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Abstract

Objectives—We investigated 17 metrics derived from four leads of electrocardiographic (ECG) 

signals from hospital patient monitors to develop new ECG alarms for predicting adult 

bradyasystolic cardiac arrest events.

Methods—A retrospective case-control study was designed to analyze 17 ECG metrics from 27 

adult bradyasystolic and 304 control patients. The 17 metrics consisted of PR interval (PR), P-

wave duration (Pdur), QRS duration (QRSdur), RR interval (RR), QT interval (QT), estimate of 

serum K+ using only frontal leads (SerumK2), T-wave complexity (T Complex), ST segment 

levels for leads I, II, V (ST I, ST II, ST V), and 7 heart rate variability (HRV) metrics. These 7 

HRV metrics were standard deviation of normal to normal intervals (SDNN), total power, very low 

frequency power, low frequency power, high frequency power, normalized low frequency power, 

and normalized high frequency power. Controls were matched by gender, age (± 5 years), 

admission to the same hospital unit within the same month, and the same major diagnostic 

category. A research ECG analysis software program developed by co-author Mortara D was used 

to automatically extract the metrics. The absolute value for each ECG metric, and the duration, 

terminal value, and slope of the dominant trend for each ECG metric, were derived and tested as 

the alarm conditions. The maximal true positive rate (TPR) of detecting cardiac arrest at a 

prescribed maximal false positive rate (FPR) based on the trending conditions was reported. Lead 

time was also recorded as the time between the first time alarm condition was triggered and the 

event of cardiac arrest.
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Results—While conditions based on the absolute values of ECG metrics do not provide 

discriminative information to predict bradyasystolic cardiac arrest, the trending conditions can be 

useful. For example, with a max FPR = 5.0%, some derived alarms conditions are: trend duration 

of PR > 2.8 hours (TPR = 48.2%, lead time = 10.0 ± 6.6 hours), trend duration of QRSdur > 2.7 

hours (TPR = 40.7%, lead time = 8.8 ± 6.2 hours), trend duration of RR > 3.5 hours (TPR = 

51.9%, lead time = 6.4 ± 5.5 hours), trend duration of T Complex > 2.9 hours (TPR = 40.7%, lead 

time = 6.8 ± 5.5 hours), trend duration of ST I > 3.0 hours (TPR of 51.9%, lead time = 8.4 ± 8.0 

hours), trend duration of SDNN > 3.6 hours (TPR of 40.7%, lead time = 11.0 ± 8.6 hours), trend 

duration of HRV total power > 3.0 hours (TPR of 25.9%, lead time = 7.5 ± 8.1 hours), terminal 

value of ST I < −56 μV (TPR = 22.2%, lead time = 12.8 ± 8.3 hours), and slope of QR > 19.4 ms/

hour (TPR = 25.9%, lead time = 6.7 ± 6.9 hours). Eleven trend duration alarms, eight terminal 

value alarms, and ten slope alarms, achieved a positive TPR with zero FPR. Furthermore, these 

alarms conditions with zero PFR can be combined by the “OR” logic could further improve the 

TPR without increasing the FPR.

Conclusions—The trend duration, terminal value, and slope of the dominant trend of the ECG 

metrics considered in this study are able to predict a subset of patients with bradyasystolic cardiac 

arrests with low or even zero FPR, which can be used for developing new ECG alarms.

1. INTRODUCTION

Patient monitors with alarm systems are essential diagnostic devices providing continuous 

display and interpretation of patients’ vital functions. Despite their wide usage among 

hospital care units, alarm fatigue problems occur when the number of alarms overwhelms 

nurses and physicians, causing alarms to be disabled or ignored, which may lead to serious 

injuries and even death (Bell, 2010, Kenny, 2011, The Joint Commission, 2013, Borowski et 

al., 2011). It is estimated that the number of alarms per patient per day can reach several 

hundred (The Joint Commission, 2013), 80% - 99% of which are false positives and/or 

clinically insignificant and do not require clinical intervention (Lawless, 1994, Chambrin et 

al., 1999, Drew et al., 2014). Alarm fatigue is ranked by hospitals as the top patient safety 

concern according to a recent survey (Mabuyi, 2013) and in 2014, the Joint Commission 

added alarm management as a National Patient Safety.

