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Common zeroes of families of smooth vector

fields on surfaces

Morris W. Hirsch Mathematics Department
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University of California at Berkeley

August 2, 2016

Abstract

Let Y and X denote Ck vector fields on a possibly noncompact surface

with empty boundary, 1 ≤ k < ∞. Say that Y tracks X if the dynamical

system it generates locally permutes integral curves of X. Let K be a locally

maximal compact set of zeroes of X.

Theorem. Assume the Poincaré-Hopf index of X at K is nonzero, and the

k-jet of X at each point of K is nontrivial. If g is a supersolvable Lie algebra

of Ck vector fields that track X, then the elements of g have a common zero

in K.

Applications are made to attractors and transformation groups.
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1 Introduction

M denotes a metrizable real analytic surface with empty boundary. The vector

space of vector fields on M is V(M), topologized by uniform convergence on

compact sets. The subspace of Cr vector fields isVr(M). Here r ∈ N+ (the set of

positive integers), or r = ∞ (infinitely differentiable), or r = ω (analytic).
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X denotes a vector field on M, with zero set Z(X). A compact set K ⊂ Z(X) is

a block of zeroes for X, or an X-block, if it has a precompact open neighborhood

U ⊂ M such that Z(X) ∩ U = K. We say U is isolating for X and for (X,K).

The index of the X-block K is the integer iK(X) := i(X,U) defined as the

Poincaré-Hopf index [20, 13] of any sufficiently close approximation to X hav-

ing only finitely many zeroes in U. This number is independent of U, and is

stable under perturbations of X : If Y ∈ VM is sufficiently close to X then U is

isolating for Y , and i(Y,U) = i(X,U)(Proposition 2.2).1

K is essential if iK(X) , 0, which every isolating neighborhood of K meets

Z(X). This powerful condition implies that if Y is sufficiently close to X then

Z(Y) ∩ U , ∅.

We say Y tracks X provided X,Y ∈ V1(M), and the corresponding local flows

ΦY = {ΦY
t }t∈R andΦX = {ΦX

t }t∈R have the following property: For each t ∈ R the C1

diffeomorphism ΦY
t : Dt ≈ Rt maps orbits of X|Dt to orbits of X|Rt. Equivalently:

There exists f : M \Z(X) → R such that Xp , 0 =⇒ [Y, X] = f (p)Xp (see

Hirsch, [12, Prop. 2.4] or [10, Prop. 2.3]).2

If X spans an ideal in a Lie algebra g ⊂ Vk(M), every element of g tracks X.

When X is C∞, the set of Y ∈ V∞(M) that track X is an infinite dimensional Lie

algebra.

Statement of the main results

Throughout the rest of this article we assume:

• X ∈ Vk(M), k ∈ N+.

X has order ordp(X) := j ∈ {1, . . . , k} at p ∈ Z(X) if j is the smallest number

in {1, . . . , k} such that the j-jet of X at p is nontrivial. In other words: Some (and

hence every) Ck+1 chart M ⊃ W ′ ≈ W ⊂ R2 on M, centered at p, represents X|W

by a Ck map F : W → R2 whose partial derivatives at the orgin satisfy

F(i)(0) = 0 for i = 0, . . . , j − 1, F( j)(0) , 0. (1)

If no integer j has this property, X is k-flat at p.

When X is analytic and nontrivial on a neighborhood of a continuum L ⊂ Z(X),

the order of X is constant on L.

Theorem 1.1. Assume X,Y ∈ Vk(M) have the following properties:

(a) K ⊂ Z(X) is an essential X-block,

(b) X is not k-flat at any point of K,

(c) Y tracks X.

1Equivalently: i(X,U) is the intersection number of X|U with the zero section of the tangent

bundle (C. Bonatti [3]). If X is generated by a smooth local flow φ then i(X,U) equals the fixed-

point index I(φt |U) of A. Dold [5] for sufficiently small t > 0.
2Article [10] is a preliminary version of [12].
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Then Z(Y) ∩ K , ∅.

When X and Y are commuting analytic vector fields, this is a special case of a

remarkable theorem of C. Bonatti [3]— the inspiration for the present paper.

Theorem 1.1 is proved by demonstrating the strong form of the contrapositive

stated below.

A line field Λ on a set N ⊂ M is a (continuous) section p 7→ Λp of the fibre

bundle over N whose fibre over p ∈ N is the circle of unoriented lines through the

origin in the tangent space Tp(M). If Yp ∈ Λp for all p ∈ N then Λ controls Y in

N.

Theorem 1.2. Assume:

(a) X ∈ Vk(M) is not k-flat at any point of the X-block K,

(b) Y ∈ Vk(M) tracks X,

(c) Z(Y) ∩ K = ∅,

(d) U ⊂ M is an isolating neighborhood for (X,K).

Then:

(i) iK(X) = 0.

(ii) K has only finitely many components, and each component is a Ck-embedded

circle.

(iii) X is controlled by a unique line field in U.

(iv) X has index zero at each component of K.

(v) X can be Ck-approximated by vector fields that have no zeroes in U and agree

with X outside U.

The is in Section 3.

