
UC Davis
UC Davis Previously Published Works

Title
Starch and sugars as determinants of postharvest shelf life and quality: some new and 
surprising roles.

Permalink
https://escholarship.org/uc/item/3jw3f62m

Authors
Yu, Jingwei
Tseng, Yute
Pham, Kien
et al.

Publication Date
2022-12-01

DOI
10.1016/j.copbio.2022.102844

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3jw3f62m
https://escholarship.org/uc/item/3jw3f62m#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Available online at www.sciencedirect.com

Starch and sugars as determinants of postharvest shelf
life and quality: some new and surprising roles
Jingwei Yu1, Yute Tseng2,3, Kien Pham2,3, Margaret Liu2,3 and
Diane M Beckles2

Starch and sugars account for most of the dry weight of
horticultural crops and in many species, are known determinants
of quality. However, we posit that these carbohydrates often
have less-obvious roles in plant tissues with direct implications
for the postharvest quality and produce shelf life. The latter has
not been given as much attention, but with the recent interest in
reducing the scale of postharvest waste and loss, we highlight
how dynamic changes in the spatial–temporal accumulation of
carbohydrates, can influence myriads of biological processes
affecting postharvest attributes. Versatile roles, some surprising,
that carbohydrates play in determining produce of high value to
consumers, are highlighted, and gene targets for
biotechnological improvement are specified.
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Introduction
Carbohydrates, mainly sugars and starch, are the major
reserve, flavor, and textural components of many horti-
cultural crops, and as such, determine their nutritional
value, postharvest quality, and storage life [1] (see Box
1). However, even in seemingly ‘carbohydrate-irrele-
vant’ leafy greens and various produce [1], starch and

sugars may exert less obvious, yet we argue, critical roles
in shaping postharvest quality.

Starch and sugars have diverse functions in cells de-
pending on their relative concentration, mobilization,
subcellular location, and interaction with proteins. They
sustain growth and buffer cells from stress [2], and as
signaling molecules, they regulate many pathways that
determine nutrient allocation to the sinks, and their
partitioning into different biomolecular pools [2].

Most knowledge of carbohydrate metabolism is derived
from cereals and model plants. Here, we intend to build
several theoretical frameworks to show that carbohy-
drates, especially starch, may have ‘surprising’ roles in
determining horticultural postharvest quality. We show
that (a) starch may be essential to, and intertwined with,
climacteric ripening of fruits; (b) starch is a determinant
of leafy-green shelf life; (c) sugars can influence the
synthesis of specialized ‘sensory’ compounds; (d) car-
bohydrates have roles in biotic and abiotic stress re-
sponse and in determining fruit size; and (e) that source
tissue can determine sink quality. We then point to
molecular targets that can alter the carbohydrate profile
of produce to obtain desirable traits.

Starch is a sugar and energy reserve for
maintaining postharvest life
Starch and sugars accumulate in many fruits, tubers, and
leaves, but with different temporal patterns and con-
sequences for postharvest shelf life and quality (Figure 1).
The timeframe over which the flux between starch and
sugars occurs determines the classification and the role of
carbohydrates (Figure 1) [1].

Harvested produce is often stored in the dark and at low
temperatures, where respiration of reserves sustains the
hexose phosphate pool (Figure 1a panels 1–4). When re-
serves are exhausted, carbon starvation triggers senescence
that manifests as spoilage [3]. In tissues that accumulate
starch as a carbon and energy reserve (Figure 1b), granule
degradation to sugar is surprisingly complex and multi-
layered [1,4–6,70]. First, starch degradation occurs si-
multaneously with its biosynthesis at the granule surface
even during the phase of net starch accumulation (Figure
1a) [6–8]. This permits a bidirectional flow of carbon from
starch to sugars, and potentially, to other compounds via
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the hexose phosphate pool (Figure 1a). Second, in fruit, in
addition to exocorrosion at the surface, there is evidence of
some endocorrosion in the starch granule, during ripening
and fruit cold storage [6,9]. Understanding the bidir-
ectionality of flux between starch degradation and synth-
esis, and the physical organization of the starch granule-
associated enzymes, may offer opportunities to adjust

reserve utilization during postharvest storage [10]
(Figure 1a).

