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ABSTRACT OF THE DISSERTATION 

 

Performance, Energy and Temperature Considerations for Job 

Scheduling and for Workload Distribution in Heterogeneous Systems 

 

By 
 

Shouq Alsubaihi 
 

Doctor of Philosophy in Electrical and Computer Engineering 
 University of California, Irvine, 2017 

Professor Jean-Luc Gaudiot, Chair 
 

 
 

Many systems today are heterogeneous in that they consist of a mix of different types of 

processing units (e.g., CPUs, GPUs). Each of these processing units has different performance 

and energy consumption characteristics. Job scheduling and workload distribution play a crucial 

role in such systems as they strongly affect system’s performance, energy consumption, peak 

power and peak temperature. The scheduler maps the entire jobs to processing units, whereas 

workload distributor maps parts of the job. Allocating resources (e.g., core scaling, thread 

allocation) is another challenge since different sets of resources exhibit different behavior in 

terms of performance and energy.  
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Performance was the dominant factor in job scheduling and workload distribution for years. 

As processor’s design has hit the power-wall, energy consumption also becomes important. 

Many studies have been conducted on scheduling and workload distribution with an eye on 

performance improvement. However, few of them consider both performance and energy. 

We propose a Performance, Energy and Thermal aware Resource Allocator and Scheduler 

(PETRAS), which includes core scaling and thread allocation. Since job scheduling is known to 

be an NP-hard problem, we apply a Genetic Algorithm (GA) to find an efficient job schedule in 

terms of performance and energy consumption, under peak power and peak CPU temperature 

constraints. Compared to other schedulers, PETRAS achieves up to 4.7x speedup and energy 

saving of up to 195%. 

The classic workload distribution does not fully utilize the CPUs and the GPUs. It maps the 

sequential parts of a job to the CPU and the parallel parts to the GPU. We thus propose a 

Workload Distributor with a Resource Allocator (WDRA), which combines core scaling and 

thread allocation into a workload distributor. Since workload distribution is known to be an NP-

hard problem, WDRA utilizes Particle Swarm Optimization (PSO) to find an efficient workload 

distribution in terms of performance and energy consumption, under peak power and peak CPU 

temperature constraints. Compared to other workload distributors, WDRA can achieve up to 

1.47x speedup and 82% reduction of energy consumption. WDRA is a well-suited runtime 

distributor since it only takes up to 1.7% of the job’s execution time. 
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Chapter 1           

 Introduction 

1.1 Background  

Attempts at improving uni-core processors have hit a power wall. As a result, the industry 

has shifted towards multicore processors. Another shift in the industry is that Graphical 

Processing Units (GPUs) are now being used for more than just image processing. GPUs are now 

used as general purpose processing units to execute highly parallel jobs [2][37]. GPUs show their 

capability to run compute intensive jobs efficiently in terms of execution time and energy 

consumption. Processing units such as multicore processors and general purpose GPUs have 

emerged, forming heterogeneous systems. Integrating processing units with different 

performance/energy characteristics on the same machine could enhance a system's performance 

and energy efficiency [1]. 

Performance of the system (i.e., execution time) was the dominant metric for evaluating 

processer design for years. Minimizing the execution time was a major concern for designing 

software/hardware. As the uni-core processors hit the power wall, power/energy becomes an 

important metric. Minimizing energy consumption may degrade a system's performance. Hence, 

the energy and performance trade-off should be considered while designing a system. In the 

embedded systems field, peak power and peak temperature are considered as additional 

constraints.  
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A heterogeneous system can be a computer that consists of a mixture of different types of 

processing units (e.g., CPUs, GPUs, FPGAs). Each of these processing units has different 

architectural strengths in execution capabilities and energy consumption. Computational 

resources in general can be either processing units, number of cores, or number of threads. In a 

heterogeneous system, selecting the best computational resources to run a job requires an 

understanding of: 1) the capabilities of the processing units with different number of cores and 

threads, 2) optimized parameters (i.e., performance and energy consumption), and 3) 

computational constraints of the problem such as peak power and temperature limits. This is 

because different computational resources have different strengths and weaknesses with respect 

to these parameters and constraints. 

A classic job scheduler role is to map an entire job to a processing unit. A classic workload 

distributor role is to map parts of a job to more than one processing unit that cooperate to execute 

that job. Typically, a GPU handles the parallel parts of a job and a CPU (i.e., host) handles the 

sequential parts of a job. The CPU also handles CPU/GPU data transfer coordination. The host 

remains idle waiting for a GPU to finish its part and transfer data back. This classic workload 

distribution does not fully utilize the CPU and the GPU.  

It is true that job scheduling and workload distribution play a crucial role in CPU-GPU 

heterogeneous systems as they strongly affect the overall system performance, energy 

consumption, peak power and peak temperature. But selecting the optimal resources (e.g., 

number of cores, number of threads) to run a job is also important due to their effect on the 

parameters above. Hence, a resource allocator should be combined with schedulers and workload 

distributors. 
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1.2 Research Goals and Our Contributions 

The overarching goal of this dissertation is to understand the effectiveness of combining 

resource allocators with schedulers and workload distributors in improving the performance and 

reducing the energy consumption of heterogeneous systems. Moreover, the goal is to show the 

importance of considering both systems’ performance and energy consumption while job 

scheduling or workload distribution. In addition, peak power and peak CPU temperature limits 

should be taken into account especially if the targeted hardware is an embedded system.  

The research goal can be achieved in the following major steps: first, we propose the 

Performance, Energy and Thermal aware Resource Allocator and Scheduler (PETRAS) [4][19], 

which combines job mapping, core scaling, and thread allocation into one scheduler. Second, we 

propose the Workload Distributor with a Resource Allocator (WDRA) [24], which finds a job’s 

efficient workload distribution and resource allocation in terms of both a system’s performance 

and energy consumption. Third, we implement PETRAS and WDRA on CPU-GPU 

heterogeneous systems. Finally, we evaluate the effectiveness of PETRAS and WDRA on an 

actual heterogeneous system that is equipped with a multi-core CPU and a GPU. PETRAS and 

WDRA are evaluated considering the overall performance and energy consumption in both 

cases: non-constraints, and peak power and peak CPU temperature constraints. 
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 In detail, the contributions of this dissertation are as follows: 

• Develop a job scheduler and a workload distributor that has a resource allocator (i.e., core 

scaling and thread allocation).  

• Develop a job scheduler and a workload distributor that considers both a system’s 

performance and energy consumption. 

• Introduce scheduling and workload distribution problems as multi-objective problems. 

• Identify the problem of only considering one parameter (i.e., performance or energy 

consumption) while scheduling/workload distribution. 

• Explore how running a job on different processing units with different resources exhibits 

different behaviors in terms of performance, energy consumption, peak power and peak 

CPU temperature. 

• Explore how a job’s CPU/GPU map ratio with different resources exhibits different 

behaviors in terms of performance, energy consumption, peak power and peak CPU 

temperature. 

• Explore the importance of solving scheduling/workload distribution as a multi-objective 

optimization problem. 

• Evaluate PETRAS and WDRA in two cases: non-constraints and constraints (i.e., peak 

power, peak CPU temperature). 

• Evaluate how PETRAS and WDRA can improve a system’s performance and reduce 

energy consumption compared to other classic schedulers and distributors.  

• Evaluate the overhead of WDRA to be applied during runtime. 

• Propose and evaluate the initial design of PETRAS and WDRA.  
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1.3 Dissertation Organization 

This dissertation is organized as follows:  

• Chapter 2 presents an overview of CPU-GPU heterogeneous systems. It also provides a 

comparison between the CPU and the GPU architectures. It describes the job scheduler 

and workload distributor for heterogeneous systems. It presents the platform, 

programming languages and the benchmark that we used in this work. 

• Chapter 3 proposes the Performance, Energy and Thermal aware Resource Allocator and 

Scheduler (PETRAS). It presents the related work on scheduling. It also describes the 

PETRAS optimization problem in detail. The chapter presents PETRAS methodology 

and implementation. It then evaluates PETRAS and discusses experimental results. 

• Chapter 4 proposes the Workload Distributor and Resource Allocator (WDRA). It 

discusses the work that has been done on workload distribution. It then gives details on 

the WDRA optimization problem. The chapter describes WDRA methodology and 

implementation. It also evaluates WDRA on an actual CPU-GPU heterogeneous system. 

• Chapter 5 concludes this work and discusses future work. 
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Chapter 2           

 CPU-GPU Heterogeneous Systems 

Many computing systems today are heterogeneous in that they consist of a mix of different 

types of processing units (e.g., CPUs, GPUs). Each of these processing units has different 

execution capabilities and energy consumption characteristics. These processing units can be 

fused on the same chip or connected through a network (e.g., PCI express, a ring, or a mesh). 

As the processor’s design has hit the power wall, the industry has shifted towards multicore 

processors. Another shift in the industry is that Graphical Processing Units (GPUs) are now 

being used for general-purpose application computing [2][37]. GPUs show their capability to run 

compute intensive jobs efficiently in terms of execution time and energy consumption. CPUs and 

GPUs have different execution capabilities, energy consumption and thermal characteristics. 

Although GPUs are known to be more energy efficient than CPUs, CPUs are more efficient in 

some cases, such as when the CPU-GPU communication overhead is too large compared to the 

computational time.  

GPUs have been used as co-processors with CPUs forming heterogeneous systems. Job 

scheduling and workload distribution play a crucial role in such systems as they strongly affect 

the overall system performance, energy consumption, peak power and peak temperature. 

Allocating resources (e.g., core scaling, thread allocation) is another challenge since different 

sets of resources exhibit different behaviors in terms of performance and energy consumption. A 

classic job scheduler role is to map an entire job to a processing unit. A classic workload 

distributor role is to map parts of a job to more than one processing unit that cooperate to execute 
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that job. Typically, the role of the GPU is to execute the parallel parts of a job and the role of the 

CPU (i.e., host) is to execute the sequential parts and manage the CPU-GPU data transfer. The 

host remains idle, waiting for the GPU’s execution and data transfer to complete. This classic 

workload distribution does not fully utilize the CPU and the GPU. It can be concluded that there 

is a need for efficient schedulers and workload distributors that fully exploit the potential of the 

CPU-GPU heterogeneous system. 

The rest of the chapter is organized as follows. Section 2.1 presents a comparison between 

the CPU and the GPU architectures. Section 2.2 describes the job scheduler. Section 2.3 presents 

the workload distributor for heterogeneous systems. The heterogeneous platform that we used in 

this work is appeared in section 2.4. Section 2.5 lists the programming languages that we utilized 

in this study. A brief description of the benchmark that we used to test and evaluate our work is 

appeared in Section 2.6. Finally, we summarize this chapter in section 2.7. 
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2.1 CPUs vs. GPUs  

An industry shift occurred when NVIDIA [2][37] developed the Compute Unified Device 

Architecture (CUDA), which enables the use of Graphic Processing Units (GPUs) as general-

purpose processors (GPGPUs).  

CPUs are latency-oriented processers where threads’ latency is more important than the 

system’s throughput. GPUs are the opposite; they are throughput-oriented processors that favor 

the system’s throughput over an individual thread’s latency. In other words, CPUs are designed 

to minimize a single thread’s latency, whereas GPUs are designed to handle a large number of 

concurrent, lightweight threads to maximize overall throughput. 

Fig. 2.1 shows the architectural overview of CPUs and GPUs. As shown in Fig. 2.1, 

compared to GPUs, CPUs have fewer but larger ALUs, a larger central data cache memory, and 

a larger central complicated control unit. Unlike CPUs that have a few large ALUs, GPUs have 

several hundreds of tiny energy efficient ALUs providing massively parallel computing. GPUs 

devote more transistors for data computation and less for data cache memory and control units. 

For this reason, GPUs are well-suited processors for compute intensive, highly parallel 

processing where memory latency can be hidden with computations instead of using large data 

caches. Moreover, GPUs are known to be high throughput and energy efficient processors. 

Although GPUs are more energy efficient than CPUs, they produce very high peak power 

compared to CPUs. Table 2.1 briefly shows the differences between CPUs and GPUs. 
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Table 2.1: CPU vs. GPU  

CPU GPU 

Latency oriented Throughput oriented 

Large data caches Small data caches 

Large ALUs Energy efficient small ALUs  

Large control unit Small control units 
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Figure 2.1: A CPU and a GPU Architectural Overview 
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2.2 Job Scheduler 

Today’s systems from mobiles to servers are heterogeneous. They consist of different types 

of processing units with different characteristics such as CPUs and GPUs. Due to the 

architectural differences between the CPU and the GPU, as explained in section 2.1, we will get 

different job’s execution time, energy consumption, peak power and peak CPU temperature if we 

run that job on a CPU or a GPU. Therefore, a job scheduler plays an important role in such 

systems where a jobs’ schedule affects the overall system’s performance, energy consumption, 

peak power and peak CPU temperature. We thus propose a job scheduler for CPU-GPU 

heterogeneous systems. The goal of that scheduler is to find an optimal jobs’ schedule while 

taking into account both performance and energy consumption under the peak power and 

temperature constraints. Given a set of jobs, the job scheduler role is to map the entire jobs to the 

processing units according to the optimal schedule. Fig. 2.2(a) shows an example of a schedule. 

Fig. 2.2(b) illustrates that the entire jobs are mapped to execute on the designated processing unit 

according to Fig. 2.2(a) schedule. It should be noted that our job scheduler is an offline scheduler 

that provides the jobs’ schedule beforehand. 
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2.3 Workload Distributor 

GPUs have been used as co-processors with CPUs forming CPU-GPU heterogeneous 

systems. A classic workload distributor role is to map the sequential parts of a job to the CPU 

and map the parallel parts to the GPU. While running the parallel parts on the GPU, the CPU 

remains idle, waiting for the GPU’s execution and data transfer to complete. This classic 

workload distribution does not fully utilize the CPU and the GPU. Thus, there is a need for an 

efficient job workload distributor to fully exploit the potential of the CPU and the GPU. Instead 

of being idle, the CPU can cooperate with the GPU to execute that job. In other words, the 

workload of a job can be distributed to execute on both a CPU and a GPU. We thus propose a 

job workload distributor that finds efficient jobs’ CPU/GPU map ratios in terms of both 

performance and energy consumption under peak power and peak CPU temperature constraints. 

During runtime, if a job arrives, the goal is to find the best job distribution of work between the 

CPU and the GPU. It is to decide the percentage of job work mapped to the CPU and the 

percentage of job work mapped to the GPU. There is a possibility that the best CPU/GPU map 

ratio is to map the entire job to either a CPU or a GPU (e.g., in an extreme case). Fig. 2.3 shows 

an example of a job workload distribution on a CPU-GPU heterogeneous system. As the job 

arrives, as shown in Fig. 2.3, a part of the job is mapped to run on the GPU and the rest of the job 

is mapped to run on the CPU according to the CPU/GPU map ratio. 
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Figure 2.2: An example of jobs’ schedule (a) and scheduling illustration (b) 

 
 

 
 

 
 

 
 
 
 
 
 

 
 

 
Figure 2.3: An example of job workload distribution 
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2.4 Experiment Setup 

In our experiments, we chose to use an actual CPU-GPU heterogeneous system because it 

allows us to conduct the job scheduler and the workload distributor experiments in a 

heterogeneous environment. The system we utilized is equipped with a multi-core CPU and a 

GPU. As shown in Fig. 2.4, the CPU and the GPU are on different chips that are connected 

through a bus. 

