, the above 
accounts does not explain how motor commands are produced 
and chosen in the course of sensorimotor control for 
maintaining accuracy of goal-achievement.  The present paper 
aims to explain it with a representational account by 
considering instrumental representations of sensorimotor 
control, which appear at the intermediate level and are 
exemplified by motor commands and costs.  Such 
representations do not presume decouplability, as they need to 
run on-line in the maintenance of accuracy.   

Keywords: Sensorimotor control; representation; optimal 
feedback control; Bayesian decision theory. 

Introduction 

Within cognitive science there is a long-standing dispute 

between different paradigms concerning the role of 

representation in computation.  Classical cognitive science 

understands cognition in terms of computation over mental 

representations, and considers the role of cognition to be 

deriving world-models that provide a database for thinking, 

planning and problem-solving.  Decouplability between 

representations and their immediate environment is taken as 

intrinsic to representation.  By contrast, a ‘pragmatic turn’ 

raises the ‘action-oriented paradigm’ that considers 

cognition to be providing skillful know-how in situated and 

embodied actions (Engel et. el., 2013).  Clark (1997) raises 

the notion of action-oriented representations, which do not 

presume decouplability, in his ‘minimal 

representationalism’.  Action-oriented representations, yet, 

are mostly applied to reactive motor activities, regardless of 

various models of motor control. 

The computational theory of mind is largely accompanied 

with a representational theory for explaining a variety of 

faculties, including perception, language, thinking, and 

problem-solving.  However, the role of representation is 

highly debated for the faculty of motor action.  Within 

models of motor control, the forward model is firmly 

associated with a role of representation, in the notions of 

emulating representation or anticipatory representations 

(Grush, 2004; Pezzulo, 2008, 2011).  For those 

representations, decouplability is claimed to be an intrinsic 

property.  In addition, Bayesian models of motor control are 

seen as highly associated with a robust notion of mental 

representation (Rescorla, 2016).  Decouplability is also seen 

as intrinsic to that notion of representation (Haselager et al., 

2003).  As to other models of motor control, however, the 

role of representation is unclear.  The computational theory 

of sensorimotor control has been established (Wolpert and 

Ghahramani, 2000; Franklin and Wolpert, 2011; Orbán and 

Wolpert, 2011).  It is suggested that motor control is 

conformed to the notion of pragmatic representation, as 

different from that of semantic representation (Jeannerod, 

2006).  Yet, questions remain as to what the pragmatic 

representation is and how it is related to computational 

models of motor control.   

Given that computation of cognition is an explanatory 

account of cognition (Marr, 1982), an explanation can be 

found in the computational theory of sensorimotor control, 

as shown above.  The sensorimotor control, as seen in the 

determination of an appropriate motor command, is 

considered to be fundamentally a decision process (Körding 

and Wolpert, 2006).  The decision is to choose an 

appropriate motor command in order to achieve a given goal.  

The present paper contends that the explanation of the 

sensorimotor control is to explain why and how the decision 

could determine an appropriate motor command that turns 

out to achieve the goal.  The explanandum is the way in 

which the goal is achieved by choosing an appropriate of 

motor command.  The present paper characterizes this way 

of goal-achievement in terms of the end-means relation.  

The goal of a motor task is the end, and a chosen motor 

command is its means.  Humans can rationally consider the 

appropriate means for an end; similarly, the sensorimotor 

system can choose an appropriate motor command for a 

given goal.  This similarity, yet, is subject to two caveats.  

Firstly, while in economic decision-making or daily affairs 

in general, the rationality proceeds at the personal-level, the 

sensorimotor processes largely operate at subpersonal-level.  

Secondly, while characterization of human rationality need 

not be put in terms of probability, the actual performance of 

sensorimotor control is found to be very close to 

descriptions made with Bayesian decision theory (Körding 

and Wolpert, 2006), a theory with probabilistic measures.   