Starch as an underappreciated determinant of
leafy- and microgreen shelf life and quality
The limited carbohydrate levels in leafy- and micro-
greens influence postharvest longevity [11] by buffering

Box 1 Postharvest definitions.

Waste: Intentionally discarding edible produce because it does not meet expectations.
Loss: Unintentional, incidental loss of produce before consumption, due to physical damage, rapid spoilage, microbial growth, and so on.
Quality: Desirable attributes related to the appearance, texture, aroma and taste of produce.
Shelf life: Timespan after crop harvest and before deterioration.

Figure 1

Current Opinion in Biotechnology

The main pathways of starch and sugar metabolism in horticultural crops. (a) Carbon flux between starch, sugars, and the hexose phosphate (HP)
pools in different horticultural species and tissues. A b idirectional carbon flow is indicated with black and gray dashed arrows. The three colored
arrows indicate flux toward primary and secondary metabolism. Sucrose is shown as the assimilatory carbon, but polyols are prevalent in some
species (Duran-Soria et al. [2]). (b) Changes in the accumulation of sugars (blue line) and starch (red line) in different tissue types, pre- and
post harvest. (1) ‘Transitory starch’ — net biosynthesis and degradation is separated by the diurnal cycle (Zeeman et al., 2007). (2) ‘Storage starch’ —
net synthesis and degradation is separated by the reproductive and the next generation. (3) ‘Sugar-storers’ — starch accumulation is low — < 2% and
highly localized; sugars are accumulated at high levels. (4) ‘Transitory-storage starch’ — net synthesis and degradation of starch is separated by early
and late organ development in some climacteric fruit (Luengwilai and Beckles [6]). The reference list for the citations in the figure legend is in the
supplementary materials.
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against senescence [12]. Shelf life is extended when
harvested leaf starch levels are high [11], such as at the
end of the day or after an extended light period
[11,13,14]. Starch content also positively correlates with
desirable attributes such as sugar content, fresh weight,
and texture (crunchiness) [15,16]. Identifying mechan-
isms that potentially coordinate photosynthesis, carbo-
hydrate content, respiration, texture, and postharvest
longevity in leafy greens is needed.

High starch accumulation is associated with
species that undergo climacteric respiratory
burst during ripening and fruit quality
Among fruits, the accumulation of high levels of starch
(48% of the dry weight, Table S1) appears to be a unique
feature of those with climacteric ripening [1,17] (Figure
1a.4; b.4). In tomato fruit, starch may provide ∼40% of
the carbon needed for fruit respiration [1,18]. Further-
more, some of the fruit's internal CO2 from respiration is
likely fixed by fruit chloroplasts, contributing to
∼10–15% of ripe fruit carbohydrates [19,20].

Transitory-storage starch may represent an evolutionary
strategy for reproductive fitness with unintended bene-
fits for the postharvest industry [3]. First, its biosynthesis
in climacteric species likely amplifies fruit sink strength,
to undergird sink establishment and productivity [3]. A
large difference in sucrose concentration between source
and sink, which occurs when imported sugars are con-
verted to starch, would enable higher carbon allocation
to fruit. Further, carbon storage as starch rather than as
sugars minimizes cells’ osmotic disturbance [3]. Second,
increased fruit starch biosynthesis may also enhance
plant survival under stress [3,19] (see later sections).
From a postharvest perspective, the starch in climac-
teric-ripening fruit may be a vital energy source for
maintaining biological processes, and for the synthesis of
‘quality-related’ metabolites that would minimize loss
and waste (PLW, Figure 2).

In contrast to the fruit described above, ‘sugar-storers’
are mainly nonclimacteric and accumulate comparatively
little starch (Figure 1A.3; B.3; Table S1). Furthermore,
the starch is deposited in the peripheral regions of the
fruit, and unlike the climacteric fruit, its accumulation
peaks and is degraded to sugars, early in fruit develop-
ment [21–24]. However, starch in ‘sugar-storers’ may still
contribute to fruit growth and quality by enabling a
higher import of sugars into the developing fruit.

Starch content, structure, and compostion
can influence produce quality
Starch content and composition directly determine the
functionality of starch in staple roots and tubers, but
presumably, can also influence the biological processes

of fruits and vegetables, which do not accumulate high
levels of starch, as shown below:

Produce firmness
The crystalline and insoluble nature of starch directly
contributes to the firmness of fruit and the texture of
leafy vegetables [15,25]. When the dense granule is
degraded to soluble sugars, intercellular space increases
[25], thus promoting tissue softening [26].

