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Abstract

To explore the relationship between category and perceptual learning, we examined both category and perceptual learning
in patients with treated Wilson’s disease (WD), whose basal ganglia, known to be important in category learning, were
damaged by the disease. We measured their learning rate and accuracy in rule-based and information-integration category
learning, and magnitudes of perceptual learning in a wide range of external noise conditions, and compared the results with
those of normal controls. The WD subjects exhibited deficits in both forms of category learning and in perceptual learning in
high external noise. However, their perceptual learning in low external noise was relatively spared. There was no significant
correlation between the two forms of category learning, nor between perceptual learning in low external noise and either
form of category learning. Perceptual learning in high external noise was, however, significantly correlated with
information-integration but not with rule-based category learning. The results suggest that there may be a strong link
between information-integration category learning and perceptual learning in high external noise. Damage to brain
structures that are important for information-integration category learning may lead to poor perceptual learning in high
external noise, yet spare perceptual learning in low external noise. Perceptual learning in high and low external noise
conditions may involve separate neural substrates.
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Introduction

In category learning, observers improve their performance in

classifying novel stimuli into discrete categories through trial-and-

error with feedback [1,2,3,4]. In perceptual learning, observers

improve their discrimination or detection performance in

perceptual tasks through repeated practice or training

[5,6,7,8,9,10,11,12]. Vital for the survival and evolution of the

living organisms, both forms of learning reflect long-term changes

of the adult central nervous system and have been under extensive

investigation [13,14,15,16].

Converging evidence from cognitive psychology, neuropsychol-

ogy, and brain imaging suggests that category learning may be

mediated by two separate brain systems [16,17,18,19,20,21,22]:

Rule-based category learning is mediated by frontal brain areas

such as the anterior cingulate, prefrontal cortex (PFC), and by the

head of the caudate nucleus in the basal ganglia. Information-

integration category learning is mediated by the tail of the caudate

nucleus in the basal ganglia and a dopamine-mediated reward

signal. Existing evidence also suggests that the declarative memory

systems and especially working memory play major roles in rule-

based category learning, whereas the non-declarative memory

systems and especially procedural memory are heavily involved in

information-integration category learning [23,24].

In visual perceptual tasks, behavioral analysis suggests that

perceptual learning improves performance via two separable

mechanisms: tuning of the task relevant perceptual template in

high external noise environments and enhancing the stimulus in

zero and low external noise environments [25,26,27]. The neural

basis for perceptual learning is less clear. Plasticity of early visual

areas has generally been implicated to explain perceptual learning

that is specific to retinal location or orientation [28]. However, the

various specificity results are equally consistent with task-specific

reweighting of the ‘‘read-out’’ connections from early visual areas,

with no changes in the areas [29,30]. In addition, observed

changes in early visual areas following extensive practice have

been too modest to account for the corresponding behavioral

improvements [14,31,32,33]. A recent study [34] implicated a role

of sensory-motor areas in perceptual learning.

Category and perceptual learning share many similarities. In

both types of learning, observers are required to perform

classification of perceptual stimuli, often with feedback and/or

reward. In perceptual learning, the perceptual categories are often

relatively simple and clearly defined in the beginning of training,
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although the subtle information in the perceptual stimulus must

still be learned. In category learning, the categorical structure is

often more complex and not explicitly provided, but has to be

discovered through practice. On the other hand, although the

perceptual categories are defined in perceptual learning, observers

can improve their performance via re-tuning of the perceptual

template in noisy environments. The re-tuning mechanism of

perceptual learning might be related to refinement of perceptual

categories in category learning.

Despite the similarities of category and perceptual learning, to

our knowledge, there has been no investigation on the relationship

between the two forms of learning. In this study, we explored the

relationship between the two forms of category learning and the

two mechanisms of perceptual learning. Specifically, we examined

both category and perceptual learning in patients with treated

Wilson’s disease (WD), whose basal ganglia, known to be

important in category learning, were damaged by the disease.

We measured their learning rate and accuracy in both rule-based

category learning and information-integration category learning,

and magnitudes of perceptual learning in a wide range of external

noise conditions, and compared the results with that of normal

controls. In light of the recent advances in the neuropsychological

theory of category learning [16], we expect that the relationship

between category learning and perceptual learning might lead to

new hypotheses about the neural substrate of perceptual learning,

and the learning process itself.

