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BACKGROUND

With the gargantuan volume of data captured during surgeries and procedures, critical 

care, and pain management, the field of anesthesiology is uniquely suited to the effective 

application of closed loop technologies, machine learning, and neural networks. In any 

given aspect of anesthesia practice, be it sedation, the critical care setting, or outpatient 

pain management, thousands of data points are at the anesthesiologist’s disposal in making 

decisions. Years of experience help with interpreting these, but no matter what is done 

to optimize clinical decision making, the human brain is subject to bias, distraction, and 

fatigue. Computational improvements in the recent past have made development of practical 

tools to augment human intelligence finally feasible. In the past several years, these areas 

have expanded immensely in both interest and clinical applications.

Historically, anesthesiologists have been early pioneers of closed loop devices. As early as 

the 1950s, Bickford1 and others developed an automated delivery of volatile anesthetic 

based on electroencephalogram (EEG). Subsequent efforts expanded to sophisticated 

closed loop systems for achieving optimal end-tidal volatile concentration, neuromuscular 

blockade, and mean arterial pressure.2-4 The classic open loop control system in 

anesthesiology, target-controlled infusion devices, in which a hypothetical plasma or effect-

site concentration is targeted based on estimations from a population model of drug 

distribution and effect, bourgeoned outside the United States, from an emerging technology 

in the 1990s to a mature one today.5 Particularly in the United States, however, concerns 
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with regulatory issues, safety, and liability and a lack of convincing demonstration of 

significant clinical impact on patient outcomes have been significant impasses for both open 

loop and closed loop devices.6-15

Concomitant to progress with closed loop innovations have been significant advances in 

computational techniques and technology, which have made machine learning and other 

modalities within artificial intelligence (AI) markedly more accessible in recent years. 

Early efforts at clinical applications within anesthesiology were focused primarily on EEG 

analysis and depth of anesthesia monitoring but since have expanded considerably.16-18 

Applications of machine learning and other methods within AI span a vast array of purposes 

but typically fall into 3 common overall goals19,20:

1. To analyze large amounts of data in order to search for novel patterns or groups 

among variables (also known as data mining)

2. To leverage highly complex data sets, such as medical images, EEG waveforms, 

or multiple hemodynamic signals, over time

3. To generate models or algorithms to predict an event or continuous variable, such 

as degree of sedation, respiratory depression, or response to nociception

This article provides an overview of the basic tenets of closed loop devices, machine 

learning, and neural networks. This summary is intended for all audiences within 

anesthesiology and is by no means exhaustive. Particular emphasis is given to the clinical 

applications for these technologies. Although the authors have taken efforts to provide as 

much structure as possible in this text, there inevitably is overlap between these modalities.

WHAT ARE CLOSED LOOP SYSTEMS?

Closed loop control devices are fully automated systems in which a sensor(s) provides 

feedback to an algorithm that determines the action to take in order to achieve a desired 

target (Fig. 1). In most cases, the sensor(s) measures and provides feedback to the algorithm 

repeatedly, and the algorithm repeatedly directs corrective actions, thus creating a closed 

loop. Also known as automated control systems, closed loop systems act to maintain a given 

variable at a desired set point via 3 key elements: a sensor, a controller, and an actuator.15 

The sensor or measurement device senses the target parameter and generates a feedback 

signal that characterizes the status of the controlled variable. The controller queries the 

disparity between the feedback signal and the desired set point. Then, through a controlled 

algorithm, the controller generates an output signal for what corrective event should occur. 

The actuator then converts that signal to actual physical intervention.

The algorithms underlying the closed loop system can be simplistic (eg, if stroke volume 

variation goes above a certain set threshold, then a bolus is administered) or may utilize 

AI. In practice, most closed loop systems utilize reinforcement learning, a type of machine 

learning discussed in more detail later.

Examples of closed loop systems are ubiquitous in daily life—thermostats, clothing dryers, 

voltage stabilizers, and numerous elements of vehicle navigation, such as cruise control and 
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autopilot systems. In the example of the thermostat, there exists a temperature sensor, a 

heater or air conditioner, and a unit that allows the user to set a desired temperature; and 

the heater or air conditioner turns on and off as needed to achieve that temperature based 

on the measured temperature of the room. These systems have immense potential within 

medicine. Due to the complexity and variability of inputs, however, not to mention the 

enormous ramifications of error, the technologies have yet to be rolled out in day-to-day 

clinical medicine for most practicing anesthesiologists.