Explanation of sensorimotor control can be pursued in 

anti-representationalist accounts, which hold certain 

explanatory perspectives (Turvey and Fonseca, 2009).  

Motor control, as contended in such accounts, is determined 

by interactions between the neural system, body, and the 

environment.  Different from such accounts, the present 
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paper preserves an explanatory role for representation in 

terms of a novel notion of representation—instrumental 

representation—and regards the above interactions as 

complementary to computation and representation.  

Arrangement of that complementarity is for two reasons.  

One is the overall success of the computational approach to 

sensorimotor control (Franklin and Wolpert, 2011; Orbán 

and Wolpert, 2011; Todorov, 2004; Wolpert and 

Ghahramani, 2000).  The other reason is that problems of 

sensorimotor control, to put it in Clark’s (1997) terms, are 

not ‘representational-hungry’.  The neural system of 

sensorimotor control has tight interactions with body, and 

the environment.  The notion of instrumental representation 

differs from the mainstream conceptions of representation in 

that it does not presume decouplability from the 

environment.  Putting above two reasons together has an 

implication in the level of instrumental representations.  

Like that the present account of representation stands 

between the classic account of representation and those anti-

representationalist accounts, instrumental representations 

can be conceived of as standing at the intermediate level of 

the mind.   

The present paper aims to raise a representational account 

of the sensorimotor control.  This aim is to be achieved by 

explaining computation of sensorimotor control in terms of 

representation, on grounds that computation is a way to 

explain the mind, in the first place.  Section two discusses 

computational explanations of sensorimotor control in terms 

of end-means relations.  Section three specifies the notion of 

instrumental representations for explaining the sensorimotor 

control, on grounds of computational explanations of 

sensorimotor control. 

Computation in the Sensorimotor Control 

The Bayesian decision theory in sensorimotor control holds 

a computational perspective with two components--

estimation of environmental and bodily conditions, on the 

one hand, and decision made upon motor commands for the 

most desirable performance, on the other.  To put it in an 

epistemological dichotomy, the former component is to 

measure environmental and bodily facts, while the latter one 

is to evaluate motor actions.  To put it otherwise, the former 

is close to perception, while the latter to decision-making. 

Uncertainty 

Measurement of states in the sensorimotor system is 

affected with various factors of uncertainty, and 

consequently it cannot be accurate like that we manage to 

measure the length of an object left on the table with a ruler.  

Sensory signals of the environment have inherent delays, 

which affect signals at all stages of sensorimotor system 

from the afferent (coming-in-from-the-outside) sensory 

information, to conduction along the neural fibers, together 

with the complexity of processing (face recognition being 

longer than motion perception) and ‘slower’ modality 

(vision being longer than proprioception).  It can be said that 

we ‘live in the past’ by accessing the ‘out-of-date 

information’ about the common world and our own bodies 

(Franklin and Wolpert, 2011, pp. 425-6).  In addition, the 

nervous system is corrupted by noise, which also affects 

sensorimotor control at all stages, from the reception of 

sensory information, to planning, resulting in variability in 

movement endpoints.  Noise, hence, contaminates our 

observation of the sensorimotor system internally and 

externally, by affecting estimation of body states and world 

conditions (ibid., p. 425).  Noise in motor commands, in 

particular, increases propositionally to the size of their 

signal (the so-called ‘signal-dependent noise’).  Different 

motor commands would incur different degree of variability 

in the resulting endpoints.  To put it more specifically, the 

motor performance is subject to speed–accuracy trade-off 

described by Fitt’s law (Harris and Wolpert, 1998).  Noise 

in the sensorimotor system corrupts not only estimation of 

internal and external states, on the one hand, but also 

performance of motor actions, on the other. 

Apart from delay and noise, there are more factors of 

uncertainty residing in the sensorimotor system.  

