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Abstract

Comparative biologists are often interested in inferring covariation between multiple biological 

traits sampled across numerous related taxa. To properly study these relationships, we must 

control for the shared evolutionary history of the taxa to avoid spurious inference. An additional 

challenge arises as obtaining a full suite of measurements becomes increasingly difficult with 

increasing taxa. This generally necessitates data imputation or integration, and existing control 

techniques typically scale poorly as the number of taxa increases. We propose an inference 

technique that integrates out missing measurements analytically and scales linearly with the 

number of taxa by using a post-order traversal algorithm under a multivariate Brownian diffusion 

(MBD) model to characterize trait evolution. We further exploit this technique to extend the MBD 

model to account for sampling error or non-heritable residual variance. We test these methods 

to examine mammalian life history traits, prokaryotic genomic and phenotypic traits, and HIV 

infection traits. We find computational efficiency increases that top two orders-of-magnitude over 

current best practices. While we focus on the utility of this algorithm in phylogenetic comparative 

methods, our approach generalizes to solve long-standing challenges in computing the likelihood 

for matrix-normal and multivariate normal distributions with missing data at scale.
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1. INTRODUCTION

Phylogenetic comparative methods explore the relationships between different biological 

phenotypes across sets of organisms. To properly understand these phenotypic trait 

relationships, methods must adjust for the shared evolutionary history of the taxa (?). 

Molecular sequences from emerging sequencing technology and high-throughput biological 

experimentation enable such phylogenetic adjustment for rapidly growing numbers of taxa 

and increasing numbers of trait measurements. Comparative studies incorporating dense 

taxonomic sampling create the potential for new research into general patterns in phenotypic 

evolution, key differences between subgroups and the relationship between phenotypic and 

genetic evolutionary dynamics. Unfortunately, many phylogenetic comparative methods 

remain poorly equipped to handle these research questions at scale.

Popular methods often assume an underlying Brownian diffusion process acts along each 

branch of a phylogenetic tree, such that the traits are multivariate normally distributed. 

Revell (2012) and Adams (2014), for example, parameterize this distribution in terms of a 

highly-structured variance-covariance matrix that characterizes the tree and trait covariation. 

Computational work to invert this matrix to evaluate the multivariate normal likelihood 

scales cubically with the number of taxa. This work stands even more troublesome when 

the phylogenetic tree remains unknown and requires joint inference with the trait process, 

necessitating repeated inversion. Freckleton (2012), Pybus et al. (2012), and Ho and Ané 

(2014) all independently develop algorithms that take advantage of the matrix-normal 

structure of the data under the MBD model to evaluate the likelihood. Using the tree 

structure, these algorithms then scale linearly with the number of taxa with complete data, 

but this ideal run-time currently stumbles when trait measurements are missing.

As the number of taxa grows large, measuring a complete suite of traits for all taxa becomes 

increasingly challenging. While stripping any rows of data with missing values may create 

a “complete” data set, this procedure both reduces statistical power and can introduce bias 

(Nakagawa and Freckleton 2008). Recent solutions to this problem that take advantage of 

all available data include those by Goolsby (2017), Tolkoff et al. (2017), Bastide et al. 

(2018), and Mitov et al. (2020). Tolkoff et al. (2017), for example, treat the missing data 

points as unknown model parameters and integrate them out via Markov Chain Monte Carlo 

(MCMC). This method, however, requires iterative manipulation of the likelihood function 

on a per-taxon basis and remains computationally prohibitive for large trees. Alternatively, 

Goolsby (2017), Bastide et al. (2018), and Mitov et al. (2020) take a different approach and 

develop algorithms that can compute the likelihood of the observed data only in linear 

time with respect to the number of taxa. However, the inference strategy of all three 

groups (implemented in Rphylopars (Goolsby et al. 2017), PCMFit (Mitov et al. 2019), and 

PhylogeneticEM (Bastide et al. 2018) respectively) rely on maximum likelihood estimation 

(MLE) regimes that assume the phylogenetic tree is known a priori. While this assumption 
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may be appropriate when the phylogenetic tree is known with a high degree of certainty, 

this is not the case for many practical problems. If there is any uncertainty in the tree, these 

methods will likely be both biased and over-confident in their estimates.

In this paper, we reformulate evaluation of the data likelihood function under a Brownian 

diffusion process on a tree such that we achieve the marginalized likelihood of the observed 

trait measurements only. This innovation arises from thinking about observed tip traits as 

multivariate normally distributed with infinite precision in their sampling, while missing 

traits have zero precision, and appropriately propagating these precisions up the tree 

through dynamic programming involving an unusual matrix pseudo-inverse definition. This 

pseudo-inverse finds similar use, but independent discovery, in Bastide et al. (2018). Unlike 

previous approaches, the integration avoids EM iteration making simultaneous inference 

with the phylogeny practical and enables researchers to analyze all available measurements 

when inferring the trait relationships. Surprisingly, we can still evaluate the observed-data 

likelihood in linear time with respect to the number of taxa. The price to be paid is that 

computation now scales cubically, rather than quadratically, in the number of traits. This 

remains a small price since the number of taxa is often orders-of-magnitude larger than the 

number of traits. It is also notable that this method has applications beyond phylogenetic 

comparative methods and can be used more generally in a special class of matrix-normal and 

multivariate normal distributions with missing data. This has been a long standing problem 

in statistics since at least the 1930’s (Wilks 1932), with more recent work by Dominici et al. 

(2000); Cantet et al. (2004); Allen and Tibshirani (2010); and Glanz and Carvalho (2018). 

One important limitation to our approach is that it assumes data are missing at random 

(Little and Rubin 1987) which is inappropriate for many data sets.

We also demonstrate how this framework can be easily extended to incorporate residual 

variance in the MBD model, which is only one of many possible model extensions. Our 

strategy of analytically marginalizing the observed data likelihood extends seamlessly to 

this and other model extensions and allows for efficient inference on these models while 

maintaining likelihood computations that scale linearly with the number of taxa. These 

extensions open up lines of inquiry not available in the simple MBD model. In particular, 

including residual variance in the model enables inference of phylogenetic heritability.

We demonstrate the broad utility of our algorithm to compute the marginalized likelihood 

through three examples. First, we examine covariation in mammalian life history traits using 

data on 3649 taxa from the PanTHERIA ecological database (Jones et al. 2009). Second, 

we use our new efficient algorithm to simultaneously evaluate several theories regarding 

prokaryotic evolutionary theory. We use data from NCBI Genome and a recent study 

by Goberna and Verdú (2016), along with matching 16S sequences from the ARB Silva 

Database (Ludwig et al. 2004), to jointly infer both the phylogenetic tree and evolutionary 

correlation between several prokaryotic genotypic and phenotypic traits. Finally, we apply 

our multivariate residual variance model extension to data presented by Blanquart et al. 

(2017) concerning HIV virulence to evaluate the heritability of HIV viral load and CD4 

T-cell decline. We compare the computation speed of our analytical integration method 

against current best-practice methods and observed increases in speed that top two orders-of-

magnitude.

