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3Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, 
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Abstract

Non-targeted analysis techniques provide a comprehensive approach to analyze environmental and 

biological samples for nearly all chemicals present in a given sample. One of the main 

shortcomings of current analytical methods is that they are unable to provide quantitative 

information about the chemicals in a given sample constituting an important obstacle in 

understanding environmental fate and human exposure. Herein, we present a machine learning in 
silico quantification method for chemicals analyzed using electrospray ionization (ESI). We 

considered three different datasets from different instrumental setups: i) capillary electrophoresis 

electrospray ionization-mass spectrometry (CE-MS) in positive ionization mode (ESI+), ii) liquid 

chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) in ESI+ and iii) 

negative ionization mode (ESI−). We developed and applied two different machine learning 

algorithms: a random forest (RF) and an artificial neural network (ANN) to predict the relative 

response factors (RRFs) of different chemicals based on their physicochemical properties. 

Chemical concentrations can then be calculated by dividing the measured abundance of a 

chemical, as peak area or peak height, by its corresponding RRF. We evaluated our models and 
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tested their predictive power using 5-fold cross-validation (CV) and y-randomization. Both the RF 

and the ANN models showed great promise in predicting RRFs. However, the accuracy of the 

predictions was dependent on the dataset composition and the experimental setup. For the CE-MS 

ESI+ dataset, the best model predicted measured RRFs with a mean absolute error (MAE) of 0.19 

log units and a cross-validation coefficient of determination (Q2) of 0.84 for the testing set; for the 

LC-QTOF/MS ESI+ dataset, an MAE of 0.32 and a Q2 of 0.40; and for the LC-QTOF/MS ESI− 

dataset, a MAE of 0.50 and a Q2 of 0.20. Our findings suggest that machine learning algorithms 

can be used for predicting concentrations of non-targeted chemicals with reasonable uncertainties, 

especially in ESI+, while the application on ESI− remains a more challenging problem.

Introduction

With recent technological advances in high-resolution mass spectrometry (HRMS) non-

targeted analysis (NTA) has arrived at the forefront of analytical chemistry, attracting 

attention from scientists in analytical, environmental and bioanalytical chemistry as an 

approach to more comprehensively screen environmental and biological samples. This 

approach has also attracted the attention of many environmental health scientists and 

epidemiologists who are studying the human exposome.1,2 While NTA provides a 

comprehensive approach to identify potential chemical signatures and exposures, it is 

limited as it cannot provide quantitative information. This challenge stems from the fact that 

the number of identified or tentatively identified chemicals is in the range of hundreds to 

thousands, making it difficult to definitively identify and quantify using chemical standards.
3,4 Additionally, for many identified chemicals there are no available chemical standards on 

the market.

Concentration estimates are critical when studying environmental fate and human exposure.5 

A common approach to estimate concentrations of non-targeted chemicals is calculating 

concentrations against an internal standard used for analysis6 or against multiple internal 

standards of structurally similar chemicals (quantification markers).7,8 The main weakness 

of these approaches is that they do not account for differences in ionization efficiencies 

across different chemicals. This parameter is often expressed as the relative response factor 

(RRF) of each compound, which is the ratio of a chemical’s abundance (peak area or peak 

height) to the chemical’s concentration in a given sample. Two chemicals at the same 

concentration can exhibit differences in peak areas spanning several orders of magnitude.9,10 

For example, one chemical may be detected as a small hump barely passing the 

chromatograph’s baseline, while another chemical may be detected as a large peak 

saturating the detector.9 Quantification with structurally similar chemicals may give better 

estimates than a single internal standard, however, even structurally similar compounds can 

have very different ionization efficiencies11,12 resulting in large uncertainties in 

concentration estimates.

In an early study on predicting concentrations in electrospray ionization (ESI) mass 

spectrometry (MS), Chalcraft et al.11 developed a predictive model for concentrations of a 

series of metabolites using the pH-adjusted octanol/water distribution ratio (log D), 

molecular volume (MV), absolute mobility, and effective charge of the analytes. Chalcraft et 
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al.11 observed that the two statistically significant parameters in their model were log D and 

MV. In another study, Oss et al.12 developed a predictive model for concentrations of a series 

of organic chemicals using the negative logarithm of the acid dissociation constant (pKa) in 

water, pKa in acetonitrile, gas phase basicity, molecular mass, molecular area, polar surface 

and molecular volume of the analytes. Oss et al.12 observed that pKa and MV were the two 

main driving parameters for describing and predicting the chemicals’ ionization efficiency. 

