UC Berkeley UC Berkeley Previously Published Works

Title

Common zeroes of families of smooth vector fields on surfaces

Permalink https://escholarship.org/uc/item/3jz7v3wr

Journal Geometriae Dedicata, 182(1)

ISSN 0046-5755

Author Hirsch, Morris W

Publication Date 2016-06-01

DOI 10.1007/s10711-015-0126-0

Peer reviewed

Common zeroes of families of smooth vector fields on surfaces

Morris W. Hirsch Mathematics Department University of Wisconsin at Madison University of California at Berkeley

August 2, 2016

Abstract

Let *Y* and *X* denote C^k vector fields on a possibly noncompact surface with empty boundary, $1 \le k < \infty$. Say that *Y* tracks *X* if the dynamical system it generates locally permutes integral curves of *X*. Let *K* be a locally maximal compact set of zeroes of *X*.

Theorem. Assume the Poincaré-Hopf index of *X* at *K* is nonzero, and the *k*-jet of *X* at each point of *K* is nontrivial. If g is a supersolvable Lie algebra of C^k vector fields that track *X*, then the elements of g have a common zero in *K*.

Applications are made to attractors and transformation groups.

Contents

1	Introduction	1
	Statement of the main results	2 3
2	Index calculations	5
3	Proof of Theorem 1.2	6

1 Introduction

M denotes a metrizable real analytic surface with empty boundary. The vector space of vector fields on *M* is $\mathcal{V}(M)$, topologized by uniform convergence on compact sets. The subspace of C^r vector fields is $\mathcal{V}^r(M)$. Here $r \in \mathbb{N}_+$ (the set of positive integers), or $r = \infty$ (infinitely differentiable), or $r = \omega$ (analytic).

X denotes a vector field on M, with zero set Z(X). A compact set $K \subset Z(X)$ is a *block* of zeroes for X, or an X-*block*, if it has a precompact open neighborhood $U \subset M$ such that $Z(X) \cap \overline{U} = K$. We say U is *isolating* for X and for (X, K).

The *index* of the X-block K is the integer $i_K(X) := i(X, U)$ defined as the Poincaré-Hopf index [20, 13] of any sufficiently close approximation to X having only finitely many zeroes in U. This number is independent of U, and is stable under perturbations of X : If $Y \in \mathcal{V}M$ is sufficiently close to X then U is isolating for Y, and i(Y, U) = i(X, U)(Proposition 2.2).¹

K is *essential* if $i_K(X) \neq 0$, which every isolating neighborhood of *K* meets Z(X). This powerful condition implies that if *Y* is sufficiently close to *X* then $Z(Y) \cap U \neq \emptyset$.

We say *Y* tracks *X* provided *X*, $Y \in \mathcal{V}^1(M)$, and the corresponding local flows $\Phi^Y = {\Phi_t^Y}_{t \in \mathbb{R}}$ and $\Phi^X = {\Phi_t^X}_{t \in \mathbb{R}}$ have the following property: For each $t \in \mathbb{R}$ the C^1 diffeomorphism $\Phi_t^Y : \mathcal{D}_t \approx \mathcal{R}_t$ maps orbits of $X | \mathcal{D}_t$ to orbits of $X | \mathcal{R}_t$. Equivalently: There exists $f : M \setminus Z(X) \to \mathbb{R}$ such that $X_p \neq 0 \implies [Y, X] = f(p)X_p$ (see HIRSCH, [12, Prop. 2.4] or [10, Prop. 2.3]).²

If X spans an ideal in a Lie algebra $g \subset \mathcal{V}^k(M)$, every element of g tracks X. When X is C^{∞} , the set of $Y \in \mathcal{V}^{\infty}(M)$ that track X is an infinite dimensional Lie algebra.

Statement of the main results

Throughout the rest of this article we assume:

• $X \in \mathcal{V}^k(M), \ k \in \mathbb{N}_+.$

X has order $\operatorname{ord}_p(X) := j \in \{1, \dots, k\}$ at $p \in Z(X)$ if *j* is the smallest number in $\{1, \dots, k\}$ such that the *j*-jet of *X* at *p* is nontrivial. In other words: Some (and hence every) C^{k+1} chart $M \supset W' \approx W \subset \mathbb{R}^2$ on *M*, centered at *p*, represents X|Wby a C^k map $F : W \to \mathbb{R}^2$ whose partial derivatives at the orgin satisfy

$$F^{(i)}(0) = 0$$
 for $i = 0, \dots, j - 1$, $F^{(j)}(0) \neq 0$. (1)

If no integer *j* has this property, *X* is *k*-flat at *p*.