To tackle the alarm fatigue problems, many studies have focused on reducing the false alarm 

rate for certain alarms. Aboukhalil et al. showed that false electrocardiography (ECG) 

arrhythmia alarms could be suppressed by also using arterial blood pressure (ABP) signal 

and signal quality indices (Aboukhalil et al., 2008). Deshmane used pulse oximetry or 

photoplethysmogram (PPG) in addition to ABP and ECG signals to suppress false ECG 

critical arrhythmia alarms (Deshmane, 2009). Observing the fact that the ventricular 

tachycardia (VT) alarms had relatively high true alarm reduction rates but with low false 

alarm reduction rate in both studies, Li and Clifford developed a data fusion scheme using 

features extracted from the ECG, ABP and PPG to reduce false arrhythmia alarms, achieving 

a false alarm reduction rate of 30% and a true alarm reduction rate below 1% (Li and 

Clifford, 2012). More recently, Salas-Boni et al. used the discrete wavelet transform and L1-

regularized logistic regression classifier to achieve a false alarm reduction rate of 21% for 

the MIMIC II dataset (Saeed et al., 2011) and a false alarm reduction rate of 36% for a 
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UCSF dataset (Drew et al., 2014), both with zero true alarm reduction rate (Salas-Boni et al., 

2014).

On the other hand, it is believed that alarm fatigue reflects a more general data-overloading 

problem in healthcare, which can be potentially addressed using precise predictive models 

developed using modern machine learning techniques and big healthcare dataset. To this 

end, efforts, in particular, have been made to develop predictive models to detect patient 

deterioration or subacute patient illness in critical care settings, since predictions of 

catastrophic clinical events will not only reduce false alarms but also improve management 

of hospitalized patients. Escobar et al. developed a predictive model using electronic medical 

record (EMR) data to predict unplanned transfers from medical-surgical wards to intensive 

care units (Escobar et al., 2012). Moorman et al. showed that heart rate characteristics are 

clinically useful in early detection of neonatal sepsis and can reduce the mortality rate in 

very low birth weight infants (Moorman et al., 2011a, Moorman et al., 2011b). Hu et al. 

discovered combinations of individual monitor alarms, known as SuperAlarm, to predict 

impending code blue (CB) events, which were defined as cardiac arrests with loss of central 

pulse, apnea, and unresponsiveness (Hu et al., 2012). The SuperAlarm framework 

automatically searches alarm combination patterns that provide distinctive information 

between the case patients and their controls. With less emphasis on individual alarms, the 

framework is less sensitive to false alarms. Bai et al. further integrated laboratory test results 

with existing monitor alarms in the SuperAlarm framework to improve prediction 

performance (Bai et al., 2014). Hu et al. also derived additional alarms based on ECG 

metrics currently not available on patient monitors (Hu et al., 2013), which could be further 

incorporated into the SuperAlarm framework as a possible solution to improve cardiac 

patient monitoring. The ECG analysis method proposed by Hu (Hu et al., 2013) was labor 

intensive because manual inspection to ensure correct detection of P wave, T wave, and QRS 

onset/offset were performed. Consequently, with a dataset of 22 cases and their 300 controls, 

only the 22 cases and 45 of the controls were analyzed.

In this study, we increased the number of case patients to 27 by considering more 

bradyasystolic cardiac arrest patients from the UCSF dataset (Drew et al., 2014) and the 

number of matched control patients increased to 304. Our ultimate goal is to identify 

predictive metrics that can be extracted from ECG waveform and integrate them using 

SuperAlarm framework. However, to robustly identify those metrics, it is imperative that the 

preliminary analysis in our previous work be expanded to include all control patients. To 

leverage decades of research in ECG analysis and avoid re-implementing ECG analysis 

methods as done in our previous work, a research ECG analysis software program written by 

co-author Mortara D is used for ECG analysis in the present study. ECG analysis algorithms 

implemented in this research software are indeed used in many commercial lines of FDA-

approved ECG monitoring software from Mortara Instrument (Milwaukee, WI). This 

research software has also been used for ECG analysis in several other studies (Pickham et 

al., 2012, He et al., 2011, Liao et al., 2011). Using this software enabled us to analyze all the 

available ECG recordings, and still focus on analyzing the predictive power of ECG metrics 

and their trending patterns for bradyasystolic cardiac arrest. The adopted ECG analysis 

program automatically calculates various ECG metrics from the waveform data and 

generates the results in comma-separated values (CSV) files, which can be easily extracted. 