Wilson’s disease [35], hepatolenticular degeneration, is an

autosomal, recessively inherited disorder of copper metabolism

with a prevalence of about 10 to 40 per million [36]. The

abnormal gene that causes Wilson’s disease is located on

chromosome 13 band q14.3 [37], which is known to code for a

copper-transporting P-type ATPase. A mutation in the WD gene

(ATP7B) results in reduced excretion of copper into the bile and

leads to its accumulation in the liver, kidney, cornea, bones and

brain. Consequently, the clinical expression is highly variable with

predominant hepatic, neurological, or psychiatric symptoms.

Different parts of the central nervous system, including the

cerebellum, brainstem, thalamus, and subcortical white matter,

can be affected, but the greatest damage usually occurs in the basal

ganglia [38,39,40,41]. Recent research revealed that patients with

basal ganglia pathology show significant cognitive impairments,

mostly in language, motor and memory functions [42,43,44].

The nuclei of the basal ganglia, the head and tails of the caudate

nucleus, are known to be important in both rule-based and

information-integration category learning [45,46]. We therefore

expected that subjects with treated Wilson’s disease may have

deficits in both rule-based and information-integration category

learning, although the deficits may not be correlated because the

impact of the disease on different nuclei of the basal ganglia

depends on the exact nature of the damage in each individual

patient. We evaluated their performance in both category learning

and perceptual learning, and the relationship between different

types of category and perceptual learning.

Methods

Observers
Thirteen male and seven female symptomatic Wilson’s Disease

patients (Median age = 21.7 yrs, SD = 6.9 yrs, Range: 14 to

46 yrs) were recruited from the Institute of Neurology, University

Hospital, Anhui College of Traditional Chinese Medicine (Hefei,

Anhui, China). Informed consent was obtained for participation in

the study. The diagnoses of the patients were based on the

presence of classical copper-related biochemical indicators (plas-

maceruloplasma,200 mg/l and/or serum copper oxidase,0.20

OD, 24 hour urine copper excretion $100mg (1.56mmol), and/or

liver copper concentrations.250 ug/g on needle biopsy) and the

presence of Kayser-Fleischer rings around the iris. All the patients

were treated with D-Penicillamine before and during the study

period. MRI or CT scans were obtained for all the patients

(Figure 1). Of the 20 patients, one patient showed no significant

pathology in her MRI images. The other 19 had visible lesions in

basal ganglia, with some showing additional subcortical pathology

in the thalamus or brainstem, and one showing cortical pathology

especially in the frontal lobe in addition to subcortical lesions. The

patients were also evaluated with the Clinical Dementia Rating

(CDR): seven had CDR of 0, nine had CDR of 0.5, and four had

CDR of 1.0. All 20 patients participated in the category learning

experiments. Five male and three female patients (Median

age = 20.8 yrs, SD = 5.6 yrs; Range: 14 to 27 yrs) participated in

the eight-day perceptual learning experiment after finishing the

category learning tasks. Among these patients, seven had only

basal ganglia lesions and one had additional cortical pathology.

The control group consisted of 24 male and 14 female healthy

volunteers (Median age = 24.1 yrs; SD = 2.8 yrs; Range: 17 to

40 yrs). They were closely matched to the patients in terms of

gender and age. All the 38 observers in the control group finished

the category learning tasks. Seven male and five female control

observers (Median age = 22.0 yrs; SD = 3.2 yrs; Range: 17 to

28 yrs) also completed the perceptual learning experiment.

Because the age of the groups in all the comparisons was well

matched, age was not a factor in our study.

All the observers had normal or corrected-to-normal vision and

were naive to the purpose of the study.

Apparatus
All the experiments were programmed using Matlab 6.1 with

Psychtoolbox extensions [47], and run on a P4 2.4G computer

with a Sony G220 monitor. The background luminance of the

monitor was set at 27 cd=m2. A special circuit was used to increase

the graylevel resolution of the display system (.12.5 bits); A

psychophysical procedure was used to linearize the monitor

response function [48]. All displays were viewed binocularly with

natural pupil in a dimly lighted room.

Category Learning Tasks
The rule-based and information-integration category learning

tasks were generated according to the guidelines described in [17].