Tuber nutritional quality and textural attributes
The relative proportion of the amylose and amylopectin
fraction of starch (Figure 2) is critical to tuber nutritional
status and textural properties. Amylose is resistant to
digestion and simulates fiber in the intestinal tract. Since
amylose improves the nutritional value of starch-rich
commodities, there have been many biotechnological
efforts to increase its proportion relative to amylopectin
in crops [27]. Furthermore, the molecular structure of
amylose is such that if high-amylose potatoes, cassava,
and so on, are fried, they should have a crisper texture
that may be desirable to consumers. In contrast, amylo-
pectin provides smooth and moist textures to cooked
starches which may be suitable for other end-uses [27].

Sugar availability in fruit
Starch granule crystallinity, composition, morphology,
and size collectively influence starch degradation to su-
gars, which in developing fruit could have consequences
for fruit respiration, metabolism, and ripening [1,28]. We
propose that the digestion of starch to sugars may be an
inflection point for the rate of reserve use during ri-
pening. Engineering starch with an optimal composition
and crystalline structure to control the rate of release of
sugars, may be valuable in regulating fruit metabolism,
and hence quality

The relative proportion of fruit sugars
affects sensory quality
The relative sweetness of sugars varies as such: fruc-
tose > sucrose > glucose > sorbitol, so if the sugar
content is the same, different proportions of sugars will
give the fruit distinct taste and flavor profiles [29]which
are prime concerns for consumers. Modulating fructo-
kinase activity [30] and the SlSWEET sugar transporters
[31] in tomato increased fructose content, silencing
A6PR reduced sorbitol relative to glucose in apple
[32], and modifying PuWRKY31, promoted sucrose ac-
cumulation in pear [33]. These changes should increase
fruit sweetness, and, along with organic acids and aroma
volatile compounds, should favorably influence fruit
taste, flavor, and consumer likability [34].

Carbohydrates promote shelf-life & quality Yu et al. 3
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Figure 2

Current Opinion in Biotechnology

Primary and secondary (specialized) metabolism in horticultural crops. Starch and sugar metabolism in different plant organs, is separated into four
interconnected biological processes, sucrose synthesis, sucrose degradation, starch synthesis, and starch degradation, where hexoses, sucrose, and
starch are the main carbohydrates. The inset images — (a) transitory starch – leaf; (b) transitory-storage starch — apple, tomato, kiwi, and banana
fruit; (c) storage starch — tubers; (d) sugar-storers — grape, orange, and strawberry fruit. Pathways and compounds shown: triose phosphate (TP)
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The carbohydrate profile of fruit tissues may
indirectly influence fruit size
Sucrose and hexose have differential effects on fruit size
[35], a trait determining consumer acceptance, shelf life,
and nutritional characteristics [36]. A high hexose-to-sucrose
ratio in early fruit development stimulates mitotic activity
that increases cell number through hexokinase (HXK) sig-
naling. Additionally, the higher osmotic potential of hexoses
relative to sucrose will attract more water, increasing cell
volume [2]. Genes influencing fruit size, mediated in part
by changes in carbohydrates, include the SWEET phloem
sugar transporters in tomato [37] and cucumber [38], the
CsSUS4 gene in cucumber [39], and the SlCDF4 tran-
scription factor (TF) [40] and its Arabidopsis homolog [78]
in tomato. In apples, the sugar-to-acid ratio correlates with
fruit size, which may have been selected through domes-
tication [41]. Although the mechanisms underlying these
phenomena may vary, they show that carbohydrates are key
determinants of fruit/organ size.

Carbohydrates as important inputs and
regulators of the synthesis of specialized
‘sensory’ compounds
Sugars both fuel and regulate the accumulation of specia-
lized metabolites that are important to postharvest quality
[2,42–45] (Figure 2b) [46]. Switches in the flux of carbon
between primary and specialized metabolism were seen
when sucrose was added exogenously to strawberry fruit,
which inhibited the expression of many carbohydrate
genes, but stimulated the MYB5 TF that regulates antho-
cyanin levels [47]. Changes in flux were also seen when
ectopic expression of the AtMYB12 TF in tomato repro-
grammed carbon away from primary metabolism and to-
ward flavonoid biosynthesis via the shikimate and
phenylalanine pathways (Figure 2b) [44]. There is a clear
interrelation between primary and specialized metabolic
pathways, but it remains relatively underinvestigated in
horticultural crops. Identifying and modulating the TFs
that regulate the fluxes between these pathways would
enable the design of plants with a desirable combination of
primary and secondary metabolites.

