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ABSTRACT 

In the simple diffraction theory, or black-sphere model, of Bethe and 

Placzcek, it is assumed that partial waves vri th J, ~ L are completely absorbed 

and partial waves with J, > L do not interact at all. (The projectile and 

target have no spin or charge, so that J, represents orbital angular momentum; 

L is a critical value of J, usually related to the radius of the black sphere.) 

We improve this primitive but useful model by taking into account (a) the 

gradual, rather than sharp, transition from maximum to zero absorption, (b) the 

generally small but important deviation from complete absorption, and (c) finite 

values for the real part of the scattering amplitude. By adoption of appropriate 

forms for these improvements, closed-form expressions for the various cross 

sections are obtained. Whenever necessary, systematic approximation methods 

are developed which allow estimates of errors to be made. The results are 

shown to be model-independent, i.e., independent of the detailed way in which 

the above generalizations are made. Further simple improvements for the 
1 . 

Cou~omb field and spin-2 projectiles are also discussed. Finally, these methods 

are applied to the scattering of neutrons from nuclei for neutron energies in 

the range from 0.3 to 4.5 Bev. 

* This work was performed under the auspices of the U.S. Atomic Energy 

Commission. 

t Present Address: Physics Department, University of California, LaJolla, 

California. 
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I. INTRODUCTION 
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Most interpretations of scattering of strongly interacting particles 

from atomic nuclei (such as pions, nucleons, and collections of nucleons) are 

1 based on the optical or complex··potential model. In this paper we propose 

to follow a different approach, which we shall call a generalized diffraction 

model, that emphasizes the scattering amplitude rather than the potential. 

The methods discussed here will find their most natural application to 

scattering processes in which many partial waves are absorbed. 

Previous work with the optical model can be divided into two categories, 

the phenomeno1ogical and the basic optical-model approaches. We first note 

that it is usually possible to introduce an effective two-body interactiop to 

describe entrance-channel phenomena for the. scattering of many-particle systems. 

The phenomenological optical-model approach is simply the attempt to deduce 

this interaction from the observed scattering cross sections. The method 

employed is essentially trial and error. A potential is assumed, the cross 

sections are calculated in some approximation from the appropriate wave . 

equation, comparison is made with experiment, and the entire process is 

repeated until satisfactory agreement is achieved. The entire procedure is 

quite tedious and requires modern automatic computing facilities. On the 

other hand, it is usually possible to obtain a high level of agreement with 

the experiments in this way. Because the assumed potentials are simple and 
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reasonable one infers that there is a significance beyond pure phenomenology. 

For example, one cites the success of the optical model as evidence of 

independent particle motion in the nucleus. 

The basic optical model approach involves attempts to solve the actual. 

many-body scattering problem. These attempts have been restricted so far to 

the scattering of elementary particles from nuclei. In these cases the theory 

amounts essentially to the old index-of-refraction formula relating two-body 

forward scattering amplitudes to the many-body forward scattering. Such a 

theory can give quantitative results only in a restricted intermediate-energy 

region (if at all). The theory is not valid for very low energies, and for 

high energies it is difficult to obtain accurate information on the two-body 

scattering amplitudes. For nucleon-nucleus scattering, this energy range is 

expected to be roughly from 100 to 300 Mev. 

Although there are no glaring discrepancies at present, the agreement 

between the basic and phenomenological optical-model descriptions is in an 

2 
uncertain state. Although a large number of phenomenological analyses have 

been carried out; the results are neither unique nor very precise. Uncertainty 

in the elementary scattering amplitudes has prevented accurate evaluation of 

even the simplest many-body theory mentioned above. The most that can be said 

is that a qualitative understanding of the optical model can be had in terms 

of the present information of the appropriate two-body interactions. 

A major aim of this paper is to improve this situation by simplifying 

the phenomenological part of the analysis. This is done by working directly 

with the scattering amplitude. The cross sections are obtained by rather 

elementary analysis and the intermediary concept of a potential is avoided 

completely. This method is particularly attractive at extremely high energies, 

• 
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at which the measurements will probably remain relatively primitive for many 

years. For the scattering of 10-Bev nucleons on heavy nuclei, for example, 
; 

several hundred partial waves are involved and even machine calculations 

become impractical. 

The physical basis for our model is associated with the large 

absorption of strongly interacting particles by nuclear matter. 3 Except at 

very low energies, at which the effects of the exclusion principle are 

important, the absorption mean free path for any strongly interacting particle 

is at most of the same order as the nuclear radius. This gives rise to 

4 absorption cross sections close to "geometric" and opacities close to unity. 

It suggests that it is a good initial approximation to regard the nucleus 

as "black" or completely opaque to strongly interacting particles. We shall 

adopt this point of view here, and then go beyond this and calculate the 

nonnegligible corrections to this simple model in a straightforward way. The 

evaluation of these corrections is facilitated by the fact that many partial 

waves are involved in the scattering processes of interest. 

For most of this first discussion we shall assume that the collision 

partners are uncharged and have no spin. The inclusion of these effects is 

not difficult and will be discussed briefly in later sections. The scattering 

amplitude for this problem is then 

f(Q) = 1 
2 i k E (~£- 1)(2£ + l)Pt(cos Q) 

£=0 
(I-1) 

The amplitude ~£ of the tth scattered wave is related to the corresponding 

scattering phase shift by the equation 

( I-2) 
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The phase shifts here will have both real and imaginary parts. The familiar 
• 

a( e), the total cross 
.. 

formulae for the differential scattering cross section 

section 
( t) 

a ' and the reaction cross section a(r), are 

a( e) = I f( El) 1
2 

, (I- 3a) 

(t) 21( r:.
2 

!: (2£ + 1)( 1 - Re Tl_g) ( I-3b) a = ' £=0 

( r) 2 I '~'~ _e 12 ) (I- 3c) a = 1t ~ E (2£ + 1)(1 -
£=0 

In these equations k( = ~-l ) and El have their usual meanings as wave number 

and scattering angle, respectively. 