When *X* is analytic and nontrivial on a neighborhood of a continuum $L \subset Z(X)$, the order of *X* is constant on *L*.

Theorem 1.1. Assume $X, Y \in \mathcal{V}^k(M)$ have the following properties:

- (a) $K \subset Z(X)$ is an essential X-block,
- (**b**) *X* is not *k*-flat at any point of *K*,
- **(c)** *Y* tracks *X*.

¹Equivalently: i(X, U) is the intersection number of X|U with the zero section of the tangent bundle (C. BONATTI [3]). If X is generated by a smooth local flow ϕ then i(X, U) equals the fixed-point index $I(\phi_t|U)$ of A. Dold [5] for sufficiently small t > 0.

²Article [10] is a preliminary version of [12].

Then $Z(Y) \cap K \neq \emptyset$.

When X and Y are commuting analytic vector fields, this is a special case of a remarkable theorem of C. BONATTI [3]— the inspiration for the present paper.

Theorem 1.1 is proved by demonstrating the strong form of the contrapositive stated below.

A line field Λ on a set $N \subset M$ is a (continuous) section $p \mapsto \Lambda_p$ of the fibre bundle over N whose fibre over $p \in N$ is the circle of unoriented lines through the origin in the tangent space $T_p(M)$. If $Y_p \in \Lambda_p$ for all $p \in N$ then Λ controls Y in N.

Theorem 1.2. Assume:

- (a) $X \in \mathcal{V}^k(M)$ is not k-flat at any point of the X-block K,
- (**b**) $Y \in \mathcal{V}^k(M)$ tracks X,
- (c) $Z(Y) \cap K = \emptyset$,
- (d) $U \subset M$ is an isolating neighborhood for (X, K).

Then:

- (i) $i_K(X) = 0$.
- (ii) K has only finitely many components, and each component is a C^k-embedded circle.
- (iii) X is controlled by a unique line field in U.
- (iv) *X* has index zero at each component of *K*.
- (v) X can be C^k-approximated by vector fields that have no zeroes in U and agree with X outside U.

The is in Section 3.

Applications

Let $\mathfrak{g} \subset \mathcal{W}^k(M)$ denote a Lie algebra— a linear subspace closed under Lie brackets. The zero set of \mathfrak{g} is defined as $Z(\mathfrak{g}) := \bigcap_{Y \in \mathfrak{g}} Z(Y)$. If every $Y \in \mathfrak{g}$ tracks X, then \mathfrak{g} tracks X. We call \mathfrak{g} supersolvable if it is faithfully represented by upper triangular real matrices.

Theorem 1.3. Assume:

- (a) K is an essential X-block,
- (**b**) *X* is not *k*-flat at any point of *K*,
- (c) $g \subset \mathcal{V}^k(M)$ is a supersolvable Lie algebra tracking X.

Then $Z(\mathfrak{g}) \cap K \neq \emptyset$ *.*

Related theorems and counterexamples are discussed in HIRSCH [12].

Theorem 1.4. Suppose the local flow of $X \in \mathcal{V}^{\omega}(M)$ has a compact attractor $P \subset M$ with Euler characteristic $\chi(P) \neq 0$. Then there exists $k \in \mathbb{N}_+$ with the following property: If $\mathfrak{h} \subset \mathcal{V}^k(M)$ is a supersolvable Lie algebra that tracks X, then $Z(\mathfrak{h}) \cap Z(X) \cap P \neq \emptyset$.

Proof. If P = M then M is a closed surface and $\chi(M) \neq 0$. Therefore Z(X) is an essential X-block by Poincaré's Theorem [20], and the conclusion follows from Theorem 1.2.

Suppose $P \neq M$. The basin of attraction of P contains a smooth compact surface N with boundary such that Y is inwardly transverse to ∂N . The interior $N_0 := N \setminus \partial N$ is a precompact open set which is positively invariant under Φ^Y (F. WILSON [25, Th. 2.2]). Therefore

$$t > s \ge 0 \implies \Phi_t^Y(N_0) \subset \Phi_s^Y(N_0), \qquad \bigcap_{t \ge 0} \Phi_t^Y(N_0) = P.$$

The inclusion maps $P \hookrightarrow N_0 \hookrightarrow N$ induce isomorphisms of Čech cohomology groups, hence $\chi(N_0) \neq 0$. The conclusion follows from Theorem 1.3 applied to $X := Y|N_0$ and the Lie algebra $\mathfrak{g} \subset \mathcal{V}^k(N_0)$ comprising the restrictions of the vector fields in \mathfrak{h} to N_0 .