Starch metabolism acts as a protectant
against postharvest abiotic stress
Changes in plant carbohydrates, including the starch-to-
sugar conversion, are an important acclimatory response

to stress, often with consequences for produce quality
[3]. For example, sugars maintain cells’ osmotic poten-
tial, provide energy for stress defense, and act as mem-
brane protectants and ROS scavengers [49], as shown
below.

Cold-induced sweetening in potato
Storage at 4–8°C is desirable for extending potato shelf
life, but cold-induced sweetening (CIS), that is, the
degradation of starch to hexoses, occurs [48]. These su-
gars are protective [3], however, sugared tissues will
form carcinogenic acrylamide under high-temperature
processing, blacken, and become bitter, leading to PLW.
Manipulating the pathways that influence hexose levels,
that is, starch biosynthesis and degradation, sucrose hy-
drolysis to hexoses, and glycolysis, has provided some
protection against tuber CIS [49], and thus has the po-
tential to reduce PLW.

Postharvest chilling injury
This describes the loss of quality and accelerated spoi-
lage when tropical commodities are stored below 13°C
[49]. Postharvest chilling injury (PCI) affects a wide
range of species and results in extensive PLW [49].
There is growing evidence for the pivotal role of sugars
in mitigating this PCI [49]. Chilling may also trigger
higher starch content [50–52], which is degraded to re-
plenish sugars for continued osmoprotection to
abate PCI.

An interesting observation is that starch degradation may
slow down or even halt as cold storage progresses in
tomato, banana, and apple fruit [9,53,54], and even if
fruits are rewarmed, starch degradation does not resume.
In bananas, TFs that regulate this mechanism have been
identified [26,55]. The biological rationale for this me-
chanism is unclear and should be investigated in more
diverse species.

Postharvest physiological deterioration
Cassava root deteriorates 72 h after harvesting due to
postharvest physiological deterioration (PPD), a disorder
that leads to losses of 20–30% [56]. Silencing AGPase in
cassava causes sugars to accumulate in the root. A posi-
tive correlation between low PPD and high sugar con-
tent was found in the transgenic cassava that extended

pool are the substrates for sucrose, the major assimilatory carbon in many model plant species, but in the Rosaceae, polyols dominate. Hexose
phosphates (HP) are catalyzed by hexokinases (HK) and serve as the source of carbon for metabolism. Starch is made up of two polymers — 5–30%
of starch is linear amylose (AM) and 70–95% is highly branched amylopectin (AP) (Yu et al. [1]), depending on the tissue. Key: Carbohydrates are in
black; enzymes directly involved in starch metabolism are in blue; Metabolite abbreviations: SMs = secondary metabolites. Enzyme abbreviations:
AGPase = ADP-glucose pyrophosphorylase; GBSS = granule-bound starch synthase; SS = starch synthase; SBE = starch-branching enzyme; DBE
(ISA1) = debranching enzyme (isoamylase type1); INV = invertase; HK = hexose kinase; SPS = sucrose phosphate synthase; SPP = sucrose phosphate
phosphatase; SUS = sucrose synthase; PGM = phosphoglucomutase; PGI = phosphoglucose isomerase. (e) Biosynthetic pathways for specific
classes of SMs. Specialized metabolites define the aroma, taste, and mouthfeel of horticultural products, playing critical roles in consumer preference.
HP are the intermediates of glycolysis, and the derived compounds, phosphoenolpyruvate, with erythrose-4-phosphates (E4P), are the initial
precursors that enter into secondary metabolic pathways. The HP pool connects all pathways.

Carbohydrates promote shelf-life & quality Yu et al. 5
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root longevity, and was likely due to sugars serving as
ROS scavengers [56].

Salinity stress
Saline soils trigger sugar accumulation in the leaves,
which initially serve as osmoprotectants, but over time,
inhibit leaf photosynthesis. The rapid conversion of su-
gars to starch in tomatofruit promotes sugar export from
the leaf to the fruit by mass flow, thus relieving photo-
synthesis (Figure 3) [57]. The ‘extra’ starch stored in
‘salt-stressed’ green fruit is hydrolyzed during ripening,
boosting sugar content and intensifying fruit sweetness
post harvest [58,59].