Some have referred these two tasks as explicit and implicit

category learning tasks [16]. Each stimulus consisted of a small

geometric shape superimposed on the center of a larger geometric

Figure 1. An MRI image of a typical WD subject. The image shows
bilateral basal ganglion damage.
doi:10.1371/journal.pone.0009635.g001
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shape, appearing in the center of the computer display. In each

trial, the observer was instructed to classify the stimulus on the

screen into one of two categories. Observers were encouraged to

randomly guess their responses in the beginning of each task, and

were told to try to use the auditory feedback to improve their

performance.

For the rule-based category learning task, four binary

dimensions were used to generate the stimuli: background color

(turquoise or purple), inside color (black or white), inside shape

(square or circle), and inside size (big or small). There were

therefore a total of 16 exemplars. The stimuli were divided into

two categories based on a single dimension: the inside size; the

other three dimensions were irrelevant (Figure 2A).

Two binary features and one quaternary feature were used to

generate stimuli for the information-integration category learning

task: inside shape (square or rectangle), inside color (black or

white), and background color (red, blue, green, gray). The two

categories were defined by a combination of the inside and

background colors (Figure 2B). The inside shape was irrelevant.

Category one consisted of all stimuli with (1) a red background

regardless of all the other features, (2) a white inside and a blue

background, and (3) a white inside and a green background.

Category two consisted of all stimuli with (1) a gray background

regardless of the other features, (2) a black inside and a blue

background, and (3) a black inside and a green background.

Two scores were obtained in each task. The first was the

number of trials it took for the observer to reach a criterion

performance level – attaining cumulatively six blocks of trials with

at least 8 out of 10 correct responses. This criterion was similar to

that used in another study [49] and was usually achieved well

before a participant reached the maximum of 200 trials. It served

as an impartial metric that allowed us to analyze the data across

observers. The second score was the average accuracy across all

the trials leading to criterion. An observer ran a maximum of 200

trials in each task if she/he failed to reach the criterion

performance level. The order of the two category learning tasks

was counter-balanced across observers in each group.

Perceptual Learning
The perceptual learning task was identical to that of [25].

Observers discriminated the orientation of a peripheral Gabor

patch embedded in visual noise while performing a central task

(Fig. 3). Following a subject keypress, a fixation display (a small

central square) appeared for 0.5 sec. Frames for the central task

and the peripheral perceptual task appeared during the same time

interval. The central task display consisted of a sequence of 3

letters and numbers with the middle letter either an S or a 5

(0.14u|0.28u) appearing at the same location as the fixation point.

The perceptual task appeared in the lower right quadrant of the

monitor, and consisted of two frames of external noise, a signal

frame with a Gabor patch tilted either left or right, and two

additional frames of external noise. The signal was a Gabor

stimulus (center frequency = 2.3 c/deg, s~0.39u.) tilted either 12

degrees top to the left or right. All noise samples in each trial were

independent samples with the same contrast (variance). The

external noise was combined with the signal through temporal

integration. Each frame appeared for 16.7 ms. After the stimulus

sequence, the subject was cued for two responses: the central task

(S vs 5) and the peripheral perceptual task (Left vs Right).

Perceptual learning of orientation discrimination was measured in

the lower right quadrant of the visual display. Auditory feedback

for both tasks followed every trial.

On each trial, random external pixel noise was chosen from a

Gaussian distribution, with one of eight levels of external noise

contrast with standard deviations 0, 0.02, 0.04, 0.08, 0.12, 0.16,

0.25, or 0.33. A 3-down-1-up staircase procedure that decreased

the signal contrast by 10% (cnz1~0:90cn) after three successive

correct responses and increased the contrast by 10%

Figure 2. Stimuli for the category learning tasks. In the rule-based task (A), only one feature is relevant for the sorting rule (inside size). In the
information-integration task (B), a combination of the two relevant features is required to classify these stimuli.
doi:10.1371/journal.pone.0009635.g002

Figure 3. Layout of the display in the perceptual learning
experiment. Subjects were asked to determine whether an S or a 5
appeared at fixation and identify the orientation of the test Gabor in the
lower-right quadrant. Eight levels of external noise (‘‘TV Snow’’) were
superimposed on the signal.
doi:10.1371/journal.pone.0009635.g003
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(cnz1~1:10cn) after every incorrect response was used to track the

threshold at 79.3% correct in each of the eight external noise

conditions.

The experiment consisted of eight training sessions, run on

separate days. Each session consisted of eight interleaved external

noise conditions and 100 trials per external noise condition and

lasted about 40 minutes. Observers ran the perceptual learning

experiment after they finished the category learning tasks.