WHAT IS ARTIFICIAL INTELLIGENCE?

Just as algorithms underlie closed loop systems, algorithms are at the heart of machine 

learning and neural networks. The term, algorithm, refers to a systematic procedure or 

method of solving a problem or accomplishing some end. Put simply, machine learning and 

neural networks are just methodologies within AI, in which computer systems are created to 

help perform tasks that normally require human intelligence. With that, some basics of AI 

are delved into.

Types of Outcomes

One way AI within medicine can be classified is by the types of outcomes that are predicted. 

Classification involves organizing data into categories or discrete groups. Examples of these 

are models that aim to predict a binary outcome like mortality after surgery.21 Regression, 

on the other hand, utilizes modeling to predict continuous variables, such as predicting 

procedural or recovery times for the purposes of optimizing resource utilization.22,23

Types of Machine Learning Methods

There are several methods that can be used, depending on the type of question and data 

used. In reading about machine learning algorithms, 3 common methodologies frequently 

are referred to:

1. Supervised learning

2. Unsupervised learning

3. Reinforcement learning

Supervised learning involves creation of an algorithm that is “trained” to predict a defined 

entity or outcome. Unsupervised learning, by contrast, does not involve introduction of a 

priori hypotheses; thus, algorithms then are used to identify patterns, structure, or clusters 

within a data set. In reinforcement learning, an algorithm is trained to perform an action (eg, 

deliver an anesthetic to a patient) and to receive feedback and learn from its own errors and 

successes.

Types of Machine Learning Techniques

Although these descriptive terms help in understanding and assessing AI algorithms, it also 

is important to delve a bit into the types of techniques commonly used to analyze complex or 

large data sets. Because supervised learning currently is the most common type of machine 

learning utilized in medicine, this article describes some of the most common supervised 
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learning machine learning algorithms, including neural networks and bayesian techniques. 

The techniques described are a small subset of what currently exists, and the choice of 

a machine learning technique is based on several factors, such as experience, data input, 

interpretability, and so forth.

One of the most popular types of models applied in medicine is logistic regression. Although 

it is not considered a complex machine learning technique like neural networks, it is 

important to understand the distinction in order to understand the potential benefits and 

pitfalls. Logistic regression is considered to be a more traditional and simpler modeling 

technique, which contrasts in several ways to some of the more state-of-the art AI models. In 

logistic regression, the structure is simple, the hypothesized effect of an individual variable 

is straightforward, and the input variables (or features) do not interact with one other. Other 

machine learning models, like those described later, can allow for relationships between the 

features and learning of new features as well as learning between features and outcomes.

Another popular model is the decision tree, which utilizes tree models (akin to a rules-based 

decision flowchart) with branch-points or nodes to establish a target output based on inputs 

(Fig. 2). Each node within a decision tree has an assigned value, with the final node 

representing an outcome as well as the probability of arriving at that outcome based on 

the preceding decision tree path.24 Random forests then are an extension, in a way, of 

decision trees (see Fig. 2). Although a decision tree consists of a single sequential decision 

tree, a random forest model allows for multiple trees, creating an ensemble model. Each 

individual decision tree incorporates a random subset of features; the individual trees then 

are combined to generate a final output.

Bayesian techniques use a known previous probability distribution of an event along with 

a probability distribution in a given data set.25 This modality allows for both modeling of 

uncertainty and updating or learning repeatedly as new data are made available.26 Similar to 

classical supervised decision tree learning, there are several assumptions that underlie any 

results produced.

Neural networks allow for an exponentially higher degree of connections and logic. In a 

typical neural network, each network is composed of an input layer of neurons, which 

are composed of features that describe the data, as well as a hidden layer of neurons that 

perform mathematical transformations on input features and an output layer that produces 

an outcome (Fig. 3). Multiple connections between neurons exist and can be weighted 

differently depending on input-output maps.24

Developing a Machine Learning Model

When describing the development of a machine learning algorithm, it also is common to 

see the phrases, training data and test data. The training data are used to train the machine 

learning algorithm to analyze and learn the associations between the inputs and the output 

of interest. The test data are used to assess the performance of the trained machine learning 

algorithm on a set of data it has never seen before. For example, 70% to 80% of a data set 

can be allotted for training, with the remaining 20% to 30% reserved for testing.24
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Prior to training an algorithm, the features to be input into the algorithm need to be decided 

on. Features can be hand-selected by domain experts or a feature selection algorithm (such 

as lasso regression or sequential feature selection) can be utilized. The purpose of feature 

selection is to reduce the number of features, which can be limitless, to the most important 

ones for the model.