Starch acts as a protectant against biotic
stresses
Pathogen infestation decreases postharvest quality, but
recent findings showing that pathogen colonization is
associated with changes in host carbohydrate levels,

offer new avenues for disease mitigation. Starch may
accumulate in the host as an early response after per-
ceiving bacterial effectors or volatile organic compounds
in some species. Such accumulation could physically
contain the microbes in situ, thus reducing systemic
spread [60–63]. If the infestation becomes advanced,
accelerated breakdown of the accumulated starch to
sugars may provide the host with energy and carbon for
the biosynthesis of protective antimicrobial com-
pounds [64,65].

Starch accumulation may also be induced by the pa-
thogen after infection [66–69], and may involve repro-
gramming carbon allocation between source and sink
[50]. This is seen with black Sigatoka disease (BSD) in
bananas [50,68], and in citrus greening [67] and grape-
vine red blotch [66] where phloem starch accumulation
is part of the disease response. BSD in bananas not only
alters starch metabolism in vegetative tissues, but also

Figure 3

Current Opinion in Biotechnology

Factors affecting crop source and sink relationships. The flux of carbohydrates to the sink (orange arrows), is determined by source and sink capacity,
which in turn, are modulated by genetic and preharvest environmental factors (de Ávila Silva et al., 2019). Mobile assimilates, such as sucrose and
sugar alcohols, are loaded at the source and are transported to the sinks by mass flow. Sink strength is determined by the factors shown (Alikhani-
Koupaei et al., 2022) and also by transporter activity, for example, HT (Aslani et al., 2020), which are developmentally regulated. Starch biosynthesis
may play an important role in transitory-storing organs’ sink strength by ‘pulling’ carbon into the sink tissue (Braun, 2022). The model above,
represents processes that occur in some, but not all species. Species using sugar alcohols for transportation may have a different mode of regulation.
The SnRK/T6P pathway is a central energy signaling hub that regulates carbon allocation and the feedback inhibition of photosynthesis due to stress
and development. T6P concentration correlates to the internal sucrose content and inhibits (red arrow) SnRK1. T6P is metabolized to trehalose by the
TPP (blue arrow), which also regulates the SnRK/T6P pathway. Depending on sucrose levels, the SnRK/T6P hub activates or represses genes involved
in carbohydrate use which may influence PLW. Diverse physiological and metabolic factors promote (red arrows) or inhibit (blue arrows) these
processes. Dashed lines indicate that the effect may be species-dependent. SuSy: sucrose synthase; INV: invertase; T6P: trehalose-6-phosphate;
SnRK: sucrose nonfermenting-1-related kinase 1; TPP: trehalose-6-phosphate phosphatase.
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Figure 4

Current Opinion in Biotechnology

Enzymes and regulatory factors influencing carbohydrate metabolism. Metabolites (black); Enzymes (pink); Manipulated genes (green); Manipulated TFs
(blue); Arrows — blue (activation/ increase) or red (repression/decrease); ↑ — overexpression; ↓ = repression. Abbreviations (metabolites): Glc — glucose;
Fru — fructose; UDP-Glc — UDP glucose; Glc1P — glucose-1P; ADP-Glc — ADP-glucose. Enzyme/Gene Abbreviations (enzymes): SUS — sucrose
synthase; INV — invertase; AGP/AGPase — ADP-glucose pyrophosphorylase; SS — starch synthase; GBSS — granule-bound starch synthase;
PTST1 — protein targeting to starch 1; SBE — starch-branching enzyme; AMY — α-amylase; BAM — β-amylase; GWD — alpha-glucan water dikinase;
PWD — phosphoglucan water dikinase; AATP —ATP/ADP transporter; AI — amylase inhibitor; CRY1a — cryptochrome 1a; INH — vacuolar invertase
inhibitor; INVINH — invertase inhibitor; NOA1 — nitric oxide-associated 1; NTRC — NADPH-thioredoxin; VP1 — H+-pyrophosphatase (H+-PPase) gene;
PKIN1 — a potato sucrose nonfermenting-1 (SNF1)-related protein kinase gene; SnRK — sucrose nonfermenting-1-related kinase gene; RFP1 — a RING

Carbohydrates promote shelf-life & quality Yu et al. 7
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changes the physical and chemical characteristics of
starch in the harvested fruit [68]. These examples across
host species and pathogen types illustrate that spa-
tial–temporal changes in starch metabolism may be im-
portant to host disease response. The RF1 banana
mutant with BSD resistance, was associated with high
levels of sugars and starch accumulation [50]. Thus,
starch accumulation could be a critical factor that could
be modulated pre- and post infection to reduce the da-
mage caused by pathogens.

