
UC San Diego
UC San Diego Previously Published Works

Title
Path Dependencies in Bilateral Relationship-Based Access Control

Permalink
https://escholarship.org/uc/item/3jw4w27k

ISBN
9789811967900

Authors
Gupta, Amarnath
Bagchi, Aditya

Publication Date
2023

DOI
10.1007/978-981-19-6791-7_2

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3jw4w27k
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Path Dependencies in Bilateral
Relationship-Based Access Control

Amarnath Gupta1 and Aditya Bagchi2

1 University of California San Diego, La Jolla CA, 92093, USA
a1gupta@ucsd.edu

2 Indian Statistical Institute, Kolkata 700108, India
bagchi.aditya@gmail.com

Abstract. The Relationship based Access Control Model (ReBAC) gen-
eralizes Role-based Access Control (RBAC) by considering both hierar-
chical and non-hierarchical relationships between users to specify access
control of a set of target resources (objects). This paper extends the Re-
BAC model by considering relationships between objects as well as be-
tween subjects and objects. This generalized model is expressed through
the language of dependencies borrowed from data management. We de-
velop a language for bilateral path dependencies which states that a chain
of binary relationships over subjects and objects logically imply another
chain of binary relationships. We show that this formalism is adequate
to capture access control rules with no conflicts. In future work, this
formalism will be extended to include conflict detection and resolution.

Keywords: Access control, · ReBAC, · Bilateral Relationship

1 Introduction

Access control policies primarily specify how a user (usually referred as sub-
ject) can access a resource (usually referred as object) with a set of access
rights (read, write, execute etc.). An atomic access control policy is typically
expressed as a 4-tuple structure (s, o, a, v) using a set of Subject(S), Object(O),
AccessRights(A) and Sign(V ) where s ∈ S, o ∈ O, a ∈ A and v ∈ V . The sign
in an access control policy can either be +ve or -ve, where a +ve sign indicates
permission for the concerned subject to access the concerned object using the
access right specified and a -ve sign indicates denial of such access. Logically,
a policy set for a user/subject is expressed by many such atomic policies for
different resources/objects and also by logical combinations of such atomic poli-
cies using Boolean operators[9]. Depending upon the context and policy, Subject
can be users, group of users or roles, and Object can be any resource within
an enterprise that can be accessed by a Subject. Moreover, at times, an Object
can also be a Subject for an access policy. For example, when a user u tries to
execute a program p, u is the Subject and p is the Object, but when the same
program p accesses a file f during its execution, p is the Subject and f is the
Object.



2 Amarnath Gupta and Aditya Bagchi

In practice, not all authorization rules are explicitly specified. Instead, infer-
ence rules are used to derive authorizations using the rules of the access con-
trol model used. Specifically, user-group hierarchy ensures that members of a
sub-group inherit authorizations from its super-group. Similarly, role hierarchy
permits a higher order role to inherit authorizations from the roles below. More
recently, authorization models like RPPM [12] and ReBAC [11] have extended
authorization inference beyond hierarchies and inheritance, and created graph
based authorization schemes.

1.1 Motivation for the present work

Recently, multi-graph models are increasingly being used in studying both en-
terprise security as well as vulnerability analysis [6] because multi-graph models
represent multiple types of non-hierarchical relationships that security rules can
exploit. However, we find that many models, including ReBAC and RPPM,
focus primarily on subject-subject relationships, less on subject-object relation-
ships and rarely on object-object relationships. However, in real life, all three
types of relationships should factor into a security specification. For example, if
a user u has read access to a DBMS D, and D resides on server S, u must have
access to S to exercise the read-access to D. However, there is no access-control
formalism today that expresses such non-hierarchical implications. In this paper,
we study such a formalism based on the language of dependencies borrowed from
database theory [1].