Hassler et al. Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. PHENOTYPIC DIFFUSION ON TREES

Consider a data-complete collection Y = (Y1, …, YN)t where Yi = (Yi1, …, YiP)t of P 
real-valued phenotypic traits measured across N biological taxa. Relating the taxa stands a 

known and fixed or unknown and random phylogeny ℱ that is a bifurcating, directed acyclic 

graph whose 2N − 1 vertices originate with a degree-2 root node ν2N−1 and terminate with 

degree-1 tip nodes (ν1, …, νN) that correspond to the N taxa. Linking vertices are edge 

weights or branch lengths (t1, …, t2N−2). Let Xk = (Xk1, …, XkP) be latent values of the 

traits at node νk on the tree for k = 1, …, 2N − 1. For tip nodes i = 1, …, N, we posit 

a stochastic link p(Yi |Xi) where Yi is drawn from some distribution parameterized by Xi 

and other hyperparameters (see Figure 1). Comparative methods standardly assume that the 

density p(Yi |Xi) is degenerate at Xi (i.e. Yi = Xi with probability 1), but we relax this 

assumption in future sections.

The most common phenotypic model of evolution (?) assumes a multivariate Brownian 

diffusion process acts conditionally independently along each branch generating a 

multivariate normal (MVN) increment,

Xk MVN Xpa(k), tkΣ  for k = 1, …, 2N − 2, (1)

centered around the realized value Xpa(k) at its parent node and variance proportional to 

an estimable P × P positive-definite matrix Σ. Since the trait values at the root are also 

unknown, Pybus et al. (2012) suggest further assuming X2N − 1 MVN μ0, κ0
−1Σ  with fixed 

prior mean μ0 and sample-size κ0.

2.1 Computation of Observed Data Likelihood

When there are no missing data and under our standard assumption that p(Yi |Xi) is 

degenerate, integrating out unobserved internal and root node traits leads to a seemingly 

simple expression for the data likelihood p Y ∣ Σ, ℱ, μ0, κ0  (Freckleton 2012; Vrancken et 

al. 2015). Namely, Y is matrix-normal (MN) distributed around mean 1Nμ0
t , with across-

row variance ϒ + κ0
−1JN and across-column variance Σ, where 1N is a vector of length N 

populated by ones, JN = 1N1N
t , and ϒ is a deterministic function of ℱ. Specifically, element 

ϒii′ measures shared evolutionary history and equals the sum of the branch lengths from the 

root to the most recent common ancestral node of taxa i and i′ when i ≠ i′ or the sum of 

the branch lengths from the root to taxon i otherwise. For example, in Figure 1, ϒ12 = t4 

and ϒ11 = t1 + t4. One can evaluate this highly structured matrix-normal likelihood function 

with computational complexity O NP2  given the acyclic nature of ℱ. When some data 

points are missing, however, the observed-data likelihood is no longer matrix-normal and 

new approaches are needed. This becomes increasingly urgent as the prevalence of missing 

observations grows with the size of trait data sets. In this context we wish to compute

p Yobs  ∣ Σ, ℱ, μ0, κ0 = ∫ p Yobs , Ymis  ∣ Σ, ℱ, μ0, κ0 dYmis , (2)
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where Yobs and Ymis contain the observed and missing trait values, respectively.

The two simplest strategies for calculating the observed-data likelihood are, unfortunately, 

computationally prohibitive for most large problems. One such solution forfeits the MN 

structure of the data in favor a simple expression of the observed-data likelihood. This 

strategy uses the fact that the matrix-normal distribution of Y can also be expressed as

vec Y ∣ Σ, ℱ, μ0, κ0 MVN vec 1Nμ0
t , Σ ⊗ ϒ + κ0

−1JN , (3)

using the Kronecker product ⊗. Assuming data are missing at random (Little and Rubin 

1987), one can simply remove the rows and columns of vec 1Nμ0
t  and Σ ⊗ ϒ + κ0

−1JN
corresponding to the missing data and compute the likelihood for this NP − M′ dimensional 

MVN distribution, where M′ is the number of missing measurements. This likelihood 

calculation carries the onerous computational complexity O NP − M′ 3 . Alternatively, 

from a Bayesian perspective, one could numerically integrate out the missing data by 

treating each missing data point as an unknown model parameter and employing MCMC 

to sample each value. This strategy restores the matrix-normal structure, but requires 

the likelihood be evaluated each time one samples a missing data point. This results in 

computation complexity of at least O NP2M , where M is the number of taxa with missing 

measurements. Because M often scales with N, this method remains prohibitively slow for 

many data sets with large N. Our goal is to integrate out these missing values analytically 

using a dynamic programming algorithm in order to bring run time down to a much more 

manageable O NP3 .

2.1.1 Missing Data Definitions and Operations—To develop our algorithm, we first 

introduce some useful abstractions and notation. At each tip in ℱ, information about each 

of the P traits comes in one of three forms: a trait value may be directly observed, latent, 

or completely missing. When directly observed, we posit without loss of generality that the 

value arises from a normal distribution centered at the observed value with infinite precision. 

We assume that trait data that arise from latent values are jointly multivariate normally 

distributed about the unknown latent values with known or estimable precision. Finally, a 

completely missing value arises also without loss of generality from a normal distribution 

centered at 0 with zero precision. To formalize this, for tip i = 1, …, N, we construct a 

permutation matrix Ci that groups traits in directly observed, latent, and completely missing 

order and populate a pseudo-precision matrix

Pi = Ci diag ∞I, Ri, 0I Ci
t, (4)

where diag[·] is a function that arranges its constituent elements into block-diagonal form 

and Ri is the latent block precision. Note that any block may be 0-dimensional. This 

construction arbitrarily forces off-diagonal elements of Pi involving directly observed 

and completely missing traits to equal 0 and plays an important role in simplifying 

computations.
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We additionally define a series of operations that we will find useful for defining this 

algorithm. We define the pseudo-inverse

Pi
− = Ci diag 0I, Ri

−1, ∞I Ci
t . (5)

We define the pseudo-determinant dêt() as the product of the non-zero singular values. We 

also define the matrix δi = diag[δi1, …, δiP] for i = 1, …, N, where δij is an indicator 

variable which takes a value of 1 if trait Yij is observed or latent and 0 if it is missing. Lastly, 

we define the possibly degenerate multivariate normal density function

log ϕ(z; μ, P) = 1
2log det (P) − rank(P)

2 log 2π − 1
2(z − μ)tP(z − μ),

for some argument z, mean μ and precision P of appropriate dimensions.

2.1.2 Post-Order Observed Data Likelihood Algorithm—Our goal is to efficiently 

compute the likelihood p Yobs ∣ Σ, ℱ, μ0, κ0 . Following from Pybus et al. (2012), we 

perform a post-order traversal where we calculate the observed-data partial likelihood 

p Y k
obs ∣ Xk, Σ, ℱ  at each node νk where Y k

obs is the observed data restricted to all 

descendants of node k on the tree. For example, in Figure 1, Y 4
obs  = Y1

obs , Y2
obs  .