Results

Category Learning
It took on average 112611 and 13069 trials for the WD group,

and 8664 and 10465 trials for the normal controls to reach

criterion in the rule-based and information-integration category

learning tasks, respectively (Figure 4A). Compared to the normal

controls, the WD group had significantly slower learning rates in

both rule-based and information-integration category learning

(t(56) = 2.655 and 2.895, both p,0.01). The average performance

level, calculated from all the trials leading to criterion perfor-

mance, was 75.263.1% and 66.261.7%, and 83.161.9% and

72.761.4% for the WD and control groups in the rule-based and

information-integration learning tasks (Figure 4B). The WD group

also showed significantly worse accuracy than the control group in

both category learning tasks (t(56) = 2.286 and 2.809, both

p,0.05). The pattern of results held for the one WD patient with

visible cortical pathology and the other 19 without it (all p,0.05).

For both the WD and control groups, the two forms of category

learning were however not significantly correlated (p.0.10).

Following category learning, all the subjects could correctly state

the rule they used in performing the rule-based category learning

task. In contrast, although some participants could articulate parts

of the rule in the information-integration category learning task,

none could correctly state it in its entirety.

In summary, the WD subjects exhibited significant deficits in

both category learning tasks. Performance in the two category

learning tasks was not significantly correlated in each group.

Although we can no strong inference can be made from the null

result, the pattern is nonetheless consistent with the hypothesis that

different nucleus of the basal ganglia may underlie the two forms

of category learning [45,46].

Perceptual Learning
At an average of 88.063.8% correct, the performance of the 8

WD subjects in the central task was statistically equivalent to that

of the twelve normal controls at 90.361.4% correct (p.0.50).

Using the staircase procedure, we obtained contrast threshold in

the Gabor orientation identification task in each of the eight

external noise conditions in every training session. The data are

organized in terms of threshold versus external noise contrast

Figure 4. Performance in the category learning tasks. Trial to reach criterion (A) and average performance leading to criterion (B) in rule-based
and information-integration category learning for all the WD and normal subjects. (C, D) Trial to reach criterion and average performance leading to
criterion in rule-based and information-integration category learning for the WD and normal subjects who completed both category learning and
perceptual learning tasks. (E) Magnitudes of perceptual learning in low and high external noise for 8 WD and 12 normal subjects.
doi:10.1371/journal.pone.0009635.g004
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(TvC) functions. Figure 5 shows the average threshold estimates of

each group a function of external noise level across every two

training sessions. The variation in external noise produced curves

with the typical structure of TvC functions, flat at low levels of

external noise and increasing at higher levels of external noise.

In the lowest three external noise conditions, the average

contrast thresholds of day 1/2 are 0.1260.03 and 0.0960.01 for

the WD and control subjects, respectively, with no significant

difference between them (t(18) = 1.371, p.0.10). Perceptual

learning reduced the average contrast threshold by

4.5761.22 dB for the WD subjects, and by 4.3360.40 dB for

the control subjects (Figure 4E). The two groups did not

significantly differ in the magnitude of perceptual learning in the

low external noise conditions (t(18) = 0.217, p.0.80). The time

course of perceptual learning was also not significantly different

between the two groups (all p.0.10): The average contrast

threshold reduction in every two consecutive training sessions are

2.1460.52, 1.7360.68, and 0.7160.24 in the WD group, and

3.1560.54, 0.9860.18, and 0.2060.26 in the control group.

In the highest two external noise conditions, the average

contrast thresholds of day 1/2 are 0.5660.07 and 0.4660.07 for

the WD and control subjects, respectively, with no significant

difference between them (t(18) = 0.194, p.0.30). Perceptual

learning reduced the average contrast threshold by

3.0460.74 dB for the WD group, and 4.6660.25 dB for the

control group. The magnitude of perceptual learning in the high

external noise conditions was significantly greater in the normal

group than in the WD group (t(18) = 2.425, p,0.03).

Mechanisms of Perceptual Learning
To identify the mechanisms of perceptual learning, we fit the

perceptual template model (PTM) to the TvC functions using a

least-square procedure. The perceptual template model was

initially introduced in [50] and first applied to perceptual learning

in [25,51]. An in-depth review of the external noise methods and

observer models can be found in [52].