Obtaining all descriptors and assessing the accuracy of the predictions is a challenging task. 

In some cases, such as in Chalcraft et al.,11 obtaining these descriptors requires additional 

laboratory measurements. In other cases, such as in Oss et al.,12 obtaining these descriptors 

requires purchasing licenses to commercial software and/or often the predictions are not 

accompanied by an estimate of expected uncertainty. One example of open-source software 

that can be used to calculate physicochemical descriptors is Mordred, which was developed 

by Moriwaki et al.13 Mordred can calculate more than 1800 2D and 3D descriptors and it is 

freely available on GitHub (https://github.com/mordred-descriptor/mordred). Despite 

Mordred being a very comprehensive tool, the calculated descriptors are not accompanied by 

estimates of uncertainty and thus it is not possible to know if certain estimates are expected 

to contain large uncertainties.

Abraham et al.14,15 proposed a set of descriptors that can be used for predicting 

physicochemical properties. The predictive equations built with the descriptors proposed by 

Abraham et al.14,15 are commonly known as poly-parameter free energy relationships (PP-

LFERs). For a given chemical, the descriptors used to build a PP-LFER describe (i) the 

chemical’s ability to engage in London dispersion forces and dipole-induced dipole 

interactions (E), (ii) the chemical’s ability to engage in dipole-induced dipole and dipole-

dipole interactions (S), (iii) the chemical’s ability to act as a hydrogen-bond donor (A), (iv) 

the chemical’s ability to act as a hydrogen-bond acceptor (B), (v) the chemical’s McGowan 

molecular volume (V), and (vi) the chemical’s hexadecane/air partition ratio (L).14,15 The 

descriptors can be downloaded from the database of the Helmholtz Centre for 

Environmental Research (Helmholtz Centrum für Umweltforschung; UFZ; https://

www.ufz.de/lserd/) called UFZ-LSER.16 The UFZ-LSER database contains both 

experimentally determined and predicted descriptors. The predicted descriptors are 

calculated based on the structural features of a given chemical. Initially, these descriptors 

were meant to be used in predictions of partition ratios,17,18 such as the partition ratio 

between organic carbon and water (Koc) or the partition ratio between octanol and water 

(Kow), but they have also been successfully used in predictions of other physicochemical 

properties, such as the Setschenow (or salting-out) constant (Ks).19,20 It is important to note 

that the predicted Abraham descriptors are always accompanied by estimated uncertainties 

and warnings with regards to the expected quality of the descriptors. These estimates and 

warnings are given by the UFZ-LSER database together with the Abraham descriptors 

summarized in spreadsheet 1 in SI, sheet: “readme for Abraham descriptors.”

One of the shortcomings of PP-LFERs is their limited ability to cover chemicals from 

classes that were not included in the training set that the PP-LFERs were built on. For 

example, previous studies17,21 have shown some evidence that PP-LFERs that did not 

include organosilicon compounds in their training sets failed to accurately describe the 

physicochemical properties of these compounds.
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Machine learning technologies, such as random forest (RF), support-vector machine (SVM) 

and artificial neural networks (ANN), have been successful in image analysis and voice 

recognition22 and have become particularly popular with the development of Google Brain23 

and TensorFlow24 by Google. These technologies have also found applications in various 

areas of chemistry, especially in the areas of physical chemistry and cheminformatics. Some 

examples of these applications are predictions of physicochemical properties using quantum 

chemical activity/property relationships (QSAR/QSPR),25-27 predictions of quantum 

mechanical properties of molecules 28,29 and in cheminformatics for drug discovery.30 One 

important difference between machine learning and multi-linear regressions (MLRs), such 

as PP-LFERs, is that while MLRs assume that chemical structure and activity are directly 

related through a set number of descriptors, machine learning allows for that relationship to 

be formed through a series of nodes and additional descriptors created during the model 

training.

Our study aims to develop machine learning algorithms using the RF and ANN 

methodologies for predictions of RRFs, which can then be used to calculate concentrations 

of chemicals without analytical standards.