We first recall that our zero-order approximation, the black-sphere 

model, corresponds to the following assumption concerning the scattering 

coefficients 'I) ,e : ' 

{: 
£ ~ L 

'll_g = ( I-4) 
£ > L 

There is only one parameter in this simple diffraction theory--L, which is 

the number of partial waves completely absorbed. For orbital angular 

momentum £ ~ L there is no outgoing wave and the incident (spherical) 

wave is completely absorbed. For £ > L the amplitude of the outgoing wave 

is the same as for the ingoing wave; hence there is no absorption and no 

scattering. The only scattering for this model is the shadow scattering 

associated with the complete absorption of the first (L + 1) waves. The .-
scattering amplitude and cross sections for this simple diffraction can be 

evaluated without any approximations: 
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f(9) = 2i [ p L I ( cos 9) + p L I ( cos 9) ] ' (I-5a) 

( t) 2 1)2 (I-5b) a = 21!-11:(1+ 
' 

a ( r) 
= 1! ~2( L + 1)2 (I-5c) 

Strangely enough, these exact expressions are almo.st never used in the 

literature, and are often replaced by approximate ones. 

This simple diffraction theory was first introduced into nuclear 

physics by Bohr, Peierls, and Placzek and by Bethe and Placzek.5 The effects 

6 of the Coulomb field were later studied by Akhieser and Pomeranchuk. More 

recently, extensive applications of this model have been made to the scattering 

of alpha particles and heavier projectiles, particularly by Blair.7 The 

unrealistic features of this simple model which we wish to improve on in this 

study are mainly these: (a) the change from complete absorption to no 

8 
absorption does not occur suddenly, but over a large number of partial waves; 

(b) the nucleus is not completely opaque, and small changes from complete 

opacity affect the cross sections considerably; (c) the real parts of the 

phase shifts are not exactly zero. All these points are quite important for 

accurate calculations of the elastic scattering and the total cross section. 

The detailed way in which we generalize the simple diffraction theory 

i.s outlined in Section II. In Section III we derive the total and reaction 

cross sections, assuming the real part of the scattering amplitude to be 

zero, for a number of different assumptions about the transition region. 

These assumptions all lead to approximately the same cross sections if the 

"effective sizes" of the surface regions are chosen the same. Thus, in this 

sense, our treatment is essentially model-independent. A similar result holds 
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if the real part of the scattering amplitude is not zero, as will be shown 

in Section IV. The differential cross section is calculated in Section V, 

and spin-orbit effects are considered in Section VII. As an example of these 

techniques, an analysis is carried out for high-energy neutron scattering 

(0.3 to 4.5 Bev) in Section VI. Further applications to elementary particle 

interactions will be discussed in a separate article. 

• w 
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II. DEFINITION OF THE MODEL 

According to Equations (I-1) and (I-3), the cross sections are determined 

by two numbers for each partial wave, e.g., the real and imaginary parts of the 

phase shift (8£) or the scattering coefficient (~£). In this discussion, 

2 
however, we propose to emphasize the opacity, ( 1 - I 11£ I ) , and the phase of 

the scattering coefficient a£ = Complete absorption of a partial 

wave corresponds to unit opacity with a contribution of (2£ + 1)~ ~2 to both 

the reaction and scattering cross sections. The sets of all opacities and 

all phases for a given scattering process are referred to as the opacity and 

phase functions for that problem. 

For cases of strong absorption of many partial waves, we now assume 

that the opacity and phase can be represented by smooth functions of £ • 

By assuming simple forms for these functions and by converting sums to integrals, 

closed-form expressions are obtained for the various cross sections. In addition 

to their obvious utility for discussing the experiments, these formulae are 

relatively model-independent. 

We assume that the opacity function, (1- I ~£1 2 ), (a) is a continuous, 

monotonic decreasing function of t , (b) has approximately zero slope for 

small £ , and (c) has a relatively sharp transition region in which it falls 

from its "interior" value to zero. This type of function is shown in Fig. 1. 

It may be characterized by three (and not less than three) parameters: 

~(0~ ~ ~ 1), the opacity for small t; 

L( > > 1), the number of partial waves strongly absorbed (determined 

by the half-value point of the distribution); and 

6(1 < < 6 < L), a measure of the transition region. 

There are, of course, many functions of this type, with.the three parameters 
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different for each case. However, in the present context--i.e., for scattering 

in which many partial waves are strongly absorbed--these sets of parameters 

are all related, so that one assumption about the opacity is as good as another 

within certain limits. 

The actual coefficient of the ~th partial wave is written 

= 
ia(~) 

fl(~) e ( II-1) 

where the real functions fl(~) and a(~) are the absolute value and the 

phase of Tit • The above opacity function is then 

1 ( II-2) 

We next assume that the phase function a(~), in addition to being a function 

of L and ~ (and perhaps ~), depends on only one new parameter, denoted 

simply by a . Again the exact form or the phase function is not important. 

(A detailed discussi~n of the model independence of the phase function is 

given in Section IV.) 

The above assumptions are quite reasonable when the de Broglie wave 

length is small compared to distances over which the properties of the 

scattering interaction change significantly. Examination of the results of 

exact calculations for potential models show just the described behavior of 
9 . 10 

the opacity and phase. The familiar formulae of the WKB approximation 

also exhibit these properties very clearly. Finally we note again that our 

statements are also the natural generalization of the simple diffraction 

theory or black-sphere model. 

It may be useful to define two lengths corresponding to the two 

angular momentum parameters, L and ~ • Because our model deals only 

.. 