The multi-core CPU is an Intel Core i7-920 that combines four 3.06 GHz computing cores 

into a single processor [35]. The GPU is an NVIDIA Tesla C2070 with 448 cores in 14 

streaming multiprocessors with a frequency of 1.15 GHz [36]. The CPU and the GPU are 

connected using PCI Express 2.0 bus [43]. 

We ran and tested the job scheduler and the workload distributor on that machine to 

demonstrate the benefits of our approaches. We introduce a methodology that is not hardware 

specific. Even though our results are based on that machine, the methodology we used in our 

algorithms is generic and can be applied to any heterogeneous system.  

 

 

 

 

 

 

Figure 2.4: A CPU and a GPU connected using PCIe 

 

CPU GPU PCIe 
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2.5 Programming languages 

In this work we used programming languages for implementation and for testing and 

running the benchmark on the targeted hardware. We used C++ to implement the job scheduler 

and the workload distributor. OpenMP (Open Multi-Processing) [30] was used to run the Rodinia 

benchmark applications [10][32] on the CPU side, whereas CUDA (Compute Unified Device 

Architecture) [2] was used to run the Rodinia benchmark applications on the GPU side. The 

following is a brief description of the programming languages that we used. 

2.5.1 C++ 

We used the C++ language to implement the job scheduler and the workload distributor 

algorithms.  C++ is a general-purpose object-oriented programming (OOP) language. B. 

Stroustrup developed C++ in 1979 [31]. C++ was initially standardized in 1998. We chose C++ 

because it is an efficient and flexible language. It provides both high and low-level language 

features for program organization. C++ is a C language extension that added object-oriented 

programming (OOP) features to C. As an OOP language, C++ offers classes, which provide four 

features: abstraction, encapsulation, inheritance, and polymorphism. 

2.5.2 OpenMP 

To run the Rodinia benchmark applications on the multi-core CPU side, we utilized 

OpenMP. OpenMP is an Application Program Interface (API) that supports shared-memory 

multiprocessor/multi-core programming in C/C++. OpenMP is a multithreaded programming 

model. A master thread forks and controls a set of slave threads. Parallel parts of the program are 
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divided among these threads using work-sharing constructs. The threads run concurrently to 

execute the parallel parts of the program. During runtime, threads are allocated to different 

processors/cores. OpenMP is based on a combination of compiler directives. Programmers must 

use those directives to identify the parallel parts of a program that can be executed by multiple 

threads. The sequential parts of a program run by single threads.  

2.5.3 CUDA 

We utilized CUDA to run the Rodinia benchmark applications on the GPU side. CUDA is 

the parallel computing platform and programming model developed by NVIDIA. It enables the 

use of the GPUs for general purpose processing. It works with C/C++ programming languages. 

The program consists of series of sequential and parallel parts. The CPU, referred to as the host, 

is responsible for executing the sequential parts of the program. It also controls the CPU-GPU 

data transfer and the execution of the parallel parts/kernels by the device/GPU. The host/CPU 

transfers data to the device/GPU and remains idle until the GPU finishes executing its part/kernel 

and sends its data back to the host.  
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2.6 Rodinia Benchmark 

In our experiments, we used the Rodinia 3.0 benchmark suite [10][32]. Rodinia is a 

collection of benchmarks designed for parallel processing on heterogeneous systems. It has 

applications from different domains such as image processing, bioinformatics, pattern 

recognition, scientific computing, and simulation. These kinds of applications represent different 

application behavior types that are characterized by Berkeley dwarves [26]. Each Rodinia 

benchmark application is coded using OpenMP to run on multi-core CPUs and CUDA to run on 

GPUs. 

We selected the Rodinia benchmark suite because it has applications that are parallelized 

and coded using both OpenMP and CUDA. Therefore, the Rodinina benchmark is well suited for 

our experiments, which require applications to run on a CPU-GPU heterogeneous system. 

Applications that are parallelized and coded using OpenMP can run on the CPU side. 

Applications that are parallelized and coded using CUDA can run on the GPU side. We used the 

eighteen applications of the Rodinia benchmark that are coded using OpenMP and CUDA in our 

experiments. Table 2.2 summarizes the Rodinia benchmark applications [10]. It categorizes the 

applications according to their dwarves and domains. Refer to [10][32] for detailed description of 

each application.  
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Table 2.2: Rodinia Benchmark Applications  

Applications Dwarves Domains 

Leukocyte Structured Grid Medical Imaging 

Heart Wall Structured Grid Medical Imaging 

MUMmerGPU Graph Traversal Bioinformatics 

CFD Solver Unstructured Grid Fluid Dynamics 

LU Decomposition (LUD) Dense Linear Algebra Linear Algebra 

HotSpot Structured Grid Physics Simulation 

Back Propagation (BP) Unstructured Grid Pattern Recognition 

Needleman-Wunsch (NW) Dynamic Programming Bioinformatics 

Kmeans Dense Linear Algebra Data Mining 

Breadth-First Search (BFS) Graph Traversal Graph Algorithms 

SRAD Structured Grid Image Processing 

Streamcluster (SC) Dense Linear Algebra Data Mining 

Particle Filter (PFilter) Structured Grid Medical Imaging 

PathFinder (PFinder) Dynamic Programming Grid Traversal 

k-Nearest Neighbors (NN) Dense Linear Algebra Data Mining 

LavaMD N-Body Molecular Dynamics 

Myocyte Structured Grid Biological Simulation 

B+ Tree Graph Traversal Search 
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2.7 Summary 

 In this chapter, we introduced the CPU-GPU heterogeneous systems. We then described 

the architectural differences between the CPU and the GPU. Because of these differences, 

running a job on a CPU or a GPU exhibit different behaviors in terms of execution time, energy 

consumption, peak power and peak CPU temperature. That arises the fact that there is a need for 

an efficient job scheduler and job workload distributor that exploit the full potential of the CPU-

GPU heterogeneous system. Then, we briefly described the job scheduler and workload 

distributor. Finally, we presented the platform, programming languages and the benchmark that 

we used to implement and test the job scheduler and the workload distributor. 

  



20	
	

Chapter 3           

 Scheduling and Resource Allocation for 

Heterogeneous Systems 

Performance of the system was the dominant factor for evaluating processer design for 

years. As the processors’ design has hit the power wall, energy consumption becomes also 

important. However, minimizing energy consumption may degrade a system's performance. 

Hence, the energy and performance trade-off should be considered while designing a system. If 

the targeted system is an embedded system, peak power and peak temperature should be 

considered as additional design constraints.  

The Graphical Processing Units (GPUs) are energy efficient processors that were originally 

designed for image processing. However, GPUs are now being used as general purpose 

processing units to execute highly parallel jobs [2][37]. GPUs show their capability to run 

compute intensive jobs efficiently in terms of performance and energy consumption. GPUs have 

been used as co-processors with CPUs forming heterogeneous systems. Integrating CPUs and 

GPUs that have different performance/energy characteristics on the same machine could enhance 

system's performance and energy efficiency. 

Today’s systems from mobiles to servers are heterogeneous. They consist of a mixture of 

different types of processing units such as CPUs and GPUs. Each of these processing units has 

different architectural strengths in execution capabilities and energy consumption. System’s 

resources in general can be either processing units, number of cores, or number threads. In a 
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heterogeneous system, selecting the best resources to run a job requires an understanding of the 

capabilities of the processing units with different resources (i.e., number of cores and threads). In 

addition, selecting the resources should be subjected to design objectives (i.e., performance and 

energy consumption) and constraints (i.e., peak power and peak CPU temperature limits). This is 

because different resources have different strengths and weaknesses with respect to these 

objectives and constraints. 

Job mapping and scheduling play a crucial role in heterogeneous systems as they strongly 

affect the overall system performance, energy consumption, peak power and peak CPU 

temperature. Moreover, selecting the optimal resources (e.g., number of cores, number of 

threads) to run a job is also important due to their impact on the parameters above. Therefore, we 

propose a scheduler that not only maps and schedules jobs to processing units, but also it finds 

the number of cores and threads.  

Many studies have been done on job scheduling with an eye on performance improvement. 

However, few of them tackle both performance and energy job scheduling. Thus, to enhance 

both performance and energy consumption in heterogeneous systems, we propose, as appeared in 

[19], our novel Performance, Energy and Thermal aware Resource Allocator and Scheduler 

(PETRAS). A preliminary version of this work appeared in [4] where Performance, Energy and 

Thermal aware Scheduler (PETS) first introduced. PETRAS is a scheduler that combines job 

mapping and scheduling, core scaling, and thread allocation into a single scheduler.  
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Job scheduling is known to be an NP-hard problem in the general case [7]. In addition, 

resource allocation (i.e., core scaling, thread allocation) makes the optimization problem more 

complicated. Moreover, PETRAS solves multi-objective problem that takes into account both 

performance and energy consumption. Thus, we apply an evolutionary algorithm called a 

Genetic Algorithm (GA). This algorithm promises to find nearly optimal solutions to such NP-

hard problems. PETRAS utilizes a power management unit to go through the GA nearly optimal 

schedule, turning off the idle or low-utilized computational resources. This unit helps in saving 

energy consumption and freeing low utilized resources for use by other applications. 

This chapter presents PETRAS that utilizes GA for resource allocation on a CPU-GPU 

system. On average, experimental results show that the PETRAS scheduler can achieve up to 

4.7x speedup and an energy saving of up to 195% compared to performance based GA and other 

job schedulers. 

The rest of the chapter is organized as follows. In Section 3.1, related work is discussed. 

Section 3.2 presents the motivation of PETRAS. Sections 3.3, 3.4 and 3.5 describe PETRAS 

problem in detail. Section 3.6 presents the profiler and the curve fitter. Section 3.7 describes the 

GA algorithm. PETRAS flowchart is appeared in section 3.8. Section 3.9 evaluates PETRAS on 

a CPU-GPU heterogeneous system. Finally, we summarize this chapter in Section 3.10. 
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3.1 Related Work 

Several studies have been done on job scheduling to enhance overall performance, but few 

of them tackle both performance and energy consumption. Many researchers have investigated 

the use of GA to schedule tasks in heterogeneous systems. For instance, in [3, 14, 15, 18, 33], 

GA is applied to find an efficient task schedule that enhances overall system performance. But 

they did not consider the overall energy consumption in scheduling these tasks. Moreover, they 

solve a classic scheduling problem with no peak power or peak temperature constraints. 

However, PETRAS is a scheduler that combines both performance and energy consumption to 

evaluate a schedule with peak power and peak temperature constraints. In addition, PETRAS 

does not only perform scheduling, it also does core scaling and thread allocation as well. 

Chiesi et al. [6] present a power-aware scheduling algorithm based on an efficient 

distribution of the computing workload on heterogeneous CPU-GPU architectures. The goal of 

that scheduler is to reduce the peak power of the system. It did not take into account the overall 

energy consumption. However, PETRAS schedules are optimized in terms of overall 

performance and energy consumption in addition to peak power constraints. 

A power-aware task scheduling has been introduced in [5, 16] for real-time system tasks 

utilizing a DVFS. They schedule their tasks on a real-time multicore system. PETRAS, however, 

is targeting a CPU-GPU heterogeneous system.  

An adaptive mapping technique has been proposed by Luk et al. [13] to map computations 

to processing elements on a CPU-GPU machine. It selects processing elements according to the 

computation input size and execution time. They did not consider energy consumption, peak 

power, or temperature. PETRAS on the other hand, maps jobs to processing units according the 
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input size, execution time and energy consumption with a peak power and peak temperature as 

constraints.  

Liu et al. [11] propose dynamic voltage frequency scaling (DVFS) [38][39] with core 

scaling (DVFCS). They utilized GA to minimize the power dissipation of many-core systems 

under performance constraints by choosing appropriate number of active cores and per-core 

voltage/frequency levels. Unlike DVFCS, PETRAS optimizes both energy consumption and 

performance. In addition to core scaling, PETRAS addresses job mapping and scheduling, and 

thread allocation problems.   

In [12], Vega et al. present preliminary characterization data for multi-threaded programs to 

estimate the potential benefit of power-aware thread placement. PETRAS in turn exploits both 

performance and energy efficiency of thread allocation with core scaling and job 

mapping/scheduling. 
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3.2 Motivation  

Our results from preliminary research, as described below motivated this study on 

developing an efficient job scheduler that takes into account both performance and energy 

consumption under peak power and peak CPU temperature constraints. We ran the Rodinia 3.0 

benchmark suite [10][32] jobs with sizes of 1k up to 64G on a typical CPU-GPU heterogeneous 

system. We measured the execution time, energy consumption, peak power, and peak CPU 

temperature by running Rodinia jobs with (1) different processing units on a heterogeneous 

system consisting of a multicore CPU (4 cores) and a GPU (2) different number of cores, and (3) 

different number of threads (details of the hardware configuration are given in section 2.4). Our 

research tackles three problems: (a) job mapping and scheduling, (b) core scaling, and (c) thread 

allocation.  

The results below demonstrate the three problems with different settings. These results 

illustrate that we do not have to solve each problem independently since the solution of one 

problem affects the others. We have to solve the three problems as one optimization problem; 

therefore, we combined job mapping and scheduling, core scaling and thread allocation problems 

into one scheduler.  

The goal of that scheduler is to find the efficient job mapping, number of cores and threads 

in terms of both performance and energy consumption under peak power and peak CPU 

temperature constraints. Thus, we propose a Performance, Energy and Thermal aware Resource 

Allocator and Scheduler (PETRAS). 
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3.2.1 Scheduling and Core Scaling 

We ran the Rodinia 3.0 benchmark suite [10][32] jobs with sizes of 1k up to 64G on a 

typical CPU-GPU heterogeneous system with different configurations. First, we ran the jobs with 

different processing units on a heterogeneous system consisting of a multicore CPU (4 cores) and 

a GPU. Second, we ran the jobs with different numbers of cores. We then measured the overall 

execution time, energy consumption, peak power, and peak CPU temperature of running these 

jobs. 

On a logarithmic scale, Fig. 3.1(a) and Fig. 3.1(b) show the overall execution time and 

energy consumption of running each of the Rodinia benchmark jobs with a size of 1k on a GPU, 

a single core CPU, a dual-core CPU, and a quad-core CPU. Similarly, Fig. 3.1(c) and Fig 3.1(d) 

show the peak power and peak CPU temperature that are reached by running those jobs on the 

specified processing unit/number of cores. 

Fig. 3.1(a) shows that using different processing units to run a job results in different values 

of execution time. From these results it can be concluded that there is no specific processing 

unit/number of cores that is optimal in terms of performance for all of the jobs. Some of these 

jobs run faster on the GPU, such as lud, SRAD, lavaMD, leukocyte, heartwall, CFD, and 

mummergpu. For other jobs, CPU cores are better processing units. In addition, as the number of 

cores changes, the execution time varies.  

Fig. 3.1(b) illustrates that the same job consumes different amounts of energy when it is 

executed on a different processing unit. GPUs are known to be more energy efficient multi-core 

CPUs. However, in some cases, the multi-core CPU outperforms the GPU in energy 
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consumption, as shown in kmeans, nw, myocyte, BP, and BFS. Moreover, there is no processing 

unit or number of cores that consume the least energy for all of the jobs.  

Peak power and peak CPU temperature are important factors for some design fields such as 

embedded systems. Fig. 3.1(c) and Fig. 3.1(d) show peak power and peak CPU temperature 

reached by running a job with a size of 1k on different processing units. Although GPU energy 

consumption is less in SRAD, lavaMD, heartwall, and CFD, the peak power is very high 

compared to the multi-core CPU. When there is a limitation on the peak CPU temperature, as in 

embedded systems, peak CPU temperature becomes also an important factor in selecting the 

right processing unit to run a job. In heartwall, for example, the GPU is excluded from the 

selection because it imposes a very high peak power. The second best option in terms of 

performance and energy consumption is the quad-core CPU. However, its peak CPU temperature 

is very high compared to other configurations. Therefore, peak power and peak CPU temperature 

should be measured and taken into consideration when selecting a processing unit. 