We posit that, given an appropriate stochastic link function p(Yi |Xi), we can express the 

observed-data partial likelihood as

p Y k
obs  ∣ Xk, Σ, ℱ = rkϕ Xk; mk, Pk , (6)

for all nodes k = 1, …, 2N − 1 and some remainder rk, mean mk, and precision Pk. Given 

a parent node ℓ with children j and k, let us assume we can express the observed-data 

likelihood of Y j
obs  and Y k

obs  as in Equation 6. Conditioning on Xℓ, we can compute

p Y ℓ
obs  ∣ Xℓ, Σ, ℱ = p Y j

obs  ∣ Xℓ, Σ, ℱ p Y k
obs  ∣ Xℓ, Σ, ℱ (7)

as Y j
obs  and Y k

obs  are conditionally independent given Xℓ. Using Equations 1 and 6, we form

p Y j
obs  ∣ Xℓ, Σ, ℱ = ∫ p Y j

obs  ∣ Xj, Σ, ℱ p Xj ∣ Xℓ, Σ, ℱ dXj = rjϕ

Xℓ; mj, Pj
⋆ ,

(8)

where the branch-deflated pseudo-precision Pj
⋆ = Pj

− + tjδjΣδj
−

. See Supplementary 

Information (SI) Section 1 for details on computing this pseudo-inverse. We use the results 

of Equation 8 in Equation 7 to compute the partial log-likelihood
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log p Y ℓ
obs  ∣ Xℓ, Σ, ℱ = log rj + log rk + log ϕ Xℓ; mj, Pj

⋆ + log ϕ Xℓ; mk, Pk
⋆

= log rℓ + log ϕ Xℓ; mℓ, Pℓ ,
(9)

where Pℓ = Pj
⋆ + Pk

⋆, mℓ is a solution to Pℓmℓ = Pj
⋆mj + Pk

⋆mk, and

log rℓ = log rj + log rk + 1
2log det Pj

⋆ + 1
2log det Pk

⋆ − Δjkℓ
2 log 2π

− 1
2log det Pℓ − 1

2 mjtPj
⋆mj + mk

t Pk
⋆mk − mℓ

t Pℓmℓ .
(10)

Note that the change of informative dimensions Δjkℓ = rank Pj
⋆ + rank Pk

⋆ − rank Pℓ . We 

update δℓ = δj ∨ δk, where ∨ is the element-wise “logical or” operation.

Our algorithm initializes ri, mi, and Pi such that p Yi
obs  ∣ Xi = riϕ Xi; mi, Pi  at the tips of 

the tree. For the standard assumption that Yi = Xi, we have ri = 1, mi = Ci Yi
obs , 0 , and 

Pi = Ci diag[∞I, 0I]Ci
t. We perform a post-order traversal of the tree computing mℓ, Pℓ, and rℓ 

for internal nodes ℓ = N +1, …, 2N − 2 using the already-computed node remainders, means, 

and precisions for their respective child nodes. At the root, Y 2N − 1
obs = Yobs and we return 

the observed-data log-likelihood

p Yobs  ∣ Σ, ℱ, μ0, κ0 = ∫ p Yobs  ∣ X2N − 1, Σ, ℱ p X2N − 1 ∣ Σ, μ0, κ0 dX2N − 1

= ∫ r2N − 1ϕ X2N − 1; m2N − 1, P2N − 1 ϕ X2N − 1; μ0, κ0Σ− dX2N − 1

= rfull ∫ ϕ X2N − 1; mfull , Pfull 
dX2N − 1,

(11)

where Pfull = P2N−1 + κ0Σ−1 and mfull  = Pfull 
−1 P2N − 1m2N − 1 + κ0Σ−1μ0 . The integral 

evaluates to one, leaving the observed-data log-likelihood

log p Yobs  ∣ Σ, ℱ, μ0, κ0 = log rfull 

= log r2N − 1 − rank P2N − 1
2 log 2π + 1

2log det P2N − 1 + 1
2log det κ0Σ−1

− 1
2log det Pfull  − 1

2 m2N − 1
t P2N − 1m2N − 1 + κ0μ0

tΣ−1μ0 − mfull 
t Pfull mfull 

.

(12)

This tree traversal visits each node in ℱ exactly once and inverts a P × P matrix each time, 

resulting in an overall computational complexity of O NP3  for each likelihood evaluation.

2.2 Inference

The primary parameter of scientific interest is the diffusion variance Σ. We are also often 

interested in additional hyper-parameters θ related to the stochastic link function p(Yi |Xi). 
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In cases where the tree structure is unknown, we use sequence data S to simultaneously infer 

ℱ. As such, from a Bayesian perspective, we are interested in approximating

p Σ, ℱ, θ ∣ Yobs, S ∝ p Yobs ∣ Σ, ℱ, θ p(ℱ, S)p(Σ)p(θ), (13)

for inference. We place a WishartP (Λ0, ν) prior on Σ−1, where Λ0 is a P × P rate matrix. 

The prior on θ depends the problem of interest, and there are many ways to specify p(ℱ, S)
(see Suchard et al. 2018a). To approximate the posterior distributions via MCMC simulation, 

we apply a random scan Metropolis-within-Gibbs (Liu et al. 1995) approach by which we 

sample parameter blocks one at a time at random from their full conditional distribution.

Let X = (X1, ⋯, XN)t be the latent trait values at the tips of the phylogeny. The conjugate 

WishartP (Λ0, ν) prior on Σ−1 implies that

Σ−1 ∣ X, ℱ, μ0, κ0, ν, Λ0 WishartP Λ0 + X − 1Nμ0
t t ϒ + 1

κ0
JN

−1
X − 1Nμ0

t ,

ν + N .
(14)

We apply the post-order computation method proposed by Ho and Ané (2014) to compute 

X − 1Nμ0
t t ϒ + 1

κ0
J

−1
X − 1Nμ0

t , which has computational complexity O NP2 . When X 

are known (i.e. when there are no missing values and p(Yi |Xi) is degenerate at Xi), we 

can sample from the distribution in Equation 14 immediately without any additional steps. 

However, if either assumption is violated, we must first draw from the full conditional 

distribution of X via the data augmentation algorithm described below. This algorithm 

is similar to the ‘E’ step of the EM algorithm developed by Bastide et al. (2018) to 

compute the moments of each Xi. In our case, we sample from the joint posterior of all Xi 

simultaneously rather than computing the conditional moments of each Xi individually.

2.2.1 Pre-Order Missing Data Augmentation Algorithm—To sample jointly from 

the full conditional of X = (X1, …, XN)t, we draw on the calculations made in Section 2.1.2 

and perform a pre-order traversal of the tree. Note that we omit explicit dependence on the 

parameters Σ, ℱ, and θ in all calculations below for clarity. Starting at the root, X2N−1, we 

draw from X2N−1|Yobs, μ0, κ0. Using Bayes’ rule and Equation 11, we see that

p X2N − 1 ∣ Yobs , μ0, κ0 ∝ p Yobs  ∣ X2N − 1 p X2N − 1 ∣ μ0, κ0
∝ ϕ X2N − 1; mfull , Pfull  ,  which implies that 
X2N − 1 ∣ Yobs , μ0, κ0 MVN mfull , Pfull  .