Example 1.5. Assume $P \subset \mathbb{R}^2$ is a compact global attractor for $X \in \mathcal{V}^{\omega}(\mathbb{R}^2)$ and $\mathfrak{h} \subset \mathcal{V}^k(\mathbb{R}^2)$ is a supersolvable Lie algebra tracking *Y*. Then:

• $\mathsf{Z}(\mathfrak{h}) \cap \mathsf{Z}(X) \cap P \neq \emptyset$.

Proof. $\chi(P) \neq 0$ because \mathbb{R}^2 is contractible and *P* is a global attractor, so Theorem 1.4 yields the conclusion.

Corollary 1.6. Let G be a connected Lie group whose Lie algebra is supersolvable, with an effective C^{∞} action on a compact surface M. If $\chi(M) \neq 0$ and the action is analytic on a normal 1-dimensional Lie subgroup, then G fixes a point of M.

The special case in which M is compact and G acts analytically is due to Hirsch & WEINSTEIN [7].

Proof. The action of *G* on *M* induces an isomorphism θ from the Lie algebra \mathfrak{g} of *G* onto a subalgebra $\mathfrak{g} \subset \mathcal{V}^{\infty}(M)$. Let $Y \in \mathfrak{a}$ span the Lie algebra of *H* and set $\theta(Y) = X \in \mathfrak{g}$. Then $X \in \mathcal{V}^{\omega}(M)$ and \mathfrak{g} tracks *X*, whence the conclusion from Theorem 1.4.

Related results on Lie group actions and Lie algebras of vector fields can be found in the articles [1, 2, 4, 8, 9, 11, 15, 17, 18, 19, 22, 23, 24].

2 Index calculations

Proposition 2.1. Assume $Y, X \in \mathcal{V}^k(M)$ and Y tracks X.

(i) Z(X) is invariant under Φ^Y .

(ii) If $p, q \in Z(X)$ are in the same orbit of Φ^Y , then $\operatorname{ord}_p(X) = \operatorname{ord}_q(X)$.

Proof. Follows from the definition of tracking.

These properties of the index function are crucial:

Proposition 2.2 (STABILITY). Let $U \subset M$ be isolating for X.

(a) If $i(X, U) \neq 0$ then $Z(X) \cap U \neq \emptyset$.

- **(b)** If Y is sufficiently close to X then i(Y, U) = i(X, U).
- (c) Let $\{X^t\}_{t \in [0,1]}$ be a deformation of X. If each X^t is nonsingular on the frontier of U, then $i(X^t, U) = i(X, U)$.

Proof. This is Theorem 3.9 of [12].

Proposition 2.3. Assume $Y, Y' \in \mathcal{V}(M)$ and $U \subset M$ is isolating for both Y and Y'. Assume $N := \overline{U}$ is a compact C^1 surface such that Y_p and Y'_p are linearly dependent at all $p \in \partial N$. Then i(Y, U) = i(Y', U).

Proof. This consequence of Proposition 2.2 is a special case of [10, Prop. 3.12] or [12, Prop. 3.11].

Proposition 2.4. Let $K \subset M$ be a block of zeroes for $X \in \mathcal{V}^k(M)$, and $U \subset M$ an isolating neighborhood for (X, K). If X|U is controlled by a line field Λ on U, then $i_K(X) = 0$.

Proof. By shrinking U slightly, we assume $N := \overline{U}$ is a compact C^1 surface.

Suppose Λ is an orientable line field. Then Λ controls a nonsingular vector field *Y* on *N*, and i(Y, U) = 0 because $Z(Y) = \emptyset$. Evidently *U* is isolating for both *X* and *Y*, and *X_p*, *Y_p* are linearly dependent at all $p \in N$. Proposition 2.3 implies i(X, U) = i(Y, U) = 0, hence $i_K(X) = 0$.

Now suppose Λ is nonorientable. There is a double covering $\pi: \tilde{V} \to V$ of an open neighborhood $V \subset M$ of N, isolating for (X, K), such that Λ lifts to an orientable line field on \tilde{V} . The orientable case shows that the vector field \tilde{X} on \tilde{V} that projects to X|V under π has index zero in \tilde{V} .