Applications

Let g ⊂ Vk(M) denote a Lie algebra— a linear subspace closed under Lie brack-

ets. The zero set of g is defined as Z(g) :=
⋂

Y∈g Z(Y). If every Y ∈ g tracks X,

then g tracks X. We call g supersolvable if it is faithfully represented by upper

triangular real matrices.

Theorem 1.3. Assume:

(a) K is an essential X-block,

(b) X is not k-flat at any point of K,

(c) g ⊂ Vk(M) is a supersolvable Lie algebra tracking X.
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Then Z(g) ∩ K , ∅.

Related theorems and counterexamples are discussed in Hirsch [12].

Theorem 1.4. Suppose the local flow of X ∈ Vω(M) has a compact attractor

P ⊂ M with Euler characteristic χ(P) , 0. Then there exists k ∈ N+ with the

following property: If h ⊂ Vk(M) is a supersolvable Lie algebra that tracks X,

then Z(h) ∩ Z(X) ∩ P , ∅.

Proof. If P = M then M is a closed surface and χ(M) , 0. Therefore Z(X) is an

essential X-block by Poincaré’s Theorem [20], and the conclusion follows from

Theorem 1.2.

Suppose P , M. The basin of attraction of P contains a smooth compact

surface N with boundary such that Y is inwardly transverse to ∂N. The interior

N0 := N \ ∂N is a precompact open set which is positively invariant under ΦY (F.

Wilson [25, Th. 2.2]). Therefore

t > s ≥ 0 =⇒ ΦY
t (N0) ⊂ ΦY

s (N0),
⋂

t≥0Φ
Y
t (N0) = P.

The inclusion maps P ֒→ N0 ֒→ N induce isomorphisms of Čech cohomology

groups, hence χ(N0) , 0. The conclusion follows from Theorem 1.3 appplied

to X := Y |N0 and the Lie algebra g ⊂ Vk(N0) comprising the restrictions of the

vector fields in h to N0.

Example 1.5. Assume P ⊂ R2 is a compact global attractor for X ∈ Vω(R2) and

h ⊂ Vk(R2) is a supersolvable Lie algebra tracking Y . Then:

• Z(h) ∩ Z(X) ∩ P , ∅.

Proof. χ(P) , 0 because R2 is contractible and P is a global attractor, so Theorem

1.4 yields the conclusion.

Corollary 1.6. Let G be a connected Lie group whose Lie algebra is supersolv-

able, with an effective C∞ action on a compact surface M. If χ(M) , 0 and the

action is analytic on a normal 1-dimensional Lie subgroup, then G fixes a point

of M.

The special case in which M is compact and G acts analytically is due to Hirsch

& Weinstein [7].

Proof. The action of G on M induces an isomorphism θ from the Lie algebra a

of G onto a subalgebra g ⊂ V∞(M). Let Y ∈ a span the Lie algebra of H and

set θ(Y) = X ∈ g. Then X ∈ Vω(M) and g tracks X, whence the conclusion from

Theorem 1.4.

Related results on Lie group actions and Lie algebras of vector fields can be

found in the articles [1, 2, 4, 8, 9, 11, 15, 17, 18, 19, 22, 23, 24].
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2 Index calculations

Proposition 2.1. Assume Y, X ∈ Vk(M) and Y tracks X.

(i) Z(X) is invariant under ΦY .

(ii) If p, q ∈ Z(X) are in the same orbit of ΦY , then ordp(X) = ordq(X).

Proof. Follows from the definition of tracking.

These properties of the index function are crucial:

Proposition 2.2 (Stability). Let U ⊂ M be isolating for X.

(a) If i(X,U) , 0 then Z(X) ∩ U , ∅.

(b) If Y is sufficiently close to X then i(Y,U) = i(X,U).

(c) Let {Xt}t∈[0,1] be a deformation of X. If each Xt is nonsingular on the frontier

of U, then i(Xt,U) = i(X,U).

Proof. This is Theorem 3.9 of [12].

Proposition 2.3. Assume Y,Y ′ ∈ V(M) and U ⊂ M is isolating for both Y and

Y ′. Assume N := U is a compact C1 surface such that Yp and Y ′p are linearly

dependent at all p ∈ ∂N. Then i(Y,U) = i(Y ′,U).

Proof. This consequence of Proposition 2.2 is a special case of [10, Prop. 3.12]

or [12, Prop. 3.11].

Proposition 2.4. Let K ⊂ M be a block of zeroes for X ∈ Vk(M), and U ⊂ M

an isolating neighborhood for (X,K). If X|U is controlled by a line field Λ on U,

then iK(X) = 0.

Proof. By shrinking U slightly, we assume N := U is a compact C1 surface.

Suppose Λ is an orientable line field. Then Λ controls a nonsingular vector

field Y on N, and i(Y,U) = 0 because Z(Y) = ∅. Evidently U is isolating for both

X and Y , and Xp, Yp are linearly dependent at all p ∈ N. Proposition 2.3 implies

i(X,U) = i(Y,U) = 0, hence iK(X) = 0.