CLINICAL APPLICATIONS OF CLOSED LOOP DEVICES AND ARTIFICIAL 

INTELLIGENCE

There is mounting evidence that the ability to achieve intraoperative goals has significant 

effects on long-term outcomes.27 When caring for a patient, an anesthesiologist takes 

in multiple inputs, analyzes the effects these multitudinous variables may have on each 

other and the patient, and then makes an intervention to ensure the patient stays within a 

range of goals. These are done in an operating room almost without thinking—adjusting 

ventilator settings, anesthetic gas delivery, titrating infusions, and so forth. Due to the 

multitude of inputs, individual practice variations, potential distractors, coverage models, 

and a frequently high-stakes milieu, however, there are numerous ways in which automated 

intelligent devices can assist in providing optimized care.15

There are numerous examples of improved outcomes with reduced interprovider variation 

and protocol-driven pathways. Kurz and colleagues28 was one of the first randomized 

clinical trials demonstrating worse outcomes in patients who did not receive extra 

measures to ensure normothermia intraoperatively. Numerous randomized studies also 

now show resounding concrete evidence that proactive use of hemodynamic monitoring 

along with therapies to control hemodynamics significantly reduced mortality and surgical 

complications.29 And there are numerous studies showing excessive depth of anesthesia 

associated with mortality and other worse outcomes.27,30-34 Enhanced recovery after surgery 

pathways, in which multiple aspects of care are targeted for optimization and protocolized, 

now seemingly are ubiquitous.35

Speaking in general terms, closed loop devices and AI techniques within anesthesiology are 

enlisted to achieve a few common goals in order to improve patient care:

1. Keep patients within some kind of physiologic target range.

2. Reduce variability within an individual patient.

3. Reduce variability of care given to one patient versus another, that is, encounter 

variation, provider variation, and institutional variation.

4. Improve outcomes.

CLOSED LOOP DEVICES IN ANESTHESIOLOGY

Most current applications of closed loop devices in anesthesiology fall into a handful of 

clinical arenas15:

1. Anesthetics
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2. Intravenous (IV) fluid

3. Vasopressors

4. Mechanical ventilation

5. Glucose control

Some of the relevant studies in each of these clinical areas are reviewed.

Closed Loop Anesthetic Systems

The application of closed loop devices to anesthetic agents and depth of anesthesia is to 

many the apogee of anesthesia research and innovation. Closed loop systems in anesthesia 

first were pioneered in the 1980s and since have progressed much nearer to more widespread 

application.6,7 These systems have shown immense promise in terms of reduction in 

clinicians’ workload and improved control of drug delivery.14

There currently are approximately 20 studies in this area. Most have studied adults during 

the intraoperative period and IV agents (most commonly propofol and remifentanil), 

and most utilized bispectral index (BIS) as the target variable for anesthetic depth. 

A range of cases has been studied, including cardiac, general, gynecologic, vascular, 

thoracic, and spinal surgeries and procedures.8,12,14,36-41 A meta-analysis by Brogi and 

colleagues15 of 15 studies showed automated systems increased the percentage of time the 

outcome variable (depth of anesthesia) was maintained in the desired range by 17.4%. 

A subset of these studies also examined the proportion of time that the controlled 

variable was above or below the targeted set point, with meta-analysis showing 12.3% 

more undershooting or overshooting in the manual groups compared with the closed loop 

groups.8,11,12,14,36,37,39,41-47

The subset of studies isolated to using BIS and total IV anesthesia showed in meta-analyses 

that the closed loop anesthetic delivery systems were associated with significant lower doses 

of propofol at induction of anesthesia and significantly shorter recovery time.48

Goal-Directed Fluid Therapy Closed Loop Systems

Although there are several in vivo and in silico studies, currently there have been 2 

randomized control trials in humans.49-51 The smaller of the 2 studies examined 46 

moderate-risk to high-risk abdominal surgical patients with an arterial catheter-based cardiac 

output monitoring system with colloid fluid boluses in response to the closed loop control.50 

Although no difference was found in this study, the groups were small with notable 

differences in baseline characteristics. In the larger study, Joosten and colleagues51 studied 

104 patients undergoing elective major abdominal surgery. Stroke volume and stroke volume 

variation were monitored via arterial catheter–based system, and crystalloid or colloid 

boluses were administered in response to the algorithm.51 Patients in the closed loop 

group had significantly shorter length of stay compared with historical controls and reduced 

incidence of both major and minor postoperative complications.
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Closed Loop Vasopressor Devices