Looking at all of the measured parameters, it can be concluded that choosing the right 

processing unit to enhance performance and minimize energy is not that easy. It gets more 

complicated if peak power and peak CPU temperature constraints are considered. For example in 

SRAD, if the selection criteria are based on only performance and energy consumption then 

GPU should be selected as the processing unit. But if the peak power is limited to a certain value, 

GPU may exceed that value and should not be selected. Instead, the quad-core CPU may be 

selected since it is the second best in terms of performance and energy consumption. But if peak 

CPU temperature has a limit, CPU quad may not be the best one, etc.  
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The results below were obtained by running a job with a size of 1k on different processing 

units/number of cores. Changing the size of a job produces different values of the measured 

parameters. The results change depending on the job size. For example, results show that GPU is 

the best processing unit in terms of performance and energy consumption for running the SRAD 

with a size of 1k. However, changing the size of SRAD (e.g., 16k) may exhibit different values 

in terms of the measured parameters (e.g., execution time, energy consumption). Therefore, the 

GPU may not be the best in this case and the multi-core CPU may be the best processing unit.  
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(c) 

 

(d) 

Figure 3.1: Execution time (a), energy consumption (b), peak power (c), and 
CPU peak temperature (d) of running a job on different processing 

units/number of cores. 
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3.2.2 Thread Allocation 

To show the effect of changing the number of threads on a system, we ran the Rodinia 3.0 

benchmark suite jobs with sizes of 1k up to 64G on a of a multicore CPU (quad-core CPU) with 

different number of threads. We then measured the overall execution time, energy consumption, 

peak power, and peak CPU temperature of running Rodinia jobs with the specified number of 

threads. 

An experiment conducted by running the Rodinia benchmark jobs with sizes of 1k on a 

quad-core CPU with various numbers of allocated threads. On a logarithmic scale, Fig. 3.2(a) 

and Fig. 3.2(b) show how changing the number of allocated threads changes the execution time 

and energy consumption respectively. It can be concluded that there is no specific number of 

threads setting that has the shortest execution time and/or consumes the least energy for all of the 

jobs. 

Fig. 3.2(c) shows the peak power and Fig. 3.2(d) presents the peak CPU temperature. The 

results show the effect of changing the number of threads on these parameters. From these 

results, it is clear that deciding on the number of threads has high impact on performance, energy 

consumption, peak power and peak CPU temperature.  

Looking at all of the measured parameters, it can be concluded that choosing the right 

number of threads to enhance performance and minimize energy is hard. It gets more 

complicated if peak power and peak CPU temperature constraints are considered. For example in 

kmeans, if the selection criteria are based on only performance and energy consumption then 4 

threads should be allocated. But if the peak power is limited to a certain value (e.g., 330), 



32	
	

running kmeans with 4 threads exceeds that value and should not be selected. Instead, we have to 

select another number of threads setting that satisfies our needs.  

Moreover, these results were obtained by running the Rodinia jobs of a specific size (i.e., 

1k) on the quad-core CPU with different thread number settings. The results change depending 

on the job size as well as on whether that job runs on single core, dual-core or quad-core CPU, 

etc. For example, results below show that running BP of a size 1k with 2 threads on a quad-core 

CPU is the best in terms of performance and energy consumption. However, changing the size of 

BP (e.g., 16k) may exhibit different values in terms of the measured parameters (e.g., execution 

time, energy consumption). Therefore, the allocating 2 threads may not be the best in this case 

and another number of threads setting should be selected. Moreover, if we run BP with a size of 

1k on different number of cores such as dual-core CPU, we will get different values of the 

measured parameters (e.g., execution time, energy consumption). Therefore, the number of 

threads that is allocated to a job to run on the quad-core CPU may not be the best for the dual-

core CPU. 
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3.2.3 Summary  

The results show the three problems (processing units mapping, core scaling, and thread 

allocation) with different settings. These results illustrate that we do not have to solve each 

problem independently since the solution of one problem affects the others. We have to solve the 

three problems as one optimization problem; therefore, we combined processing units mapping, 

core scaling and thread allocation problems into one scheduler. The goal of that scheduler is to 

find an efficient schedule, processing unit mapping, core scaling and thread allocation that try to 

enhance performance and minimize energy consumption under peak power and peak CPU 

temperature constraints. 
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(c) 

 
(d) 

Figure 3.2: Execution time (a), energy consumption (b), peak power (c), and 
CPU peak temperature (d) of running a job with different number of threads 
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3.3 Performance, Energy and Thermal Aware Resource 

Allocator and Scheduler (PETRAS) 

PETRAS is a performance, energy and thermal aware scheduling framework for managing 

jobs, resources and power in a heterogeneous system. This scheduler not only determines where 

to run jobs, it also provides more information regarding number of cores, number of threads and 

power management. PETRAS has many useful features. It is not a system-specific; it can be 

applied on any heterogeneous environment including embedded system because it takes into 

account peak power and peak temperature. It utilizes a system profiler and a curve fitter to 

predict jobs’ execution time, energy consumption, peak power and CPU peak temperature. 

The goal of our scheduler is to find a schedule that takes into account the overall 

performance and energy consumption simultaneously while not exceeding peak power and peak 

CPU temperature limits. Because this is a multi-objective optimization problem, there is no 

single schedule that can simultaneously optimize performance and energy consumption. Instead, 

there exists a set of Pareto optimal schedules. A schedule is called Pareto optimal if none of the 

objective functions can be improved in value (e.g., performance) without degrading the other 

objective value (e.g., energy consumption).  

PETRAS does not only solve classic scheduling problems. Instead, it solves all the 

following problems at the same time: job mapping and scheduling, core scaling, and thread 

allocation. It also has a power management unit. To the best of our knowledge, this scheduler is 

the first attempt to combine all these into one optimization problem to consider both performance 

and energy consumption simultaneously under peak power and peak CPU temperature limits. 
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3.4 PETRAS Problems 

PETRAS is not a classic job scheduler. It has a resource allocator that determines the 

number of cores and threads needed if the CPU is the processing unit. Hence, it combines core 

scaling and thread allocation into the job scheduling optimization problem.  

3.4.1 Job Mapping and Scheduling 

Our goal is to find optimal jobs’ mapping and scheduling while taking into account both 

performance and energy consumption under the peak power and peak CPU temperature 

constraints. Given a set of jobs and processing units, job mapping problem is to decide which 

processing unit is responsible to run a job. (i.e., job mapping is based on processing unit 

affinity). Because these processing units are heterogeneous, different processing units have 

different strengths and weaknesses in respect to the following parameters: performance, energy 

consumption, peak power, and thermal activity. Hence, selecting the right processing unit that 

satisfies our objective and constraints is not straightforward. On the other hand, jobs scheduling 

can be defined as choosing an optimal execution order of jobs for a heterogeneous system. 

3.4.2 Core Scaling 

It is not always true that adding more cores to run a job will reduce its execution time. It 

may degrade its performance due to communication latency between cores. Moreover, some jobs 

do not have enough parallelism to utilize all of the cores provided. Hence, it is important to 

decide number of cores needed to run a job. PETRAS’s core scaling aims to find the optimal 

number of cores needed to run a job. It takes into account both performance and energy 
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consumption under peak power and peak CPU temperature constraints. Moreover, after finding 

the optimal number of cores, we turn off idle cores to save power and free these resources to be 

used by other applications that share the same hardware. 

3.4.3 Thread Allocation 

Multithreading is a programming and execution model that allows multiple threads to 

cooperate and utilize a multiprocessing system to execute a job. Jobs run on multicore processors 

or multiprocessing units can utilize multithreading to enable their parallel execution. Moreover, 

using multithreading helps to hide memory latency and enhance processing unit utilization by 

having more than one thread running on the same processing unit. If a thread is blocked waiting 

for resources, other threads can proceed, keeping the processing unit busy. 

The number of threads allocated to a job highly affects its execution time, energy 

consumption, peak power, and CPU peak temperature. Using too many threads may degrade its 

performance and increase energy consumption due to high communication. And using too few 

threads may not be enough to achieve full parallelism, which in turn increases execution time 

and energy consumption. Hence, the number of threads should be carefully chosen. The optimal 

number of threads might be different for each job on a different processing unit. Given jobs and 

heterogeneous processing units, PETRAS’s thread allocation goal is to find the optimal number 

of threads of a job that runs on a processing unit while taking into account both performance and 

energy consumption under peak power and peak CPU temperature constraints. 

  



39	
	

3.5 PETRAS Optimization Problem Formulation 

The objective is to map jobs to processing units, decide the number of cores, set the number 

of threads and schedule their executions such that the overall schedule execution time and energy 

consumption are considered while not violating peak power budget and peak CPU temperature 

limit. We consider a heterogeneous system that has m processing units P={P1, P2,…, Pm} and a 

set of r resources R={ R1,R2,…, Rr}. Processing units can be single core CPUs, multicore CPUs, 

GPUs, FPGAs, etc. These processing units can be fused on the same chip or connected through a 

network (e.g., PCI Express, a ring, or a mesh). Resources can be GPU’s block size, CPU’s 

number of threads, number of cores, etc. There are n compute intensive jobs J={J1, J2,…, Jn} 

competing for system resources. Estimation models of the overall execution time, energy 

consumption, peak power and peak CPU temperature of a given job Ji on processing unit Pj are 

available by profiling and curve fitting. Thus, the communication cost of transferring data 

between PUs is included in the estimation models. The PETRAS problem is formalized as 

follows: 

3.5.1 Input 

The input of PETRAS optimization problem consists of the following: 

• A set of n compute intensive jobs J={J1, J2,…, Jn}; where Si  is the input size of job Ji  

and Si =(0, Smax ]. 

• A set of m processing units P={P1, P2,…, Pm}. 

• A set of r resources R={ R1,R2,…, Rr}. 

• The profiler training set’s input sizes TS={TS1, TS2,…, TSm}; where TS= [1, Smax]. 
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• Smax; Jobs’ maximum size. 

• U; Utilization threshold.  

• PPmax; Peak Power budget.  

• PTmax; Peak temperature limit. 

• An  execution time model T(tsi, Pj) which determines the estimated execution time Ti 

of running a job Ji of a size tsi on a processing unit Pj. 

• An energy consumption model E(tsi, Pj) which determines the estimated energy 

consumption Ei of running a job Ji of a size tsi on a processing unit Pj. 

• A peak power model PP(tsi, Pj) which determines the estimated peak power PPij of 

running a job Ji of a size tsi on a processing unit Pj. 

• A peak CPU temperature model PT(tsi, Pj) which determines peak CPU temperature 

PTij of running a job Ji of a size tsi on a processing unit Pj. 

3.5.2 Objective Function 

PETRAS is a multi objective optimization problem that takes into account both the total 

execution time (1) and total energy consumption (2) of a schedule. Hence, a weighted fitness 

function is used to combine them (3). 

 

𝑓! = 𝑚𝑖𝑛 Ω!"!" 𝑇!"  ;∀𝑗𝑜𝑏 𝑖 = 0,𝑛 𝑎𝑛𝑑 𝑃 𝑗 = 0,𝑚     (1) 

 

𝑓! = 𝑚𝑖𝑛 Ω!"!" 𝐸!" ;∀𝑗𝑜𝑏 𝑖 = 0,𝑛 𝑎𝑛𝑑 𝑃 𝑗 = 0,𝑚       (2) 
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;where Ω!" represents mapping a job i to a processing unit j. Ω!" = 1 is when a job i is scheduled 

to a processing unit j, otherwise Ω!" = 0. The parameter 𝑇!" represents the execution time of a 

job i running on a processing unit j. The parameter 𝐸!" represents the energy consumed by a job i 

running on a processing unit j. 

The overall objective function is as follows: 

 

min 𝑓!"!#$ = 𝑤𝑓! + 1− 𝑤 𝑓!    ;𝑤 = 0,1          (3) 

 

;where f1 and f2 are normalized. w is a predefined weight value that determines the importance 

of each of the objective functions. If w= 0.5, both objective functions are equally important.  If 

w=1 or 0, (3) is a single objective function that optimizes execution time or energy consumption 

respectively. Moreover, if w>0.5, execution time is more important than energy consumption. If 

w<0.5, energy consumption is more important than execution time.  

3.5.3 Constraints 

The objective function is subject to the following constraints:  

• Each job should be mapped to a single processing unit 

 

Ω!"
!

= 1 ;∀𝑗𝑜𝑏 𝑖 = 0,𝑛 
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• The peak power should be less than a peak power budget 

 

∀Ω!" ∗ 𝑃𝑃!" < 𝑃𝑃𝑚𝑎𝑥 ;∀𝑗𝑜𝑏 𝑖 = 0,𝑛 𝑎𝑛𝑑 𝑃 𝑗 = 0,𝑚 

 

• The peak temperature should be less than a peak temperature limit 

 

∀Ω!" ∗ 𝑃𝑇!" < 𝑃𝑇𝑚𝑎𝑥 ;∀𝑗𝑜𝑏 𝑖 = 0,𝑛 𝑎𝑛𝑑 𝑃 𝑗 = 0,𝑚 

 

• The processing unit utilization should be larger than a threshold 

 

∀𝑈!" > 𝑈;∀𝑃 𝑖 = 0,𝑚 

 

;where the parameter 𝑃𝑃!"  𝑎𝑛𝑑 𝑃𝑇!" represent the peak power and peak temperature of a job i 

running on a processing unit j respectively.  
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3.6 Profiler and Curve Fitter  

To evaluate a schedule and compare it to other schedules, we have to measure the overall 

performance, energy consumption, peak power and peak temperature after mapping jobs to 

processing units, setting the number of cores and the number of threads, and the order of jobs. 

However, there are no accurate models that can be used to estimate all these parameters. The 

expected performance, energy consumption, peak power and peak temperature of a job running 

on a processing unit are hard to predict. Moreover, the prediction becomes more complicated 

when the number of cores and threads change. Hence, PETRAS uses a profiler and curve fitter to 

find estimation models for the parameters above. The curve fitting method is described in detail 

in [13]. Profiling is done by measuring the system overall execution time, overall energy 

consumption, peak power and peak temperature of running a given job Ji on processing unit Pj 

for various input sizes, number of cores and number of threads. Since our profiler is based on the 

overall system parameters’ readings (e.g., overall execution time in (4) and overall energy 

consumption in (5)), it includes memory latency and communication overhead between 

processing units. After these samples are collected, we use a curve fitter to produce estimation 

models that can be used for prediction.  

𝑇 = 𝑇!!"#$%&%'!( + 𝑇!"!#$% + 𝑇!"##$%&'()&"%; 

𝑇!"#$%&'&(") = 𝑇!"# + 𝑇!"# +...       (4) 

 

𝐸 = 𝐸!"#$%&'&(") + 𝐸!"!#$% + 𝐸!"##$%&'()&"%; 

 𝐸!"#$%&'&(") = 𝐸!"# + 𝐸!"#+..      (5) 
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3.7 Genetic Algorithm 

PETRAS has a job scheduler, and scheduling is known to be an NP-hard problem [7]. It 

does not only solve the classic job scheduling problem. Instead, it solves all the following 

problems at the same time: core scaling, thread allocation, job mapping and scheduling. 