Environmental conditions are constantly subject to change, 

for example, forces imposed upon the arm in the reaching 

movement (Shadmehr and Mussa-Ivaldi, 1994).  It is also 

uncertain as to which actions or tasks would be beneficial in 

the real world outside the laboratory (Franklin and Wolpert, 

2011).  Furthermore, our motor system is non-stationary, for 

example, the length and weight of our limbs are changing 

when we grow up, and our muscles are getting stronger with 

larger forces (ibid.).  Those uncertain factors would 

constantly contaminate information of the sensorimotor 

system, information which consequently needs to be 

optimized in order to achieve the given goal. 

Given the aforementioned factors of uncertainty, the 

computation of sensorimotor system needs to optimize its 

information, in order to find the best resolution in view of 

goal-achievement.  The sensorimotor system should 

maintain optimal estimation of world and body states, and 

should conduct optimal choice of motor commands.  This 

need of optimality, in both state estimation and action 

choice, introduces a version of instrumental rationality that 

is immanent in the sensorimotor system at the subpersonal-

level. 

Decision on Grounds of Utility 

By contrast, another version of instrumental rationality turns 

up in the sensorimotor system’s course of decision-making 

for optimal choice of a particular motor command, given a 

particular goal.  Various particular goals can be given to a 

sensorimotor system, which are ends for the system to seek 

appropriate means for their fulfillment.  Whenever a means 

is determined, a decision is made for attaining the end.  The 

degree of fulfillment can be evaluated in positive terms, 

such as benefit, reward, utility or prospect; or alternatively 

in negative terms, such as loss or cost (Körding and Wolpert, 

2006).  The degree of fulfillment is a foundational notion, 

the present paper proposes, for explaining the sensorimotor 

control.  In the realm of sensorimotor control, the utility of a 
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motor movement is the decision theory’s way of evaluating 

the fulfillment of the goal.  The fulfillment to a higher 

degree would receive the evaluation of a higher utility. 

According to the decision theory, the expected utility of 

an action is defined quantitatively in terms of probability, as 

follows: 

 
where p(outcome | action) is the probability of an 

outcome given an action, and U(outcome) is the utility 

assigned to that outcome.  An action is chosen for 

maximizing the expected value, which is put in terms of 

utility.  A decision made in this way is defined to be a 

rational choice (Körding and Wolpert, 2006).  This is a 

normative theory that defines the way in which people 

should behave; that way is put in terms of rationality.  In 

other words, the rationality of action urges that people in 

their actions should pursue a higher degree of utility.  When 

it is put in the context of sensorimotor control, a utility 

function evaluates how well a movement is performed.  This 

way of evaluation quantifies, in terms of utility, the total 

desirability of a chosen movement.  In addition, the decision 

theory is also considered to be a descriptive theory by 

assuming that people act rationally.  The rationality 

assumed in this theory explains why people behave in the 

way they do.  In fact, empirical findings indicate that the 

Bayesian decision theory shows successfully how people 

actually perform their sensorimotor control (ibid.). 

The decision theory measures a motor movement, in 

terms of utility (measuring positively) or cost (measuring 

negatively), by evaluating its degree of fulfillment, that is, 

how well it achieves the goal.  The end-means relation is 

assumed in the notion of fulfillment.  The utility, in a 

descriptive term, defines how well a means attains the end. 

The measurement of a cost depends on the immediate 

conditions of all relevant factors in the sensorimotor 

processing.  Specifically, it depends on current states of the 

sensory system and properties of the to-be-chosen motor 

commands.  The considered states include body states and 

the environmental conditions, for example, joint angles and 

velocities, and positions of relevant objects.  Properties of 

motor commands can be measured with different emphases, 

for example, the jerk, torque change, energy, time, variance, 

of the to-be-chosen motor commands.  The measurement, 

whatever the emphasis, takes the form of ‘minimize X’ 

(Todorov, 2004).  It is to minimize the size of relating 

factors, for example, the energy-to-be-consumed of the 

motor commands.  In other words, the measurement of cost 

is sensitive to the size of the system’s immediate response to 

its (bodily and environmental) conditions, which are 

embodied properties (i.e. jerk, torque change, energy, time, 

variance, etc.) of the sensorimotor system.  To be noted, 

measuring the cost is not purely an internal matter, but is to 

be put in real situations, which consist of bodily and 

environmental conditions. 