Closed loop vasopressor devices have immense promise to improve the ability to maintain 

optimal therapeutic control of hemodynamics. There have been 2 large randomized 

controlled studies in this area, both undertaken in the setting of cesarean section with 

spinal anesthesia.52,53 Kee and colleagues52 examined blood pressure and heart rate of 214 

patients with a computer-controlled phenylephrine delivery system using both intermittent 

boluses and continuous infusion. They found blood pressure control to be more precise 

when computer-controlled phenylephrine was delivered using intermittent boluses rather 

than continuous infusion. Sng and colleagues53 evaluated 216 patients’ noninvasive blood 

pressure and utilized computer-controlled phenylephrine for maintenance of blood pressure 

also during spinal anesthesia for cesarean delivery. In pooled analysis of the 2 studies, the 

automated systems were found to increase the number of measurements within the target 

range in comparison to manual control.15

There also are a handful of feasibility studies in this area with major promise. Joosten and 

colleagues54 demonstrated efficacy in a pig model with an induced hypotension model using 

nitroglycerine and automated controller–titrated norepinephrine. This study showed efficacy 

in correcting hypotension to keep the mean arterial pressure within 5 mm Hg of the target 

for 98% of the time. These same investigators also undertook a feasibility study in 20 human 

subjects undergoing elective moderate-risk and high-risk surgery.55 They showed that the 

closed loop vasopressor control system maintained mean arterial pressure within 5 mm Hg 

of the target for 91.6% of the intraoperative period and effectively minimized hypotension to 

2.6% of the intraoperative period.

Closed Loop Mechanical Ventilation

Nine trials have investigated the accuracy of closed loop ventilation systems in comparison 

with manual control of ventilation.56-63 Mechanical ventilation theoretically should be well 

suited for the application of closed loop systems; however, there are various inputs and 

outputs clinicians utilize. Thus, it is not surprising that these studies have a fair degree 

of heterogeneity within variables utilized as inputs and desired outcomes. Of the current 

studies, approximately half used oxygen saturation as measured by pulse oximetry as the 

controlled variable, with an automated fraction of inspired oxygen adjustment. The other 

studies used tidal volume, respiratory rate, and end-tidal CO2 ranges in order to examine 

the feasibility of closed loop pressure support ventilation systems to maintain an acceptable 

ventilation zone.

Subgroup analysis within a recent meta-analysis showed greater maintenance of the 

controlled variable within the target range in the automated systems versus the control group 

by approximately 8%.15 The authors expect in the coming years to see additional progress in 

this area.

Closed Loop Insulin Administration

More than 10 studies have examined closed loop insulin delivery system for glucose control. 

This area has made massive strides with both programmable home insulin subcutaneous 

insulin delivery devices and high-fidelity nearly continuous glucometry. This area also in 
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some ways is much more straightforward than mechanical ventilation, owing to the fact that 

the controlled therapy (insulin) and target (blood glucose level) are both single, agreed-upon 

entities.

In patients with type 1 diabetes mellitus, a recent meta-analysis of 8 studies using closed 

loop insulin delivery systems with pump insulin therapy showed that automated systems 

were associated with a 21.2% greater time with maintenance in the desired range.15 

Subgroup analyses within the same meta-analysis, demonstrated that compared with the 

control group, the automated systems also decreased the over-shoots and undershoots, with 

the automated systems showing a 6.5% reduction in the percentage of time above or below 

the target range.15 Meta-analysis of studies in the intensive care setting showed similar 

benefits; however, these results were not statistically significant.15

MACHINE LEARNING IN ANESTHESIOLOGY

Depth of Anesthesia

Anesthetic depth has become a particularly valuable clinical target, with several recent 

studies suggesting poorer outcomes associated with low BIS or excessive depth of 

anesthesia.11,63 A wealth of studies have investigated machine learning and neural networks 

in the context of depth of anesthesia monitoring.16-18,64,65 Arguably, the increased 

utilization and prevalence of BIS have seemed to have spurred methodo-logic efforts and 

sophistication of anesthetic control systems.66

Several studies also have proposed and evaluated alternative AI algorithms for depth 

of anesthesia versus existing measures, including BIS or the response entropy index. 