(15)

After sampling the root traits from their full conditional, we continue the traversal of the tree 

where we sample each node Xj conditional on its (previously sampled) parent node Xpa(j) 

and the observed data below node j Y j
obs  for j = 1, …, 2N − 2. For the internal nodes, we 

compute p Xj ∣ Yj
obs, Xpa(j)  as follows:
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p Xj ∣ Y j
obs, Xpa(j) ∝ p Y j

obs ∣ Xj p Xj ∣ Xpa(j)
∝ ϕ Xj; mj, Pj ϕ Xj; Xpa(j), tjΣ −1

∝ ϕ Xj; nj, Qj

(16)

where Qj = Pj+(tjΣ)−1 and nj = Qj
−1 Pjmj + tjΣ

−1Xpa(j) . This implies 

Xj ∣ Y j
obs, Xpa(j) MVN nj, Qj , and we sample Xj from this distribution.

At the tips, we employ one of two techniques depending on the specific model. Under our 

standard assumption (i.e. Xi = Yi with probability 1), we partition the precision Σ−1 and trait 

values Xi and Xpa(i) such that

Σ−1 = Ci
Si

obs Si
om

Si
mo Si

mis Ci
t, Xi = Ci

Xi
obs

Xi
mis ,  and  Xpa(i) = Ci

Xpa(i)
obs

Xpa(i)
mis (17)

and draw from Xi
mis  ∣ Yi

obs , Xpa(i) MVN Xpa(i)
mis  + Si

mis −1
Si

mo  Xpa (i)
obs  − Xi

obs  , 1
ti

Si
mis   for i = 1, 

…, N. For cases where p(Yi |Xi) is non-degenerate, we simply use Equation 16 to sample 

from Xi ∣ Yi
obs, Xpa(i). Once we have sampled X|Yobs, Σ, ℱ, θ, we can draw from the full 

conditional distribution of Σ−1 via Equation 14. This pre-order data augmentation procedure 

requires a single P × P matrix inversion at each of the 2N − 1 nodes in the tree, resulting in 

overall computational complexity O NP3 .

3. MODEL EXTENSION: RESIDUAL VARIANCE

We extend the MBD model of phenotypic evolution to include multivariate normal residual 

variance at each of the tips. Under this model, we assume

p Yi ∣ Xi = ϕ Yi; Xi, Γ  for i = 1, …, N, (18)

where Γ is a P × P precision matrix. Under this model, the vectorization of Y is MVN-

distributed with NP ×NP variance-covariance matrix Σ ⊗ ϒ + κ0
−1JN + Γ−1 ⊗ IN where IN 

is the N × N identity matrix. Unlike the case where Yi = Xi, Y cannot be expressed as 

matrix-normal even in the data-complete case because the variance cannot be expressed 

as the Kronecker product of two matrices. As such, our post-order likelihood computation 

algorithm is useful for this extended model, even when there are no missing data points.

3.1 Inference of Residual Variance

Similar to our inference of Σ in the diffusion process, we place a conjugate WishartP (Λs, νs) 

prior on Γ using the rate parameterization. This yields the full conditional distribution

Γ ∣ Y, X WishartP Λs + (Y − X)t(Y − X), νs + N . (19)
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Because X is latent in this model, each time we update Γ we first draw from the full 

conditional posterior of X using the algorithm described in Section 2.2.1. For cases where Y 
is not completely observed, we must perform an additional data augmentation step where we 

draw from Ymis |Yobs, X, Γ. To do this, we decompose the sampling precision matrix into 

blocks such that

Γ = Ci
Γi

obs Γi
mot

Γi
mo Γi

mis Ci
t for i = 1, …, N . (20)

From Equation 18, we see that

p Yi
mis ∣ Yi

obs, Xi, Γ = ϕ Yi
mis; Xi

mis + Γi
mis−1Γi

mo Xi
obs − Yi

obs , Γi
mis . (21)

As such, we can directly sample Yi
mis  from its full conditional above and update 

Yi = Ci Yi
obs, Yi

mis t
 for i = 1, …, N. This process also has computational complexity O NP3 .

Note that we can draw from the joint full conditional of Σ and Γ by performing a single 

pre-order data augmentation where we draw from p(X, Ymis |Σ, Γ) and subsequently draw 

from p(Σ, Γ|X, Y) = p(Σ|X)p(Γ|X, Y). These distributions are conditionally independent due 

to the fact that X and X − Y are independent by construction. This procedure effectively 

halves the computation time as we only need to perform a single post-order likelihood 

computation/pre-order data augmentation step to sample both Σ and Γ, rather than each time 

we sample one.

3.2 Heritability Statistic

The residual variance extension enables us to estimate phenotypic heritability over 

evolutionary time. We use a definition analogous to the broad-sense heritability in statistical 

genetics (see Visscher et al. 2008). Namely, we seek to quantify the proportion of variance 

in a trait attributable to the Brownian diffusion process on the phylogeny (as opposed to the 

residual variance). Note that we are primarily interested in heritability in the HIV example 

below, for which we use data from a recent paper by Blanquart et al. (2017). As such, we 

use a multivariate generalization of the heritability statistic from that paper. Specifically, we 

estimate phylogenetic heritability by taking the expectation of the empirical sample variance 

under our extended model. We define the P × P empirical covariance matrix as

S2(Y) = 1
N ∑

i = 1

N
Yi − y Yi − y t = 1

N (Y − Y)t(Y − Y), (22)

where y = 1
N ∑i = 1

N Yi = 1
N Yt1N and Y = 1Nyt = 1

N JNY. The expectation of this quantity 

reduces to the following expression (see SI Section 2 for details):

E S2(Y) = N − 1
N Γ−1 + 1

N tr [ϒ] − 1
N21N

t ϒ1N Σ . (23)
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Because E S2(Y)  is a linear combination of Σ and Γ−1, we propose the P ×P heritability 

matrix H = {hkl} with entries

ℎkl = cσΣkl

cσΣkk + cγΓkk
−1 cσΣll + cγΓll

−1 , (24)

where cσ = 1
N tr [ϒ] − 1

N21N
t ϒ1N and cγ = N − 1

N . Each diagonal entry ℎkk = ℎk
2 represents the 

marginal phylogenetic heritability of that trait, and each off-diagonal entry represents the 

pair-wise co-heritability (Falconer 1960, chap. 19) between traits.

Note that naive computation of cσ = 1
N tr [ϒ] + 1

N21N
t ϒ1N in Equation 23 would require 

constructing the N × N matrix ϒ and summing over all its elements, which has computation 

complexity of at least O N2 . For cases where ℱ is random and changes throughout the 

MCMC simulation, this quantity must be re-computed each time we compute the statistic. 