The Basics of Motor Commands 

Choice of motor commands, as above considered, is to be 

managed after a series of motor commands is organized.  

The computation of sensorimotor control is required to 

explain how to transform a higher-level goal into a series of 

motor commands, which are strictly constrained in the 

embodied sensorimotor system.  This explanation consists 

of two parts: coordinate transformation and modular 

structure, both of which assume the end-means relationship.  

The former, coordinate transformation, is to convert sensory 

signals of the goal into motor commands.  Sensory signals 

consist of visual information of the object in the goal-state 

together with the signals relating to the posture of bodily 

parts (hands, arms, shoulders, head, and eyes).  Those 

signals need to be transformed into a set of motor 

commands that would bring about the goal-state when they 

are performed.  This task is named to be sensorimotor 

transformations, which are accomplished with the mapping 

of a three-layered neural network: from the input layer of 

posture signals, to the intermediate layer that consists of 

population codes, to the output layer of the motor command 

that consists of the change in joint angles needed for the task 

(Pouget and Snyder, 2000).  This is a way of reverse 

engineering, which is called the inverse model, as its 

direction of transformation is opposite to the forward model 

of motor control (Wolpert and Ghahramani, 2000).  The 

sensorimotor transformations and their products can be 

regarded as means for the end of achieving the given goal. 

As for the construction of movements, it remains 

controversial as to how much of movement might be 

controlled by modular processes (Zelik et. el., 2014).  

Insofar as modular organization is applicable, various 

complex motor movements are constructed through flexible 

combinations of a limited number of modules, in order to 

simplify computation by reducing degrees of freedom (Jing 

et. el., 2004).  In other words, a complex motor command is 

organized with a combination of motor primitives.  A motor 

command consists of a series of muscle activations for the 

needed changes of joint angles.  With a study in the 

vertebrate spinal cord, it is shown that a complex motor 

command is produced by combining a few motor primitives, 

which are ‘unit burst generators’ organized in the spinal 

cord.  Each burst generator is to control the activation of a 

small group of synergistic muscles, or motor synergies 

(Tresch et. el., 1999).  Such a combination is a modular 

representation (Mussa-Ivaldi, 1999).  A motor task is to 

produce a motor command with an appropriate modular 

structure.  The motor commands produced in the above way 

are basic elements for the choice of cost function (Wolpert 

and Ghahramani, 2000).  Given that a single motor 

command has the above modular representation, it would 

naturally be questioned as to how the series of motor 

commands leading to the achievement of a goal are 

organized. 

The notion of modular structure appearing in 

sensorimotor control does not strictly follow Fodor’s (1983) 

sense of modularity.  Firstly, Fodor (1975) argues that 
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mental modules are combined with a language of thought 

(LOT, Mentalese).  The modular structure of movement 

generation, however, does not seem to follow the structure 

of LOT, in the following two aspects.  The weighted and 

graded combination of modules (Jing and Weiss, 2005) does 

not show the structure of LOT.  Furthermore, generation of 

movements out of modular organization has practical 

limitations, as is found in generation of movements for 

diverse locomotor behaviors; sufficient flexibility needs a 

further basis of coordination (Zelik, 2014).  There may be 

no clear distinction between planning and execution, 

because coordinated motor movements may emerge out of 

real-time optimal feedback control (Todorov and Jordan, 

2002), as discussed below.  Emergence of coordinated 

movements out of interaction with the environment makes 

generation of a movement deviant from the modular 

organization.  To summarize, the modular organization is 

only loosely applicable in sensorimotor control. 