'0 
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with the scattering amplitude we have no fundamental way of introducing 

these lengths except on dimensional grounds. Hence we define an effective 

radius R and an effective surface thickness t as 

kR = L , (II-3a) 

kt = 26 • (II-3b) 

We insist that there may be no precise equality between these parameters and 

those used in other problems, e.g., the nucleon density or the optical potential 

for the same scattering process under discussion here. It is expected, of 

course, that all parameters referring to the size of the nucleus are of the 

same order of magnitude. For example, the main dependence of R on atomic 

weight is of the usual A1/ 3 type, but the coefficient is not necessarily 

the same as used for electron scattering, and other powers of A may also be 

important. In a similar way, t probably does not have the same AJ/3 

dependence as R but varies less rapidly, if at all. 

The conversion of sums to integrals is carried out in a systematic 

way with the Euler-McLaurin formula: 

L+l/2 
f f(.e)d.e 

-l/2 
1 

+ 4 [ ( fb -

(3f'
0 

+ f'_112)J + ••• 

(II-4) 

Here f(.e) is the continuous function representing the set of physical 

quantities f.e •. •. In case it is necessary to use a set of piecewise continuous 

functions, we have 
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L1+1/2 L2+1/2 

= J d£ f(.e) 
-J/2 

+ J a.e g(.e) + E 
Ll+V2 

( II-5) 

the quantity E represents the error in converting sums to integrals: 

1 
E = 4 .[ ( fo - f-1/2) 

( gL + 1/2 - gL ) + • • • ] 
2 2 

(3f ' f' ) 0 + -J/2 

(3g'L +1 + g'L +1/2) + ..• ] + ••• 
1 1 

( II-6) 

The limits on the integrals have been chosen to minimize the importanceof E. 

For linear functions, for example, E = o. The error term has been retained 

mainly to check the accuracy of our calculations. Of course the model itself 

is also approximate in this sense because the physical quantities do not 

vary in a perfectly smooth way. 

In the evaluation of the scattering amplitude we use MacDonald's 

expansion for the Legendre polynomials, 11 

with x = (2£ + 1) sin~ 
I 2 

. 4 9 + sJ.n 2 + ... 
( II-7) 

To obtain accuracy of order ~12 or sin2 ~ , 
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the second ter.m must be kept. To retain an accuracy of order ~L, unity 

cannot be neglected in expressions such as (2£ + 1) or (£ + 1). Such 

approximations are often made in the literature under conditions for which 

they are not valid, both in the expansion of Eq.(II-7) and the simple diffrac-

tion formulae of Eq. (I-5). 
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III. TOTAL AND REACTION CROSS SECTIONS 
... 

In this section the total and reaction cross sections are derived on " 

the basis of three models chosen for the opacity function of Eq_. (II-2). The 

three forms all have the general shape of Fig. 1 but differ in the details of 

the transition region. In each case the phase a(£) is assumed a constant 

(= a) for ~(£) < 1, and zero for ~(£) = 1. More general assumptions 

concerning the phase function are made in later sections. 

Case A. 1 - n2(£) is a linear function of £ in the transition region. 

The opacity function is plotted in Fig. 2 and defined by the equations 

2 
1 - ~ (£) = 

0 

In terms of ~£ the model is 

From Eq. (III-2) 

a(£) = 

ia e 

.---------------~, 

t3( L +it - £) 

1 

we see that the phase 

{ a 

0 

for £ ~ L - ~ , 

for L - ~ < £ $ L + ~ , 

for L + ~ < £ 

(III-1) 

for £ ~ L - ~ , 

ia 
e for L - ~ < £ ~ L + ~ , 

for L+~<£ 

(III-2) 

a(£) has been defined as 

for £~L+~, 

for L+~<£. (III-3) 

.,! 
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If we substitute Eq. (III-1) into Eq. (I-3c) we obtain 

~ 
= ~ ~2 E ~(2t + 1) 

t=O 
+ ~ L + A - t (2t + 1) 

26 

When Eq. (II-5), the rule for changing sums to integrals, is used the reaction 

cross section becomes 

L+A+l/2 } 
+ f ~ L ~A - t (2£ + l)d£ + E 

L-A+l/2 
(III-4) 

where E is given by Eq. (II-6).with the substitutions L1 =L-A. and 

L2 = L +A • The integrals of Eq. (III-4) are simplified by making the 

substitution x = 2£ + 1, ~nd they yield 

2 
+ ~ ~ E • (III-5) 

The value of the correction term E from Eq. (III-3) is E = ~6 • For 

large L, this is only of order ~L2 compared to the leading term in 

Eq. (III-5). For the remainder of this work we assume that such terms are 

negligible, i.e., we neglect all terms of order unity compared with the L
2 

In this case the reaction cross section is given by Eq. (III-5) with E = 0. 

The total cross section is evaluated in a similar manner by 

substituting Eq. (III-2) into Eq. (I-3b), and making use again of the 

relation of Eq. · ( II-5). To the same order of approximation used in obtaining 
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the reaction cross section we find 

+ L + 6. 2 2 - 3 ) - €(1 - 261 + 6. + L - 6.) 

8 8 2 7 
+ 6 ( 3 6.L + 15 6. + L + 3 6.) 

(III-6) 

where we have changed parameters from a and ~ to 6 and € , respectively: 

' 
(III-7) 

6 = 1 cos a 

This change of parameters here is useful since both € and o are small 

quantities for most of the analysis and we can usually neglect the higher-

order terms in Eq. (III-6). The reaction cross section does not depend on the 

phase a , whereas the total cross section contains a term proportional to 

cos a • The original expressions, Eqs. (I•3b) and (I-3c), have these 

properties, of course. 

Some additional simplification can be achieved if we are dealing 

only with very large values of L • For L ~ 100, for instance, we may well 

wish to drop terms in Eqs. (III-5) and (III-6) that are on the order of L 

2 or smaller, i.e., L, 6., and perhaps 6. • The neglect of these terms should , 

lead to errors on the order of only a few percent for such large values of 1. 