To avoid this issue, we implement an algorithm that avoids constructing ϒ in its entirety and 

simply calculates both tr[ϒ] and 1N
t ϒ1N in O(N) time. The algorithm performs a post-order 

traversal of the tree where at each internal node νℓ we compute N⌊ℓ⌋ (the number of tips 

below νℓ), s⌊ℓ⌋ (the sum of all elements in ϒ⌊ℓ⌋), and d⌊ℓ⌋ (the sum of the diagonal elements 

in ϒ⌊ℓ⌋). We define ϒ⌊ℓ⌋ as the tree variance-covariance matrix constructed from the sub-tree 

ℱ ℓ  that is simply the tree that contains only the nodes below νℓ with node νℓ as its root. 

For internal nodes νℓ with child nodes νj and νk, we accumulate

N ℓ = N j + N k + 1,
s ℓ = s j + s k + tjN j

2 + tkN k
2 ,  and

d ℓ = d j + d k + tjN j + tkN k .
(25)

At the tips, we initialize with s⌊i⌋ = d⌊i⌋ = 0 and N⌊i⌋ = 1. At the root, s 2N − 1 = 1N
t ϒ1N and 

d⌊2N−1⌋ = tr[ϒ]. This algorithm visits each node in ℱ exactly once and has run time O(N).

While the breadth of research in heritability is extensive across both statistical genetics and 

phylogenetics (see in particular the recent paper by Mitov and Stadler 2018), we choose 

the same heritability statistic as used by Blanquart et al. (2017) for direct comparison with 

their analysis. That being said, our methods could be readily adapted to approximate the 

posterior distribution of several of the alternative heritability statistics presented in Mitov 

and Stadler (2018). Additionally, our pre-order data augmentation procedure allows us to 

generate samples directly from the posterior of the latent trip traits X, from which we can 

directly compute the genetic covariance S2(X) rather than relying on expectations.

4. RESEARCH MATERIALS

We have implemented these methods in the development version of BEAST (Suchard et al. 

2018b). The data files, scripts, and instructions necessary for running the following analyses 

are available at https://github.com/suchard-group/incomplete_measurements.
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5. COMPUTATIONAL EFFICIENCY

Our method dramatically increases computational efficiency over the current best-practice 

method. This latter procedure, developed by Cybis et al. (2015), treats the missing and latent 

values of X as unknown parameters and numerically integrates them out by placing a Gibbs 

sampler on each tip Xi that draws from its full conditional distribution p(Xi |Yi, X⌈i⌉) for i 
= 1, …, N where X⌈i⌉ = X\Xi. Because the full conditional distribution of Xi relies on the 

other missing and latent values in X, we sample each tip individually. The advantage of this 

is that the likelihood calculation, the Gibbs sampler of the diffusion variance Σ, and the data 

augmentation procedure for each tip all have complexity O NP2  rather than our O NP3 . As 

such, this numerical integration procedure has overall complexity O MNP2  where M is the 

number of tips with missing or latent values. For any extended model where p(Yi |Xi) is not 

degenerate at Xi, all values of X are latent and M = N.

We formalize our comparison by computing the median and minimum effective sample size 

(ESS) per hour for all parameters of interest under both our analytical integration method 

and the sampling method discussed above. Typically researchers run MCMC chains until the 

ESS for all parameters reach some minimum value, so the minimum ESS per hour is most 

reflective of actual computation time. We also compute the ESS per sample and samples per 

hour to understand how our improved method influences both the autocorrelation between 

MCMC samples and the amount of computational work required to generate a single draw 

from the posterior. Higher ESS per sample indicates lower autocorrelation, while higher 

samples per hour indicates less computational work per sample. We define the number of 

samples as the number of states in which the MCMC simulation updates the parameters of 

interest (as opposed to missing trait values). Note that for the numerical sampling strategy, 

we tested a range of sampling ratios between the parameters of interest and the missing trait 

values and chose the ratios with the best performance for each dataset/model combination.

Table 1 presents the results of our efficiency comparisons. We compare computation time 

under both models (only Brownian diffusion or Brownian diffusion with residual variance) 

for both the mammalian and HIV data set. We omit the prokaryote data set from this 

analysis as simultaneous inference of the tree made the “sampling” technique prohibitively 

slow. For each of the four scenarios, we performed 10 MCMC runs and compute the average 

ESS for each parameter, using the minimum and median of the averaged parameter ESSs in 

the table. We also report the speedup (analytic divided by sampling) for all values of interest 

in each analysis. Note that we only report up to two significant figures for clarity.

6. SIMULATION STUDY

To understand the behavior of our inference techniques, we conduct a simulation study 

based on the empirical examples we discuss in Section 7. While these simulation studies 

cannot confirm that these models are appropriate for these real-world data sets, they do 

demonstrate the theoretical properties of our inference on these specific data sets assuming 

the model is appropriate. We use the mammals (N = 3649, P = 8), prokaryote (N = 705, 

P = 7), and HIV (N = 1536, P = 3) data sets. For each empirical example, we select the 
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posterior mean diffusion variance Σ and residual variance Γ−1 to simulate traits. We also 

sub-sample the phylogenies from each example to vary the number of taxa. Note that for 

the prokaryotes example, we simulate conditional on the maximum clade credibility tree 

inferred from our analysis in Section 7.2. We keep the number of traits fixed within each 

empirical data set. Additionally, we randomly remove 0%, 25%, 50%, and (if possible) 75% 

of the data from each set of simulated values. We require that at least one observation from 

each taxon remain observed, so it is not possible to remove 75% of the data from the HIV 

example where P = 3.

For each unique combination of example, number of taxa, and percent of missing values, 

we simulate ten replicate data sets. Note that for each repetition we sub-sample a different 

set of taxa from the original phylogeny. We approximate the posterior of the diffusion 

correlation and residual correlation (i.e. the correlation derived from Σ and Γ−1 respectively) 

as well as the diagonals of the heritability matrix H. These are the statistics that are of most 

scientific interest in our empirical analyses, and these model parameters remain invariant if 

the data are re-scaled while covariances do not. Across repetitions, we estimate the posterior 

bias and log mean squared error (logMSE) from the “true” values used for simulation. 

Figure 2 presents the posterior logMSE of all three parameters of interest for all example 

analyses. As expected the logMSE decreases with increasing taxa and decreasing missing 

values for all parameters of interest. Also, note that the HIV logMSE in the diffusion 

correlation is relatively higher when compared to the mammals and prokaryote examples for 

equivalent numbers of taxa and amounts of missing data. This is likely due to the fact that 

we infer relatively low heritability for the HIV traits (see Section 7.3) and use these values 

for simulation. Low heritability indicates less phylogenetic signal, that suggests more data 

would be needed to understand the evolutionary relationships between the different traits. 

For the same reason, we see the opposite pattern with the residual correlation, with lower 

error observed for the HIV example. See SI Section 4 for further simulation study results.

7. APPLICATIONS

7.1 Mammalian Life History

A major task for life history theory is to understand the ecological and evolutionary 

significance of correlation between life history traits such as age at sexual maturity, 

the number of offspring per reproductive event, and reproductive lifespan (Roff 2002). 