Moreover, PETRAS solves a multi-objective problem in which both performance and energy 

consumption must be considered. That makes the problem more complicated, and the search 

space to find the nearly optimal schedule is very large. Hence, we applied an evolutionary 

algorithm called a Genetic Algorithm (GA) to find nearly optimal schedules.  

GA [8][17] is a search algorithm inspired by natural selection and genetics that is based on 

the survival of the fittest theory. It is an iterative search technique that is applied to solve 

optimization problems to find a nearly optimal solution. Unlike traditional random search, it does 

not examine a single solution/schedule, it is a population-based algorithm which makes 

exploring the search space faster. Being a population-based approach, GA is well suited to solve 

multi-objective optimization problems. GA applies different operators (e.g., crossover, mutation) 

to evolve from one population to another. These operators help in exploiting and exploring the 

search space without getting stuck in a local optimum. 

As shown in Fig. 3.7, GA starts with an initial random population of S solutions (schedules). 

Fig. 3.3 shows an example of a population. Each solution/schedule is represented by a one-

dimensional array of objects. A fitness function is used to evaluate the solution. In each iteration, 

a new generation of solutions (offsprings) is produced by performing crossover and mutation 

operators on the previous generation (parents). If the offspring that is produced is better than its 

parents, it replaces its parents. Otherwise, parents remain in the next generation.  
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GA ensures feasibility of the produced schedules of each generation. A solution/schedule is 

said to be feasible if it meets problem constraints (e.g., peak power, peak temperature). If a 

solution violates any of the constraints, GA identifies the violating point(s) and modifies them 

randomly, ensuring solution feasibility. For example, if running a job x on processing unit y 

violates the peak power constraint, another processing unit z is assigned randomly instead of y. 

The attempts to ensure solution feasibility are limited to c times (i.e., input), otherwise the parent 

is selected instead of the offspring. The algorithm stops after a specified number of iterations or 

if the best solution is not changed for a number of iterations.  

To apply GA on the PETRAS multi-objective optimization problem, we use the weighted 

sum method for the fitness function [9]. This method transforms both objectives (e.g., 

performance and energy consumption) into an aggregated objective fitness function by 

multiplying each objective function by a pre-defined weight and summing up all weighted 

objective functions. 
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 J1 J2 J3 J4 J5  Jn  

 Solution 1 4 3 1 5 8 … 3 65 

2 1 8 2 4 … 2 380 

16 4 2 8 32 … 64 65.5 

Solution 2 6 3 7 9 8 … 5 128 

2 1 8 1 4 … 4 367 

2 8 64 8 32 … 128 70.1 

Solution 3 1 4 3 9 6 … 5 57 

2 1 4 4 4 … 4 383 

16 4 8 8 32 … 32 75.2 

…      …  …. 

Solution S 2 5 7 2 2 … 2 30 

2 1 2 4 4 … 4 374 

16 4 32 32 32 … 8 68.9 

 

Figure 3.3: GA population sample 
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3.7.1 Solution Representation 

GA is a population-based algorithm that has S solutions/schedules. As shown in Fig. 3.4, a 

schedule is represented by a one-dimensional array of objects of size n where n is the total 

number of jobs. Each object of the array refers to a job. The object has three attributes: first, an 

integer value that identifies the processing unit to which that job is scheduled (e.g., CPU or 

GPU). Second, a number of cores as an integer (e.g., 1, dual, or quad). Third, a number of 

threads as an integer value. In Fig. 3.4 for example: Job 1 is assigned to processing unit 4, which 

has dual cores and 16 threads. Each solution has its normalized fitness value, peak power in 

Watts and peak temperature in Celsius. The fitness value is used to evaluate a solution, whereas 

peak power and peak temperature are used to ensure the feasibility of a solution by not violating 

constraints (e.g., peak power and peak temperature limits). 

 

  J1 J2  Jn    

Processing unit à 4 2 … 3 65 ß Fitness 

Number of cores à 2 1 … 2 375 ß Peak power (Watts) 

Number of threads à 16 4 … 64 65.4 ß Peak temperature (°C) 

 

Figure 3.4: GA solution representation 
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3.7.2 Fitness Function 

GA uses the fitness function to evaluate a schedule. A schedule is better if it has a lower 

fitness value. Since PETRAS solves a multi-objective optimization problem, it uses the weighted 

sum fitness function to consider both performance and energy consumption. To calculate the 

total execution time of a schedule as shown in (1), we used performance estimation models that 

were obtained by profiling and curve fitting to predict the execution time Tij of each job Ji run on 

a processing unit Pj with the specified number of cores and threads. Then we calculated the 

summation. The same method was used to calculate the total energy consumption of a schedule 

as shown in (2). As in (3), the total execution time and total energy consumption of a solution 

were calculated and normalized then multiplied by a specified weight to calculate the fitness 

value of a solution.  

3.7.3 Crossover 

A crossover operator is performed on a current generation population to produce a new 

generation of solutions. The crossover operator helps to exploit the search space. It is applied on 

two solutions of a population that called parents to produce a new solution/offspring. The 

crossover operator has various forms, but in PETRAS, we selected the single point crossover in 

our algorithm. The single point crossover selects two parents randomly from the population 

based on their fitness, chooses a random cut point, and creates an offspring that has the right part 

of that point of its first parent and the left part of its second parent. Fig. 3.5 is an illustration of a 

crossover operator. 
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      Crossover Point 
 

 J1 J2 J3 J4 J4  Jn  

Parent 1 4 3 1 5 8 … 3 65 

2 1 8 2 4 … 2 380 

16 4 2 8 32 … 64 65.5 

         

Parent 2 1 4 3 9 6 … 5 57 

2 1 4 4 4 … 4 383 

16 4 8 8 32 … 32 75.2 

         

Offspring 4 3 1 9 6 … 5 30 

2 1 8 4 4 … 4 375 

16 4 2 8 32 … 32 71.3 

 

Figure 3.5: GA crossover operator 
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3.7.4 Mutation 

A mutation operator occurs according to a mutation probability that should be very low. It 

makes a tiny random change to a solution to introduce diversity into population and avoid local 

minima. Therefore, the new solution produced will not be very different from the original one. 

After an offspring is produced from the crossover operator, mutation is applied with a very low 

probability. PETRAS’s mutation operator as in Fig. 3.6 selects a random point and switches the 

values of processing units, number of cores and threads with values selected randomly. 

 

       Mutation Point 

 

 J1 J2 J3 J4 J5  Jn  

Solution 2 1 4 3 9 6 … 5 65 

2 1 4 4 4 … 4 380 

16 4 8 8 32 … 32 65.5 

         

Offspring 1 8 3 9 6 … 5 57 

2 4 4 4 4 … 4 372 

16 32 8 8 32 … 32 67.2 

 

Figure 3.6: GA mutation operator 
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3.8 Power Management Unit 

PETRAS’s power management unit takes the efficient schedule as an input. This unit has 

two functionalities. First, it turns off all idle processing units. Second, it is responsible for 

shutting off low-utilized processing units and re-assigning their jobs to other processing units 

randomly. As shown in (6), to determine processing unit utilization, we divide the number of 

assigned jobs to that processing unit by the total number of system jobs. Processing unit 

utilization categorization is shown in (7). A low-utilized processing unit is a processing unit that 

has a lower utilization than a predefined utilization U. On the other hand, a high-utilized 

processing unit is a processing unit that has a higher utilization than U. A processing unit is said 

to be idle when it has zero jobs assigned to it. To turn a processing unit off we set its frequency 

to zero. The goal of power management unit is to save energy consumption and free idle and 

low-utilized processing units to be used by other applications that share the same hardware. 

 

𝑈!" =
!"!#$ !"#$%& !" !""#$%&' !"#$ !" !"

!"!#! !"#$%& !" !"!#$% !"#$
       (6) 

 

Processing unit utilization can be categorized as 

 

𝑃𝑖 =
𝐼𝑑𝑙𝑒                        𝑖𝑓 𝑈!" = 0
𝐿𝑜𝑤_𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑      𝑖𝑓 𝑈!" < 𝑈
𝐻𝑖𝑔ℎ_𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑    𝑖𝑓 𝑈!" ≥ 𝑈

   (7) 
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3.9 PETRAS flowchart 

As in Fig. 3.7, PETRAS starts with jobs and processing resources information as inputs. It 

utilizes GA that uses estimation models that are generated by profiling and curve fitting for 

schedule evaluation. When GA terminates, the efficient schedule, processing unit mapping, 

number of cores and number of threads are set. Then, power management unit turns off the idle 

and low-utilized processing units of the GA output schedule.  
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Figure 3.7: PETRAS flowchart 
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3.10 Evaluation 

This section presents the evaluation methodology and the results of PETRAS on an actual 

CPU-GPU heterogeneous system. 

3.10.1 Experimental Setup and Benchmark  

We conducted our experiments on an actual system equipped with a multicore CPU and a 

GPU connected via PCI-e. Table 3.1 shows the detailed architectural parameters. We used a 

quad-core Intel i7 processor that has 4 physical cores and 8 threads which is seen by the 

operating system as 8 cores.  

For testing, we used the Rodinia 3.0 benchmark suite [10][32], which is a collection of 

benchmarks for parallel processing on heterogeneous systems. It contains parallel applications 

from various domains such as medical imaging, bioinformatics, data mining, and scientific 

computing. Each application is parallelized and coded using OpenMP [30] (Open Multi-

Processing) for multi-core CPUs and CUDA for GPUs. We ran applications (18 applications) 

that have both OpenMP and CUDA versions of Rodinia 3.0 benchmark to evaluate PETRAS.  

Although PETRAS was tested on a heterogeneous CPU-GPU system, PETRAS is generic in 

that it can be applied on any platform with different processing units. The key idea is to show the 

capability of PETRAS when it comes to scheduling jobs on heterogeneous systems (regardless of 

the hardware) with different types of processing units with various characteristics, such as CPUs, 

GPUs, FPGAs, etc.  
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Table 3.1: Testbed Configuration  

CPU  Intel Core i7-920 @3.06 GHz 4 cores 

C Compiler gcc 4.4.3 

GPU NVIDIA Tesla C2070 

CUDA Compiler CUDA 3.2, V0.2.1221 

Operating system UBUNTU 10.04 (X64) 

PCI-e version 2.0 

 
 

3.10.2 Profiling and Curve Fitting 

For profiling, we ran each application of the Rodinia benchmark on both the CPU and the 

GPU with different resources (input size, number of cores, and number of threads). We ran each 

application and change one of the resources and fix the rest. For example, we ran application A 

with a fixed size x and fixed number of threads z but with different number of cores (1, 2, 4). We 

used a Linux command to change the boot arguments to disable/enable cores. Then we ran A 

with size x on a fixed number of cores y with different numbers of threads (1, 2, 4, 8, etc.). Then 

we ran A with a fixed number of cores y and a fixed number of threads z but with different input 

sizes from 1K up to 64G. For each of the experiments above we ran the application 1000 times, 

measured the parameters and took the averages.  
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We connected a Kill-A-Watt meter [40] to the system power supply (PSU) to measure the 

overall energy consumption (kWh), and the peak power (Watt). We used time Linux command 

[42] to measure the overall wall clock execution time (seconds). Therefore, all measurements of 

execution time and energy consumption are for the entire system where memory delay and CPU-

GPU communications are included. To measure peak CPU/GPU temperatures, we used the 

lm_sensors application (Linux monitoring sensors) [41]. If a job runs on a multi-core CPU, 

lm_sensors monitors each core’s temperature separately and we record the highest core 

temperature as the peak CPU temperature. If it runs on a GPU, we capture the highest GPU 

temperature value reached. Since running a job on a GPU needs one of the CPU cores to control 

the execution, we recorded CPU peak temperature as well. Curve fitting is performed on the data 

measured by profiling. It tries to find the best model that fits the gathered data points to produce 

estimation models. These estimation models are used in PETRAS to predict performance, energy 

consumption, peak power, and peak temperature for future jobs.  
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3.10.3 PETRAS vs. Other Scheduling Algorithms 

We compared PETRAS to the following schedulers:  

• Minimum energy greedy algorithm (MinE): for each job, it performs an exhaustive 

search to find what resources  (processing unit, number of cores and number of threads) 

consume the least energy by running that job. 

• Minimum execution time greedy algorithm (MinT): for each job, it performs an 

exhaustive search to find what resources (processing unit, number of cores and number of 

threads) have the shortest execution time by running that job.  

• Round Robin algorithm (RR): each job is scheduled to use the next available resources in 

a round robin fashion. 

• GPU-Only: all jobs are scheduled to run on the GPU.  

• CPU-Only: all jobs are scheduled to the CPU with random resources (number of cores, 

number of threads).  

• Random: for each job, it selects resources randomly. 

• Performance-based GA (GAP): a scheduler that utilizes GA and uses (1) as a fitness 

function to minimize the overall execution time. GAP accounts for schedulers that are 

implemented by [3, 14, 15, 18].  

• Energy-based GA (GAE): a scheduler that utilizes GA and uses (2) as a fitness function 

to minimize the overall energy consumption. Although [5, 16] schedulers do not consider 

heterogeneous systems, GAE considers these schedulers on a heterogeneous system.  
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Although PETRAS profiler and curve fitter are inspired by Qilin [13], PETRAS cannot be 

compared to Qilin because Qilin distributes threads of a job into both a CPU and a GPU whereas 

PETRAS considers mapping an entire job with its threads to either a CPU or a GPU.  

3.10.4 Complexity 

For a fair evaluation, PETRAS and the other algorithms we evaluated use the same profiler. 

We perform profiling once and offline. The results were used by PETRAS and the other 

algorithms to estimate the execution time, energy consumption, peak power, and peak 

temperature. Hence, the profiler overhead is neglected. Note that profiling and curve fitting are 

tools that we used for estimation and can be replaced by any other estimation models or tools. 

For PETRAS, GAP and GAE, we used a classic GA that has a complexity of O(Number of 

iterations*population size*n). MinT and MinE have O(n*n) complexity. Whereas, CPU-Only, 

GPU-Only and RR have O(n) complexity. 

3.10.5 Implementation  

We implemented PETRAS and the other scheduling algorithms using C++. PETRAS is a 

GA scheduler that is based on the weighted sum fitness function (3). If the w=1 or 0, PETRAS 

acts as GAP or GAE respectively. We tested different values of w but we selected w={0.25, 0.5, 

0.75} because these values cover all weight scenarios. If w=0.5 both execution time and energy 

consumption are equally important. But when w=0.75 it favors execution time over energy 

consumption and the opposite if w=0.25. After PETRAS finds the efficient schedule, a power 

management unit checks if any of the processing units violate the utilization constraint U, and if 

so it turns them off and reschedules their jobs. We tested PETRAS for different values of U but 
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we selected U={5%, 7.5%, 10%} because higher values of U will shut down needed processing 

units. GA setup parameters are: population size 250, number of iterations 1000 and mutation rate 

0.05. 

3.10.6 Results 

We tested each of the schedulers by running 5000 randomly generated jobs for applications 

of the Rodinia benchmark and then we took the average. To evaluate the schedulers we tested the 

following cases: schedulers with no constraints (peak power, peak CPU temperature) as in Fig. 

3.8, with only peak power constraint as in Fig. 3.9, and with both constraints as in Fig. 3.10. 

To select the peak power budget PPmax, we measured the peak power reached by each 

Rodinia application using the random scheduler and reduced it by 5% or 10%. We did the same 

to select peak temperature PTmax. Fig. 3.9 and Fig. 3.10 show PPmax and PTmax with a 10% 

reduction. Moreover, some of the applications were executed with a low peak power or peak 

temperature, so reducing them would have prevented the processing units from operating. 