We try to establish that an extension of ReBAC model is necessary where
object/resource side and user/subject side relationships and hierarchies need to
be incorporated. We call this model the Bilateral Relationship Based Access
Control model (BiReBAC). We have introduced a new formalism based on de-
pendency constraints that generalize the standard ReBAC model to give rise
to our Bilateral Relationship Based Access Control model (BiReBAC). How-
ever, this being the first proposal for the composite model, we have adopted an
assumption to ensure completeness and soundness of our authorization specifica-
tion. Our proposed model is based on Closed Policy and any access is permitted
only against explicit positive authorizations or any other authorizations inferred
from them. So against any query with any subject-object combination only a
positive authorization can be inferred. So for any access request if no positive
authorization can be inferred, the access request will be denied. So in a Closed
Policy no explicit negative authorization is specified. This assumption avoids
possible conflicts between positive and negative authorizations and the well-
known decidability problem as specified in the HRU model [8]. We will address
this issue again in the last section to indicate about our future work.

We now present a running example, to explain our proposed model.

A Running Example Let’s consider a modern day executable electronic text-
book on Data Science that is available over the web. The book has a number of
chapters, broken down into a hierarchy of sections and subsections. Some of the
textual content are sample problems whose worked-out solutions are provided as



Path Dependencies in Bilateral Relationship-Based Access Control 3

executable Jupyter Notebooks that the readers can run. We call these Problem-
text-to-Solution links as forward links (flinks). Each section also has a set of
exercise problems and a reading list. The exercise problems are written in text;
however, they are also connected to data sets and solutions (Jupyter Notebooks)
provided by the authors. A Notebook may link back to the paragraphs of the
book relevant to the exercise problem being solved. We call these Notebook-cell-
to-text links as reverse links (rlinks). Let us also consider that the authors of the
book have created a set of distinct tracks (e.g., “Beginners”, “Advanced”) which
are pathways through the book for different audiences. A “track” is a tree-like
structure through the chapters, sections and subsections of the book.

Clearly, our executable textbook is a distributed object, i.e., different part
of the book (e.g., different sections) are on different physical web servers. The
book has a set of “principal authors”, but sample problems may be written by
the graduate students of a principal author. Solutions to the exercise problems
may be created by undergraduate students who work in a principal author’s lab
or have taken the Data Science class offered by one of the principal authors.
The universe of these books can be represented as a graph shown in Fig. 1.
We can write several access control policies based on this example. We can say
that “every author has read, write and execute access on the Jupyter Notebooks
he writes”. We can also make relationship based access policy statements like
“a graduate student S who works under the supervision of a professor P and
researches on subject X, has read access to any textbook written by P on X.
This paper introduces a formalism different from [5, 12] to cover access control
policies where the objects and their fragments (e.g., a subsection of a book)
which are objects themselves connected through a relationship network.

2 The Language of Dependencies

We formalize graph-based access rules in terms of dependency statements. The
intuition behind dependency statements is to identify the critical factors on
which the access of a user to a resource depends. Suppose we want to make the
statement that user u has access to some portion p of a book b, if and only if he
has access to the web server (WS) w that hosts p. We can write this as:

∀u : user, p, b : book,m hasAccess(u, p,m)⇒ ∃w : WS |
partOf+(p, b), hosts(w, p), hasAccess(u,w,m) (1)

where the “,” symbol represents conjunction (AND), : book, : WS are unary typ-
ing predicates, m, the free variable designates the access right (e.g., read, write,
execute), and partOf+ is the transitive closure of the part-of relationship. Thus,
the access of u to p depends on the access of u to w. Dependency statements
like Eq. 1 has practical consequences. If there is an access control policy that an
undergraduate student has no access to a specific departmental web server, then
no Jupyter Notebook for exercise problems can be placed on that server.



4 Amarnath Gupta and Aditya Bagchi

Fig. 1. A Graph-centric View of our object domain. Solid straight black arrows =
partOf , solid curved black arrows = connectedTo, dashed arrows = flink, brown
arrows = rlink. Red nodes = Track 1, dark blue nodes = Track 2.