Ding et al. Page 3

Physiol Meas. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



With the efficiency of the ECG analysis program, we were able to analyze data from all the 

27 cases and 304 controls. Furthermore, physiological underpinnings of these ECG metrics 

are all well-understood and can be readily interpreted by clinicians offering advantages over 

those metrics purely driven by statistical analysis alone. Because this program also outputs 

the waveform of the processed ECG beat and the detected locations of P, QRS, and T waves, 

we were able to evaluate the accuracy of this program in detecting these ECG landmarks. 

This analysis is necessary because all the downstream analysis will be affected by the 

accuracy of P-QRS-T wave detection.

A further innovation in the present study was the development of a new algorithm to identify 

dominant trending patterns in a time series of ECG metrics. Our motivation to develop this 

trending algorithm is that we expect additional predictive information can be extracted from 

inspecting the changes of ECG metrics instead of only relying on the absolute values. After 

robustly identifying a trending pattern, we were able to use the same case-control design in 

our previous work (Hu et al., 2013) to examine the predictive power of the characteristics of 

the identified trending.

2. METHODS

2.1 Patient Data

Continuous waveforms of four ECG leads (I, II, III, and V), all sampled at 240 Hz, were 

compiled using the BedMaster system (Excel Medical Electronics, Jupiter, FL), which 

archives continuous waveform data from General Electric bedside monitors (GE Healthcare, 

Waukesha, WI) throughout our hospital's acute care units in both University of California, 

Los Angeles (UCLA) and University of California, San Francisco (UCSF). This study 

received approval from the Institutional Review Board at UCLA and the Committee on 

Human Research at UCSF.

Patients with age ≥ 18 years and at least 3 consecutive hours of monitoring data prior to a 

CB call due to bradyasystolic cardiac arrest were selected from a pool of CB patients as the 

cases. This pool consists of patients with CB events between April 2010 and March 2012 at 

UCLA and in March 2013 at UCSF. For the cases with more than one CB, only the initial 

CB call was included in the analysis. Then for each case, we extracted signals for up to 24 

hours prior to the code call. We selected control patients by matching for (1) gender, (2) age 

(± 5 years), (3) admission to same hospital unit within the same month, and (4) same major 

diagnostic category. A total of 27 case patients and 304 control patients were selected.

2.2 ECG Metrics

17 ECG metrics automatically generated by the ECG analysis program analyzed in this 

study were:

• PR interval (PR), interval from P onset to QRS onset in milliseconds.

• P-wave duration (Pdur), interval from P onset to P offset in milliseconds.

• QRS duration (QRSdur), interval from QRS onset to QRS offset in milliseconds.

• RR interval (RR), interval from R peak to R peak in milliseconds.
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• QT interval (QT), interval from QRS onset to T offset in milliseconds.

• Estimate of blood potassium using only frontal leads (SerumK2), derived from a 

ratio of the T wave slope and amplitude (Corsi et al., 2012).

• T-wave complexity (T Complex), the square root of the ratio of the 2nd to 1st 

eigenvalues of the spatial covariance matrix obtained from samples in the extended 

STT interval of each QRST complex. (Priori et al., 1997).

• ST segment levels for leads I, II, V (ST I, ST II, ST V), relative amplitudes of the J 

(QRS offset) + 60ms point compared to QRS onset in millivolts.

• Standard deviation of normal to normal intervals (SDNN) in milliseconds.

• Heart rate variability (HRV) total power (<0.4Hz) in millisecond2.

• HRV very low frequency power (VLF) (0.003-0.04 Hz) in millisecond2.

• HRV low frequency power (LF) (0.04-0.15Hz) in millisecond2.

• HRV high frequency power (HF) (0.15-0.4Hz) in millisecond2.

• HRV normalized low frequency power (norm LF) in %.