Although the above formulae are fairly simple, the differential cross sections 

in Section V are considerably more complicated. In that case the retention 

of such small terms becomes a luxury which is afforded only at the expense 

of quite cnnbersome expressions. 
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Case B. 
2 1 - 9 (£) is a quadratic function of t in the transition region. 

This second model, which is also shown in Fig. 2, is defined by the 

relations 

2 
1 - TJ (£) = 

t3 fi _ 1: ( t - ( L - !:::..) ) 
2 J 

L:: 2 !:::,. 

0 

or, for the coefficient TJ£ , 

v 
TJU) = v 

ia e 

1 - t3[1- 1: ( L-!:::..-
2 !:::,. 

1 - ~ ( L +!:::..- £ 
2' 

!:::,. 
) 

2 

1 

£ ~ 
) 

iCX e 

for t ~ L - !:::.. , 

for L - !:::.. < t ~ L , 

for L < t ~ L + !:::.. , 

for L + !:::.. < t , 

{III-8) 

for £ ~ L - !:::.. , 

ia e for L - !:::.. < £ ~ L , 

for L < t ~ L + !:::.. , 

for L + !:::.. < £ • 

(III-9) 

Following the steps outlined in the linear model of Case A (above), we find, 

for the quadratic model, 

(III-10) 

and 
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a(t) = 2~ ~[(L2 - 0.486 6L + L + 0.239 ~2 + 0.424 ~) 

2 2 - €(L - 1.432 6L + 0.432 ~ + L - 0.716 ~) 

2 2 
+ € (-1.496 6L + 0.065 ~ - 0.90 ~) 

+ o€(L2 - 1.43 6L + 0.43 ~2 + L- 0.72 ~) + ••• ) • 

(III-11) 

Case c. Quadratic in ~(£). 

This last model is chosen specifically for the simple rational form 

for ~(£), rather than for 1- ~2(£). It is defined by the relation 

,(£) = 

1 

ia e for £ :;; L - ~ , 

for L - ~ < £ ~ L + ~ , 

for L + ~ < £ , 

(III-12) 

and the opacity function (1 - , 2(£)) is shown in Fig. 2. The formulae for 

a(t) and a(r) can be written in closed form with no approximations because 

both 11<£) and 2 
1 - ~ ( £) are sums of powers of £ • Using the above 

techniques, we find to the same accuracy· as the preceding results, 

(III-13) 

(t) a 2 2 4 6 2 2 
= ~ ~-[L' -- .6L' + - ~ + L' - - ~)(1 - E) 15 25 15 

+ o(~ 6L' + .§_ ~2 + L' + 1)85 ~) + o€(L'2_ .i_ 6L' + _£_ ~2 + L' - ,_g_ ~)) 
3 5 15 25 15 ' 

(III-14) 
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6 Where we have defined L' = L - 5 to compensate for the fact that the transition 

region is not symmetric about L. 

To exhibit the degree of model independence for this theory, we now show 

that, to some order of approximation, the results for the cross sections in 

cases A, B, and C are the same. If we assume that the only difference 

in the models is in the effective surface thickness, 6 , for the three cases, 

we can attempt to equate the three results for the total and reaction cross 

sections in the limit of large L, and for ~ = 1 (e = 0), and a = 0. Good 

agreement can indeed be obtained with the condition 6A = Oo728 ~ = 0.400 6C' 

where the subscripts refer to the particular model. Therefore in this limit 

of zero phase and complete absorption at £ = 0, the only essential difference 

between the models is in the normalization of the surface parameter, 6 • 

An exact numerical comparison for the case ~ < 1, and a~O is 

quite difficult to carry out. However, since we are usually interested only 

in the ratio of o(tj/o(r) , we can compare this ratio to see if there are 

any large discrepancies between the three results. These ratios are plotted 

as functions of ~ and ~ in Fig. 3 for the case a = 0, and in Fig. 4 

for a= 90°. It is evident that the results are essentially equivalent for 

a wide range of values of a and ~ • We might point out here, incidentally, 

that a graph of the form of Figs. 3 and 4 is useful in obtaining phenomenological 

values of the parameter ~ from experimental data. 
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IV. EFFECT OF A NONCONSTANT a( t) 

In the preceding section the derivations of the formulas for a(t) 

and were based on the assumption that a(.£) was constant (= a) for 

~(.£) < 1, and zero for ~ = 1. [See Eq. (III-3).] We will now show the 

·effect of a more realistic form for a(£). As in the case of the opacity 

fUnction 2 [1- ~(.£)],we assume here that a(£) is a real monotonically 

decreasing function of £ , and has the value a at t = o. Because of the 

relative simplicity of Case C above, we choose it for the model to. be 

considered both for ~(£) and for the nonconstant phase. We define 

therefore 

cos a for £ .::; 1 - b. , 

cos [a(t)] = 1 - for 1-b.<£.::::;1+b., 

1 for 1 + b. < £ • 

( 4-1) 

Equation (IV-2) produces an approximately linear variation of a(t) with .£, 
. 

and is compared with the phase resulting from an optical-model calculation 

in Fig. 5· 

The formula for the reaction cross section is the same as given in 

(III-13). The new form for the total cross section is 

a (t) 
= 

2 2 2 b.2 /::). 
21!~[(1 --b.L+---+1)(1-e) 

3 3 3 

8 2 2 4 2 7 26 3 
+ o( 15 :r..t:. - 15 !i + 15 b.) + oe( 1 + 15 !i - 5 :r..t:. - ff + 1)] • 