Preharvest source-sink dynamics determine
carbohydrate allocation to harvested organs
The postharvest quality of sink tissues, for example,
fruits, roots, and tubers, depends on carbon allocation
from the source [37] (Figure 3), and agronomic practices,
environmental factors [14,50,52,57], and disease pressure
[67,68] can all influence this process. Reconfiguration of
carbon allocation in response to development or stress
(Figure 3), is mediated in part by the trehalose-6-

phosphate-sucrose nonfermenting-1-related kinase 1
(T6P-SnRK) signaling pathway, a central energy hub
that senses sugar status [70]. The T6P-SnRK1 pathway
regulates carbohydrate content in potato tuber [71,72],
sweet potato [74], and various fruits [73–75]. T6P-SnRK
also regulates starch physicochemical properties [74],
anthocyanin accumulation [73,76], and CIS [71] in var-
ious species, which all have an impact on PLW.

Biotechnological manipulation of
carbohydrate genes for improving
produce quality
As shown in multiple examples, manipulating the car-
bohydrate profile of horticultural crops by biotechnology
should impact postharvest quality and directly reduce
PLW. Increasing starch accumulation, modulating starch
degradation, altering starch composition, or changing
sugar content are key targets. The composite Figure 4
and accompanying Table 1 illustrate many genes and
regulatory factors that influence these processes.

(really interesting new gene) finger protein; SUT2 — a sucrose-uptake transporter; SWEET — sugars will eventually be exported transporter;
TST — Tonoplast sugar transporters; VInv — vacuolar invertase; VPE — vacuolar processing enzyme; WHY1 — ssDNA-binding protein 1. Gene
nomenclature: The following nomenclature is used to indicate species: Aa- kiwi; Ad-kiwi; At — Arabidopsis thaliana; Cit — citrus; Cs — cucumber; Fa —
strawberry; Ib — sweet potato; Ma — banana; Md — apple; Me — cassava; Pp — peach; Sb — potato; Sl — tomato; St — potato. TF Abbreviations:
AaCBF4 — a C-repeat-binding factor TF; AdDOF3 — a DNA binding with one-finger TF; CitERF16 — an ethylene-responsive factor family TF; SlbZIP1/
SlbZIP2 — basic leukine zipper motif TFs; MaARF2/MaAFR12/MaAFR24/SlARF6A —auxin response factor family TFs; MaMYB3/MaMYB308/
MaMYB16L — MYB domain TFs; MabHLH6 — a basic helix–loop–helix TF; MdAREB2 (Ma et al., 2017) — an ABA-responsive element-binding protein TF;
MdWRKY32/ PuWRKY31 — WRKY domain TFs; SlCDF4 — a cycling DOF-type TF; StRAP2.3 — an ERF-VII transcription factor; StTINY3 — a CBF/
DREB TF.

Table 1

Gene targets for improving the postharvest carbohydrate profile of horticultural crops.

Targeted traits Example gene targets Reference

Increasing tuber starch and yield Metabolic enzymes Plastidial adenylate kinase Oliver et al., 2008
IbVP1 Fan et al., 2021
AGPase Kim et al., 2002

Transporters IbAATP, SlAATP, StAATP Wang et al., 2016a, 2016b,
2017a

Modulating the amylose and amylopectin ratio Metabolic enzymes GBSS1, SBE, Chen et al., 2021a
Miao et al., 2020

Regulatory proteins MePTST1 Bull et al., 2018
Reducing the flux of sugars from starch in cold-storage
potato

Metabolic enzymes StBAM, StGWD, StVlnv Zhang et al. [48]
Albornoz et al. [49]