Eq. 1 represents an access control rule with single-variable dependency (i.e.,
the access depends on the existence of just a web server with proper access right)
which we call node dependency.

We can extend the notion of node dependency if we want to state that in
addition to Eq. 1, a user u can execute a Jupyter Notebook (NB) on the web
server w, if Python is installed on w and u has execute privileges for that Python
installation. Eq. 2 states this condition.

∀u : user, w : WS, j : NB hasAccess(u, j, execute)⇒ ∃w, p |
installed(p, Python, w), runsOn(j, p), hasAccess(u, p, execute) (2)

where predicate installed(p, Python, w) states that p is an instance of Python
that is installed on w. Eq. 2 differs from Eq. 1 because the two existentially
quantified variables w and p on which the u’s execute access to j depends, are
constrained to satisfy a chain of relationships. We tend to call this form of
multi-variable dependency as chain dependency. In general, a chain dependency



Path Dependencies in Bilateral Relationship-Based Access Control 5

relationship has the form

∀vars1[: typeSpec], hasAccess(user, resourceV ar1,mode)⇒ ∃vars2 |
chainExpression, hasAccess(user, resourceV ar2,mode) . . . (3)

where vars1 and vars2 are sets of variables, resourceV ar1 refers to the original
resource whose access is being determined, and resourceV ar2 refers to the re-
source on which the original access depends. The variable resourceV ar1 belongs
to the universally quantified variable set vars1 and resourceV ar2 belongs to the
existentially quantified variable set vars2. The chain expression is a conjunctive
predicate over a set of participating relationships and their transitive closures,
and must include all existentially quantified variables. The semantic types of
the variables are optionally specified as typeSpec of unary atomic type specifiers
for variables in vars1 ∪ vars2. Although Eq. 3 has one hasAccess predicate, a
general chain dependency expression may have multiple intermediary access re-
quirements (indicated by the dots) for the LHS of the implication to be satisfied.

2.1 Inferences From Node and Chain Dependencies.

The implication in the dependency-based formulation leads to two kinds of in-
ferences. The first category derives from tuple-generating dependencies (TGD)
used in data management literature [3, 2], and the second relates to implicit
access-mode assignment (IAM), a generalization from prior work by Dasgupta
et al for ontological data access for digital libraries [7].
TGD: Node dependency is a form of TGD. In our example, if we have a ground
fact like hasAccess(′Joe′,′ Section : 3.2′,′ read′) Eq. 1 also asserts the existence
of a tuple hasAccess(′Joe′, w1,′ read′) in the hasAccess table for some web server
w1. If not, the system is inconsistent. For chain dependency, a ground fact like
hasAccess(′Joe′,′Exercise : 3.2.14′, execute) implies a set of tuples

installed(p1, Python, w1),
runsOn(′Exercise : 3.2.14′, p1), and
hasAccess(′Joe′, p1, execute)
where the predicate names map to table names in an access control database.

However, by virtue of their generation rule, these three tuples are not indepen-
dent of each other and must be considered to be a group. We call this generalized
form of TGD a tuple-group generating dependency (TGGD). Note that the tuples
inferred from a TGGD belong to multiple relations.
IAM: The IAM problem can be illustrated by slightly modifying Eq. 1 as follows.

∀u : user, p, b : book,m,m′ user(u), hasAccess(u, p,m)⇒ ∃w : WS, f : file,m′ |
partOf+(p, b), hosts(w, p), hasAccess(u, f,m),

contains(w, f), locatedIn(p, f), hasAccess(u,w,m′) (4)

In this case, we have added an existentially quantified variable f which rep-
resents a file such that p, the part of the book, is located in file f , which is



6 Amarnath Gupta and Aditya Bagchi

Fig. 2. A graph representation of dependency equation Eq. 4. The hasAccess edge
from the LHS is made thicker.

contained in web server w. Now, if u has access to the file f in modality m, u
must also logically have access to the web server w in some mode m′. However,
the nature of m′ is not specified, although it is clear that m′ depends on the
value of m. There are two issues to be resolved:

1. Why is m′ different from m, the original access mode assigned to user u ?
2. How is m′ implicitly assigned for accessing web server w ?