Now suppose Λ is nonorientable. There is a double covering π : Ṽ → V of

an open neighborhood V ⊂ M of N, isolating for (X,K), such that Λ lifts to an

orientable line field on Ṽ . The orientable case shows that the vector field X̃ on Ṽ

that projects to X|V under π has index zero in Ṽ .

Fix X1 ∈ V(V) with Z(X1) finite, and such that the sum of the Poincaré-Hopf

indices of the zeroes of X1 equals i(X,V). Define X̃1 ∈ V(Ṽ) to be the vector field

projecting to X1 under π. Each zero p of X1 is the image under π of exactly two

zeroes q1, q2 of X̃1, and the Poincaré-Hopf indices of X̃ at q1 and q2 both equal the

Poincaré-Hopf index of X at p. Therefore

0 = i(X̃1, Ṽ) = 2i(X1,V) = 2i(X,V) = 2iK(X),

completing the proof.

Other calculations of indices can be found in [5, 6, 14, 16, 21].
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3 Proof of Theorem 1.2

Lemma 3.1. Let L ⊂ K be a component. Then X has the same order at each point

of L.

Proof. The sets L j = {p ∈ L : ordp(X) = j}, j ∈ {1, . . . , k} are relatively open in L

and mutually disjoint. As L is connected and covered by the L j, it coincides with

one of them.

Let p ∈ K be arbitrary. Choose a Ck+1 flowbox hp for Y centered at p:

hp : W ′
p ≈ Wp = Jp × J′p ⊂ R

2, h(p) = (0, 0). (2)

This means W ′
p is open in M, Jp, J

′
p ⊂ R are open intervals around 0, and the Ck+1

diffeomorphism hp transforms Y |W ′
p to the constant vector field ∂

∂x

∣

∣

∣Wp, where x, y

are the usual planar coordinates. Notice that hp(K ∩W ′
p) = Jp × {0} because K is

Y-invariant.

The transform of X|W ′
p by hp is a Ck vector field

X̂(p) ∈ Vk(Wp), (x, y) 7→ Fp(x, y),

where Fp : Wp → R
2 is Ck.

Set ordp(X) = l ∈ {1, . . . , k}. The partials of Fp satisfy

F(i)
p (0) = 0 for i = 0, . . . , l − 1, F(l)

p (0) , 0.

In a sufficiently small open disk

D := Dp ⊂ R
2, (0, 0) ∈ Dp, (3)

the l’th order Taylor expansion of Fp about (0, 0) takes the form

Fp(x, y) = ylg(x, y), g(x, y) , (0, 0) (4)

with g : Dp → R
2 continuous. Therefore

Z(X̂(p)) = F−1
p (0, 0) = Jp × {0},

whence K ∩W ′
p is an open arc, relatively closed in W ′

p.

It follows that K has an open cover by open arcs. Thus K is a compact 1-

manifold having only finitely many components, each of which is a topological

circle. The restriction of ΦY to any component L ⊂ K is a smooth flow with no

fixed points. Therefore L is a periodic orbit of ΦY , and is thus a smooth submani-

fold. This proves Theorem 1.2(ii).

Lemma 3.2. X̂ is controlled by a unique line field Λ(p) on Dp.
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Proof. Consider the unit vector field F̂ on D′ := D \ J × {0}, as

F̂(x, y) := sign(y)
F(x, y)

‖F(x, y)‖

where ‖ · ‖ denotes the Euclidean norm. Equation (4) implies

lim
y→0

F̂(x, y) =
g(x, 0)

‖g(x, 0)‖
uniformly in D′.

Therefore F̂ extends to a unique continuous map F̃ : D→ S1 (the unit circle). The

desired line field sends (x, y) ∈ D to the line through (0, 0) spanned by F̃(x,y).

Next we prove 1.2(iii). For each p ∈ K let Vp := h−1
p (Dp), with notation as

in Equations (2), (3). Define V :=
⋂

p∈K Vp. Let Λ(p) be the line field defined

in Lemma 3.2. The pullback of Λ(p) by hp is the unique line field Γ(p) on Vp

controlling X|Vp. The unique line field Γ on V that restricts to Γ(p) for each p ∈ K

has the required properties.

Parts (i) and (iv) of 1.2 are consequences of (iii) and Proposition 2.4.

Part (v) follows from Propositions 3.13 and 3.14 of [12] when U is connected,

and this implies the general case because the compact set K is covered by finitely

many components of U.
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http://arxiv.org/abs/0903.0697

[15] E. Lima, Common singularities of commuting vector fields on 2-manifolds, Com-

ment. Math. Helv. 39 (1964), 97–110

[16] M. Morse, Singular Points of Vector Fields Under General Boundary Conditions,

Amer. J. Math. 52 (1929), 165–178

[17] J. Plante, Fixed points of Lie group actions on surfaces, Erg. Th. Dyn. Sys. 6 (1986),

149–161

[18] J. Plante, Lie algebras of vector fields which vanish at a point, J. London Math. Soc

(2) 38 (1988) 379–384

[19] J. Plante, Elementary zeros of Lie algebras of vector fields, Topology 30 (1991)

215–222
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Appl. 1 (1885), 167–244
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