(IV-2) 
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The difference between the results for constant a of Eqs. (III-14) and (IV-2) 

above must vanish if the two cross sections are to be equal. The condition 

for this is found to be 

(IV-3) 

where a1 is the phase constant of the preceding discussion (Section III) and 

a 2 is the phase in Eq. (IV-1),; a is a function of D. and L, but it 

depends very weakly on 13 for values of 13 nearly equal to unity. Thus, 

if the condition of Eq. (IV-3) is met the two models for a(.e) give the same 

results, and we conclude that except for a linear scaling factor a(D., L), the 

form for the total cross section of Eq. (III-19) is independent of the form 

chosen for a(£). Although only the two forms for a(£) ·of Eqs. (III-3) 

and (IV-1) have been used, we may reasonably infer that similarly defined 

functions would lead to substantially the same results. 
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V. DIFFERENTIAL CROSS SECTION 

In order to simplify the discussion of the scattering amplitude we 

adopt for 11 ( .e) the fonn introduced in Case C of Section III, E q. (III -12) , and 

use a constant phase, Eq. ~II-3). We are encouraged to rely on only one case 

here because of the model independence of our results for the total and 

reaction cross sections. It is important to investigate a number of terms 

beside the first one in Eq. (II-1) [the expansion of P.e(cos e) in terms of 
. 2 2 g 

Bessel functions]. In the end, terms smaller than L sin 2 are neglected; 

~ is also assumed small enough that terms involving both sin ~ and 6 

can be dropped. 

The philosophy behind our expansion for the scattering amplitude is 

that, for small angles and large L, the leading term is the simple approximation 

to "black sphere" or simple diffraction scattering: 

f
0

(9) i 
L+J/2 · 

9 
= 2k f d.e(2£ + l)J0( [2£ + l]sin 2 ) 

-1/2 

i (L + 1)
2 Jl(a) 

] J = k [ a 

(V-1) 

with 

2(L + 1) 
g 

a = sin -2 (V-2) 

The corrections to this are of three kinds, which may be roughly described 

as: 

(a) corrections due to the fact that our model allows for incomplete absorption, 

(~), nonzero phase (a), and a gradual transition region (~); 

(b) corrections from the higher-order terms in Eq. (II-7) [the Bessel-function 

expansion for P.e(cos e)]; and 
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(c) corrections for converting sums to integrals. 

These corrections are not simply addit~ve, and the three terms now introduced 

correspond only approximately to the above three effects: 

(V-3) 

We will describe these amplitudes more precisely but without giving the details 

of the derivations. 

The term f 1 ( 9) arises from the finite values of t:::., 13, and a · in 

our model, which was defined by Eqs. (III-3) and (III-12). At the same time 

only the leading terms are kept in Eqs. (II-5) and (II-7). We write, for 

ia[ 2 
~ e [L + t:::. + 1) + (e - l)((L- 1::::. + 1) 

2 Jl(a - b) 

6L- L + 1::::. 2 6L Jl(a) 
+ 2 cos(b) J 0(a) + (L - Lr) a 

where a is defined by Eq. (V-3), and we set 

b = 2 t:::. sin ~ (V-5) 

An alternative expression for f 1(e) may be obtained by expanding the 

Bessel function of arguments (a - b) and (a + b) about the point a • 

The scattering amplitude can then be expressed in terms of functions of the 

a - b 

same argument, a; however, the resulting algebraic expression is considerably 

more cumbersome than that of Eq. (V-4). .. 
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For f 2(e), we use the higher-order terms proportional to sin2 ~ of 

Eq. (II-7), and only the first-order terms (the integrals) of Eq. (II-5), and 

the main term ("sharp refracting, gray sphere") of Eq. (III-12). The higher-

order terms in these last two equations are not included, since they yield 

2 2 9 results considerably smaller than L sin 2 . To obtain expressions accurate 

at larger angles, or at lower L values, the products of the higher-order 

terms in Eqs. (II-5), (II-7) and (III-12) must be included. We write, then, 

for f
2
(e), 

where 

i 
= 2k 

X = 

L+l/2 
J (2£+1)(1- -ll-t3

1 

-1/2 

ia 2 e Jl(x) 
e )[sin 2 ( 2x 

xJ (x) 
- J 2 ( x) + + } + • • • d£ ~ 

(2£ + 1) . e 
SJ.n -

2 (V-7) 

If we write the Bessel functions of Eq. (V-6) in terms of J 0(x) and J 1(x), 

and int.egrate, we find 

L2 .29 J() 
SJ.n 2 0 .a (V-8) 

The usual treatments of diffraction scattering omit terms of this type and 

consequently are valid only for very large L , or very small e . At the 

. 2 2 e 1.22 • 2 
first diffraction minimum, for instance, L sin 2 = ( 2 ) ~ 3.7, 

which is negligible compared with the leading L2 term only if L is 

quite large. At angles beyond the first minimum, the neglect of the 

L
2 

sin2 ~ term can be serious for even large L values. 
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The third correction, f
3
(e), is obtained from the higher-order terms 

of Eq. (II-5), which are the corrections contained in the E term of Eq. (II-6), 

and from Eq. (III-12) with the ~, ~-, and a-dependent quantities considered 

exactly. However, only the leading J 0(x) term of Eq. (II-7) is considered 

to this order of approximation. The algebra is involved, but quite straight-

forward. We substitute the relations 

and 

g(.e) = (2£ + 1)[1 - ( 1 - 1 - € (£ - L- 6)2}eia ]J0[(2£ + l)sin ~2 ] 
46

2 

into Eq. (II-4) and find 

i 
= '"""2'iC E 

~ 2 2 Jl(a - b) ... [ (l ia)L . e = k - - € e s~n -2 a - b 

(V-9) 

Finally, collecting the results in Eqs. (V-9), (v~S), (V-4), and (V-2), we 

obtain for the s.catterin:g amplitude (V-10) 
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The case of zero phase is often of physical interest (e.g., high-energy 

nucleon-nucleus scattering, as we shall see in the next section), and here 

the scattering amplitude assumes the simple form 

f(9) = ! (1 -
k 

2 6L J 1 (a) 2 2 . . J 1 (a - b) 
€ )[ ( L - 4 ) a + ( L + ti. - 2&.. -~ + 2L) a - b) 

M.-L+-6 + 2 cos (b) J 0(a) 

2 2 G Jo(a) 
+ L sin 2 ( 6 

(V-11) 
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VI. PHENOMENOLOGICAL ANALYSIS OF NUCLEON-NUCLEUS SCATTERING 

As an application of this generalized diffraction model, we consider 

the total and reaction cross sections for neutrons incident on various nuclei. 