A similar situation was encountered in [7] where the bibliographic metadata of
a digital library was represented by an ontology. A read access by a user u to a
document d containing in the concept c would implicitly provide an access to the
concept c itself. However, it does not infer that all documents in c can be read
by u. The authors have solved this problem by defining an access mode called
browse where the user can access concept c to reach the document d but cannot
execute any operation related to other access modes like (read, write, execute).
It makes authorization inference mechanism at the resource/object side different
from the same at user/subject side.

To remove the ambiguity for m′, we create a set of template IAM rules
that apply to the right side of the dependency equation. To formulate the tem-
plate IAM rule, we interpret the predicates of the dependency equation as a
graph (Fig. 2), where a binary predicate like contains is interpreted as a di-
rected edge from the first argument to the second, and a ternary predicate like
hasAccess is interpreted as a directed edge from the first argument to the sec-
ond, where the third argument is a property of the edge. A unary predicate like
book is interpreted as the node type of its argument variable. We say that the
LHS hasAccess(m′) edge is dependent on the RHS hasAccess(m) edge, con-
tingent upon the constraining subgraph that connects the resources w and f .
From Figure 2, the partOf+ edge does not participate in the constraint be-
cause removing it does not change the nature of the dependency. Now we can
formulate our template rule as follows. Given the constraining subgraph of the
form hosts(A,B), locatedIn(B,C), contains(A,C), if m is the mode of access



Path Dependencies in Bilateral Relationship-Based Access Control 7

for the LHS hasAccess(u,A,m) edge, then the m′, the mode of access for all
RHS hasAccess(u,C,m′) edges will be given by intention-to-m which is m′.
Thus if m is read, m′ is intention-to-read, an idea borrowed from multiple
granularity locking protocol in DBMS systems [10].

According to the locking protocol in a DBMS, if a table in a relational system
is updated with a write lock, the entire database will have an intention-to-write

lock indicating that down below in a more granular object actual write opera-
tion is in progress. The same concept can be used to infer access authorizations
for objects which contain the actual object for which explicit authorization has
been specified. Once again, access right of type intention-to-m assigned to
work station w in Eq. 4 allows the concerned user to reach and access p and f
by accessing work station w but no other operation is allowed on w.

To generalize this formulation, we recognize that like partOf , hosts, contains
and locatedIn are transitive relationships. Now, we can write a more general form
of the IAM dependency pattern, which applies to multiple dependency rules that
have the same constraining subgraph.
IAM Template 1: Given an independent access relation hasAccess(u,C,m′),
a dependent access relation hasAccess(u,A,m), where m is a valid access mode,
A,C are system resources, and a constraining subgraph pattern hosts+(A,B),
locatedIn+(B,C), contains+(A,C) the implicit access mode m′ is assigned as
intention-to-m.
Using Chain Dependencies. There can be different use cases for chain-
dependency in our example application.
Example 1. A reader of the book has read permission to the pages of a sec-
tion/subsection s if he has read all the prerequisite portions for s, and com-
pleted their exercise problems (i.e., run the Jupyter Notebooks associated with
the exercise problems).

∀u : user, b : book, s, (typeOf(s) in (′section′,′ subsection′)), hasAccess(u, s, read)

⇒ ∃ s′, e : exercise | (typeOf(s′) in (′section′,′ subsection′)), partOf+(s, b),

partOf(e, s′), prereq+(s′, s), {hasAccessed(u, s′, read) then hasAccessed(u, e, execute)}
(5)

In this example, hasAccessed is a state predicate which serves as a precondition
for the access rule on the LHS. Further, the signature

{< statePredicate > then < statePredicate >}

indicates a sequence of states that must be satisfied one after another. To eval-
uate this signature, the exercise e which is executed has to be part of the sec-
tion/subsection s′, the antecedent of the then structure. In other words, the
(s′, e) pair in the precondition is constrained so that partOf(e, s′) holds.