The PTM consists of five components (Figure 6): (1) a perceptual

template (e.g., a spatial frequency filter) with a contrast gain to the

signal b that is normalized relative to its gain to the external noise,

(2) a nonlinear transducer function, which raises its input to the cth

power, (3) a Gaussian-distributed internal multiplicative noise with

mean 0 and standard deviation that is proportional to (Nm|) the

contrast energy in the input stimulus, (4) a Gaussian-distributed

additive internal noise with mean 0 and a ‘‘constant’’ standard

deviation Na, and (5) a decision process. In the PTM, accuracy of

perceptual task performance is indexed by d 0 [50]:

d 0~
bcð Þcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
2c
extzN2

m N
2c
extz bcð Þ2c

h i
zN2

a

r : ð1Þ

For a given performance level, d9, we can solve Eq. 1 to express

threshold contrast ct as a function of Next in log form:

log (ct)~
1

2c
log (1zN2

m)N
2c
extzN2

a

� �

{
1

2c
log (1=d 02{N2

m){ log (b):

ð2Þ

For an observer described by the PTM, perceptual learning

could only improve its performance via one or a combination of

three mechanisms: (1) Stimulus enhancement turns up the gain of

the perceptual template to the input (both the signal and the

external noise), modeled by multiplying Na by a factor of

Aa(k)v1:0 in the learnt condition; (2) External noise exclusion

eliminates some of the external noise by tuning the perceptual

Figure 5. Threshold versus external noise contrast (TvC) functions. Smooth curves represent predictions of the best fitting Perceptual
Template Model. Because log(0) is {?, the diagonal lines indicate that a large part of the x-axis is omitted.
doi:10.1371/journal.pone.0009635.g005
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template around the signal-valued stimulus, modeled by multiply-

ing Next by a factor of Af (k)v1:0 in the learnt condition; and (3)

Internal multiplicative noise reduction changes the contrast gain

control properties of the perceptual system, modeled by multiply-

ing Nm by a factor Am(k)v1:0 in the learnt condition. If all three

mechanisms are operative, the contrast threshold versus external

noise function for a PTM becomes:

log (ct)~
1

2c
flog½(1zA2

m(k)N2
m)A

2c
f (k)N

2c
extzA2

a(k)N2
a �

{ log½ 1
d2

{A2
m(k)N2

m�g{ log (b),

ð3Þ

where ct denotes the predicted contrast threshold, Next is the

standard deviation of external noises, d9 = 1.634 is the perceptual

sensitivity of the observer corresponding to 79.3% correct in the

two-alternative forced-choice task, and k denotes the learning

session.

Although we were fully aware that it is necessary to obtain TvC

functions at multiple performance criteria in order to fully

constrain the PTM model [53], it was impractical to collect that

amount of data with the patients in this study. We have therefore

set c = 1.62 and Am(k) = 1.0, based on the results of [25].

The best fitting PTM model accounted for 95.061.0% and

96.061.0% of the variance in the WD and normal data,

respectively. The parameters of the best fitting model are listed

in Table 1. For both groups of subjects, perceptual learning reflects

a combination of improved stimulus enhancement and external

noise exclusion, with values of Aa(4) and Af (4) after training of

0.4760.09 and 0.6860.06 in the WD group, and 0.4760.06 and

0.5260.03 in the normal group. There is no significant difference

between Aa(4)’s (t(18) = 0.031, p.0.9) but significant difference

between Af (4)’s (t(18) = 2.788, p,0.015) of the two groups. The

reduction of Af reflects external noise exclusion; it only improves

performance in the high external noise conditions. The reduction

of Aa reflects stimulus enhancement via additive internal noise

reduction; it only improves performance in the low external noise

conditions (Figure 6).

Relationship between Perceptual Learning and Category
Learning

For the eight WD and twelve normal subjects who completed

both category learning and perceptual learning tasks, a number of

additional statistical tests were performed. First, we compared

their performance in category learning. We found that the eight

Figure 6. The Perceptual Template Model. (a) The PTM. (b, c, d)
Performance signatures of the three mechanisms of perceptual learning.
doi:10.1371/journal.pone.0009635.g006

Table 1. Best fitting PTM model parameters.