The experimental data have been plotted in Fig. 6 for four elements--C, Al, Cu, 

12 
and Pb--for neutron energies of 270 Mev and greater. There have been 

isolated attempts13 to discuss experiments at particular energies with the 

10 method of Fernbach, Serber, and Taylor. No attempt has been madep however, 

to discuss all the high-energy data at once. We are able to do this here 

because of the simplicity of the formulae we have derived for the various 

cross sections. A brief report of this treatment for three nuclei has already 

been published. 14 

One conclusion can be drawn immediately from the data for the four 

cases: a successful analysis based on the black~sphere one-parameter (L) 

analysis of Eq. (I-5) is impossible. In each case the total cross section 

exhibits a large energy variation, whereas the black-sphere model implies 

constant cross sections at these energies. Thus we expect the observed 

energy variation to be associated with one or more of the other three parameters 

introduced in this generalized theory. For the present we assume that the 

major part of this energy dependence is contained in the opacity parameter ~ • 

To proceed with the ana.lysis, vre assume first Io:k:AJ/3, and we 

obtain the proportionality constant by fitting the almost constant reaction 

cross section for lead to the formulas for one of the models in Section III, 

say, Eq. (III-13). We use lead in the beginning of the analysis for two 

reasons: (a) Because of the large number of interacting partial waves for 
. 2 

such a heavy nucleus, we expect L >> 6, so that terms of the order of A 

may be neglected compared with L2• Thus the reaction cross section for a 
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heavy nucleus is essentially independent of 6 • (b) Since the mean free 

path for neutrons in nuclear matter is much smaller than the dimensions of 

the lead nucleus, we may also assume in this case ~ ~ 1, i.e$, there is almost 

complete absorption for all energies. In fact, we arbitrarily set ~ = 1 at 

1 Bev, the energy at which the mean free path is a minimum. We then find 

. 6 -13 1/3 L = k X 1.2 X 10 em A • 

The next parameter, a ' may be deduced in this energy region by 

considering the large variation in a(t) from Fig. 6. Now the contribution 

of just the £th partial wave is (t)_(' 
a£ "V 1 - Re('l)£) 

For a given change in (t) 
'!)(£), the maximum change in a£ 

1 - '!)(£)cos a. 

is obviously .. 

obtained for 11.e pure real, i.e. a = 0. The experimental values of a(t) 

are all less than ~ ~2(L + 1)
2

, which limits a to the range 0 <a< ~ . 

In addition the experimental variations are so large that the only possible 

choice of a is a= 0. For instance, if 'l1,e is pure imaginary, a(t) 

has a constant value of 2~~2(L + 1)2 and is independent of the energy­

dependent parameters, ~ • For 'l1.e real, but a= ~, then a(t) > ~ ~(L + 1)2,· 

which clearly.does not agree with the experiments under consideration. Thus 

the experimental energy variation. of a 
(t) 

requires that the scattering 

amplitude be essentially pure imaginary, or a~ 0. 

Now that we have determined the magnitude of the cross sections by 

fixing the dependence of L , and have concluded that a = 0, we may greatly 

simplify the subsequent analysis by comparing the experimental ratios 

(t)/ (r) 
a /a with those given in Fig. 4. We make the reasonable assumption 

that !:::.. oC k (or ~ dJ A-J./3) and simultaneously determine 6 and ~ 
from Fig. 4. The value of 6JL depends only on A, or the nuclear size, 

and can be adjusted for the best fit of the opacity ~ for all four elements 

considered. 
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In the present analysis we find the proportionality constant for 6 

is 0.61 x· 10-l3 em. The best fit for ~ at various energies is given in the 

table. 

Experimental Values of the Opacity 

0.30 Bev 0.70 Bev L40 Bev 5.0 Bev 

Pb 0.97 0.99 LOO 0.94 

Cu 0.93 0.97 0.99 0.94 

Al o.88 0.95 0.97 0.93 

c 0.82 0.89 0.94 o.89 

It is worth while at this point to connect this phenomenological 

approach with some physical properties of the nucleus and of the incident 

nucleon. Although some quantitative results can be obtained along these lines, 

most of what follows is qualitative. 

One of the primary features of the data in Fig. 6 is the large energy 

variation in O'(t) for almost constant O'(r). The explanation of this is 

simple when one considers the individual partial-wave cross sections for the 

case .of almost total absorption [~(£)small]. For ~£real , we see that 

0' £ ( r) cf] 1 - ~ £2 
varies quadratically with ·~£ , and for small ~ £ it 

changes very little. However, a(t) ~ 1 - ~£ varies linearly with ~£ , 

and reflects the changes in ~£ more sensitively than O'(r) • Figure 7 

shows the variation in O'(t) .and a(r) as a function of the opacity ~ 

for various values of a and for 6 = 0 • 
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We may next ask why the opacity ~ increases as it does in the 

vicinity of 1 Bev. For this purpose we should consider the observed neutron-

neutron (or proton-proton) and neutron-proton total cross sections shown in 

8 
. 15 

Figs. and 9. We see that some definite correlation exists between these 

basic two-body cross sections and the neutron-nucleus cross sections of Fig. 6. 