• HRV normalized high frequency power (norm HF) in %.

The metrics were determined globally based on the absolute spatial velocity (ASV), the sum 

of absolute sample differences over the available leads from each 5-minute window. 

Successive windows were overlapped by 4 minutes, and therefore the metrics were 

generated every 1 minute.

2.3 Quality Control Assessment of the ECG Analysis Program

Since all the 17 ECG metrics considered in this paper depend on onsets and offsets of P, 

QRS, and T waves, the accuracy of detecting these onsets and offsets is of great importance 

in our study. In order to evaluate the quality of the ECG analysis program, we randomly 

selected two 5-minute windows from each patient, resulting in a total of 662 windows. For 

each window, the average beat waveform as well as detected P onset, P offset, QRS onset, 

QRS offset, T offset, were extracted and plotted. A clinician then visually inspected all the 

plots and manually recorded if the onsets and offsets had been correctly identified. To ensure 

inter-rater reliability, another clinician did the same inspection on a random subset of 10% of 

the 662 plots (66 plots). The annotations on this subset from the two clinicians were 

compared to validate the reliability of the first clinician. Finally, the accuracy of each onset 

or offset detection from the first clinician was reported as the quality control assessment of 

the ECG analysis program.

2.4 Preprocessing

A median filter was used to preprocess the ECG metrics, which replaced the current metric 

by the median of the most recent 2k+1 metrics. This preprocessing filter is popular for 

reducing artifacts or outliers without attenuating the signal quality (Mäkivirta et al., 1991). A 

delay of k samples was introduced by the median filter, and in our case, the delay was k 

minutes. Larger k enables the filter to remove outliers in a longer duration, but increases the 
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risk of losing signal details. k = 4, which corresponded to a median filter with length of 9 

minutes, was selected in this study because it had a reasonable tradeoff between outlier 

suppression and loss of signal details.

2.5 Trending Analysis

It is hypothesized that the trending characteristics of ECG metrics provide certain 

discriminative information about the CB patients and their controls. Therefore, we 

developed a multi-scale approach to find the dominant trend, i.e., the longest monotonically 

increasing or decreasing duration for each metric. Once the dominant trend was determined, 

we could easily find its duration, terminal value, and slope as depicted in Figure 1, where the 

slope was derived by a robust linear fitting algorithm (Hadi and Simonoff, 1993). Next, we 

will describe how the dominant trend is determined by the multi-scale approach.

If a function is monotonically increasing or decreasing on a window, it must be monotonic 

on any sub-windows. If we used linear fitting on any sub-windows, the slope sign should be 

the same. In our problem, the ECG metrics could be noisy or disturbed by outliers. As a 

result, the slope sign may be different for certain sub-windows, even if the trending is 

visually obvious. Therefore, it was impractical to require the slope sign be the same for any 

sub-window. Instead, we required the slope sign be the same for a set of overlapped sub-

windows which covered the range of the window being examined. If the sub-window length 

is small, the linear fitting is sensitive to outliers, and the slope sign can be easily affected by 

outliers. On the other hand, if the sub-window length is large, linear fitting is less sensitive to 

outliers, but it may smooth the real trending pattern. In this study, we proposed a multi-scale 

approach to automatically select the optimal length of the sub-windows.

We allowed the sub-window length to range from 10 minutes to 1 hour with a step size of 1 

minute. Then for each value of the sub-window length, a set of overlapping sub-windows 

was created from the start of recording to the end with a sub-window increment of 1 minute. 

The robust linear fitting (Hadi and Simonoff, 1993) was performed on each sub-window and 

the slope signs were recorded. The percentage of + and - slope signs were calculated. The 

sign with a larger percentage was called the dominant slope sign. Note that we had obtained 

percentage of slope signs for each sub-window length. Then optimal sub-window length 

corresponded to the largest percentage of the dominant slope sign. Finally, the dominant 

trend was the interval that had the most number of consecutive dominant slope signs for the 

optimal sub-window length. An example is shown in Figure 2 to illustrate the procedure.