Nm Na b Aa(2) Aa(3) Aa(4) Af(2) Af(3) Af(4) r2

WD CH 0.596 0.014 2.579 0.811 0.575 0.519 0.840 0.652 0.635 0.949

JW 0.593 0.007 2.743 0.744 0.611 0.561 0.695 0.672 0.655 0.981

LM 0.594 0.014 2.575 0.649 0.419 0.378 0.762 0.601 0.585 0.982

XM 0.599 0.003 1.828 0.781 0.798 0.620 0.809 0.653 0.507 0.948

XX 0.589 0.015 2.630 0.495 0.265 0.243 0.697 0.568 0.548 0.974

ZG 0.599 0.005 1.614 0.656 0.506 0.411 0.615 0.681 0.705 0.944

ZH 0.582 0.013 1.860 0.813 0.867 0.914 0.745 0.756 0.820 0.916

SX 0.606 0.051 1.285 0.423 0.134 0.106 0.766 0.818 0.998 0.886

CTRL BP 0.607 0.006 1.400 0.305 0.318 0.206 0.416 0.464 0.457 0.970

LJ 0.604 0.003 1.850 0.900 0.881 0.732 0.751 0.615 0.493 0.950

FJ 0.586 0.008 2.673 0.592 0.471 0.457 0.553 0.449 0.452 0.980

RX 0.572 0.010 2.852 0.644 0.524 0.523 0.636 0.544 0.530 0.987

PX 0.601 0.003 1.624 0.710 0.703 0.598 0.587 0.492 0.497 0.954

PZ 0.535 0.022 2.939 0.768 0.568 0.589 0.654 0.592 0.578 0.918

QZ 0.594 0.007 2.715 0.427 0.280 0.256 0.772 0.641 0.545 0.984

WY 0.589 0.014 2.702 0.438 0.343 0.415 0.808 0.715 0.725 0.962

NL 0.606 0.007 2.557 0.408 0.326 0.305 0.521 0.451 0.444 0.984

YY 0.581 0.009 2.742 0.914 0.718 0.842 0.688 0.718 0.686 0.975

ZB 0.606 0.008 2.561 0.334 0.237 0.280 0.320 0.426 0.421 0.949

ZY 0.601 0.002 1.213 0.363 0.379 0.388 0.662 0.395 0.402 0.938

doi:10.1371/journal.pone.0009635.t001
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WD subjects had much slower learning rates in both rule-based

(109610 versus 7665 trials, t(18) = 3.354, p,0.01) and informa-

tion-integration (137611 versus 10569 trials, t(18) = 2.591,

p,0.02) category learning (Figures 4CD). They also performed

with significantly less accuracy in trials leading to criterion

(77.463.2% vs 89.762.7%, t(18) = 2.930, p,0.01 ; 66.062.5%

vs 77.763.0%, t(18) = 2.798, p,0.02).

A stepwise regression analysis was used to evaluate the

relationship between the two forms of category learning and

perceptual learning in low and high external noise conditions:

PL(noise)~a|Rule Basedzb|Information Intzc: ð4Þ

The average amount of perceptual learning in the lowest three

external noise conditions and the two highest external noise

conditions were used as measures of perceptual learning. In two

separate analyses, the trials to reach criterion and the average

performance leading to criterion are used as measures of rule-

based and information-integration category learning.

The coefficients of the best fitting regression models are

listed in Table 2. Because of the relative small sample size in

both the WD and control groups, we combined data from the

two groups in the regression analysis. For perceptual learning

in low external noise, the model with a single constant term c

provided statistically equivalent fits to the data in comparison to

models with one or both of the other two regressors (p.0.20).

This was true when either the number of trials leading to

criterion or the average percent correct in both forms of category

learning was used as the regressors. On the other hand, for

perceptual learning in high external noise, the model with a

significant coefficient on information-integration category learn-

ing plus a constant, provided statistically equivalent fit to the data

in comparison to the full model with three terms (p.0.50), and a

superior fit to the data in comparison with the most reduced

model with only one constant term (p,0.025). This was true

when either the number of trials leading to criterion or the

average percent correct in both forms of category learning

was used as the regressors. Scatter plots of the magnitude of

perceptual learning versus measures of category learning are

shown in Figures 7 and 8.