Establishing patterns of such correlation grants insight into whether life history variation 

between individuals, populations or species is consistent with pace-of-life theory (Reynolds 

2003; Réale et al. 2010). This theory predicts that ‘fast’ traits such as early maturity, 

large broods, small offspring, frequent reproduction and a short lifespan are positively 

associated with each other as a consequence of organisms pursuing strategies that prioritize 

either current or future reproduction. Existing approaches using comparative life history 

data to investigate fast-slow trait covariation patterns (e.g. mammals: Bielby et al. 2007; 

hymenoptera: Blackburn 1991; lizards: Clobert et al. 1998; birds: Sæther and Bakke 2000; 

plants: Salguro-Gómez 2017; fish: Wiedmann et al. 2014) generally support the fast-slow 

hypothesis; however, results are rarely consistent across taxa. This may reflect important 
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taxonomic differences in life history evolution, but there is concern that differences are an 

artifact of different methodologies (Jeschke and Kokko 2009).

One key limitation is that previous methods have required complete data for each species. 

As complete measurements across a rich suite of varied life history traits are not yet 

available for most species, this means that researchers must choose to either reduce the 

number of traits or reduce the number of species included in analyses. By integrating out 

missing traits, we resolve this issue and analyze the life history dataset used in Capellini 

et al. (2015), which is based largely on the final PanTHERIA dataset (Jones et al. 2009), 

supplemented with measurements from Ernest (2003) and additional sources. Our analysis 

includes all the variables analyzed by Bielby et al. (2007) (gestation length, weaning age, 

neonatal body mass, litter size, litter frequency, and age at first birth) plus reproductive 

lifespan (maximum lifespan minus age at first birth). We include female body mass as a 

trait rather than analyze size-corrected residuals and log-transform and standardize all traits 

prior to analysis. The analysis assumes the phylogeny of Fritz et al. (2009) that remains 

the most complete phylogeny for mammals. In total, 3649 species in the phylogeny have 

measurement of at least one trait and are included. Table 2 reports the number of species 

with measurements for each trait. Only 136 species have complete data on all 8 traits; thus 

the ability to include species with partially missing traits enables inclusion of 932% more 

measurements.

To estimate the correlation between these traits throughout mammalian evolution, we jointly 

model them with an MBD process on the tree with residual variance. In this analysis, we 

are primarily interested in the correlation between traits during the MBD process on the tree 

and estimate trait correlations from the marginal posterior of Σ. Figure 3 summarizes these 

findings. Our results are clearly consistent with the fast-slow trait covariation patterns that 

pace-of-life theory predicts. The ‘slow’ life history traits (longer gestation, later weaning, 

larger neonatal body mass, later age at first birth, and longer reproductive lifespan) are 

all positively correlated with each other and negatively correlated with the two ‘fast’ life 

history traits (greater litter size and more frequent litters). All correlations are significant 

(determined by < 5% posterior tail probability) with the notable exception of that between 

litter size and litter frequency. This apparent lack of correlation may be due to the opposing 

effects of their joint positive correlation with body mass combined with a trade-off between 

these two traits that life history theory predicts (Stearns 1989). Nevertheless, our results 

demonstrate that larger animals tend to have slower life history traits, confirming known 

patterns and reflecting the central role of body size in life history evolution.

We compare the computational efficiency of our method against that of the sampling method 

using the MBD model both with and without residual variance. Table 1 shows an increase 

in overall computational efficiency of two orders-of-magnitude as indicated by the change in 

ESS per hour. Additionally, we see that our method succeeds at reducing both the amount of 

computational work per MCMC sample (as indicated by the increase in samples per hour) 

and autocorrelation (as indicated by the increase in ESS per sample).
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7.2 Prokaryote evolution

Comparative genomics has greatly assisted in the formulation of prokaryote evolutionary 

theories. Several such theories have been inspired by and tested through measuring 

correlation among different phenotypic and genomic traits. For example, the thermal 

adaptation hypothesis posits that higher GC content is involved in adaptation to high 

temperatures because it may offer thermostability to genetic material (Bernardi and 

Bernardi 1986). The genome streamlining hypothesis attempts to explain the compactness 

of prokaryotic genomes through natural selection favoring small genomes (Doolittle and 

Sapienza 1980; Orgel and Crick 1980; Giovannoni et al. 2014). Sabath et al. (2013) argue 

that lower cell volume is an adaptive response to high temperature. The field is well-aware 

of the need to account for phylogenetic relationships when measuring correlation, but 

statistical analyses generally rely on fixed, poorly resolved trees and simple models of trait 

evolution.

Here, we estimate correlation among a set of genotypic and phenotypic traits while 

simultaneously accounting for phylogenetic uncertainty and accommodating complexity in 

the trait evolutionary process. We construct our data set from a study by Goberna and Verdú 

(2016), who collated cell diameter, cell length, optimum temperature and pH measurements 

for a large set of prokaryotes. Prior experience in resolving large, unknown trees suggests 

that we limit our analysis to less than ~750 taxa. As such, we include all taxa with three or 

more measurements and a selection of the taxa with only two measurements in our analysis. 

For our selection of 705 taxa, we obtain data on genome length, the number of coding 

sequences, and GC content from the prokaryotes table in NCBI Genome. Table 2 presents 

the number of measurements for each trait. We log-transform and standardize all traits 

(except for GC content which we logit-transform and standardize). To infer the phylogeny, 

we obtain matching 16S sequences via the ARB software package (Ludwig et al. 2004) that 

we then align using the SINA Alignment Service (Pruesse et al. 2012) and manually edit.

Through MCMC simulation, we simultaneously infer the sequence and trait evolutionary 

process. We model the sequence evolutionary process using a general time-reversible model 

(Tavaré 1986) with gamma-distributed rate variation among sites (Yang 1994). We use an 

uncorrelated lognormal relaxed clock to model rate variation among branches (Drummond et 

al. 2006) and specify a Yule birth prior process on the unknown tree (Gernhard 2008). For 

the trait evolutionary process, we assume an MBD model with residual variance.

Figure 4 displays our estimated maximum clade credibility phylogeny with associated trait 

measurements, and Figure 5 presents the phylogenetic correlation between those traits. 

One notable result is the positive correlation between optimal temperature and GC content 

(0.22 posterior mean, [0.08, 0.37] 95% highest posterior density interval) that the thermal 

adaptation hypothesis predicts (Bernardi and Bernardi 1986). Researchers have discussed 

this hypothesis for years with mixed support (Hurst and Merchant 2001; Musto et al. 

2004; Wang et al. 2006; Wu et al. 2012; Sabath et al. 2013; Aptekmann and Nadra 2018). 