Therefore, they were discarded from the results. 



60	
	

 

Figure 3.8: Comparison of PETRAS to the other scheduling algorithms in 
terms of average energy consumption and execution time normalized to 

PETRAS w=0.5 with no constraints 

  

Figure 3.9: Comparison of PETRAS to the other scheduling algorithms in 
terms of average energy consumption and execution time normalized to 

PETRAS w=0.5 with peak power constraint only  
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Figure 3.10: Comparison of PETRAS to the other scheduling algorithms in 
terms of average energy consumption and execution time normalized to 

PETRAS w=0.5 with peak power and peak CPU temperature constraints 

 

On a logarithmic scale, Fig. 3.8, Fig. 3.9, and Fig. 3.10 follow the same trend. They show 
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performance because it is a greedy algorithm that finds the shortest execution time of each job at 

a time without considering whole schedule length.  

The RR and the random scheduler perform poorly, which is expected due to their 

randomness. The poor results of the GPU-only and CPU-only schedulers demonstrate the need of 

heterogeneous processing units to run an application.  

As for GAP, its objective function is to minimize execution time, but PETRAS with w=0.5 

and w=0.75 outperform it in terms of average performance. We ran all the GA algorithms for the 

same number of iterations, but GAP may find the nearly optimal execution time if we had given 

it more time, but that schedule would have a very high energy consumption. From Fig. 3.9 and 

Fig. 3.10, it can be concluded that PETRAS works well in finding a nearly optimal schedule with 

peak power and peak CPU temperature constraints.  

Fig. 3.11 shows detailed Rodinia applications results of GAP and GAE normalized to 

PETRAS with w=0.5. It can be concluded that PETRAS outperforms both GAP and GAE if we 

consider both execution time and energy consumption.  

Table 3.2 illustrates a sample output of PETRAS with w=0.5 applied on 250 randomly 

generated jobs for the two cases: 1) no constraints and 2) both peak power and peak temperature 

constraints. The execution time and energy consumption of case 2 are higher than that of case 1 

due to peak power and peak CPU temperature constraints. Thus, jobs are mapped to slower 

processing units that consume higher energy. Moreover, these constraints force the resources that 

violate them to be turned off. Therefore, PETRAS avoids selecting these resources.  
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Compared to all other schedulers, on average, PETRAS schedules can achieve up to 8.7x 

speedup and an energy saving of up to 627%. If we do not consider schedulers that perform 

badly (RR, CPU-only, GPU-only, and random schedulers), PETRAS schedules can achieve up to 

4.7x speedup and an energy saving of up to 195%.  

 

 

 

Figure 3.11: GAP and GAE average energy consumption and execution time 
normalized to PETRAS w=0.5 
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Table 3.2: Sample Results of PETRAS w=0.5 

Selected 
Benchmark 

No constraints Peak Power and Peak Temperature 
Constraints 

Overall 

En
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gy
 

(K
J)

 

Ex
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Ti
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(s
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PP
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PT
 (°

C
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En
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gy
 

(K
J)

 

Ex
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Ti
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(s
) 

PP
 

(W
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t) 

PT
 (°

C
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NW 642.59 775.72 345.4 65.5 2790 15195 323.5 60.5 

NN 142.20 111.016 360.5 64.5 192.51 567.694 323.05 60 

CFD 582.3 1542.05 422.6 88.5 4415.4 3232.17 370.5 83 

LUD 117.77 337.774 337.1 58 118.28 338.111 317.8 58 

SRAD 178.16 517.763 399.95 56.5 928.05 837.329 354.75 67 

Kmeans 220.10 112.106 367.9 70.5 619.62 2229.89 330.15 63 

BFS 822.75 796.197 345.7 64.5 1036.9 5932.56 319.1 63.5 

BP 5.5441 2.31291 343.55 49 5.6409 3.23245 327.15 49 

Pathfinder 392.61 270.996 340.6 64 394.57 449.486 325.95 63 

leukocyte 130.95 452.638 376.7 61 5304.6 15140.3 356.6 84 

hotspot 1840.0 1523.55 373.6 78.5 2888.5 15806.6 349.4 68.5 

heartwall 445968 392.552 394.6 85.5 1235400 2839.11 343.25 80.5 

lavaMD 123.12 335.666 462.7 63 6428.2 12530.6 408.2 89 

Particlefilter 2568.0 1148.37 342.7 61.5 2568.3 1139.39 331.65 61.5 

StreamCluster 413.33 276.352 366.25 71 1524.9 5022.51 328.25 64 

myocyte 1.5528 1.03764 351.15 48 1.9079 2.80564 316.05 48 

B+tree 9000 1.163 315.2 61 9000 3.514 312 57 

mummergpu 0.83 5905 326 67 1.36 4689 319 67 
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3.10.7 Power Management Unit Effect 

The GA nearly optimal schedule goes through the power management unit that is 

responsible for turning off the idle or low-utilized processing units. Table 3.3 shows the effect of 

adjusting the processing unit utilization threshold U on the average energy saving and the 

percentage of processing units that are turned off. The goal is to save energy consumption by 

turning the processing units off or freeing these processing units for use by other applications. 

Note that some of the schedules remain the same since their processing units are filled up by jobs 

with utilization greater than the utilization threshold. As the utilization threshold U increases, 

more processing units are turned off and the energy consumption is reduced. On average, the 

power management unit helps to reduce the overall energy consumption up to 6.5% and free up 

to 24.2% of low-utilized processing units.  

 

Table 3.3: Power Management Unit effect 

Processing unit 
utilization threshold U 

Energy consumption 
reduction 

Turned off processing 
units 

5% -1% 16.6% 

7.5% -3% 20% 

10% -6.5% 24.2% 
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3.11 Summary 

We have presented the Performance, Energy and Thermal aware Resource Allocator and 

Scheduler (PETRAS) utilizing a Genetic Algorithm (GA) to find efficient schedules in a 

heterogeneous system. PETRAS can be applied on any heterogeneous system where processing 

units are fused on the same chip or connected through a bus. The proposed scheduler is not a 

classic scheduler, it combines the following problems into one scheduler: job mapping and 

scheduling, core scaling, and thread allocation. PETRAS shows its capability to find efficient 

solutions in terms of both execution time and energy consumption under peak power and peak 

CPU temperature constraints. Therefore, PETRAS can be used for embedded system 

applications. To test PETRAS, we have implemented PETRAS on an actual system equipped 

with a multi-core CPU and a GPU. We have demonstrated that the PETRAS scheduler 

outperforms performance-based schedulers and other schedulers in both execution time and 

energy consumption. We believe that we have to consider all problems (e.g., job mapping and 

scheduling, core scaling, thread allocation) into one scheduling optimization problem. Moreover, 

schedules should be selected based on both execution time and energy consumption.  
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Chapter 4           

 Workload Distribution and Resource Allocation 

for CPU-GPU Heterogeneous Systems 

 As uni-core processors have hit the power wall, multicore processors have emerged in the 

computing industry. Another industry shift occurred when NVIDIA [2][37] developed the 

Compute Unified Device Architecture (CUDA), which enables the use of Graphic Processing 

Units (GPUs) as general-purpose processors (GPGPUs). Unlike multicore CPUs that have a few 

large cores, GPUs have several hundreds of tiny cores providing massively parallel computing. 

Therefore, GPUs are known to be high throughput and energy efficient processors. Although 

GPUs are more energy efficient than CPUs, they produce very high peak power compared to 

CPUs. To overcome the performance and energy limitations of conventional systems, most 

systems, from mobiles to servers, have become heterogeneous systems. These systems combine 

traditional processers (CPUs) and accelerators such as GPUs, processing units with different 

performance/energy consumption characteristics, into the same machine. However, these 

systems use a GPU to handle the parallel parts of a job and a CPU (i.e., host) to handle the 

sequential parts of a job. The CPU also handles CPU/GPU data transfer coordination. After the 

data transfer, the host remains idle until a GPU finishes its part of a job and transfers data back. 

If the data of an application is large, most of the CPU time is wasted busy waiting for a GPU to 

finish execution and data transfer. This classic workload distribution does not fully utilize the 

CPU and the GPU. Thus, there is a need for a cooperate CPU-GPU heterogeneous computing 
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framework that efficiently distributes work to fully exploit the potential of the CPU and the 

GPU.  

Due to the performance and energy consumption differences between CPUs and GPUs, 

cooperative CPU-GPU heterogeneous computing may deliver high performance and energy 

efficiency [1]. Instead of mapping the entire job to run on either a CPU or a GPU, a job is 

distributed to be executed on both a CPU and a GPU, where part of a job is mapped to a CPU 

and the remaining part is mapped to a GPU. Finding the best CPU/GPU workload map ratio of a 

job to fully exploit the system’s potential is difficult because of the performance/energy tradeoff. 

Moreover, the number of cores and threads on the CPU highly affects the performance and 

energy consumption of the part that run on the CPU. This in turn affects overall system 

performance and energy consumption.  

System’s performance was the dominant factor in computer design for years, but as the 

industry hits the power wall, energy consumption also becomes important. Peak power and peak 

CPU temperature are also important factors especially in the embedded systems field. Thus, we 

believe we have to consider all of these factors in systems’ design.  

In this work that is appeared in [34], we introduce a runtime Workload Distributor with a 

Resource Allocator (WDRA) that finds the best CPU/GPU map ratio, number of cores, and 

number of threads in terms of both performance and energy consumption under peak power and 

peak CPU temperature constraints. WDRA solves a multi-objective optimization problem that 

combines job workload distribution and resource allocation. The general problems of resource 

allocation and workload distribution are known to be NP-Hard [15]. Therefore, WDRA utilizes 

an evolutionary algorithm called Particle Swarm Optimizer (PSO) [16] to find an approximate 
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solution of the WDRA problem. PSO algorithms have shown its capability to solve such 

problems.  

 There have been several studies conducted on workload distribution to exploit parallelism 

in CPU and GPU heterogeneous systems. However, WDRA is the first attempt to combine a 

workload distributor and a resource allocator. To the best of our knowledge, none of the current 

workload distributors map work in terms of both performance and energy consumption under 

peak power and peak CPU temperature constraints. In addition, WDRA mapping is adaptive to 

the runtime changes of the application, input sizes, and underlying hardware/software settings 

because they highly affect the overall performance, energy consumption, peak power and peak 

CPU temperature. Our results show that WDRA achieves up to 1.47x speedup and 82% 

reduction in energy consumption compared to other distributors on average. 

The rest of the chapter is organized as follows. In Section 4.1, related work is discussed. 

Section 4.2 presents the motivation of the WDRA. Sections 4.3, 4.4 and 4.5 describe WDRA 

problem in detail. Section 4.6 presents the profiler and the curve fitter. Section 4.7 describes the 

PSO algorithm. WDRA flowchart is appeared in section 4.8. Section 4.9 evaluates WDRA on a 

CPU-GPU heterogeneous system. Finally, we summarize this chapter in Section 4.10. 
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4.1 Related Work 

Several studies [13, 20, 25] have been conducted on workload distribution to enhance 

overall performance. Luk et al. [13] have proposed the Qilin adaptive mapping to map 

computations to processing elements on a CPU-GPU machine. Qilin framework maps 

computations to CPUs and GPUs based on an empirical performance model produced by 

profiling and curve fitting. Although our WDRA profiler and curve fitter are inspired by their 

profiling and curve fitting techniques for estimation purposes, any other estimation models or 

tools can be used instead. Qilin work distribution is based on execution time only. Lee et al. [20] 

proposed a cooperative heterogeneous computing framework that efficiently utilizes the idle host 

CPU cores for CUDA kernels, which are supposed to execute only on GPUs. Its workload 

distribution is also based on predicted execution time. To improve the performance, Lee et al. 

[25] developed a framework that coordinates collaborative execution of a single data-parallel 

kernel in CPU-GPU heterogeneous systems. All of these studies were focusing on performance 

improvement without considering energy consumption or other design factors (e.g., peak power, 

peak CPU temperature).  

Some studies [21, 22, 23] have considered energy consumption or peak power for workload 

distribution in CPU-GPU heterogeneous systems. Ge et al. [22] studied the performance and 

energy impact of workload distribution in order to optimize either the system performance or 

energy consumption. Wang et al. [21] presented a power-efficient work distribution technique 

that coordinates work distribution and per-processor’s frequency scaling to optimize energy 

consumption under performance constraint. On the other hand, Komoda et al. [23] proposed a 

power capping technique that orchestrates Dynamic Voltage Frequency Scaling (DVFS) and 
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workload distribution without violating peak power budget. None of these studies considered 

both performance and energy consumption; they optimized one parameter and constrained the 

other.  

Some research [11, 12] has investigated resource allocation such as core scaling and thread 

allocation. Liu et al. [11] proposed DVFS with core scaling which selects number of active cores 

and per-core voltage/frequency levels in order to minimize the overall system power under 

performance constraints. In [12], Vega et al. presented preliminary characterization data for 

multi-threaded programs to estimate the potential benefit of power-aware thread placement. 

These studies showed the effect of core scaling and thread allocation on energy consumption.  

Alsubaihi et al. [4, 19] illustrated the importance of combining resource allocation (e.g., core 

scaling and thread allocation) with the scheduling problem. The goal of that scheduler is to find 

an efficient job schedule, number of cores and number of threads while considering both 

performance and energy consumption under peak power and peak CPU temperature constraints. 

It maps an entire job to either a GPU or a CPU and does not distribute the work of a job between 

the CPU and the GPU for collaborative execution. 

WDRA differs from prior work in that it combines workload distribution and resource 

allocation problems. For a given job, the goal is to find an efficient CPU/GPU map ratio, number 

of cores, and number of threads needed while considering both the overall system performance, 

energy consumption under the peak power and peak CPU temperature constraints. Previous 

studies have only considered overall system either performance or energy consumption. 

Moreover, WDRA is adaptive to changes in job’s input size and underlying hardware during 

runtime.  
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4.2 Motivation 

Our results from preliminary research, as described below motivated this study on 

developing an efficient workload distributor that takes into account both performance and energy 

consumption under peak power and peak CPU temperature constraints. We ran the Rodinia 3.0 

benchmark suite [10][32] jobs with sizes of 1k up to 64G on a typical CPU-GPU heterogeneous 

system. We measured the execution time, energy consumption, peak power, and peak CPU 

temperature by running Rodinia jobs with (1) different CPU/GPU map ratios on a heterogeneous 

system consisting of a multicore CPU (4 cores) and a GPU (2) different number of cores, and (3) 

different number of threads (details of the hardware configuration are given in Section 2.4). Our 

research tackles three problems: (a) CPU/GPU workload distribution, (b) core scaling, and (c) 

thread allocation.  

The results below demonstrate the three problems with different settings. These results 

illustrate that we do not have to solve each problem independently since the solution of one 

problem affects the others. We have to solve the three problems as one optimization problem; 

therefore, we combined CPU/GPU workload distribution, core scaling and thread allocation 

problems into one distributor. The goal of that distributor is to find the efficient CPU/GPU map 

ratio, number of cores and threads in terms of both performance and energy consumption under 

peak power and peak CPU temperature constraints. Moreover, the results show that static 

workload distribution, core scaling and thread allocation techniques would not be sufficient. 