Although BIS is a commonly used modality for measuring depth of anesthesia, by no 

means is it the only modality available and it is possible that better measures of depth are 

achievable. Others have utilized auditory evoked potentials and heart rate variability.67,68 

Mirsadeghi and colleagues64 utilized a method called locally linear embedding, which maps 

high-dimensional features into a 2-dimensional output space to input direct features from 

EEG signals. They showed a 88.4% accuracy compared with 84.2% by BIS of identifying 

awake versus anesthetized patients. Another study by Shalbaf and colleagues65 applied EEG 

features within a neural network model to discriminate different states of anesthetic depth 

and demonstrated 93% accuracy compared with the BIS index’s 87% accuracy.

Another exciting target in depth of anesthesia monitoring is identification and potential 

prediction of awareness events. One study by Ranta and colleagues68 examined cases of 

a cohort who had reported intraoperative awareness while under general anesthesia and 

deployed neural networks using blood pressure, heart rate, and end-tidal carbon dioxide as 

input features. Although the prediction probability was 66%, the specificity achieved 98%, 

even with utilization of no EEG features.

Control of Anesthesia

The potential impact of controlled anesthetic delivery systems is vast. Although much 

emphasis often is placed on depth of anesthesia monitoring in anesthetic control, many 

forward-thinkers propose systems of complete anesthetic control. A complete system 
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for closed loop control of anesthesia would, in an ideal world, monitor and control 

hypnosis, nociception, neuromuscular blockade, hemodynamics, ventilation, temperature, 

and metabolic targets.69

Although many aspects of such a system may not require AI, there are many potential places 

for useful application of such modalities. Not all closed loop systems require AI at all; for 

example, closed loop temperature control is unlikely to require AI. These methodologies, 

however, have been applied to helpful use not only in depth of anesthesia systems, discussed 

previously, but also in systems for maintaining neuromuscular blockade goal as well as 

systems for controlling or weaning ventilation.70-75

Event and Risk Prediction

This area is ripe for application of AI modalities and many studies already exist in this area. 

Models exist for myriad events in the intraoperative, postoperative, and critical care periods. 

Examples include postinduction hypotension, hypnotic effect of induction dose of propofol, 

rate of recovery from neuromuscular blockade, American Society of Anesthesiologists 

(ASA) status, difficult laryngoscopy, identifying respiratory depression during conscious 

sedation, and assistance in decision making for the optimal method of anesthesia in pediatric 

surgery.76-84 Critical care studies have used machine learning to predict morbidity, ventilator 

weaning, clinical deterioration, mortality readmission, and detection of sepsis.85-91

In the arena of perioperative risks, investigators Hill and colleagues92 recently described 

a random forest model that predicts postoperative in-hospital mortality based solely on 

automatically obtained preoperative features with an area under the curve of 0.932. This 

model was found to markedly outperform other predictors of mortality, such as the 

Preoperative Score to Predict Postoperative Mortality, Charlson Co-morbidity Index, and 

ASA physical status. Additionally, deep neural networks have been applied to large data sets 

in order to predict other common markers of poor postoperative outcomes, such as mortality, 

readmission, acute kidney injury, and reintubation.21,93

Ultrasound Guidance

Studies in ultrasound guidance utilizing AI primarily have utilized neural network 

techniques. Examples include application of neural networks to distinguish femoral artery 

versus vein and automated identification of vertebral lamina.94,95 Several studies exist with 

cardiac echocardiograms as well.96 Even in cases of differentiation that seems easy or no 

better than expert clinical judgment, such simple discriminating abilities potentially could be 

vastly important and change how to teach trainees learning new imaging modalities.

Pain Management

AI also has significant potential to improve how we understand and treat pain. Examples 

include development of a nociception-level index based on machine learning analysis of 

photoplethysmograms and skin conductance waveforms, prediction of opioid dosing, and 

identification of patients who may benefit from preoperative consultation with a hospital’s 

acute pain service.97-99 AI also has been deployed to great success in large data studies with 

the aim of personalization of medicine.100 This holds potential to optimize drug selection, 
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dosing, and adverse reactions as well as identifying patients at risk for prolonged opioid use 

and substance use disorders.

Operating Room Logistics

Just as AI has infiltrated business and management, it also has begun to be applied to 

operating room and hospital logistics. Examples include prediction of the duration of 

surgical procedures and optimization of bed use.22,101-103 Machine learning models have 

been applied successfully to estimating the duration of robotic-assisted surgery.22 Surgical 

robotic units are a costly and limited resource; thus, booking robotic cases more accurately 

represents an example with significant potential business value.