Materials and Methods

Data

We considered three different datasets for the purposes of this study: (1) a dataset with 57 

polar endogenous compounds analyzed with Capillary Electrophoresis - Electrospray 

Ionization - Mass Spectrometry (CE-MS) in positive ionization mode (ESI+) from the study 

of Chalcraft et al.,11 (2) 517 chemicals analyzed with Liquid Chromatography – Quadrupole 

– Time-Of-Flight / Mass Spectrometry (LC-QTOF/MS) in ESI+ and (3) 254 chemicals 

analyzed with LC-QTOF/MS in negative ionization mode (ESI−) from the study of Sobus et 

al.31 The methods for the sample preparation and analysis are described in detail in the 

studies of Chalcraft et al.11 and Sobus et al.31

In Chalcraft et al.,11 57 polar endogenous compounds (amino acids, amines, peptides, 

acylcarnitines, and nucleosides) (spreadsheet 1 in SI) and 1 internal standard (total n = 58) 

were diluted in methanol at six different concentration levels (2, 8, 16, 30, 50, 100 μM) with 

1.4M formic acid as a background electrolyte and were analyzed with Capillary 

Electrophoresis - Electrospray Ionization - Mass Spectrometry (CE-MS ESI+). All analyses 

were conducted in ESI+. The RRF for each chemical was represented by the slope of each 

calibration curve after fitting a linear regression through the calibration points. It is 

important to note that all calibration curves in the study of Chalcraft et al.7 were made by 

using the peak areas of the chemicals normalized to the areas of the internal standard. The 

ratio of the peak area of the chemical to the peak area of the internal standard is presented in 

that paper as the relative ion response (RIR). The RIR is related to concentration via RRF:

RRF = RIR
C (1)

where, C is the concentration of the chemical.
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In Sobus et al.,31 the chemicals were initially diluted in dimethyl sulfoxide at approximately 

0.05 mM for each chemical. Dilutions were then prepared in methanol and a buffer solution 

of HPLC water containing 2 mM ammonium formate at a ratio of 1:3 methanol:buffer 

yielding nominal concentrations of approximately 0.5, 0.1 and 0.02 μM. Aliquots of 400 μL 

of the diluted samples were then spiked with 10 μL of a solution containing stable isotope-

labeled tracers in methanol at 1 ng/μL (13C6-methyl paraben, 13C6-butyl paraben, 13C4-

periluorooctanoic acid, 13C4 15N2-Fipronil, 13C4 15N2-Fipronil sulfone, 13C5-

perfluorononanoic acid, 13C4-perfluooctanesulfonic acid, 13C2-periluorodecanoic acid, 13C3-

atrazine, D3-thiamethoxam, and D4-pyriproxyfen). Each sample was then analyzed in 

triplicate injections using LC-QTOF/MS in both ESI+ and ESI−. The RRFs for the 

chemicals from this study were calculated by dividing the chemicals’ peak areas by the 

chemicals’ concentration:

RRF = A
C (2)

where, A is the abundance (peak areas) of the chemical.

Data Analysis

Our workflow is presented schematically as a diagram in Figure 1. A detailed description of 

the data collection of each dataset is presented in the sections below.

CE-MS ESI+ dataset

We collected Abraham descriptors for all chemicals from the database of the Helmholtz 

Centre for Environmental Research (UFZ-LSER, https://www.ufz.de/lserd/)16 and first 

constructed a PP-LFER, which we compared to an MLR constructed with the 

physicochemical descriptors measured in Chalcraft et al.11 We then constructed an RF using 

the scikit-learn32 platform and an ANN using the Tensorflow24 platform. The scripting was 

done in Python.33 For the RF and the ANN, we examined three modeling scenarios; in 

scenario 1 (called “RF” and “ANN”) we used the same physicochemical descriptors as in 

the PP-LFERs; in scenario 2 (called “RF [+]” and “ANN [+]”) we expanded on the 

physicochemical properties by adding the ChemmineR34,35 physicochemical descriptors 

from the online tool ChemmineR developed by the University of California, Riverside;34,35 

and in scenario 3, we repeated the calculations of scenario 1 after removing the Abraham 

descriptors that carried warnings of high expected uncertainty. Scenario 1 helped us to 

directly compare the predictive power of PP-LFERs to that of RFs and ANNs by using the 

exact same physicochemical descriptors. Scenario 2 provided an insight as to whether we 

could improve the performance of the RF and ANN models by adding more 

physicochemical descriptors. The descriptors derived by ChemmineR are structural 

descriptors that outline how many atoms of a specific element (e.g., number of carbons, C) 

and how many specific functional groups (e.g. number of RCOOH groups) are present in a 

molecule. All the ChemmineR descriptors for all chemicals can be found in spreadsheet 1 in 

SI. Finally, scenario 3 helped us assess whether the expected errors in the Abraham 

descriptors propagate into errors in the predictions of RRFs.