TFs StTINY Shi et al., 2019
SbRFP1 Zhang et al., 2019

Manipulating starch degradation during ripening to fruit
sugar

Metabolic enzymes MaBAM9b Liu et al., 2021
TFs MaMYB3, MabHLH6 Fan et al., 2018

MaMYB16L Jiang et al., 2021
SIARF10 Yuan et al., 2018
MdWRKY32 Li et al., 2021b

Altering sugar profiles for better quality Transporters MdSUT2.2 Ma et al., 2019
TFs MdAREB2 Ma et al., 2017

MdbHLH3 Yu et al., 2021b
SlRIN Slugina et al., 2021
SlbZIP1/SlbZIP2 Wang et al., 2022b
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Future directions
Throughout this entry, we have pointed to many un-
answered questions related to carbohydrate metabolism
in horticutural crops and experimental approaches to
address them. Here, we highlight additional steps
that could yield new knowledge to improve produce for
reduced PLW.

1) Determine the extent to which starch metabolism
influences fruit quality. An unresolved question is if
the amount, and the rate of sugars released from
starch, influence the substrate pool, and the synthesis
of downstream flavor compounds (Figure 2a/b).

2) Bioengineer genes encoding carbohydrate enzymes
and regulatory proteins for improved postharvest
sensory and nutritional quality. Many of these en-
zymes are regulated at the post-transcriptional level.
A deeper understanding of these regulatory me-
chanisms could be leveraged to introduce subtle ad-
justments to the carbohydrate composition of tissues.
Fine-tuning the amount and spectrum of carbohy-
drates produced could be used to optimize shelf
life or the flux toward specialized metabolic
pathways.

3) Establish the spatial–temporal profile of starch in
fruit tissues. A starch-to-sugar atlas in fruit, through
development and in response to pre- and postharvest
stress, would provide fundamental and high-resolu-
tion data on core energy and carbon metabolic pro-
cesses. Such an atlas would serve as a baseline to
identify targets for gene editing.

4) Determine the role of fruit photosynthesis, in de-
termining fruit quality. Fruit chloroplasts have pho-
tosynthetic and CO2 fixation capacity, an internal
source of CO2 [20], and fruit chlorophyll correlates
with fruit quality [77]. Fruit photosynthesis was ac-
tivated when source photosynthesis was impaired
under drought stress, and was accompanied by starch
accumulation [19]. Yet, the role of fruit photosynth-
esis in fruit growth, carbohydrate production, and
stress response is unclear [20]. Data that clarify these
potential relationships are needed as the first step to
exploiting these processes for enhanced fruit quality.

5) Leverage data from Arabidopsis to study starch me-
tabolism in leafy greens. There is a growing me-
chanistic understanding of starch metabolism in A.
thaliana. These data could be applied to starch-rich
leafy greens such as spinach, or those of the related
Brassicaceae, that is, cabbage, kale, collards, and so
on. This would largely fill the knowledge gap be-
tween the current models of starch metabolism and
their real-world application toward crop im-
provement.

6) Identify factors controlling carbon allocation from
source to sink for postharvest quality and shelf life.
Although it is tempting to focus on the harvested

product, source-sink relationships help determine
produce size, abiotic and biotic stress responses, and
quality attributes (see Figure 3). Varying the ex-
pression of key genes, for example, T6P-SnRKs,
SWEETs, INVs, and so on, combined with precision
agronomical practices, could improve many of these
critically important attributes that influence market-
ability (Figure 3).

Conclusions
Carbohydrate biosynthesis and degradation denote
changes in energy conversion and storage, with con-
sequences for postharvest quality. Despite the multi-
faceted role of starch and sugars in plant tissues, rarely
are these compounds seen beyond serving as bulk re-
serves for direct consumption. Here, we argue that their
metabolic dynamism is pivotal to the physiology and
quality of the harvested organ, which, through their ef-
fect on organ size, aroma, taste, flavor, texture, and visual
appearance, will reduce postharvest waste at the con-
sumer end. Further, because carbohydrates are vital
substrates for respiration, and act as ‘stress-protectants,’
they influence storage and shelf life, and as a result,
postharvest loss. We also show that carbohydrate
movement from source tissues to the harvested organ
should not be ignored when investigating produce
quality. Finally, the identified genes, enzymes, and
regulators involved in carbohydrate metabolism we
present, offer opportunities for precision modification of
postharvest attributes to reduce waste and loss.
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