On a simple classical model the incident neutrons are absorbed exponentially 

along their trajectory in nuclear matter. The mean free path is taken as 

A. = 1/P O't , where p is the density of the nuclear medium (2 x 1038 ~m-3) 

and O't is the "effective" two-body total cross section. By "effective" we 

mean a simple average over neutrons and protons; other effects such as the 

Pauli principle have been assumed to be negligible at these high energies. 

Then the expression for ~ is just 

~ - 1- exp (-21)1\) , (VI-1) 

where R is the nuclear radius. Thus in this simple approximation the energy 

dependence of ~ is a function of the energy dependence of A. , or of the 

nucleon-nucleon total cross section. The values of O't averaged over 

neutrons and protons are plotted in Fig. 10 along with the mean free path, A. • 

The values of ~ deduced from Eq. (VI-1) are given in the table below, and 

it can be seen by comparison with the phenomenological values of ~ that this 

model gives the correct qualitative results, but does not afford a satisfactory 

quantitative theory in this simple form. 
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Theoretical Estimates of Opacity 

0.30 Bev 0.70 Bev 1.40 Bev 5.0 Bev 

Pb 1.00 1.00 1.00 1.00 

Cu 0.99 1.00 1.00 0.99 

Al 0.97 0.99 0.99 0.98 

c 0.93 0.97 0.98 0.95 

However, the situation may be considerably improved by considering 

two effects hitherto neglected. First, in the three models chosen for the 

opacity function [1- ~2(£)] ln this paper, the opacity was constant for 

£ <'L- 6, i.e., we adopted a constant value of ~ for £~ L, and then 

set it equal to zero for £ > L • It would be more realistic to use a 

slowly decreasing opacity here. We have not considered this improvement 

here because it would considerably complicate the simple formulae of 

Section III. However, the qualitative effects of such an opacity function 

are the following: 

(a) We can no longer assume L QQ kA1/ 3 , since the effective L value 

for light nuclei is additionally decreased because there is less absorption 

and hence very small opacity in the region £ .k, L • Thus the theoretical 

curves of Fig. 6 for C and Al would agree better with experiment. 

(b) The value of ~ from Eq. (VI-1), averaged over all trajectories, would 

be lower than the ~ obtained at £ = 0. This effect would be increased 

in light nuclei, in which absorption effects are smaller, and would bring 
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the theoretical value of ~ in the table above in to better agreement with 

the phenomenological values. 

Second, there are several factors that tend to reduce the "effective11 

two-body cross sections, at and thus lower the theoretical value of ~ • 

(a) The effect of the Pauli exclusion principle eliminates part of the two-body 

scattering in which the nucleons are not excited above the nuclear Fermi level. 

This effect should be small, however, at high energies. 

(b) At high incident energies there may be a certain amount of shadowing of 

target nucleons by other nucleons, which decreases the average contribution 

of the nucleons to at • Such an effect would be most important for heavy 

nuclei, and would tend to lower both at and the opacity, ~ • 
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:vii-o SPIN-ORBIT EFFECTS .. 
The scattering amplitude in the case of spin-~2 particles incident 

·~ 
on spin-zero targets may always be viTitten as 

f(e) = A(e) + B(e) d·~ , (VII-1) 

where d is the Pauli spin vector of the incident particle, and ~ is a unit 

vector normal to the plane of scattering: 

I\ 
n = (VII-2) 

The polarization obtained from initially unpolarized particles is just 

p = (VII-3) 

The terms of Eq. (VII-1) can be written as 

i 00 

A( e) = 2k I: [(£ + 1)(1- ~£+) + £(1- ~-)]P£(cos e) 
£=0 

i 00 st 
= 2k I: [(2£ + 1)(1- ~£) - 2 ]P£(cos e) 

£=0 (VII-4) 

and 

sin e d CIO 

~£+)P£(cos e) B(e) I: ( ~£ -= 2k d(cos e) -
£=0 

sin e d 00 

= 2k d(cos e) I: ££ p icos e) 
£=0 (VII-5) 

where we have set 
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+ 
11.e + Tl.e 

2 ' 
(VII-6) 

Thus the two functions- + Tl.e and Tl.e , which correspond to the angular 

momentum states of J = .e + ~ and J = .e - ~ respectively, can be written 

in terms of two new functions, Tl_g and g.e • It can be seenthat for no spin 

dependence, and s - 0 , so that Eq. (VII-4) reduces to .e -

Eq. (I-1), and Eq. (VII-5) vanishes. 

We wish only to outline a simple calculation for the spin-orbit 

effects; therefore we choose a = ~ = o. In addition we assume small 

that the average, Tl.e , of Eq. (VII-6) is of the same form as the 11's of 

Section III. We let 

+ 
11.e + Tl.e T)(.e) yl-f; .e-::; L 

2 = 

(VII-7) 

= 1 .e > L • 

so 

Since the spin-dependent term B(e) of Eq. (VII-5) arises from an interaction 

-7 ~ 
of the form o·L , it is not unreasonable to assume that the partial-wave 

function, £(£) , is a monotonically increasing function of .e from £ = 0 

to .e = L, where it drops to zero. For ~~ o, £(£)would have a maximum 

in the region .e ~ L, and fall off smoothly to zero over a region ~ • 

Two forms for £(£) are investigated to show that, aside from a 

normalization constant, the results for B(e) are relatively independent 

of the details of the function g(£). The first form is linear in £, 

and is defined by 
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g( ~) = 2 7 ~ ~ 7( 2~ + 1) • (VII-8) 

Then, considering only first-order effects, we find for A(e) and B(9) 

A( e) 
L+l/2 

;k J d£(2£ + 1)(1 - v/1 - ~\ 
-1/2 

- 1 ) J [(2£ + l)sin ~2 ] 2 0 

and 

B(e) = 7 
sin e d 

2k d(cos e) 