Coordination During Execution 

The sensorimotor control on the basis of decision, cost and 

optimality, as aforementioned, can be managed, to a certain 

degree, in abstraction from the real situations.  A version of 

optimality can be so pursued, by way of open-loop 

optimization, with detailed planning in advance of execution.  

The accuracy can be maintained to a certain degree, yet with 

serious limitations.  The application of optimal principles 

seeks average optimality over previous performance.  As it 

is detached from the real situations, the sensorimotor control 

is like playing “a prerecorded movement tap” and 

consequently the given goal is treated like a laboratory task.  

It would be unable to encounter the trial-to-trial variability 

in the real situations (Todorov, 2004, p. 2). 

Such an abstract way of sensorimotor control is rather like 

the maintenance of thought, as it can run in abstraction from 

the real environment.  It has the merit of a Popperian 

creature, that is, planning internally for a best solution of the 

considered problem before its execution.  Decision can be 

made for a relatively optimal performance.  Yet, an 

important way of sensorimotor control would be completely 

missing—coordination during execution.  Understanding 

how this is done is a central problem in motor control for 

nearly 70 years (Todorov and Jordan, 2002). 

The coordination during execution presumes optimal 

feedback control—the optimal control with on-line sensory 

feedbacks.  It does not plan a desired trajectory before 

execution, but maintain the coordination on-line in response 

to all the task-specific contingencies in the real situations.   

Coordination in the sensory system is highly important as 

such a system is highly redundant, with a high number of 

ways over the combination of motor activations, and full of 

a variety of uncertain factors such as noise and delay, as 

aforementioned.  The optimal feedback control produce 

“continuous trajectory of movement in response to 

contiguous stream of sensory input (Körding and Wolpert, 

2006)”.  Costs are continuously generated with on-line control of 

sensory feedbacks.  The evaluation of cost is put in terms of ‘cost-

to-go’—the continuous and integral summation of costs (Todorov, 

2004).  The optimal feedback control responds to real 

situations of the body and the environment, and fully 

manifests the continuous way of motor decision in fast-

changing conditions.  This cannot be done in a detached 

model. 

When the optimal feedback control operates as a way of 

coordination, motor synergies and the achievement of the 

given goal emerges.  It only asserts what to achieve, without 

dealing with the how question in detailed.  After the goal is 

given, the optimal feedback control can keep on seeking an 

appropriate resolution because of its coupling with the plant, 

in a way like the operation in the dynamic systems view.  

The stages of planning and execution are not separate 

(Todorov and Jordan, 2002). 

The success of the coordination, in the optimal feedback 

control, relies on a normative property of the end-means 

relation, which is immanent in the sensorimotor system.  

That is, the sensorimotor system as a system with the end-

means relation would seek appropriate means for its given 

end.  This property of the optimal feedback control can be 

seen as endowed in evolution.  It is a process that makes 

possible the emergence of coordination in the sensorimotor 

system.  After it encounters its contingencies, including the 

fast-changing environment (with body) with various 

uncertain factors, the sensorimotor system operates like the 

way present in the dynamic systems view.  In that dynamic 

relations, motor synergies will eventually emerge. 

Instrumental Representations 

Representations in the sensorimotor system are generally 

divided into three types: end, means, and cost.  The goals in 

the sensorimotor system are regarded as ends, and motor 

commands are means for attaining those ends.  An end 

represents a world state that is to be attained.  A common 

element in the latter two types is the end-means relation: a 

means can attain its end, but therein lies a certain cost; in 

this sense, the means and the cost are called ‘instrumental 

representations’.  The means are first-order representations, 

which represent ways to attain their relating ends.  Costs, by 

contrast, are second-order representations that represent 

prospects of the relating means in the processes of attaining 

their ends.  Furthermore, those three types of representations 

hold different foundations of representation qua 

representation.  An end represents a to-be-attained future 

state, in which the end refers to the to-be-attained future 

state on grounds of similarity.  By contrast, the means 

represents the to-be-attained end in the way that the end is to 

be attained through the means.  The cost, in addition, 

evaluates the prospect of a means in the way to attain its end.  