Figure 7. The relationship between perceptual learning and category learning. Scatter plot of the magnitude of perceptual learning versus
performance in category learning (trial to reach criterion). The data are shown for 7 WD patients without visible cortical pathology (WD_BG, red), 1
WD patient with visible cortical pathology (WD_CT, green) and 12 normal subjects (CTRL, blue): perceptual learning in low external noise versus rule-
based learning (A), versus information-integration learning (B); perceptual learning in high external noise versus rule-based learning (C), versus
information-integration learning (D).
doi:10.1371/journal.pone.0009635.g007

Table 2. Correlation Table.

Regressors

Perceptual
Learning
Condition a b c P

Trials to reach
criterion

PL(low) 0 0 4.4260.53 1.0

PL(high) 20.0360.01 0 7.7361.02 0.001

Average Percent
Correct

PL(low) 0 0 4.4260.53 1.0

PL(high) 8.4963.01 0 22.1962.22 0.011

doi:10.1371/journal.pone.0009635.t002
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Discussion

In this study, we evaluated rule-based and information-

integration category learning and perceptual learning in both

low and high external noise environments in subjects with treated

Wilson’s disease and normal controls. The WD subjects exhibited

deficits in both forms of category learning as well as perceptual

learning in high external noise. However, their perceptual learning

in low external noise was relatively spared. There was no

significant correlation between the two forms of category learning,

nor between perceptual learning in low external noise with either

form of category learning. The pattern of results revealed a novel

and highly selective relationship between perceptual learning in

high external noise and information-integration category learning.

Perceptual learning in high external noise was only significantly

correlated with information-integration category learning, but not

with rule-based category learning.

The observed deficits of WD subjects in both forms of category

learning were largely expected, because the primary damage of

our WD subjects was in the basal ganglia, a structure that has been

known to be important for both forms of category learning

[45,46]. It is interesting that, for both the normal and the WD

patients, performance in the rule-based and information-integra-

tion category tasks was not significantly correlated. Although no

strong inference can be made from the null result, the pattern is

nonetheless consistent with the hypothesis that rule-based and

information-integration category learning may involve different

brain regions [45,46].

In high external noise environments, perceptual learning

improves observer performance by re-tuning the task-relevant

perceptual template. Re-tuning the perceptual template is

essentially a process of discovering the optimal category structure

from the sensory information for the perceptual task, which is

highly similar to the category learning process [54]. That WD

subjects learned significantly less in high external noise in the

perceptual learning task and the significant correlation between

perceptual learning in high noise and information-integration

category learning suggests that there may be a strong link between

information-integration category learning and perceptual learning

in high external noise. Damage to brain structures that are

important for information-integration category learning may lead

to poor perceptual learning in high external noise.

Perceptual learning in low external noise is accomplished by

stimulus enhancement, a process that strengthens the internal

representation of the input stimuli, independent of the task

relevance of the components in the stimuli, and does not involve

any categorization structure. That WD subjects did not exhibit

significant deficits in perceptual learning in low external noise and

the lack of significant correlation between perceptual learning in

low external noise and either forms of category learning suggests

that the brain structures damaged by the Wilson’s disease, mostly

the basal ganglia, might not be important for perceptual learning

in low external noise.

In a related line of research, it has been shown that subjects with

dyslexia exhibit selective deficits in information-integration but not

in category learning [49]. They are also selectively impaired in

Figure 8. The relationship between perceptual learning and category learning. Scatter plot of the magnitude of perceptual learning versus
performance in category learning (average performance accuracy). The data are shown for 7 WD patients without visible cortical pathology (WD_BG,
red), 1 WD patient with visible cortical pathology (WD_CT, green) and 12 normal subjects (CTRL, blue): perceptual learning in low external noise
versus rule-based learning (A), versus information-integration learning (B); perceptual learning in high external noise versus rule-based learning (C),
versus information-integration learning (D).
doi:10.1371/journal.pone.0009635.g008
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simple visual tasks in high external noise but not in low external

noise conditions [55,56].

There has been mounting evidence from psychophysics on

normal observers that stimulus enhancement and template re-

turning are two independent mechanisms of perceptual learning

[27,57,58]. The current study shows that learning in high and low

external noise conditions are differentially correlated with category

learning and impacted by brain damages in Wilson’s disease,

supporting the functional distinction between the two mechanisms. L

We speculate that the basal ganglion might be an important

brain structure involved in perceptual learning in high external

noise conditions. This is an area that has not been explored in

perceptual learning research. Future research using single or

multi-unit recording, patients, or functional imaging might help us

further elucidate the brain structures involved in perceptual

learning in human observers.
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