8 Amarnath Gupta and Aditya Bagchi

Example 2. A user enrolled in a track T does not have read access to any sub-
section S of a book or write/execute access to the exercises if S is not in T .

∀u : user, b : book, s : subsection, partOf+(s, b), hasAccess(u, s, read)⇒
¬∃ t : track | enrolledIn(u, t), inTrack(s, t) (6)

∀u : user, e : exercise, b : book, hasAccess(u, e, {write, execute})⇒
¬∃ t : track, s : subsection | partOf+(s, b), contains(s, e),

enrolledIn(u, t), inTrack(s, t) (7)

where the predicate contains is the inverse of predicate partOf . In other words,
partOf(a, b) means a is partOf b, whereas contains(a, b) means b contains in
a. In this pair of conditions, the chain dependency is purely structural because
the access does not depend on any implicit or past access conditions.

Example 3. A student can create a new Jupyter Notebook page on a web-server
only if he falls within the reporting hierarchy of any of the authors, and has the
explicit permission from her supervisor to upload data to the web-server.

∀s : student, j : NB,w : WS, b : book, canCreate(s, j, w)⇒
∃ p : professor, d : dataF ile, l : permissionToken, x |

author(p, b), supervises+(p, s), supervises(x, s),

hasPermission(s, l, canUpload(s, d, w)) (8)

We use canCreate(s, j, w) as a specialization of the more standard form of
hasAccess(user, resource, accessMode) used so far. We can rewrite the canCreate(s, j, w)
predicate as hasAccess(s, w, create(j)) where the access mode create is pa-
rameterized by the object to be created. The permission token l is similar to an
API key used for accessing web and mobile services. To apply the token, we use
hasPermission(user, token, accessPredicate) as a second-order predicate that
enables an access pattern via an explicit permission condition. The permission
condition can be viewed as a type of eventive precondition that must be satisfied
for the LHS hasAccess to take effect.

Incidentally, this chain dependency also takes care of provisions (pre-conditions)
and obligations (post-conditions) involved in specifying access control rules [4].

2.2 From Chain Dependencies to Bilateral Path Dependencies

In the previous subsection, we used the term chain dependency to refer to a series
of connected predicates on the RHS of the dependency rule. We can think of the
aforementioned chains as “RH paths” that exist only on the right hand side of
the implication symbol. A more general form of dependency can be defined by
having a path expression on both sides of the implication. We call this form a
bilateral path dependency rule.

We initiate our approach with a simple implication rule that does not have a
dependency formulation but has a LH path expression. In our example situation,



Path Dependencies in Bilateral Relationship-Based Access Control 9

Fig. 3. A graph representation of dependency equation Eq. 10. The edge from the RHS
are made thicker. The dashed edge reflects the secondary implication.

such a rudimentary (but unrealistic) relationship-based access control statement
can be “if g, a graduate student, has write access to a book chapter authored by
p who is g’s faculty advisor, then so does g’s undergraduate advisee u”.

∀u : ugStudent, g : gradStudent, p : professor, b : book, c : bookChapter,

authorOf(p, b), partOf(c, b), advisor(p, g), supervises(g, u),

hasAccess(g, c, write)⇒ hasAccess(u, c, write) (9)

We can make this statement more realistic by adding the additional condition
that u has this write access only if u writes an exercise for some portion of the
chapter. Now Eq. 9 becomes

∀u : ugStudent, g : gradStudent, p : professor, b : book, c : bookChapter,

authorOf(p, b), partOf(c, b), advisor(p, g), supervises(g, u),

hasAccess(g, c, write)⇒ ∃e : exercise | hasAccess(u, e, write),

partOf(e, c), hasAccess(u, c, write) (10)