2.6 Statistical Analysis

In this study, we focused on developing new alarms based on each individual ECG metric 

and an “OR” logic to combine individual alarms. Because the cause of bradyasystolic 

cardiac arrest can be different, we do not expect a single metric or a simple combination of 

metrics can achieve high sensitivities. Therefore, we focused on the best true positive rate 

(TPR) achievable with a user-prescribed maximal false positive rate (FPR). This allowed us 

to evaluate the predictivity provided by each metric. As mentioned previously, our goal is to 

integrate these new ECG alarms into the SuperAlarm scheme, which can generate more 
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complicated and meaningful combinations of individual alarms as a possible solution to the 

alarm fatigue problems.

We first estimated the distributions of the absolute values of the ECG metrics and examined 

if they provide predictive information of the CB events. Then we derived the duration, 

terminal value, and slope of the dominant trend, of the ECG metrics and studied their 

predictive power of the CB events. A detailed description on the dominant trend and how we 

derived it is presented in the next subsection.

These three parameters based on the dominant trend allow us to develop three trend alarms: 

trend duration alarm, terminal value alarm, and slope alarm. We specified a maximal FPR 

for trend alarm to determine a threshold so that percentage of control patients with a 

trending parameter larger than this threshold could not be greater than this maximal FPR. 

For the terminal value alarm and the slope alarm, both upper and lower thresholds were 

tested, while for the trend duration alarm, only an upper threshold was tested. This is 

because it only makes sense to trigger an alarm when the trend duration is greater than a 

certain threshold. We recorded the TPR that could be obtained using this trend alarm. The 

TPR achievable with the maximal FPR was reported, as well as the corresponding threshold 

value as the alarm condition. We also reported the lead time of each alarm condition as the 

time between the first time alarm condition was triggered and the event of cardiac arrest.

3. RESULTS

The patient characteristics of both case and control groups are summarized in Table 1. While 

66.7% of the case patients were male, 72.4% of the control patients were male. The average 

ages of the case and control patients were 61.4 and 63.2 years, respectively. Most arrests 

were caused by multi-organ failure (44.4%), followed by respiratory failture (25.9%). Sinus 

arrest (37.0%) was the major arrest subtype, followed by complete heart block 7 (25.9%).

When evaluating the quality of the ECG analysis program, the P onset, P offset and T offset 

detection was considered as correct when there was a discernible P or T wave and the 

program correctly identifies the landmark or when P or T wave was indiscernible and the 

program was not detecting the P or T wave. By comparing annotations on the subset from 

the two clinicians, there was 98.5% (65/66) agreement as to whether their annotations were 

the same for each plot. This served as evidence that the first clinician was reliable in 

annotating the onset/offset detection. The first clinician's annotations show that the ECG 

analysis program has correctly identified 85.0% of P onsets, 86.9% of P offsets, 97.0% of 

QRS onsets, 98.2% of QRS offsets, and 87.3% of T offsets.

Fig. 3 compares the distributions of 17 different ECG metrics from the case and control 

groups. It can be observed that the tail distributions from the case and control groups are 

very similar. This implies that thresholding the metrics with a small maximal FPR does not 

provide discriminative information to predict bradyasystolic cardiac arrest.

Table 2 summarizes the true positive rates achievable under the requirement of a prescribed 

maximal FPR for the upper threshold condition of the dominant trend duration of each ECG 

metric. Eleven trend duration alarms achieved a positive TPR with zero FPR. The trend 
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duration alarms based on PR, QRSdur, RR, SDNN, and HRV total, achieved a TPR of 

11.1%, while the trend duration alarm based on ST I achieved a TPR of 14.8%, all with zero 

FPR.

Tables 3 and 4 are similar to Table 2 except that the triggered conditions were based on the 

upper and lower thresholds of terminal value and slope of each ECG metric, respectively. 

Eight terminal value alarms and ten slope alarms achieved a positive TPR with zero FPR. 

Furthermore, new alarms could be developed by combining those zero-FPR alarm 

conditions of multiple ECG metrics using the “OR” logic to improve the TPR without 

increasing the FPR. The highest achievable TPRs with zero FPR by performing the “OR” 

logic on 2, 3, and 4 zero-FPR alarm conditions are reported in Table 5. Note that the 

combined alarm conditions with the highest achievable TPR (22.2%, 29.6% and 33.3% for 

2, 3 and 4 zero-FPR alarm conditions, respectively) happened to be all based on the trend 

duration alarms.