What needed is a dynamic distributor that can automatically adapt to the job and the runtime 

environment. Thus, we propose a runtime Workload Distributor with Resource Allocator 

(WDRA).  
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4.2.1 CPU/GPU Map Ratio 

In the following experiments, we varied the CPU/GPU map ratio to show the impact of 

different workload distributions on the following measured parameters: performance, energy 

consumption, peak power and peak CPU temperature. The y-axis represents each of the 

measured parameters. The x-axis is the distribution of work between the CPU and GPU, where 

the notation “X/Y” means X% of work is mapped to the CPU and Y% of work is mapped to the 

GPU. There are two extreme cases where all the work is entirely mapped to either the GPU or 

the CPU. For illustration, we show the results of the CPU/GPU map ratio with a granularity of 

25. Since the selected maps have this granularity not all values are shown. Therefore, there 

maybe a map in-between these values that is better in terms of the measured parameter.  

On a logarithmic scale, Fig. 4.1(a) shows that different CPU/GPU workload distributions for 

running a job with a size of 4k results in different values of execution time. Some of these jobs 

run faster if we map all the work to the GPU such as kmeans, SRAD, Streamcluster, B+tree, 

LavaMD, Leukocyte, and heartwall. For other jobs such as myocyte and backprob, CPU only is 

better. For the rest of the jobs, the execution time is shorter if the work is distributed across the 

CPU and GPU. This experiment was performed on a quad-core CPU. It should be noted that as 

the number of the cores changes, the execution time varies.  

On a logarithmic scale, Fig. 4.1(b) illustrates that energy consumption differs if CPU/GPU 

map ratios change. Even though GPUs are known to be more energy efficient than multi-core 

CPUs, multi-core CPUs outperform GPUs in energy consumption as shown for hotspot, 

myocyte, BP, BFS and NN jobs. From Fig. 4.1(a) and Fig. 4.1(b), it can be concluded that both 

performance and energy consumption should be considered when deciding the CPU/GPU map 
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ratio. For example, if we only consider energy consumption for mapping NW, then the entire job 

should be mapped to the GPU. But if we also consider performance, a 50/50 workload map ratio 

may be the best mapping.  

Fig. 4.1(c) and Fig. 4.1(d) show the peak power and peak CPU temperature reached by 

running a job with a size of 4k with different CPU/GPU map ratios. The graphs show that 

changing CPU/GPU map ratios change the peak power and peak CPU temperature values. 

Hence, peak power and peak CPU temperature should be examined when selecting the 

CPU/GPU map ratio.  

Note that the presented results show an instance of a job of a fixed size. These results 

change as the job size varies. If a CPU/GPU map ratio x is the best for a job of a specific size, 

changing the size of this job might mean that x would no longer the best for it. Hence, the 

CPU/GPU map ratio highly depends on the input problem size and the underlying hardware. 

Therefore, it can be concluded that choosing the right CPU/GPU map ratio to enhance 

performance or minimize energy is difficult. It becomes more complicated if peak power and 

peak CPU temperature constraints are considered. 
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(c) 

 

(d) 

Figure 4.1: Execution time (a), energy consumption (b), peak power (c), and 
peak CPU temperature (d) of running a job with different CPU/GPU map 

ratio 
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4.2.2 Number of Cores 

 We ran Rodinia benchmark jobs with fixed sizes of 4k and fixed CPU/GPU map ratio 

(i.e., 50/50) to examine the effect of varying number of cores on the following measured 

parameters: execution time, energy consumption, peak power and peak CPU temperature.  

On a logarithmic scale, Fig. 4.2(a) and Fig. 4.2(b) show execution time and energy 

consumption respectively for various number of cores. On the other hand, Fig. 4.2(c) and Fig. 

4.2(d) show the measured peak power and peak CPU temperature. It can be concluded that 

changing number of cores affects the measured parameters. Moreover, there is no specific 

number of cores that optimizes the measured parameter for all of the jobs.  

Not only that, if the decision on number of cores is made by only evaluating one parameter, 

it may result in higher values of the rest of the parameters. In heartwall, for example, if we are 

looking to execution time and energy consumption, 8-core CPU is the best in that case. But 

running heartwall on 8-core CPU produces higher peak power and peak CPU temperature 

compared to the rest of the configurations. Hence, number of cores should be carefully selected 

and evaluated according to all of the measured parameters. 

 

 

 

 

 

 



78	
	

 

 

 

(a) 
 

 
 

(b) 
 
 
 
 

0.01	

0.1	

1	

10	

100	

1000	
Km

ea
ns
		

ho
ts
po

t	

lu
d	

m
yo
cy
te
	

N
W
	

BP
	

PF
in
de

r	

SR
AD

	

SC
	

PF
ilt
er
	

BF
S	

B+
tr
ee
	

la
va
M
D	

le
uk
oc
yt
e	

N
N
	

he
ar
tw

al
l	

CF
D	

Execu<on	Time	(ms)	

Single-core	 Dual-core	 Quad-core		 8	Cores	

10	

100	

1000	

10000	

100000	

Km
ea
ns
		

ho
ts
po

t	

lu
d	

m
yo
cy
te
	

N
W
	

BP
	

PF
in
de

r	

SR
AD

	

SC
	

PF
ilt
er
	

BF
S	

B+
tr
ee
	

la
va
M
D	

le
uk
oc
yt
e	

N
N
	

he
ar
tw

al
l	

CF
D	

Energy	Consump<on	(kWh)	

Single-core	 Dual-core	 Quad-core	 8	Cores	



79	
	

 
 

 
 

(c) 
 

 
 

(d) 
 

Figure 4.2: Execution time (a), energy consumption (b), peak power (c), and 
peak CPU temperature (d) of running a job with different number of cores 
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4.2.3 Number of Threads  

We ran jobs of the Rodinia benchmark with fixed sizes of 4k on a quad-core CPU and a 

fixed CPU/GPU map ratio (i.e., 50/50) with various numbers of allocated threads.  

On a logarithmic scale, Fig. 4.3(a) and Fig. 4.3(b) show how changing the number of 

allocated threads changes the execution time and the energy consumption of a specific job. 

Results of peak power and peak CPU temperature of a different number of allocated threads 

show the same trend as shown in Fig. 4.3(c) and Fig. 4.3(d). It can be concluded that there is no 

specific number of threads that is optimal in terms of the measured parameter for all of the jobs.  

From these results, it is clear that deciding on the number of threads has high impact on 

performance, energy consumption, peak power and peak CPU temperature. Moreover, these 

results were obtained by running a job of a specific size on a quad-core CPU with different 

thread number settings. The results change depending on the job size as well as on whether that 

job runs on a single-core, dual-core or quad-core CPU, etc. In addition, running these jobs with 

different CPU/GPU map ratios gives different values of the measured parameters. 
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(c) 
 

 
 

(d) 
Figure 4.3: Execution time (a), energy consumption (b), peak power (c), and 

peak CPU temperature (d) of running a job with different number of threads 

  

270	

290	

310	

330	

350	

370	

390	

410	

Km
ea
ns
		

ho
ts
po

t	

lu
d	

m
yo
cy
te
	

nw
	

BP
	

Pa
th
fin

de
r	

SR
AD

	

St
re
am

	c
lu
st
er
	

Pa
r<
cl
e	
Fi
lte

r	

pa
th
	fi
nd

er
	

BF
S	

B+
tr
ee
	

la
va
M
D	

le
uk
oc
yt
e	 nn
	

he
ar
tw

al
l	

CF
D	

m
um

m
er
gp
u	

Peak	Power	(WaW)	

2	 4	 8	 16	 32	 64	 128														Threads	

45	

55	

65	

75	

85	

95	

105	

Km
ea
ns
		

ho
ts
po

t	

lu
d	

m
yo
cy
te
	

nw
	

BP
	

Pa
th
fin

de
r	

SR
AD

	

St
re
am

	c
lu
st
er
	

Pa
r<
cl
e	
Fi
lte

r	

pa
th
	fi
nd

er
	

BF
S	

B+
tr
ee
	

la
va
M
D	

le
uk
oc
yt
e	 nn
	

he
ar
tw

al
l	

CF
D	

m
um

m
er
gp
u	

CPU	Peak	Temperature	(°C)	

2	 4	 8	 16	 32	 64	 128														Threads	



83	
	

4.3 Workload Distributor with Resource Allocator (WDRA) 

Unlike other workload distributors, WDRA is not just a workload distributor; it is also a 

resource allocator for a CPU-GPU heterogeneous system that considers the following questions 

during the run-time when a job arrives: (a) what is the efficient CPU/GPU map ratio to run a job? 

(b) how many cores are needed to run a job on a CPU? (c) how many threads are needed to run a 

job?. WDRA’s goal is to find efficient solutions to the three questions above while considering 

efficiency in both overall execution time and overall energy consumption without violating peak 

power and peak CPU temperature constraints. Hence, WDRA solves a multi-objective 

optimization problem. But due to the performance and energy consumption trade-off, there is no 

single solution that can optimize them simultaneously. Therefore, WDRA aims to find a Pareto 

optimal solution: a solution in which an objective value cannot be improved (e.g., performance) 

without degrading another objective value (e.g., energy consumption). 

WDRA is not system-specific; it can be applied on any heterogeneous system from 

embedded systems (e.g., mobiles) to servers because it takes into account peak power and peak 

CPU temperature.  

To estimate a job’s execution time, energy consumption, peak power and peak CPU 

temperature, WDRA utilizes estimation models provided by a system profiler and a curve fitter 

that were developed by Luk et al. [13]. Any other estimation models or tools could be used 

instead of the profiler and the curve fitter. However, we chose to use the profiler presented in 

[13] that have proved its effectiveness in parameter’s prediction during runtime.  
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WDRA does not only solve a classic workload distribution problem. In addition, it has a 

resource allocator that solves core scaling and thread allocation problems at the same time. To 

the best of our knowledge, WDRA is the first attempt to combine a workload distributor and a 

resource allocator into one optimization problem that takes into account both performance and 

energy consumption under peak power and peak CPU temperature limits. 
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4.4 WDRA Problems 

WDRA is not a classic job workload distributor. It has a resource allocator that determines 

the number of cores and threads needed if the CPU is the processing unit. Hence, it combines 

core scaling and thread allocation into the job workload distribution optimization problem. The 

WDRA solves the following problems: 

4.4.1 Workload distribution 

Our goal is to find efficient jobs’ CPU/GPU map ratios in terms of both performance and 

energy consumption under peak power and peak CPU temperature constraints. Given a job and a 

CPU-GPU heterogeneous system, the problem is to find the best job distribution of work 

between the CPU and the GPU; it is to decide the percentage of job work mapped to the CPU 

and the percentage of job work mapped to the GPU. There is a possibility that the best CPU/GPU 

map ratio is to map the entire job to either a CPU or a GPU (e.g., in an extreme case).  

4.4.2 Core Scaling 

The problem is to find the best number of cores needed to run a job in terms of both 

performance and energy consumption under the peak power and peak CPU temperature 

constraints. As concluded in section 4.2.2, the number of cores highly affects the parameters 

above. Hence, number of cores should be carefully selected. For example, if we allocate a fewer 

cores than needed, the performance degrades due to the serial execution of the job. On the other 

hand, if we allocate a higher number of cores than needed, performance may also degrade due to 
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cores communication latency or because jobs do not have enough parallelism to utilize all of the 

cores provided.  

The goal of WDRA core scaling is to find an efficient number of cores needed by the 

percentage of work mapped to the CPU while considering both overall execution time and 

energy consumption under the peak power and peak CPU temperature constraints. 

4.4.3 Thread Allocation 

Jobs run on multicore CPUs can exploit their parallelism utilizing multithreading 

programming and an execution model. The cooperation of multiple threads to run a job helps to 

hide memory latency and enhance processor utilization. Having more than one thread running on 

a processor keeps that processor busy so if a thread is blocked waiting for resources, other 

threads can proceed.  

As concluded in section 4.2.3, selecting the number of threads allocated to run a job is 

important due to its effect on execution time, energy consumption, peak power, and peak CPU 

temperature. Hence, the number of allocated threads should be carefully chosen. Allocating more 

threads than needed to run a job may degrade its performance and increase energy consumption 

due to high thread communication latency. On the other hand, allocating fewer threads than 

needed to achieve job’s full parallelism may also have a negative impact on its performance and 

energy consumption. Hence, the goal of the WDRA thread allocator is to find an efficient 

number of threads needed to run a job while taking into account both performance and energy 

consumption under the peak power and peak CPU temperature constraints. 
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4.5 WDRA Optimization Problem Formulation 

WDRA optimization problem is for a heterogeneous system that is equipped with a CPU 

and a GPU either fused on the same chip or connected through a network (e.g., PCI Express, a 

ring, or a mesh). A CPU can have different resources settings such as number of threads and 

number of cores. There are n compute intensive jobs J={J1, J2,…, Jn} with different workload 

sizes competing for system resources. Estimation models of the overall execution time, energy 

consumption, peak power and peak CPU temperature of a given job Ji on a CPU and a GPU are 

predicted by profiling and curve fitting. Thus, the communication cost of transferring data 

between the CPU and the GPU is included in the estimation models. The objective is to find an 

efficient job’s CPU/GPU map ratio, decide the number of cores, set the number of threads such 

that taking into account the overall execution time and energy consumption while not violating 

peak power budget and peak CPU temperature limit. The WDRA problem is formalized as 

follows: 

4.5.1 Input 

The input consists of the following: 

• A set of n compute intensive jobs J={J1, J2,…, Jn}; where Si  is the input size of job Ji  

and Si =(1, Smax ]. 

• Processing units PUs={CPU, GPU}.  

• A set of number cores C={1, 2, 4,...}.	 

• A set of number of threads Trd={2, 4, 8, 16, 32,…} 

• The profiler training set’s input sizes TS={TS1, TS2,…, TSm}; where TS= [1, Smax]. 
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• Smax; Jobs’ maximum size. 

• PPmax; Peak Power budget.  

• PTmax; Peak temperature limit. 

• Execution time models T(tsi, CPU) and T(tsi, GPU) which determine the estimated 

execution time Ti of running a job Ji of a size tsi on a CPU and a GPU respectively. 

• Energy consumption models E(tsi, CPU) and E(tsi, GPU) which determine the 

estimated energy consumption Ei of running a job Ji of a size tsi on a CPU and a GPU 

respectively. 

• Peak power models PP(tsi, CPU) and PP(tsi, GPU) which determine the estimated 

peak power PPi of running a job Ji of a size tsi on a CPU and a GPU respectively. 

• Peak CPU temperature models PT(tsi, CPU) and PT(tsi, GPU) which determine peak 

CPU temperature PTi of running a job Ji of a size tsi on a CPU and a GPU 

respectively. 