With this extension, we have path expressions on both sides of the implication
in a dependency rule, making this constraint an example of a bilateral path
dependency. The rule is shown as a graph in Fig. 3, where existence of the
subgraph with heavy edges depends on the existence of the subgraph.with light
edges. We make the following observations about Eq. 10:

(a) One prerequisite for the ugStudent to get write access to the exercise is that
he or she is an advisee of the author of the book. This encodes an ReBAC-
style condition within the fold of the bilateral path dependencies. Thus, the
language of bilateral path dependencies have the expressivity to capture
both the subject-side ReBAC criteria and its object-side extensions.

(b) The ugStudent primarily has write access to the exercise, and consequently
also has write access to the book chapter. However, this is not explicitly cap-



10 Amarnath Gupta and Aditya Bagchi

tured in the equation. One way to capture this “derived” mode of write ac-
cess is to change the access mode to the book chapter to intention-to-write
as we did in the IAM case. The second, more direct way to represent this
is to add a secondary implication in the RHS. In this case, the RHS is:

∃e : exercise | hasAccess(u, e, write), partOf(e, c),−→ hasAccess(u, c, write)

We prefer to use this secondary implication notation to make the depen-
dency expression more precise.

(c) In this case, the undergraduate student gets write access to the exercise of
the chapter that the graduate student has write access to primarily because
the graduate student supervises the undergraduate student. We can write a
companion, non-dependency-generating rule that the graduate student who
has access to a resource r has the capability to grant access of r or a part
thereof, to the undergraduate student that he(she) supervises, is:

∀u : ugStudent, g : gradStudent ∃0r : resource

| hasAccess(g, r,m), grantsAccess(g, u, r′,m′), partOf∗(r′, r) (11)

We use the symbol ∃0 to denote that while g has the capability of granting
access, in reality there may be no resources for which the capability is exer-
cised. Further, in reality, the modality term grantsAccess(grantor, grantee,
resource, modality) predicate can be more nuanced. For example, if g has
read-access, he cannot grant a write or execute access to u. This considera-
tion directly shows that the well known Discretionary Based access control
(available even in SQL) can also be mapped to our model.

Coupled and Independent Bilaterality. In Eq. 10, the variables used on
the LHS of the implication are VL = (u, g, p, b, c) and those on the RHS are
VR = (u, c, e). Thus, VL ∩ VR = (u, c), i.e., VL ∩ VR 6= ∅. In this case, we call the
dependency rule as coupled bilateral path dependency (or coupled bilaterality);
on the other hand, a bilateral path dependency rule where VL ∩VR = ∅ is called
independent bilateral path dependency. We make the following assertion.

Assertion 1 An access control rule with an independent bilateral path depen-
dency is unsatisfiable.

Justification: Instead of a formal proof we prefer to present a logical justification
in support of the assertion made.

1. As shown in Eq. 10 and in other equations earlier, the complete set of chains
on both sides of an equation is formed by considering the transitive closure
of all the relationships connecting both the subject side and the object side.
Thus advises/supervises+ connects ugstudent to gradstudent to professor
and partOf+ connects exercise to bookchapter to book as shown in Fig. 3.
Thus chain of inferred authorizations connect different users to the initial
user-group, the authors of the book and offer access to different parts of the
initial object, the book.



Path Dependencies in Bilateral Relationship-Based Access Control 11

2. If VL ∩ VR = ∅ then it implies that even after considering the transitive
closure of all relationships on both subject side and object side, some sub-
jects/users cannot reach to initial set of subjects and/or objects where ex-
plicit authorizations were specified. Thus, such subjects/users will not have
proper authorizations inferred to access the required objects. From graphical
point of view, no path will be available for any such access.