4. Discussion

In this case-control study, we study the predictive power of 17 ECG metrics for identifying 

bradyasystolic cardiac arrest. These 17 ECG metrics are PR interval, P-wave duration, QRS 

duration, RR interval, QT interval, estimate of serum K+ using only frontal leads, T-wave 

complexity, ST segment levels for leads I, II, V, standard deviation of normal to normal 

intervals, HRV total power, HRV very low frequency power, HRV low frequency power, 

HRV high frequency power, HRV normalized low frequency power, and HRV normalized 

high frequency power. The extraction of ECG metrics is automatically done by a research 

ECG analysis program, which has a high accuracy of identifying ECG landmarks. We first 

analyze the distribution of each ECG metric from the case and control groups, and observe 

that the absolute values do not provide much predictive information, which is contrary to the 

results in our prior study (Hu et al., 2013). This may be because the previous study only had 

22 case patients and 45 control patients, which may not have been a representative sample. 

In this study, we increase the number of patients to 27 cases and 304 controls, which would 

be expected to be more representative.

Next, the dominant trend for each ECG metric needs to be detected in order to derive the 

trend parameters for statistical analysis. While there exist many trend detection methods 

such as robust linear fitting (Hu et al., 2013), fuzzy logic course approach (Steimann, 1995), 

noise-rejection fuzzy C-means clustering (Melek et al., 2005), Trigg's statistical approach 

(Hope et al., 1973), wavelet-based approach (Konstantinov and Yoshida, 1992), they are all 

based on a prescribed sub-window length. However, using a prescribed sub-window length 

may not work for all patients. This is because different patients may have different levels of 

outlier and trending patterns and the optimal sub-window length is patient-dependent. 

Therefore, we propose a multi-scale approach to automatically determine the optimal sub-

window length from the largest percentage of the dominant slope sign and use it to detect the 

dominant trend. Furthermore, our approach does not require prescribed thresholds or trend 

templates, making it more robust than other existing approaches such as cumulative sum 

(CUMSUM) (Charbonnier et al., 2004) and TrenDx (Haimowitz et al., 1995).
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Once the dominant trend is determined, the corresponding trend duration, terminal value and 

slope are derived from the dominant trend and tested as alarm conditions. We report the 

achievable TPRs with prescribed maximal FPRs. Our results show that the trending of a 

single ECG metric has certain predictive power and can achieve up to a TPR of 14.8% (trend 

duration alarm of ST I) with zero FPR or a TPR of 51.9% (trend duration alarm of RR or ST 

I) with a maximal FPR of 5.0%. The ‘OR’ logic combination of 4 single-metric alarm 

conditions can achieve a TPR of 33.3% with zero FPR. However, we should not implement 

the new alarms directly in a clinical setting since they do not reduce existing false alarms 

and therefore cannot alleviate the alarm fatigue problem. Rather, we expect to integrate the 

new alarms into the SuperAlarm framework because we anticipate the combination of 

metrics to identify patients at risk for cardiac arrest has the potential to reduce false positive 

alarms. A recent study that integrates laboratory test results with existing monitor alarms in 

the SuperAlarm framework improved the accuracy of code blue event prediction (Bai et al., 

2014). This study indicates that SuperAlarm has the potential to incorporate multi-domain 

clinical data for improved patient monitoring and possibly reduction of false alarms. 

Therefore, the new ECG alarms derived in this study can be integrated into SuperAlarm and 

provide more predictive information in the ECG trend domain. This will be the focus in a 

future study to determine its accuracy and potential impact on clinical outcomes.

While this study has developed a novel method to analyze the predictive power of ECG 

metrics and derive new alarms, it still has some limitations. First, the ECG metrics studied in 

this paper do not include ECG amplitudes except ST segment levels. Additional metrics 

characterizing ECG amplitudes may provide more predictive information of bradyasystolic 

or other cardiac arrest and heart failure (Hu et al., 2013, Ostman-Smith et al., 2010, Kataoka 

and Madias, 2011, Madias, 2009). The 7 HRV metrics are standard ones. They do not 

include more recent metrics such as asymmetry, entropy, or non-stationarity, which may 

provide additional information as well (Moorman et al., 2011a, Moorman et al., 2011b). In 

addition, no logic is implemented to determine whether a detected dominant trend is valid. 