CHALLENGES AND FUTURE DIRECTIONS OF CLOSED LOOP DEVICES 

AND ARTIFICIAL INTELLIGENCE

Currently, the field of anesthesiology appears to be on an exciting cusp of practical 

application of AI and closed loop systems. The strides that have been made in computational 

techniques and hardware, as well as the formation and availability of rich clinical databases, 

have laid hugely important groundwork. Many experimental systems have been proposed for 

closed loop control of anesthesia and practical applications of AI in anesthesiology, and the 

sophistication and intelligent algorithm design and practicalities are improving at lightning 

speed. Although none of the experimental closed loop systems is commercially available 

to clinicians at this time, several systems have undergone substantial study and show 

significant promise, such as the closed loop anesthesia delivery system and Infusion Toolbox 

95. To further push for closed loop innovation, significant engagement with regulatory 

bodies, control, systems, and software engineering will be necessary in the coming future.

With closed loop systems as well as machine learning and neural networks, the next 

steps seem to be application and demonstration of clear clinical impact and improvement 

in outcomes. Although numerous studies have shown impressive ability to analyze and 

predict clinical attributes and outcomes, convincing demonstrations of improved clinically 

significant outcomes have yet to be seen. Only after clear clinical impact is demonstrated 

can the cost and other hurdles required of implementation be justified. With the speed 

of advancement in the past several years, however, studies with demonstration of direct 

improvement in clinical outcomes are expected to emerge in the near future.

Anesthesiology as a field is genuinely uniquely suited to reap potential benefits and 

improvements that AI can offer. Anesthesiologists in the operating room are bombarded 

with digital data points from monitors and anesthesia machines, from within the electronic 

medical records, and from anesthesia information management systems. This makes 

incorporation of all these data points all the more challenging in addition to being subject 

to bias and fatigue. The beauty of AI methodologies is the algorithms’ ability to eliminate 

potential biases and engage in self-learning rather than needing to be fed the features 

decided on by expert opinion.

At the same time, these seemingly endless digitized data sources enable having access to 

rich databases from which how to care for patients can be learned and improved. Similar 
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to the revolution in computing abilities and technology, a revolution in these technologies 

within anesthesiology is expected in the coming years.
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KEY POINTS

• The application of artificial intelligence in anesthesiology with machine 

learning, neural networks, and closed loop devices has been advancing in 

frequency, scope, and sophistication.

• This article summarizes some basic tenets of machine learning (supervised, 

unsupervised, and reinforcement learning), techniques in artificial intelligence 

(classical machine learning, neural networks, deep learning, and bayesian 

methods), and applications of these modalities in clinical anesthesiology.

• This article reviews some history and background of closed loop devices, 

basic tenets of design and engineering of these devices, and their clinical 

applications.

• Artificial intelligence has the potential to have an impact on the practice of 

anesthesiology in aspects ranging from perioperative support to critical care 

delivery to outpatient pain management.
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CLINICS CARE POINTS

• Given the large amount of data anesthesiologists are required to interpret 

and prioritize, many closed loop systems and AI modalities have significant 

potential to reduce unwanted variability in patient care as well as deleterious 

effects of biases and human error.

• Closed loop systems can be applied to a variety of clinical aspects of 

the practice of anesthesiology: administration of anesthetics, IV fluids, and 

vasopressors as well as mechanical ventilation and glucose control.

• AI algorithms have been applied to several clinical arenas within 

anesthesiology: assessment of anesthetic depth, control of anesthesia, 

prediction of perioperative events and risks, ultrasound guidance, pain 

management, and operating room logistics.
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Fig. 1. 
Basic elements of a closed loop system. A target value range (eg, a mean systolic blood 

pressure range) is supplied to the controller. These settings then are compared with the 

output or feedback data (eg, patient blood pressure). The difference between the actual and 

target values then is processed and action is taken to adjust the input or manipulated variable 

such that the actual values reach the target range.
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Fig. 2. 
A simplified decision tree (A) and random forest (B). A single decision tree is simply a 

series of sequential questions. A random forest consists of a large number of individual 

decision trees. Each decision tree is trained on, or utilizes, a random subset of features, or 

bagged data. These individual decision tree outputs then are aggregated to produce a single 

model.
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Fig. 3. 
Basic structure of a neural network. The input layer incorporates features supplied by the 

user. The hidden layer converts inputs into features useable by the network. The output layer 

then converts the hidden layer results into an interpretable output.
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