Finally, whether a means represents an end successfully, is 

measured in terms of accuracy (as opposed to truth), that is, 

accuracy with which the means attains the end.  As accuracy 

can be measured with various degree, misrepresentation is 

subject to different degree. 
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Representations as Stand-Ins 

Representation, generally speaking, is something R that 

stands in a system S for something else E.  That is, R is a 

surrogate in the system S for E.  Representation sometimes 

serves as a Poppian creature: something that can run 

internally in a system before it is actually carried out.  

Representation in this sense simulates what will actually 

happen.  It (R) is a surrogate of E’s actual performance.  

Based on Cummins (1996), a surrogate in this sense refers 

to its target with the informatiom of its content.  A city map 

refers to the city streets according to structures of the map.  

A map user can simulate a feasible route in the map without 

actually walking in the street.   Further, in order to account 

for the wits in the sensorimotor control, the notion of 

representation can be extended from the predicative relation 

to the end-means relations, insofar as they bring about a 

certain target (the end) with recourse to a certain content 

(the means).  That is, the predicative representation Rb in a 

descriptive relation describes E.  Rb refers to the target of E, 

and the content of Rb describes E.  By contrast, the 

instrumental representation Rm in an instrumental (that is, 

end-means) relation brings about E, and the content of Rm 

guides the system S to reach the goal-state E.  Furthermore, 

a different surrogate Ri in the system S would be likely to 

bring about a different state, as opposed to E.  Rm and Ri, 

hence, are alternative means generated in the system S, 

alternatives which can be compared for a higher degree of 

prospect P to bring about the end-state E.  The prospect P is 

a second-order instrumental representation, as it evaluates 

the degree in which certain means would bring about the 

end.  Rm and Ri are exemplified in the instrumental system 

by motor commands, and the prospect P is exemplified by 

costs.  Thus, instrumental representations are genuine 

representations because they stand in a system (S) for 

something else (E) that they bring about.  The instrumental 

representations stand in the sensorimotor system, rather than 

merely serving as physical components of a mechanism, 

because they always have alternatives to be chosen in their 

way to bring about an end.  The above profile will be 

discussed more specifically below. 

The decouplability between representations and their 

environments is but a particular case for a system capable of 

generating alternatives.  The system produces something 

else apart from a fixed representation.  In a dark night, as I 

encounter a distal horse (a target) I may consider it to be a 

cow; in a darker night, I may even feel that it is like a 

unicorn.  For achieving a given goal, sensorimotor 

representations produce various motor commands that are 

all likely to achieve the goal.  The inverse model of a 

sensorimotor system transforms a single goal-state G into 

various motor commands, which would all be likely, to a 

certain degree, to achieve the same goal G.  The 

sensorimotor system always has alternatives to be chosen, in 

a decision for an optimal motor command, as indicated by 

the redundancy present in the musculoskeletal system.  This 

is unlike a physical causal relation, such as knocking a 

group of billiard balls with a single ball, where a move in a 

particular circumstance will determine a single result.  

Alternatives, as aforementioned, are made by the system S 

in a non-physical connection, when the system S encounters 

a fixed condition (e.g. encountering a horse, or given a 

particular goal-state).  In the sensorimotor system, the 

inverse model generates various motor commands in a non-

physical connection, which is non-physical insofar as it is 

computational.  The mechanism on the basis of Bayesian 

decision theory, in addition, makes a choice among 

redundant motor commands for optimality with a lowest 

cost.  The choice from alternatives justifies that the 

sensorimotor control is not a ‘merely physical’ device. 