This is because the dominant trend is sometimes corrupted by outliers and artifacts, and 

therefore is difficult to observe. Without ground truth of the dominant trend, the reported 

TPRs may be overestimated as the derived duration, terminal value and slope may not be 

from the correct trend. Finally, only patients with bradyasystolic cardiac arrest are 

considered in this study. If we study a different type of cardiac arrest, it is likely that the 

same ECG metrics may not be identified, given the different pathophysiologic mechanisms 

of cardiac arrest. Bradyasystolic arrests are primarily seen in patients with multiorgan failure 

where the bradycardia is reflective of conduction dysfunction from metabolic derangements 

and for which PR interval and QRS duration prolongation is a reflection of these 

abnormalities, and in respiratory failure where bradycardia is a result of intrinsic cardiac 

release of adenosine as a protective mechanism against hypoxia (Belardinelli et al., 1980, 

Senges et al., 1979, Mustafa et al., 2009). ST segment changes, however, which represent 

cardiac ischemia can be a result of many different processes and are likely not as specific to 

bradyasystolic arrests (Attin et al., 2014).
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5. Conclusion

We report a case-control study that develops new predictive alarms for bradyasystolic 

cardiac arrest based on ECG Metrics. Results show that the distributions of each ECG metric 

from the case and control groups are very similar and therefore the absolute value of each 

ECG metric does not provide much predictive information. A multi-scale approach is 

proposed to detect the dominant trend of each ECG metric and the corresponding duration, 

terminal value, and slope of the dominant trend are derived and tested as alarm conditions. 

Results show that these trending parameters provide certain discriminative information of 

bradyasystolic cardiac arrest with hours of lead time. These new alarms have the potential to 

be incorporated into the SuperAlarm framework to greatly improve the accuracy of 

predictive alarm systems.
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Figure 1. 
Duration, terminal value, and slope of the dominant trend. The red color represents the 

detected dominant trend while the blue color represents the time series of an ECG metric.
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Figure 2. 
An example of the multi-scale approach to detect the dominant trending or the longest 

monotonic window. (a) RR interval for a case patient. (b) Percentage of slope signs vs sub-

window length. (c) Robust linear fitting of overlapped sub-windows for the optimal sub-

window length. (d) Detected dominant trending.
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Figure 3. 
Comparison of the distributions of 17 ECG metrics from all 27 cardiac arrest patients and 

control subjects.
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Table 1

Patient characteristics of case and control groups.

Brady Cardiac Arrests Control

Number of patients 27 304

Male (%) 18 (66.7%) 220 (72.4%)

Age (mean ± SD) 61.4 ± 20.7 63.2 ± 11.8

Total duration of ECG analyzed (hours) 19.4 ± 7.0 22.8 ± 4.1

Causes of arrest (%) Multi-organ failure 12 (44.4%) Not applicable

Respiratory failure 7 (25.9%)

Cardiac failure 1 (3.7%)

Drug-induced 1 (3.7%)

Vagally mediated asystolic event, occurring during the turning of a 
patient

1 (3.7%)

Unknown by documentation 5 (18.5%)

Arrest subtypes (%) Sinus arrest 10 (37.0%) Not applicable

Complete heart block 7 (25.9%)

High-degree AV block 4 (14.8%)

Sinus bradycardia 1 (3.7%)

Unknown by documentation 5 (18.5%)
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Table 5

The highest achievable TPRs with zero FPR by performing the “OR” logic on 2, 3, and 4 zero-FPR alarm 

conditions. The combined alarm conditions with the highest achievable TPR are all based on the trend 

duration alarms.

Number of alarms combined by 
the “OR” logic

Highest achievable TPR 
with zero FPR

Combined alarm conditions (all based on the trend duration alarms)

2 22.2% PR, ST I
RR, ST I

SerumK2, ST I

3 29.6% RR, SerumK2, ST I

4 33.3% RR, QRSdur, SerumK2, ST I
RR, SDNN, SerumK2, ST I
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