4.5.2 Objective Function  

WDRA is a multi objective optimization problem that considers both the total execution 

time as in (8) and total energy consumption as in (9) of a solution. Hence, a weighted fitness 

function is used to combine them as in (10). 
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𝑓! = min max (Ω!! 𝑇! !"# , 1− Ω!  𝑇! !"#)  (8) 

 

𝑓! = min Ω!! 𝐸! !"# + 1− Ω! 𝐸! !"#    (9) 

;∀job 𝑖 = 1,𝑛 and Ω! = [0,1] 

 

;where Ω! represents the CPU/GPU mapping ratio of a job i to a CPU and a GPU. If Ω! = 0 the 

entire job i is mapped to the GPU and if Ω! = 1 the entire job is mapped to the CPU. If the Ω! 

value is between 0 and 1, Ω! of a job i is mapped to the CPU and the rest of that job is mapped to 

the GPU. The parameters 𝑇! !"# and 𝑇! !"# represent the execution time of a job i running on the 

CPU and the GPU respectively. The parameters E! !"# and E! !"# represent the energy consumed 

by a job i running on the CPU and the GPU respectively. The overall objective function is as 

follows: 

 

                  𝑓!"!#$ = 𝑤𝑓! + 1− 𝑤 𝑓!    ;𝑤 = 0,1          (10) 

 

;where f1 and f2 are normalized. w is a predefined weight value that determines the importance 

of each of the objective functions. If w= 0.5, both objective functions are equally important.  If 

w=1 or 0, (10) is a single objective function that optimizes execution time or energy 

consumption respectively. Moreover, if w>0.5, execution time is more important than energy 

consumption and if w<0.5, energy consumption is more important than execution time.  
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4.5.3 Constraints 

The objective function is subject to the following constraints:  

• The CPU/GPU map ratio should be [0, 1] 

 

0 ≤ ∀Ω! ≤ 1 ;∀job 𝑖 = 1,𝑛 

 

• The peak power should be less than a peak power budget  

 

∀Ω!𝑃𝑃! !"# and ∀ 1− Ω! 𝑃𝑃! !"# < 𝑃𝑃!"# 

 ;∀job 𝑖 = 1,𝑛  

 

• The peak CPU temperature should be less than a peak CPU temperature limit 

 

∀Ω!𝑃𝑇! !"# < 𝑃𝑇!"# ;∀job 𝑖 = 1,𝑛  

 

;where the parameters 𝑃𝑃! !"# 𝑎𝑛𝑑 𝑃𝑃! !"# represent the peak power of running a job i on the 

CPU or GPU respectively. The parameter 𝑃𝑇! !"# represents the peak CPU temperature of 

running a job i on the CPU. 

  



91	
	

4.6 Profiler and Curve Fitter 

To evaluate a job’s workload distribution, we have to measure the overall performance, 

energy consumption, peak power, and peak CPU temperature after selecting a CPU/GPU work 

map ratio and allocating the resources (i.e., the number of cores and the number of threads). Due 

to the absence of accurate models that estimate all these parameters, we instead use prediction. 

Predicting the execution time, energy consumption, peak power, and peak CPU temperature for a 

given job workload distribution is difficult and it becomes more complicated when the number of 

cores and threads change. Profiling and curve fitting [13] have proved to be useful techniques for 

estimating workload distribution parameters during runtime. Hence, WDRA utilizes the same 

profiler and curve fitter presented by [13] to find estimation models for the parameters above.  

To explain profiling and curve fitting in detail, we use execution time in the following 

example. The same technique was applied to the rest of the parameters. First, we run a 

benchmark job (e.g., hotspot) on a quad-core CPU with 32 threads. We run it for the workload 

sizes {1k, 2k, .., 64G} and measure the overall execution time of each workload size. Then, we 

apply curve fitting to the collected points to construct an execution time estimation model that 

has the best fit to these points. This model can be used by any hotspot job with x size to predict 

its execution time on a quad-core CPU with 32 threads. This process is repeated for each 

benchmark job to produce estimation models for a GPU and a CPU with different number of 

cores and threads.  
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Initially, the profiler and curve fitter start using the training set that we collected offline by 

the method explained above. During runtime, as a job finishes its execution, its real execution 

time, energy consumption, peak power, and peak CPU temperature are recorded and added to the 

training set. These added values can enhance the accuracy of the curve fitter.  

Our profiler is based on the overall system parameters’ measurement (i.e., overall execution 

time in (11) and overall energy consumption in (12)) that include memory access/transfer latency 

and CPU-GPU communication overhead.  

 

𝑇 = max (𝑇!"# + 𝑇!"#)+ 𝑇!"!#$% + 𝑇!"##         (11) 

  

𝐸 = 𝐸!"# + 𝐸!"# + 𝐸!"!#$% + 𝐸!"##$%&'()&"%               (12) 
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4.7 Particle Swarm Optimization 

WDRA is not just a workload distributor that finds the best CPU/GPU map ratio to run a 

job. It is also a resource allocator that provides a job with the needed number of cores and 

threads. In other words, WDRA is a combination of a workload distributor and a resource 

allocator. Workload distribution and resource allocation are considered to be as NP-Hard 

problems in the general case [27]. Moreover, WDRA solves a multi-objective optimization 

problem and aims to efficiently allocate resources to jobs while considering both performance 

and energy consumption. Hence, the problem becomes more complex and the search space to 

find the optimal solution is very large. Therefore, WDRA utilizes an evolutionary algorithm 

called Particle Swarm Optimization (PSO) that had been proved to be effective for finding the 

Pareto optimal solutions of such optimization problems. 

PSO [28][29] is a bio-inspired search algorithm that simulates the social behavior of a flock 

of birds where each individual profits from shared knowledge that is based on the discoveries 

and previous experiences of other individuals of the population to search for food. Each 

individual, referred to as a particle, in the population, which is also called swarm, represents a 

solution in the search space. Each particle adjusts its movement according to its experience and 

that of other particles.  

PSO is an iterative search technique that is applied to solve optimization problems to find 

Pareto optimal solutions. PSO differs from traditional random search methods in that instead of 

examining a single solution; it is a population-based search algorithm that makes the exploration 

of the search space faster.  



94	
	

Compared to other evolutionary algorithms, such as Genetic Algorithms (GA), the 

advantages of PSO are that it is simple, has low computational expense, and converges faster. 

PSO’s fast convergence makes PSO a well-suited optimizer for the runtime workload 

distribution problem. In order to solve the WDRA multi-objective problem we used the weighted 

aggregated approach multi-objective PSO optimizer that appeared in [29]. 

4.7.1 PSO Algorithm 

As shown in Fig. 4.4, PSO starts with an initial random swarm/population of p 

particles/solutions. Fig. 4.5(b) shows an example of a swarm. During the PSO iterations, the 

personal best (pbest) and the global best (gbest) values are recorded. pbest is the best position 

reached by a given particle so far; whereas, gbest is the position of the best particle of the entire 

population. In each iteration, a fitness function is used to evaluate each particle. If the fitness 

value of the particle is better than its pbest, the pbest is set to the current fitness value. Then, we 

set the value of gbest as pbest if the pbest has a better value. These values are used to calculate 

the velocity of each particle of the swarm that is necessary for updating its position in the next 

iteration. The algorithm terminates after a maximum number of iterations is reached. 
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4.7.2 Particle/Solution Representation 

PSO is a population-based algorithm that has p particles/solutions. As shown in Fig. 4.5(a), 

a particle/solution is represented by an object that has three attributes: CPU/GPU map ratio, 

number of cores, and number of threads. Each particle/solution has its normalized fitness value, 

peak power in Watts and peak CPU temperature in Celsius. In Fig. 4.5(b) for example: in particle 

2, 41% of the job is mapped to the dual-core CPU with 16 threads and the remainder of the job 

(i.e., 59%) is mapped to the GPU.  

We utilize the estimation models to predict the execution time, energy consumption, peak 

power, and peak CPU temperature for each particle according to its CPU/GPU map ratio, 

number of cores and number of threads. The particle fitness value is calculated using the 

weighted sum of the normalized values of the execution time and energy consumption as in (10). 

We use peak power and peak CPU temperature to ensure the feasibility of a solution so that these 

parameters should not exceed peak power and peak temperature constraints. A particle is said to 

be feasible if it does not violate any of the problem constraints (i.e., CPU/GPU map ratio, peak 

power, peak temperature). If a solution violates any of the constraints, PSO identifies the 

violation and ensures particle feasibility. For example, if a particle map ratio falls out of the 

range [0, 1], PSO replaces it with a random number within the range. Moreover, if a particle 

violates the peak power or peak CPU temperature constraints, the position of the particle is 

modified randomly for a z number of attempts and if all attempts fail it is moved back to its 

previous position.  
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Figure 4.4: PSO flowchart 
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  Particle   

CPU/GPU map ratio à 0.23 65 ß Fitness 

Number of cores à 2 375 ß Peak power (Watts) 

Number of threads à 16 65.4 ß Peak temperature (°C) 

 

(a) 
 
 

P1 P2 P3 P4  Pp 

0.23 55 0.41 49 0.72 47.5 0.91 65.5 … 0.05 64 

4 368 2 371 4 372 2 365  1 379 

32 70.1 16 71.2 128 73.2 64 71.4  2 49.2 

 
(b) 

 
Figure 4.5: Sample of particle/solution representation (a) and sample of 

population/swarm (b) 
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4.7.3 Fitness Function 

PSO uses the fitness function to evaluate a particle. A particle is better if it has a lower 

fitness value. Since WDRA solves a multi-objective optimization problem that considers both 

performance and energy consumption, it uses the weighted sum fitness function in (10).  

To calculate a particle’s fitness with a CPU/GPU map ratio: we first have to predict the total 

execution time of the part of the job mapped to the CPU with the specified settings (i.e., number 

of cores and threads). Then, we have to predict the execution time of the remaining part of the 

job that is mapped to the GPU. The execution time of the entire job is equal to the execution time 

of the part (i.e., CPU or GPU) that takes the longest execution time, as in (8). The same method 

is used to calculate the total energy consumption as in (9) except we take the summation of the 

energy consumption of the entire job (i.e., CPU and GPU parts).  

Predicted values are obtained using performance and energy consumption estimation models 

that were produced by profiling and curve fitting. Finally, the execution time and the total energy 

consumption are normalized then multiplied by a specified weight as in (10) to calculate the 

fitness value of a solution. 
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4.7.4 Particle Position and Velocity 

To explore the search space and find the Pareto solution, particles of the swarm move from 

one position to another based on their experiences and that of other particles. Since pbest is the 

best value reached by a particle so far, it represents a particle’s own experience. gbest represents 

the experience of all particles of the swarm since it records the best value reached by the entire 

swarm. These two values, considered to be social information, are used to calculate particles’ 

velocities. At iteration t, xi(t) denotes the position of particle pi and vi(t) denotes the velocity that 

represents the shared social information. To change the position of pi, a velocity vi(t) is added to 

the current position as shown in (13). 

 

𝑥!(𝑡) = 𝑥!(𝑡 − 1)+ 𝑣!(𝑡)           (13) 

𝑣!(𝑡) = 𝑣!(𝑡 − 1)+ 𝐶!𝑟! 𝑥!"#$%! − 𝑥! 𝑡 + 𝐶!𝑟! 𝑥!"#$%! − 𝑥! 𝑡   (14) 

 

;where r1 and r2 are random values between [0,1] and C1, C2 are constant learning factors. In 

the WDRA PSO, the position of the particle xi is the CPU/GPU map ratio that can be updated 

using its velocity as in (13). A particle velocity is calculated as shown in (14) using its best 

CPU/GPU map ratio reached so far (i.e., pbest) and the best CPU/GPU map ratio that is reached 

by all particles of the swarm (i.e., gbest). 
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4.8 WDRA Flowchart 

As in Fig. 4.6, WDRA starts by performing profiling and curve fitting on an initial training 

set (i.e., input) of jobs with different sizes running on the CPU and the GPU. During runtime, for 

each job that arrives, the PSO-based algorithm utilizes these estimation models to predict a job’s 

execution time, energy consumption, peak power and peak CPU temperature based on a job’s 

size. When the PSO algorithm terminates, the efficient CPU/GPU map ratio, and number of 

cores and threads are set. Then, each job starts running on the CPU and the GPU according to the 

specified CPU/GPU map ratio, number of cores and threads (i.e., PSO output). When a job’s 

execution is done, the measured (i.e., real) execution time, energy consumption, peak power and 

peak CPU temperature are recorded into the training set to be used by the curve fitter to enhance 

prediction accuracy.  
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Figure 4.6: WDRA flowchart 
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4.9 Evaluation 

 This section presents the evaluation methodology and the results of WDRA on an actual 

CPU-GPU heterogeneous system. 

4.9.1 Experimental Setup and Benchmark 

We conducted our experiment on a real heterogeneous system equipped with a quad-core 

CPU and a GPU connected via PCI-e. The hardware specifications are shown in detail in Table 

3.1. To test WDRA and the other algorithms, we carried out a set of experiments using the 

Rodinia 3.0 benchmark suite [10][32].  

Rodinia is a collection of benchmarks designed for parallel processing on heterogeneous 

systems. It has applications from different domains such as image processing, bioinformatics, 

pattern recognition, scientific computing, and simulation. These kinds of applications represent 

different application behavior types that characterized by Berkeley dwarves [26]. Rodinia 

applications are implemented to run on both multicore CPUs and GPUs. Therefore, it contains 

applications that are parallelized and coded using Open Multi-Processing (OpenMP) to run on 

multicore CPUs and CUDA to run on GPUs.  

We evaluated WDRA and the other workload distribution algorithms using applications that 

have both OpenMP and CUDA versions of the Rodinia 3.0 benchmark. The parallelism of the 

Rodinia benchmark applications makes them easy to partition. To distribute the work of a job we 

multiply number of parallel computations/threads of a job by the CPU/GPU map ratio. Then we 

map the computations/threads to the CPU and the GPU according to the CPU/GPU map ratio.   
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4.9.2 Profiling and Curve Fitting 

To produce estimation models (e.g., an execution time estimation model), we have to apply 

profiling and curve fitting on each application of the Rodinia benchmarks running on a GPU or a 

CPU with different configurations of problem sizes, and number of cores and threads. For 

profiling, we used the configuration set provided in Table 4.1.  

To construct an estimation model for each of the configurations, we have to run each 

application and change one configuration parameter and fix the rest. For example, we ran 

application x with a fixed size (e.g., 4k) and fixed number of threads (e.g., 16) for all possible 

number of cores (i.e., 1, 2, 4, 8). We used a Linux command to change the boot arguments to 

disable/enable cores. Then we ran application x with specific size (e.g., 4k) on a fixed number of 

cores (e.g., 4) using different numbers of threads provided in Table 4.1 (e.g., 1, 2, 4, 8). Then we 

ran application x with a fixed number of cores (e.g., 4) and a fixed number of threads (e.g., 16) 

but with different input sizes as shown in Table 4.1 (e.g., 1k, 2k). For each configuration, we 

performed the above experiment 1000 times, measured the overall system parameters (e.g., 

execution time), and took the average.  

We used time Linux command [42] to measure the overall wall clock execution time 

(seconds). We connected a Kill-A-Watt meter [40] to the system’s Power Supply Unit (PSU) to 

measure the overall energy consumption (kWh) and the peak power (Watt). Using that meter and 

time linux command, we were able to measure the overall system execution time and energy 

consumption. Therefore, memory access/transfer delay and CPU-GPU communications overhead 

were also measured.  
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To measure peak CPU temperature, we utilized the lm_sensors application (Linux 

monitoring sensors) [41] that monitors each core’s temperature separately and we recorded the 

highest core temperature as the peak CPU temperature.  

Curve fitting was performed on the data measured by profiling to find the best model that 

fits the collected data. These estimation models were used by WDRA to predict execution time, 

energy consumption, peak power, and peak temperature during runtime. 

 

 

Table 4.1: Profiling Set  

Parameter Values 

CPU Cores 1, 2, 4, 8 

Number of Threads 1, 2, 4, 8, 16, 32, 64, 128 

Problem Size 1k, 2k, 4k, 8k, ….., 64G 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



105	
	

4.9.3 WDRA vs. Other Workload Distribution Algorithms 

We compared WDRA to the following algorithms:  

• Manual Combined Greedy algorithm (MCG): for each job, it performs an exhaustive 

search to try all possible CPU/GPU map ratios at a granularity of 1% with all possible 

number of cores and threads. It uses (10) to evaluate all configurations based on both 

performance and energy with w=0.5. The goal is to find the best CPU/GPU map ratio, 

number of cores, and number of threads in terms of both performance and energy 

consumption. 