Decoding of sensorimotor representations in the 

sensorimotor control is grounded on the use of those 

representations in the way to achieving the goal.  Therein, 

the pragmatic dimension of sensorimotor control is 

considered in terms of end-means relations.  The use 

consists of estimation over environmental conditions for 

applying them and choice between them, as manifest in the 

application of Bayesian decision theory in sensorimotor 

control (Körding and Wolpert, 2006).  The generated motor 

commands in the inverse model, in addition, are made with 

alternatives, which are available for choice in their use 

dedicated to the achievement of the goal. 

The motor commands are genuine representations because 

their way of bringing about goal-achievement is internally 

rich.  Based on Cummins’ (1996) notion of representation, 

the goal-state is the target while the content in use is the 

information employed, serving as guidance of the 

instrumental control, for achieving the goal.  Specifically, 

the estimation of environmental conditions in the Bayesian 

model of sensorimotor control presumes the need of 

achieving the goal, and so is the model of optimality.  Thus, 

the sensorimotor representations are internally rich, even 

compared to the classic representations, which are dubbed 

as representation-hungry.  For example, the Bayesian 

inference, in order to estimate external conditions out of 

noise, needs to take account of priors, that is, previous 

experiential outcomes.  This makes the Bayesian model of 

the sensorimotor control even no less emphasized on 

internal wits than the computation related to the classic 

theory of representation.  In addition, the decision made in 

relation to cost, as discussed previously, making a choice 

from various alternative motor commands.  Furthermore, 

the on-line measurement of cost adds more wits on the top 

of the computation with open-loop optimization.  The 

instrumental representation based on alternatives of action 

command, together with their accompanying estimation and 

choice, provides computation with internal alternatives, 

evaluation and inference.  Such a way of representation is 

internally rich. 

Representations can serve as stand-ins of a system 

without being predicative.  Representations are stand-ins for 

the existence of certain states, or for those states’ activities.  

The former relates to representational production and the 

latter representational consumption.  As considered above, 

the stand-ins can be instrumental, and consequently need 
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not be built with the function of imagination, on grounds of 

which counterfactual representations are possible.  

Imagination is surely a characteristic of human cognition.  

Cognition, however, can have other characteristics, for 

example, instrumental allocation, that is, arrangement of 

end-means relations.  The end-means relation, for a given 

end, need not consist of a single string of causal chain, as it 

can produce alternative means for the same end.  Those 

alternatives can be evaluated with different degree of 

prospects for attainment of the end.  The choice from 

alternatives justifies the cognitive bearing of the 

instrumental representations. 

Before concluding, it should be noted that instrumental 

representations can have a combinatorial structure only in a 

loose sense.  Instrumental representations of sensorimotor 

control do not follow the LOT, basically because its 

modular organization is only loosely applicable, as 

discussed in a previous section.   As a consequence, the 

combinatorial structure—with which mental representations 

can be generated recursively and systematically from 

primitive states—would not be generally salient in the realm 

of sensorimotor control.  In particular, the costs of motor 

commands are continuously generated in on-line feedback 

control, as manifest in ‘cost-to-go’—the continuous and 

integral summation of costs, as aforementioned.  With this 

way of computing costs, the consequently chosen motor 

commands can only have modular structures (if there are) in 

a loose sense. 

Conclusions 

Computation of sensorimotor control employs instrumental 

representations—representations with end-means 

relations—as exemplified by motor commands and costs.  

Motor commands represent ways to achieve the goal, and 

costs represent prospects of goal-achievement.  They are 

intermediate-level representations, because the computation 

of motor commands does not rely on reactive machinery, 

and because they appear at the sub-personal level.  Although 

they have modular structures, sensorimotor representations 

are initiated continuously and connected integrally.  In order 

to maintain accuracy of goal-achievement, the sensorimotor 

system needs on-line incorporation of sensory feedbacks, 

and consequently sensorimotor representations cannot be 

detached from the body and the environment. 
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