So, the assertion stands and only coupled bilateral path dependency are allowed.
In light of Assertion 1, we only focus on rules with coupled bilateral path

dependency. Recall from Eq. 10 that nodes u, c are in the intersection of the
LHS and RHS – we call them the anchor nodes of the dependency graph (Fig.
3). Justification given for Assertion 1, also asserts that coupled bilateral path
dependency graphs (CBPD graphs) are always connected. Further, the anchor
nodes of CBPD graphs can have outgoing edges only to other anchor nodes or
to variables on the RH side of the implication.

2.3 CBPD Graphs and Hierarchies

Access control rules typically make use of subject-side hierarchies (e.g. over users
and roles) as well as object-side hierarchies (e.g., a classification of books in a
digital library [7]). A hierarchy-based access control specification is represented
as two rules – the first specifies the hierarchy-generating relationship rh (e.g., su-
pervises(user, user)), and the second specifies the access implication of a member
m1 of a hierarchy with respect to member m2 if they are in the same tree-path
(sometimes DAG path) induced by rh.

To express the interaction between a CBPD graph and hierarchies, we ex-
tend our example in Eq. 10. We discuss a scenario where professors have senior
postdoctoral students, who supervise junior post doctoral students, postdoctoral
students (junior and senior) supervise senior graduate students, who in turn su-
pervise the work of junior graduate students. Here, we treat the supervises
relationship as transitive and notice that it creates a DAG because a senior
graduate student may be supervised by a junior or a senior postdoc. Now, we
would like to still use the rule in Eq.10 with the following differences:

(a) A subgraph S depicting the supervises hierarchy must be created.
(b) Following the same notation as Eqs. 7 and 8, the advises edge is replaced

with a supervises+ edge in Figure 3.
(c) The variables (nodes) p and g should now be connected to the corresponding

nodes of S by an explicit instanceOf edge. This presents a slight expres-
sivity problem if the node marked g can be any direct or indirect supervisee
of p (i.e., a senior/junior graduate student or postdoc). We accomplish this
by

– creating a subgraph S′ of S where S′ does not include professors
– creating a type-predicate where instead of making the type assertion

g : gradStudent, we write g : memberOf(nodes(S′))

The modified part of the graph is shown in Figure 4



12 Amarnath Gupta and Aditya Bagchi

Fig. 4. The hierarchy and the affected nodes from Figure 3 are shown. Note that the
memberOf edge is equivalent to the type assertion p : S.professors made in the node.

Thus, the inclusion of hierarchies changes the nature of the CBPD graphs be-
cause it introduces the need to create named subgraphs which can be referenced
by type resolution logic at a node. To test whether a specific undergraduate
student has write access to the exercises, the eligibility of her supervisor must
resolve to a node type within subgraph S′.

2.4 Towards a BiReBAC Graph Model

From the example of book writing project and gradual development of a new re-
lationship based access control model through Eq. 1 to Eq. 10 we possibly could
establish that an extension of ReBAC model is necessary where object/resource
side and user/subject side relationships and hierarchies need to be incorporated.
We call this model the Bilateral Relationship Based Access Control model (BiRe-
BAC). While developing a full translation of the dependency based formalism is
beyond the scope of this paper, we outline below a rough sketch of how a prop-
erty graph corresponding to Figs. 3 and 4 may be constructed from our rules,
based on the Eq. 10.

The general scheme of a BiReBac graph construction follows:

1. Both objects and subjects are represented as typed nodes such that node
types are entity classes defined by the problem space. If these classes are
enumerated over a hierarchy as in Fig. 4, nodes in the hierarchy are repre-
sented as node types in a BiReBAC graph. As defined in the explanation of
the figure, a node may have multiple types specified through a type-predicate.

2. There are three types of edges - hasAccess edges that specify access rights,
relationship edges between subject pairs, object pairs and subject-object
pairs, and subclass/membership edges. Traditional authorization relation-
ships such as inheritance through user-group/subgroup or super-role/sub-
role are expressed directly as edges or as predicates over these edges.