• Manual Performance Greedy algorithm (MPG): for each job, it performs an exhaustive 

search to find what configurations (CPU/GPU map ratio, number of cores and number of 

threads) have the shortest execution time by running that job. The CPU/GPU map ratio is 

done at a granularity of 1%. This algorithm accounts for algorithms that are implemented 

by [13, 20, 25]. 

• Manual Energy Greedy algorithm (MEG): for each job, it performs an exhaustive search 

to try all possible configurations (CPU/GPU map ratio at a granularity of 1%, number of 

cores and number of threads) consume the least energy by running that job. This 

algorithm represents algorithms appeared in [4, 5, 6].  

For fairness, WDRA and the other algorithms that are evaluated use identical profiler. 

Profiling is done once and offline. A curve fitter was performed on the collected results to 

produce estimation models. These models were used by all algorithms to estimate the execution 

time, energy consumption, peak power, and peak CPU temperature. Hence, the overhead of the 
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profiler and the curve fitter is neglected. Note that profiling and curve fitting are tools that we 

used for prediction and can be replaced by any other estimation methods or tools.  

We implemented WDRA and the other greedy algorithms using C++. WDRA utilizes a PSO 

that is based on the weighted sum fitness function as in (10). If the w=1, WDRA acts as the 

manual performance greedy algorithm. If the w=0, WDRA acts as the manual energy greedy 

algorithm. We tested different values of w but we selected w=0.5 for WDRA and the manual 

combined greedy algorithm because this value represents the balanced scenario between the 

performance and energy consumptions; when w=0.5 both execution time and energy 

consumption are equally important. But when w>0.5 it favors execution time over energy 

consumption and the opposite if w<0.5.  

4.9.4 Results 

We tested each of the workload distribution algorithms by running 1000 randomly generated 

jobs of the Rodinia benchmark and then we took the average. For WDRA PSO, we ran PSO with 

20 particles for 10 generations. We set C1 and C2 to 2. It was proved in [28] that when C1=C2=2, 

PSO converges in about half the time that it would when C1=C2=1. To evaluate the algorithms, 

we tested them with no constraints as in Fig. 4.7(a), and with both constraints (i.e., peak power, 

peak CPU temperature) as in Fig. 4.7(b). 
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Fig. 4.7(a) shows the average energy consumptions and execution time of the benchmarks 

using the manual greedy algorithms (i.e., performance-based and energy-based) normalized to 

the WDRA algorithm. The MPG beats WDRA in performance for the following jobs: NW, NN, 

LUD, BFS, BP, PFinder, HS, HW, PFilter, SC, and B+tree. However, WDRA outperforms it in 

terms of energy consumption. On the other hand, as shown in SRAD, Kmeans, LavaMD, and 

Myocyte, WDRA has the same average performance as the MPG algorithm but with a better 

reduction in energy consumption. In some cases, distributing the work according to the least 

energy consumption happens to be the workload distribution with the shortest execution time as 

well; WDRA and the MEG algorithm have the same results in both performance and energy 

consumption for NW, SRAD, Kmeans, BP, HS, HW, and Myocyte. But in other cases (i.e. the 

rest of the benchmark jobs), distributing the workload according to the best energy consumption 

degrades its performance (i.e., higher execution time). Because the performance-based algorithm 

focuses on only minimizing a job’s execution time, it may increase the energy consumption of 

that job. The energy-based algorithm cannot reach the best solution in terms of performance 

because it aims to find the least energy consumed by each job without considering its execution 

time.  

As it shown in Fig. 4.7(a), it can be concluded that WDRA outperforms both algorithms 

because it distributes the work according to both jobs’ execution time and energy consumption. 

On average, as shown in Fig. 4.8, compared to the other greedy distribution algorithms, WDRA 

can achieve up to 1.47x speedup and energy saving of up to 82%.  
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(a) 
 

 
 

(b) 
Figure 4.7: MPG and MEG average execution time and energy consumption 

normalized to WDRA w=0.5 with no constraints (a) with peak power and 
peak CPU temperature constraints (b) 

0	

1	

2	

3	

4	

5	

6	

7	
M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

NW	 NN	 LUD	 SRAD	 Kmeans	 BFS	 BP	 Pfinder	 HS	 HW	 LavaMD	 Pfilter	 SC	 Myocyte	B+tree	

Execu<on	Time	 Energy	Consump<on	

0	

1	

2	

3	

4	

5	

6	

7	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

M
PG

	

M
EG

	

NW	 NN	 LUD	 SRAD	 Kmeans	 BFS	 BP	 Pfinder	 HS	 HW	 LavaMD	 Pfilter	 SC	 Myocyte	B+tree	

Execu<on	Time	 Energy	Consump<on	



109	
	

We tested WDRA and other workload distributors with no constraints as in Fig. 4.7(a), and 

with both constraints (i.e., peak power, peak CPU temperature) as in Fig. 4.7(b). To select the 

peak power budget PPmax, we measured the peak power reached by each Rodinia job using the 

random workload distributor and reduced it by 5% or 10%. We did the same to select peak 

temperature PTmax. Fig. 4.7(b) shows PPmax and PTmax with a 5% reduction.  

As shown in Fig. 4.7(b), results of the algorithms with constraints follow the same trend of 

the case with no constraints, except that the constraints limit the search space. Therefore, it can 

be concluded that WDRA works well in finding the best workload distribution with peak power 

and peak CPU temperature constraints.  

 

 

Figure 4.8: Rodinia Benchmark’s Average of MPG and MEG execution time 
and energy consumption normalized to WDRA w=0.5 with no constraints and 

with peak power and peak CPU temperature constraints 
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4.9.5 WDRA Accuracy, Speedup and Overhead 

To check WDRA PSO results’ accuracy, we implemented the MCG algorithm that utilizes 

the weighted sum fitness function that considers both performance and energy consumption with 

w=0.5.  

Table 4.2 shows that the accuracy of WDRA’s results is about 99% compared to the MCG. 

As for the speedup, we measure the duration of WDRA and other greedy algorithms. As shown 

in Table 4.2, on average, the WDRA (i.e., PSO-based) algorithm runs 76% faster compared to 

the manual greedy algorithms. Note that, if we run WDRA with a fewer number of particles or 

generations than what we used in our experiment, we could enhance the PSO speedup; however, 

the results would be less accurate.  

To measure the WDRA overhead, for each job we divided the duration of WDRA by the job 

execution time and took the average. According to our experiments on Rodinia jobs that are 

presented in Table 4.2, WDRA only takes up to 1.7% of the job execution time. Therefore, 

WDRA is suitable for runtime workload distribution.  
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Table 4.2: WDRA Accuracy, Speedup and Overhead 

Rodinia Jobs 
Parameters 

Accuracy Speedup Overhead 

NW 0.9822 1.6860 0.0043 
NN 0.9971 1.7820 0.0020 

LUD 0.9821 1.6697 0.0069 
SRAD 0.9889 1.8007 0.0031 

Kmeans 0.9982 2.1526 0.0031 
BFS 1.0000 1.9178 0.0018 
BP 0.9966 1.9663 0.0610 

Pathfinder 1.0000 1.5419 0.0004 
Leukocyte 1.0000 1.7802 0.0011 

Hotspot 1.0000 1.7776 0.0016 
Heartwall 1.0000 1.7223 0.0008 
LavaMD 1.0000 1.6462 0.0026 
PFilter 1.0000 1.6139 0.0006 

SC 0.9970 1.9317 0.0008 
Myocyte 1.0000 1.6363 0.0943 
B+tree 0.9967 1.5924 0.1194 
CFD 1.0000 1.5713 0.0001 

Average 0.9969 1.7625 0.0179 
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4.10 Summary 

We have introduced a runtime Workload Distributor with a Resource Allocator (WDRA) 

that finds the best CPU/GPU map ratio, number of cores, and number of threads in terms of both 

performance and energy consumption under peak power and peak CPU temperature constraints. 

Since resource allocation and workload distribution are known as NP-hard problems, WDRA 

utilizes a multi-objective Particle Swarm Optimization (PSO) algorithm. WDRA can be applied 

to any CPU-GPU heterogeneous system from mobile systems to servers. WDRA is not a classic 

CPU-GPU workload distributor; it is also a resource allocator (i.e., number of cores and threads). 

Experimental results show WDRA’s capability to find efficient solutions in terms of both 

execution time and energy consumption under peak power and peak CPU temperature 

constraints. Therefore, WDRA can be used in embedded systems fields. For evaluation, we have 

implemented WDRA on an actual system equipped with a multi-core CPU and a GPU. WDRA 

outperforms performance-based and other distribution algorithms in both execution time and 

energy consumption for constraint (i.e., peak power and peak CPU temperature limits) or non-

constraint problems. Since WDRA takes only 1.7% of a job’s execution time, our algorithm is 

well suited for workload distribution during runtime. We believe that it is important to combine 

all problems (i.e., workload distribution, core scaling, and thread allocation) into one 

optimization problem. Moreover, both execution time and energy consumption should be 

considered while distributing a job’s workload. 
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Chapter 5           

   Conclusions and Future Work 

In this chapter, we give our conclusions on the research presented in this thesis and discuss 

future work and other possible extensions to the research.  

5.1 Conclusions 

The goal of this dissertation is to study the effectiveness of combining resource allocators 

with schedulers and workload distributors in improving the performance and reducing the energy 

consumption of heterogeneous systems. Moreover, the goal is to show the importance of 

considering both systems’ performance and energy consumption while job scheduling or 

workload distribution. In addition, peak power and peak CPU temperature limits should be taken 

into account especially if the targeted hardware is an embedded system.  

The research goal has been achieved in the following major steps: first, we have proposed 

the Performance, Energy and Thermal aware Resource Allocator and Scheduler (PETRAS), 

which combines job mapping, core scaling, and thread allocation into one scheduler. Second, we 

have proposed the Workload Distributor with a Resource Allocator (WDRA), which finds a job’s 

efficient workload distribution and resource allocation in terms of both a system’s performance 

and energy consumption. Third, we have implemented PETRAS and WDRA on CPU-GPU 

heterogeneous systems. Finally, we have evaluated the effectiveness of PETRAS and WDRA on 

an actual heterogeneous system that is equipped with a multi-core CPU and a GPU. PETRAS 
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and WDRA were evaluated considering the overall performance and energy in both cases: non-

constraints, and peak power and peak CPU temperature constraints.  

5.1.1 Scheduling and Resource Allocation for Heterogeneous Systems  

In chapter 3, we have presented the Performance, Energy and Thermal aware Resource 

Allocator and Scheduler (PETRAS), which utilizes a Genetic Algorithm (GA) to find efficient 

schedules in a heterogeneous system. PETRAS combines the following problems into one 

scheduler: job mapping and scheduling, core scaling, and thread allocation. To evaluate 

PETRAS, we have implemented PETRAS on an actual system equipped with a multi-core CPU 

and a GPU. We have demonstrated that the PETRAS scheduler outperforms performance-based 

schedulers and other schedulers in both execution time and energy consumption. We have tested 

PETRAS for the two cases of with and without peak power and peak CPU temperature 

constraints. PETRAS shows its capability to find efficient schedules in terms of both execution 

time and energy consumption for the two cases. Therefore, PETRAS can be used for embedded 

systems applications. Even though we have tested PETRAS on a CPU-GPU heterogeneous 

system, PETRAS’s methodology is generic and can be applied on any heterogeneous system 

where processing units are fused on the same chip or connected through a bus.  

We have added a power management unit that turns off the idle and low-utilized processing 

units of the GA efficient schedules. We have found that this step helps in saving energy 

consumption and freeing idle and low-utilized processing units to be used by other applications 

that share the same hardware.  
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We have shown the importance of combining resource allocation (i.e., core scaling, thread 

allocation) and scheduling into one optimization problem. Therefore, we believe that we have to 

consider all problems (i.e., job mapping and scheduling, core scaling, thread allocation) into one 

scheduling optimization problem. Moreover, we have compared performance-based and energy-

based schedulers to PETRAS, which considers both execution time and energy consumption. 

PETRAS as a multi-objective scheduler outperforms single-objective schedulers (i.e., energy-

based, performance-based). Hence, we believe that schedules should be selected based on both 

execution time and energy consumption.   

5.1.2 Workload Distribution and Resource Allocation for Heterogeneous 

Systems  

In chapter 4, We have introduced a runtime Workload Distributor with a Resource Allocator 

(WDRA) that finds the best CPU/GPU map ratio, number of cores, and number of threads in 

terms of both performance and energy consumption under peak power and peak CPU 

temperature constraints. In WDRA, we have applied a multi-objective Particle Swarm 

Optimization (PSO) algorithm because resource allocation and workload distribution are known 

as NP-hard problems. WDRA’s methodology is generic and can be applied to any CPU-GPU 

heterogeneous system from mobile systems to servers.  

We have shown the impact of combining workload distribution and resource allocation 

problems on the overall performance and energy consumption. Therefore, we have proposed a 

WDRA, which is not a classic CPU-GPU workload distributor; it is also a resource allocator 

(i.e., number of cores and threads).  
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To test WDRA, we have implemented WDRA on an actual system equipped with a multi-

core CPU and a GPU. We have found that WDRA outperforms performance-based and other 

workload distribution algorithms in both execution time and energy consumption. We have 

evaluated WDRA for the two cases: constraint (i.e., peak power and peak CPU temperature 

limits) and non-constraint problems. By analyzing experimental results, we have demonstrated 

WDRA’s capability to find efficient solutions in terms of both execution time and energy 

consumption under peak power and peak CPU temperature constraints. Therefore, WDRA can 

also be used in embedded systems fields.  

We have measured WDRA algorithm’s duration and compared it to jobs’ execution times. 

WDRA takes only up to 1.7% of a jobs’ execution time. Thus, WDRA algorithm is well suited 

for workload distribution during runtime.  

We have shown the importance of combining all problems (i.e., workload distribution, core 

scaling, and thread allocation) into one optimization problem. Therefore, we believe that we have 

to consider resource allocation while performing job workload distribution. Moreover, we have 

shown that WDRA outperforms performance-based and energy-based greedy workload 

distribution algorithms in terms of both execution time and energy consumption. Hence, we 

believe that both execution time and energy consumption should be considered while distributing 

a job’s workload.  
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5.2 Future Work 

The research of this thesis can be extended in many possible directions. In PETRAS and 

WDRA, we have demonstrated the importance of combining resource allocation (i.e., core 

scaling, thread allocation) with job scheduling or workload distribution. We plan to extend these 

algorithms by exploring more resources such as GPU block size, cache memory size, etc.  

We have tested PETRAS and WDRA on a CPU-GPU heterogeneous system. But we also 

believe that PETRAS and WDRA have significant potential in large-scale systems such as cloud 

computing systems. Moreover, PETRAS and WDRA can be applied for embedded systems 

applications since we have demonstrated their effectiveness while considering peak power and 

peak CPU temperature constraints. Therefore, we would like to apply and evaluate PETRAS and 

WDRA on the cloud and the embedded systems. We plan to study how these algorithms improve 

performance and reduce energy consumption on such platforms. 

PETRAS has a power management unit that turns off the idle or low-utilized processing 

units by setting their frequency to zero. We plan to add Dynamic Voltage Frequency Scaling 

(DVFS) to PETRAS to adjust processing units frequency where low-utilized processing units 

would operate with low frequency set by DVFS. We believe that by adding DVFS we will save 

more energy. Moreover, we would like to add DVFS to the WDRA and study the impact of 

applying DVFS on reducing energy consumption.  
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