Our analysis, however, includes 435 taxa with measurements for both GC content and 

optimal growth temperature, making it the largest study we are aware of that accounts 

for phylogenetic relationships. Interestingly, while cell diameter and cell length are not 

significantly correlated, they are both positively correlated with genome length. Smaller 
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cells have been associated with smaller genomes in both prokaryotes and unicellular 

eukaryotes (Shuter et al. 1983; Lynch 2007), but the reasons for this are not fully understood 

(Dill et al. 2011). We also estimate a relatively strong negative correlation between genome 

length and optimal temperature (−0.52 [−0.67, −0.37]), supporting the genomic streamlining 

hypothesis during thermal adaptation. Note that we do not compare computation times here, 

as simultaneous inference of the phylogenetic tree makes the sampling method prohibitively 

slow.

7.3 HIV-1 virulence

Recent years have witnessed a strong interest in using phylogenetic comparative methods 

to study the heritability of HIV-1 virulence. Initially, Alizon et al. (2010) employed Pagel’s 

λ (Pagel 1999) to measure the extent to which HIV-1 set-point viral load reflects viral 

shared evolutionary history in the Swiss HIV Cohort Study (Swiss HIV Cohort Study et 

al. 2009) patients. A relatively high heritability estimate of set-point viral load, a predictive 

measure of clinical outcome, motivated others to examine to what extent the viral genotype 

can control for this trait (e.g. Hodcroft et al. 2014; Vrancken et al. 2015). These efforts 

have resulted in widely varying estimates, from 6% to 59%, prompting a discussion on the 

methods used to estimate the heritability of virulence (see Mitov and Stadler 2018; Bertels 

et al. 2018). Here, we revisit the most comprehensive data set recently analyzed (Blanquart 

et al. 2017) to determine the extent to which variability in HIV-1 virulence is attributable 

to viral genetic variation. We focus on the dataset of subtype B viruses from Blanquart et 

al. (2017) that encompasses 1581 taxa with associated measures of set-point viral load and 

CD4 cell count decline. We rely on the maximum likelihood phylogeny inferred for this data 

set, but convert it to a time-measured tree with dated tips using a heuristic procedure (To 

et al. 2016). A prior examination of the correlation between sampling time and root-to-tip 

divergence using TempEst (Rambaut et al. 2016) indicated the presence of outliers, most of 

which can be attributed to a basal lineage in the phylogeny. As the subtyping of the taxa in 

this basal lineage also was ambiguous (Blanquart, personal communication), we remove this 

lineage (36 taxa) together with 9 other outlier taxa. We note that this resulted in a time to 

the most recent common ancestor (TMRCA) estimate of about 1960 that is much more in 

line with a recent subtype B TMRCA estimate (1967, 95% Bayesian credibility interval of 

1963–1970; Worobey et al. 2016) than the estimate including the basal lineage (~1930).

Two measures of set-point viral load are available for all remaining taxa: (i) one based 

on a standardized choice of assay on a single sample taken between 6 and 24 months 

after infection and before the initiation of antiretroviral therapy (“gold standard viral load”, 

GSVL) and (ii) a more classical measure of set-point viral load (SPVL) based on the 

mean of all log viral loads measured between 6 and 24 months after infection. Figure 6 

presents the phylogeny and associated trait values. To estimate heritability of both set-point 

viral load measures and CD4 slope, we model all three measurements as a multivariate 

trait in our MBD model with residual variance and approximate the posterior distribution 

of the heritability statistic H via MCMC. Our estimated heritabilities are 0.21 [0.11, 0.3] 

for GSVL, 0.18 [0.1, 0.26] for SPVL, and 0.16 [0.07, 0.25] for CD4 cell decline. These 

estimates are consistent with similar estimates reported by Blanquart et al. (2017).
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We further asses model fit by assessing predictive performance of GSVL on SPVL. We 

omit CD4 slope from our analysis as it is measured concurrently with SPVL. We randomly 

remove 5% of the SPVL measurements from the data set and consider four different models. 

We consider both a bivariate case where we assume a multivariate process and a univariate 

case where we analyze SPVL alone. For both the bivariate and univariate cases, we use 

the MBD model both with and without the residual variance extension. For each removed 

SPVL measurement, we compute the mean squared error (MSE) between the predicted and 

true values. We repeat each analysis 50 times and report the cumulative results in Figure 7, 

from which two results emerge. First, the MSE of prediction in the bivariate cases are lower 

than those in the univariate cases. This is unsurprising given the strong correlation between 

SPVL and GSVL. Second, addition of residual variance to the model results in modestly 

better prediction of SPVL in both the bivariate and univariate cases. This emphasizes the 

importance of including model extensions like residual variance in these analyses.

We again demonstrate improvements in computational efficiency (see Table 1). While less 

dramatic than the mammals example, we still see an order-of-magnitude increase in effective 

sample size per hour in the MBD model without residual variance. This attenuation is to be 

expected, as there are far fewer missing measurements in the HIV data set than the mammal 

data set. Nevertheless, our method still outperforms the sampling method in the simple 

MBD model even when only 9.4% of data points are missing. For the model with residual 

variance, our method outperforms the sampling method by two orders-of-magnitude.

8. DISCUSSION

Oftentimes comparative biologists are interested in phylogenetically adjusted methods for 

assessing relationships between traits of organisms. However, frequently when the number 

of taxa grows large the level of missing data increases, making inference challenging. 

Here, we have developed a method for evaluating the likelihood of observed traits given 

a tree while integrating out missing values analytically that dramatically outperforms 

current best-practice methods. In the mammalian data set, with N = 3649 and 61.5% 

missing data, we achieve a minimum effective sample size per hour 400× greater than 

previous methods. This increase in speed brings computation times down from more than 

a week to less than an hour. Even in the more tractable HIV data set, with N = 1536 

and 9.4% missing data, we increase the minimum ESS per hour by a factor of 65. Both 

increases in speed are due to an overall decrease in both autocorrelation between MCMC 

samples and the amount of computational work required per sample. Importantly, this 

increase in computational efficiency allows for previously intractable analyses on large 

trees. Specifically, we incorporate residual variance into the model and (in the prokaryotes 

example) simultaneously infer Σ, Γ, and an unknown phylogeny ℱ. Further, the residual 

variance extension is only one of several potential extensions. Other possible extensions 

could incorporate data sets with repeated measurements at the tips of the tree and factor 

analyses (Tolkoff et al. 2017).

Additionally, our strategy could be used in a more diverse array of phylogenetic models 

than the fixed-rate MBD process. Recently, Fisher et al. (2020) have used our method in a 

scale-mixture of multivariate normals diffusion model where there is a different evolutionary 
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rate on each of the tree branches. This model assumes that the rate of evolution changes 

over time and across taxa. Moreover, these methods also easily translate to multi-optima 

Ornstein–Uhlenbeck (OU) diffusions, where there is some (potentially changing) optimum 

trait value that traits tend to evolve toward. Following from Bastide et al. (2018), a modified 

version of our method has already been implemented for the OU process in BEAST.

We also note that our pre-order missing data augmentation algorithm presented in Section 

2.2.1 has far broader utility than computing the conjugate Wishart statistics. Notably, 

it allows for joint sampling of all missing values in linear-time. As such, this data 

augmentation procedure serves as a bridge between any data set with missing data and 

statistical methods that require complete data. Such cases occur, for example, in computing 

the residual sum of squares in phylogenetic mixed models (Lynch 1991) as well as the 

gradient of the log likelihood with respect to the model parameters.