3. Node properties of BiRBAC graphs need to specify if a node is on the an-
tecedent side, the consequent side or is an anchor node. Similarly, a node



Path Dependencies in Bilateral Relationship-Based Access Control 13

property also captures if a node is existentially qualified on the consequent
side (otherwise, all nodes are universally quantified).

4. When multiple dependency rules apply, our strategy is to create multiple
graphs, and using the principles of the web ontology language (OWL), de-
clare comparable nodes as equivalent by creating an equivalent edge be-
tween them. For example, the node type Book is used in graphs of Fig. 2 and
3 – these nodes will be connected through the equivalence edge.

In future work, we will present a formal construction for BiReBAC graphs
and prove that the construction will produce unambiguous graphs.

3 Discussion and Future Work

We have introduced a new formalism based on dependency constraints that
generalize the standard ReBAC model to give rise to our Bilateral Relationship
Based Access Control model (BiReBAC). However, this being the first proposal
for the composite model, swe have adopted Closed Policy to ensure completeness
and soundness of our authorization specification.

In the well-known HRU model [8] it has been shown that in a network struc-
ture where both positive and negative authorizations are present, authorization
of a particular node may be undecidable. However, since our present proposal
is based on only positive authorizations such decidability problem will not be
present. Presence of both positive and negative authorizations, related undecid-
ability problems and possible mitigation is part of future work.

In Section 2.4, we qualitatively argued that the dependency-based formalism
lends itself well to a property graph model. We will develop a provably sound
and correct bidirectional translation from the dependency-rules to an extended
version of the property graph model. We also expect to develop a modified
query engine that will accept this extended property graph. We will prove that
the implication rules presented in the paper will be appropriately translated into
a combination of query operations and inferencing over these property graphs.
Finally, we expect to develop a policy server that will use this extended property
graph based model for its operations.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases, vol. 8. Addison-
Wesley Reading (1995)

2. Baudinet, M., Chomicki, J., Wolper, P.: Constraint-generating dependencies. Jour-
nal of Computer and System Sciences 59(1), 94–115 (1999)

3. Beeri, C., Vardi, M.Y.: Formal systems for tuple and equality generating depen-
dencies. SIAM Journal on Computing 13(1), 76–98 (1984)

4. Bettini, C., Jajodia, S., Wang, X.S., Wijesekera, D.: Provisions and obligations
in policy rule management. Journal of Network and Systems Management 11(3),
351–372 (2003)



14 Amarnath Gupta and Aditya Bagchi

5. Crampton, J., Sellwood, J.: Path conditions and principal matching: a new ap-
proach to access control. In: Proc. of the 19th Symp.on Access control models and
technologies. pp. 187–198. ACM (2014)

6. Das, S.K., Bagchi, A.: Representation and validation of enterprise security require-
ments, a multigraph model. In: Advanced Computing and Systems for Security,
vol. 6, pp. 153–167. Springer (2018)

7. Dasgupta, S., Pal, P., Mazumdar, C., Bagchi, A.: Resolving authorization conflicts
by ontology views for controlled access to a digital library. J. Knowledge Manage-
ment 19(1), 45–59 (2015)

8. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Com-
munications of ACM 19(8), 461–471 (1976)

9. Jajodia, S., Samarati, P., Subrahmanian, V.: A logical language for expressing
authorizations. In: Proc. IEEE Symposium on Security and Privacy (Cat. No.
97CB36097). pp. 31–42. IEEE (1997)

10. Molina, H.G., Ullman, J.D., Widom, J.: Database systems the complete book
(2002)

11. Rizvi, S.Z.R., Fong, P.W.: Interoperability of relationship-and role-based access
control. In: Proc. of the 6th Int. Conf. on Data and Application Security and
Privacy (CODASPY). pp. 231–242. ACM (2016)

12. Sellwood, J.: RPPM: A Relationship-Based Access Control Model Utilising Rela-
tionships, Paths and Principal Matching. Ph.D. thesis, Royal Hallway, University
of London (May 2017)