Fix $X_1 \in \mathcal{V}(V)$ with $Z(X_1)$ finite, and such that the sum of the Poincaré-Hopf indices of the zeroes of X_1 equals i(X, V). Define $\tilde{X}_1 \in \mathcal{V}(\tilde{V})$ to be the vector field projecting to X_1 under π . Each zero p of X_1 is the image under π of exactly two zeroes q_1, q_2 of \tilde{X}_1 , and the Poincaré-Hopf indices of \tilde{X} at q_1 and q_2 both equal the Poincaré-Hopf index of X at p. Therefore

$$0 = i(X_1, V) = 2i(X_1, V) = 2i(X, V) = 2i_K(X),$$

completing the proof.

Other calculations of indices can be found in [5, 6, 14, 16, 21].

5

3 Proof of Theorem 1.2

Lemma 3.1. Let $L \subset K$ be a component. Then X has the same order at each point of L.

Proof. The sets $L_j = \{p \in L: \text{ ord}_p(X) = j\}$, $j \in \{1, ..., k\}$ are relatively open in L and mutually disjoint. As L is connected and covered by the L_j , it coincides with one of them.

Let $p \in K$ be arbitrary. Choose a C^{k+1} flowbox h_p for Y centered at p:

$$h_p: W'_p \approx W_p = J_p \times J'_p \subset \mathbb{R}^2, \quad h(p) = (0,0).$$

$$\tag{2}$$

This means W'_p is open in M, J_p , $J'_p \subset \mathbb{R}$ are open intervals around 0, and the C^{k+1} diffeomorphism h_p transforms $Y|W'_p$ to the constant vector field $\frac{\partial}{\partial x}|W_p$, where x, y are the usual planar coordinates. Notice that $h_p(K \cap W'_p) = J_p \times \{0\}$ because K is Y-invariant.

The transform of $X|W'_p$ by h_p is a C^k vector field

$$\hat{X}(p) \in \mathcal{V}^k(W_p), \quad (x, y) \mapsto F_p(x, y),$$

where $F_p: W_p \to \mathbb{R}^2$ is C^k .

Set $\operatorname{ord}_p(X) = l \in \{1, \dots, k\}$. The partials of F_p satisfy

$$F_p^{(i)}(0) = 0$$
 for $i = 0, \dots, l - 1$, $F_p^{(l)}(0) \neq 0$.

In a sufficiently small open disk

$$D := D_p \subset \mathbb{R}^2, \quad (0,0) \in D_p, \tag{3}$$

the *l*'th order Taylor expansion of F_p about (0, 0) takes the form

$$F_p(x, y) = y^l g(x, y), \qquad g(x, y) \neq (0, 0)$$
 (4)

with $g: D_p \to \mathbb{R}^2$ continuous. Therefore

$$\mathsf{Z}(\hat{X}(p)) = F_p^{-1}(0,0) = J_p \times \{0\},\$$

whence $K \cap W'_p$ is an open arc, relatively closed in W'_p .

It follows that *K* has an open cover by open arcs. Thus *K* is a compact 1manifold having only finitely many components, each of which is a topological circle. The restriction of Φ^Y to any component $L \subset K$ is a smooth flow with no fixed points. Therefore *L* is a periodic orbit of Φ^Y , and is thus a smooth submanifold. This proves Theorem 1.2(ii).

Lemma 3.2. \hat{X} is controlled by a unique line field $\Lambda(p)$ on D_p .

Proof. Consider the unit vector field \hat{F} on $D' := D \setminus J \times \{0\}$, as

$$\hat{F}(x, y) := \operatorname{sign}(y) \frac{F(x, y)}{\|F(x, y)\|}$$

where $\|\cdot\|$ denotes the Euclidean norm. Equation (4) implies

$$\lim_{y \to 0} \hat{F}(x, y) = \frac{g(x, 0)}{\|g(x, 0)\|} \text{ uniformly in } D'.$$

Therefore \hat{F} extends to a unique continuous map $\tilde{F}: D \to \mathbf{S}^1$ (the unit circle). The desired line field sends $(x, y) \in D$ to the line through (0, 0) spanned by $\tilde{F}_{(x,y)}$.