An important limitation of our and previous methods is that they assume an ignorable 

missing data mechanism (i.e. that the data are missing at random and that the prior on 

any model parameters is independent of the missing data mechanism). Note that this is 

assumption is not as restrictive as it seems as we only require that the data are missing 
and random and not necessarily missing completely at random (Little and Rubin 1987). 

While these conditions may hold in some comparative biology examples, possible violations 

abound. Any solution to this problem would necessarily depend on the specific missing data 

mechanism. One commonly used missing data mechanism is the thresholding model where 

data above or below some limit are omitted from the analysis. This could occur, for example, 

when there is some minimum detection limit below which a value cannot be measured. To 

explicitly account for these omissions, we could modify our model to assume the observed 

data at the tips are drawn from a truncated multivariate-normal distribution rather than a 

full multivariate normal distribution. Under this model, the observed data likelihood would 

remain the same up to a normalizing constant and indicator function. As the distribution of 

the internal nodes would remain un-truncated and the Gaussian kernel on all nodes would 

remain unchanged, our likelihood calculation algorithm would remain largely unchanged. 

For the likelihood computation, the normalizing constants and indicator functions would 

simply be propagated up the tree in the same way as the integration remainders ri. One 

challenge of this approach would be to compute the normalizing constants for all taxa 

with missing data. This may be particularly challenging as, depending on the specific 

missing data mechanism, these constants may depend on the latent trait values immediately 

internal to the tip nodes. An additional challenge to this approach would be to formalize 

the distribution of the missing data so that we could appropriately apply our pre-order data 

augmentation algorithm. We may simply be able to draw each missing value from their 

un-truncated full conditional distribution, but more work would be necessary to determine 

whether this augmentation regime is appropriate. We leave these challenges as future work.

Finally, and perhaps most importantly, we propose our method as a special case solution 

to the long-standing statistical problem involving multivariate normal distributions with 

missing data. Specifically, our method applies to any MVN distribution with a three-point 

structured covariance matrix (see Ho and Ané 2014). Intuitively, this condition arises in 

covariance matrices generated from processes that are additive on an acyclic graph (see 
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Figure 8). This restriction, however, is not overly limiting and applies to a broad range 

of normal models including multilevel hierarchical models and matrix-normal distributions 

such as the one we use here. Additionally, our pre-order data augmentation procedure 

enables O(N) imputation in these highly structured models. While Allen and Tibshirani 

(2010) and Glanz and Carvalho (2018) have utilized the EM algorithm (Dempster et 

al. 1977) to efficiently perform maximum likelihood imputation in similar problems, our 

method could serve as an alternative for approaches that base inference on the observed-data 

likelihood.
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Figure 1: 
Schematic of diffusion model with stochastic link function. The data Y = (Y1, Y2, Y3)t arise 

from latent values Xi at the tips of the tree via the stochastic link function p(Yi |Xi) for i = 1, 

…, N.
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Figure 2: 
Posterior log mean squared-error of the diffusion correlation, residual correlation, and 

heritability over ten simulated replicates based on three empirical examples. The boxes 

extend from the 25th to the 75th posterior percentiles with the middle bar representing 

the median. The lines extend from the 2.5th through the 97.5th percentiles, with outliers 

depicted as dots. The sparsity depicted by different colors represents different percentages of 

randomly removed data.
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Figure 3: 
Correlation among mammalian life-history traits. The circles below the diagonal summarize 

the posterior mean correlation between each pair of traits. Purple represents a positive 

correlation while orange represents a negative correlation. Circle size and color intensity 

both represent the absolute value of the correlation. The numbers above the diagonal report 

the posterior probability that the correlation is of the same sign as its mean.
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Figure 4: 
Prokaryote phylogeny and traits. The phylogeny depicts the inferred maximum clade 

credibility tree. The archaea clade (N = 54) and the associated trait measurements are 

depicted in grey.
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Figure 5: 
Correlation among prokaryotic growth properties. See Figure 3 caption.
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Figure 6: 
HIV-1 phylogeny with associated CD4 slope, SPVL, and GSVL values for each viral host.
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Figure 7: 
Model predictive performance of HIV set-point viral load. Each box-and-whisker plot 

depicts the posterior mean-squared-error of prediction under a different model. The boxes 

represent the interquartile range, while the lines extend to include the 2.5th through 97.5th 

percentiles. Outliers are omitted.
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Figure 8: 
An acyclic graph with nodes {νo, νa, νb, νc} and edge weights {wa, wb, wc}. The 

covariance matrix Λ = {Λij} is additive on an acyclic graph if each Λij is equal to the 

sum of the shared non-negative edge-weights in the paths from νi and νj to some origin 

node. For example, the matrix M1 is additive for nodes (νa, νb, νc)t with νo at the origin, 

while the matrix M2 is additive for nodes (νo, νb, νc)t with νa at the origin.
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Table 1:

Algorithmic improvement. We report MCMC sampling efficiency through effective sample size (ESS) that 

shows both a decrease in autocorrelation (as shows by ESS / Sample) and in the overall work required per 

sample (as shown by Samples / Hour).

Data set Model Integration method
ESS/hour ESS/sample

Samples/hour
minimum median minimum median

Mammals

Diffusion only

Analytic 1,200 3,600 0.043 0.13 27,000

Sampling 3.0 9.8 0.0043 0.014 700

Speed-up 400× 370× 10× 9.5× 39×

Diffusion with residual

Analytic 140 320 0.0062 0.015 22,000

Sampling 0.38 3.0 2.5e-5 0.00019 16,000

Speed-up 350× 110× 250× 76× 1.4×

HIV

Diffusion only

Analytic 100,000 220,000 0.31 0.66 320,000

Sampling 1,500 8,500 0.01 0.057 150,000

Speed-up 65× 25× 30× 12× 2.2×

Diffusion with residual

Analytic 1,600 2,500 0.0061 0.0096 260,000

Sampling 5.1 8.7 5.1e-5 8.7e-5 100,000

Speed-up 320× 290× 120× 110× 2.6×
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Table 2:

Missing data summary for all three examples.

Data set Trait Number observed Percent missing

Mammals N = 3649

Body mass 3467 5.0%

Litter size 2477 32.1%

Gestation length 1359 62.8%

Weaning age 1161 68.2%

Litter frequency 888 75.7%

Neonatal body mass 1083 70.3%

Age at first birth 444 87.8%

Reproductive lifespan 348 90.5%

Total 11227 61.5%

Prokaryotes N = 705

Cell diameter 690 2.1%

Cell length 657 6.8%

Genome length 563 20.1%

GC content 563 20.1%

Coding sequence length 558 20.9%

Optimal temperature 548 22.3%

Optimal pH 487 30.9%

Total 4066 17.6%

HIV N = 1536

GSVL 1536 0.0%

SPVL 1536 0.0%

CD4 slope 1102 28.3%

Total 4174 9.4%
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