J (a) 
1 )(L)2 .....::1;;..._. -
2 a 

L+y2 . 
d£(2~ + l)J0 [(2£ + l)sin ~ ] 

-1/2 

The second case chosen is that of a cubic form for g(~) , 

g(~) 7' 3 = ~ (2£ + 1) • 

Then we get, for the scattering amplitudes, 

i A(e) = - [(1- € 
k 

and 

B(9) = 

2 Jl(a) 
7' )L - 4L a 

• 

(VII-9) 

(VII-10) 

(VII-11) 

(VII-12) 

(VII-13) 
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From Eqs. (VII-9), (VII-10), (VII-12), and (VII-13), it can be seen that for 

two quite dissimilar models for ~(£), A(e) is characterized mainly by 

Jl(a}/a , and B(e) by J2(ay/a2 • These results are quite similar to the 

spherical Bessel functions jl and j 2 obtained for A(e) and B(e) 

respectively in the closed-form WKB analysis of scattering from a square-well 

potentia1.16 
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VIII. CONCLUSION 

The formulae derived here should be extremely useful in discussing 

scattering processes at very high energy in the presence of strong absorption. 

They involve only well-known functions for which tabulations are easily 

accessible. Thus the significance of scattering measurements at high energies 

may be deduced directly by experimentalists without recourse to excessive 

calculation. 

This simple picture was obtained by constructing a model for the 

scattering amplitude rather than by introducing an abstract potential picture. 

The parameters that occur here describe such properties of the scattering 

amplitude as its phase, the number of partial waves strongly absorbed, and 

the strength of the absorption. They clearly have very direct physical 

significance. 

It is important, of course, to have additional ways of interpreting 

the parameters that occur in this model. For example, assuming the validity 

of the Serber point of view, one would like detailed connections with the 

properties of the two-nucleon systemq. We have not investigated this problem 

here at all. There exists already, of course, a qualitative correction in 

terms of the index-of-refraction relation familiar from optics. More detailed 

conclusions must await more refined solutions of the quantum-mechanical 

many-body problem. On the other hand, our model probably has the advantage 

that it avoids the question of an intermediary effective potential, i.e., 

the optical model~ The introduction of the optical model simply adds one more 

complication to an already difficult problem. 

Most of the results given here refer to the scattering of spit_l-zero 

neutral particles from spherical spin-zero targets. The brief discussion of 
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polarization showed, however, that spin effects are simple to treat. The results 

also show great promise for explaining some of the complicated observations on 

the effects of spin in scattering problems. Finally, the addition of the 

Coulomb scattering amplitude involves little difficulty, although the formulae 

become somewhat more complicated. 

f,! 
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FIGURE CAPTIONS 

Fig. 1. Typical shape for the opacity function 1- T)
2(.e). 1I'he opacity is 

constant (= ~) from .e = 0 to .e = L - 6, and falls off smoothly 

to zero in the transition region from L - 6 to L + 6. Beyond 

.e = L + 6, the opacity is zero. 

Fig. 2. Comparison of three specific models for the opacity function. The 

analytic forms of these functions are given in Eqs. (III-1), (III-8), 

and (III-12) for Cases A, B, and C, respectively. 

Fig. ). The ratio a(t~o(r) as a function of the two parameters 6;t and 

~ for a= 0 • The dash line (- - - - -) is for Case A, a linear 

model for·. 1 - ITJ I The dash-dot line ( ··.-.- .-.) is for Case B, 

a quadratic model for 1- ITJI
2

• The solid line(------- ) is for 

Case c, a quadratic model for TJ • 

Fig. 4. The ratio o( t)/o( r) as a function of the ti-ro parameters Lyt and 

0 
for a = 90 • The dash line (- - - - -) is for Case A, a linear 

The dash-dot line (-.-.-.-.) is for Case B, 

a quadratic model for 
. 2 

1 - 1111 • The solid line (---) is for 

Case c, a quadratic model for T) • 

Fig. 5. Comparison of the phase function a(.e) for two models. The dot-dash 

line (-.-.-.-.-.) is for the case of constant phase introduced in 

Eq.(III-3). The dash line (~---)is for the case of nonconstant 

a as introduced in Eq. (IV-1). The solid line (-------) is the 

phase function obtained by numerical integration of the Schrodinger 

for a typical complex potential used for high energy scattering. 
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Fig. 6. Cross sections for the scattering of neutrons by c, Al, Cu, and Pb. 

The solid and open circles are the experimental measurements of the 

total and reaction cross sections, respectively. The solid (--------) 

and dash (- - - - - -) curves are the corresponding theoretical fits 

obtained in this work. 

Fig. 7• Total and reaction cross sections as a function of the opacity 

parameter ~ for three values of the phase a • The transition 

region ~ was set equal to zero in this analysis. 

Fig. 8. Total and reaction cross sections for high energy proton-proton 

scattering. The solid and dash curves here are simply smooth .fits 

to the experimental points. 

Fig. 9. Total cross sections for high-energy neutron-proton scattering. 

The solid curve here is simply a smooth fit to the experimental 

points. 

Fig. 10. The effective nucleon-nucleon total cross section (left scale in mb) 

and the mean free path of nucleons in nuclear matter (right scale 

in 10-l) em) as a function of energy. 
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This report was prepared as an account of Government 
sponsored work" Neither the United States, nor the Com­
m1ss1on, nor any person acting on behalf of the Commission: 

Ao Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 

or usefulness of the information contained in this 
report, or that the use of any information, appa­

ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

Bo Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­

mation, apparatus, method, or process disclosed in 

this report" 

As used in the above, "person acting on behalf of the 
Commission'' includes any employee or contractor of the Com­

mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 

of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 

with the Commission, or his employment with such contractor" 