Next we prove 1.2(iii). For each $p \in K$ let $V_p := h_p^{-1}(D_p)$, with notation as in Equations (2), (3). Define $V := \bigcap_{p \in K} V_p$. Let $\Lambda(p)$ be the line field defined in Lemma 3.2. The pullback of $\Lambda(p)$ by h_p is the unique line field $\Gamma(p)$ on V_p controlling $X|V_p$. The unique line field Γ on V that restricts to $\Gamma(p)$ for each $p \in K$ has the required properties.

Parts (i) and (iv) of 1.2 are consequences of (iii) and Proposition 2.4.

Part (v) follows from Propositions 3.13 and 3.14 of [12] when U is connected, and this implies the general case because the compact set K is covered by finitely many components of U.

References

- M. Belliart, Actions sans points fixes sur les surfaces compactes, Math. Z. 225 (1997), 453–465
- [2] M. Belliart & I. Liousse, Actions affines sur les surfaces, Publications IRMA, Universite de Lille, 38 (1996) exposé X
- [3] C. Bonatti, *Champs de vecteurs analytiques commutants, en dimension 3 ou 4: existence de zéros communs,* Bol. Soc. Brasil. Mat. (N. S.) **22** (1992), 215–247
- [4] A. Borel, Groupes linéaires algebriques, Ann. Math. 64 (1956), 20-80
- [5] A. Dold, "Lectures on Algebraic Topology," Die Grundlehren der matematischen Wissenschaften Bd. 52, second edition. Springer, New York 1972
- [6] D. Gottlieb, A de Moivre like formula for fixed point theory, in: "Fixed Point Theory and its Applications (Berkeley, CA, 1986)." Contemporary Mathematics 72 Amer. Math. Soc., Providence, RI 1988
- [7] M. Hirsch & A. Weinstein, Fixed points of analytic actions of supersoluble Lie groups on compact surfaces, Ergod. Th. Dyn. Sys. 21 (2001), 1783–1787
- [8] M. Hirsch, Actions of Lie groups and Lie algebras on manifolds, in "A Celebration of the Mathematical Legacy of Raoul Bott." Centre de Recherches Mathématiques, U. de Montréal. Proceedings & Lecture Notes 50, (P. R. Kotiuga, ed.), Amer. Math. Soc. Providence RI 2010

- [9] M. Hirsch, Smooth actions of Lie groups and Lie algebras on manifolds, J. Fixed Point Th. App. 10 (2011), 219–232
- [10] M. Hirsch, Zero sets of Lie algebras of analytic vector fields on real and complex 2-manifolds, http://arxiv.org/abs/1310.0081 (2013)
- [11] M. Hirsch, Fixed points of local actions of nilpotent Lie groups on surfaces, http://arxiv.org/abs/1405.2331 (2014)
- [12] M. Hirsch, Zero sets of Lie algebras of analytic vector fields on real and complex 2-manifolds, submitted (2015)
- [13] H. Hopf, Vektorfelder in Mannifgfaltigkeiten, Math. Annalen 95 (1925), 340–367
- [14] B. Jubin, A generalized Poincaré-Hopf index theorem, (2009) http://arxiv.org/abs/0903.0697
- [15] E. Lima, Common singularities of commuting vector fields on 2-manifolds, Comment. Math. Helv. 39 (1964), 97–110
- [16] M. Morse, Singular Points of Vector Fields Under General Boundary Conditions, Amer. J. Math. 52 (1929), 165–178
- [17] J. Plante, *Fixed points of Lie group actions on surfaces*, Erg. Th. Dyn. Sys. 6 (1986), 149–161
- [18] J. Plante, *Lie algebras of vector fields which vanish at a point*, J. London Math. Soc
 (2) 38 (1988) 379–384
- [19] J. Plante, *Elementary zeros of Lie algebras of vector fields*, Topology **30** (1991) 215–222
- [20] H. Poincaré, Sur les courbes définies par une équation différentielle, J. Math. Pures Appl. 1 (1885), 167–244
- [21] C. Pugh, A generalized Poincaré index formula, Topology 7 (1968), 217–226
- [22] A. Sommese, Borel's fixed point theorem for Kaehler manifolds and an application, Proc. Amer. Math. Soc. 41 (1973), 51–54.
- [23] F.-J. Turiel, An elementary proof of a Lima's theorem for surfaces, Publ. Mat. 3 (1989) 555–557
- [24] F.-J. Turiel, Analytic actions on compact surfaces and fixed points, Manuscripta Mathematica 110 (2003), 195–201
- [25] F. W. Wilson, Smoothing derivatives of functions and applications, Trans. Amer. Math. Soc. 139 (1969), 413–428