Abrahamsson et al. Page 5

J Chem Inf Model. Author manuscript; available in PMC 2021 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ufz.de/lserd/


LC-QTOF/MS ESI+ and ESI− datasets

We collected Abraham and ChemmineR descriptors for all chemicals in the dataset. In 

addition, we also collected Mordred descriptors from the Mordred Python package 

developed by Moriwaki et al.13 We constructed an RF and an ANN as described for the 

Chalcraft et al. dataset and we tested four different scenarios. In scenario 1, called “RF” and 

“ANN,” we built a model using only the Abraham descriptors. In scenario 2, called “RF[+]” 

and “ANN[+],” we built a model using the Abraham descriptors with the ChemmineR 

descriptors. In scenario 3, called “RF[-]” and “ANN[-],” we repeated the calculations in 

scenario 2 after removing the Abraham descriptors that are expected to contain large 

uncertainties based on the warnings given by the UFZ-LSER database. In scenario 4, (called 

“RF[m]” and “ANN[m]”), we constructed a model using the Mordred descriptors instead of 

the Abraham and ChemmineR descriptors.

Model Validation

To test the models for their predictive power and to control for over-fitting we applied a 5-

fold cross-validation (CV). We randomly divided the dataset into training and testing sets 

following an 80/20 split. The process was repeated five times to ensure that the majority of 

the chemicals were included once in the training set and once in the testing set. This 

approach is expected to provide a more representative picture of the accuracy of the 

predictions compared to an 1-fold CV. In each one of the five replicates, the constructed 

models were used to predict the RRFs of the chemicals from the group that was left out of 

the training set (testing set). We compiled the results from all five attempts into one dataset 

and calculated the CV mean absolute error (MAECV) and the CV coefficient of 

determination (Q2). MAECV was calculated as:

MAECV =
∑i = 1

n ∣ yexp − ypred ∣
n

(3)

where, yexp is the experimental parameter, ypred is the predicted parameter and n is the total 

number of observations.

In addition to the 5-fold CV, we conducted a y-randomization analysis for the best 

performing models of each dataset to ensure that the selected descriptors have some 

predictive potential and that the models are not predicting randomly.36 For the y-

randomization analysis, we kept the descriptors (X variable) as they were, and we 

randomized the experimental RRFs (y variable). We then divided the dataset into training 

and testing sets following an 80/20 split as in the 5-fold CV, and then repeated the process 5 

times. We calculated the MAE and Q2 for both the training and the testing sets and 

compared the results to those of the original CV analysis.

The model design and compilation are described in detail in Text S1. The constructed RFs 

and ANNs with all the parameters can be found in the Jupyter Notebook files uploaded on 

GitHub (https://github.com/dimitriabrahamsson/expertocto-spork).
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Results and Discussion

CE-MS ESI+ dataset

The RF and the ANN (Fig. 2) showed the strongest predictive power of all models both in 

terms of Q2 and MAECV (Fig. 2). When comparing the Q2 values of the testing sets of the 

ANN and RF to the Q2 values of their training sets (Fig. 2), we observed a good agreement 

between the two datasets indicating that there was no substantial over-fitting for either the 

ANN or the RF model. The addition of the ChemmineR descriptors in RF and ANN (RF[+] 

and ANN[+]) slightly increased the errors in the predictions for the testing sets of both the 

RF[+] and the ANN[+] (Fig. 3) and for the training set of ANN[+] (Fig. 3). This observation 

suggests that some of the ChemmineR descriptors may not be useful in describing the 

process of electrospray ionization of the chemicals in this dataset and introduce small errors 

in the predictions (Fig. 3). However, this observation should be confirmed with larger and 

more structurally diverse datasets.

The PP-LFERs displayed predictive power similar to that of the MLRs (Fig. 2; Tables S1 

and S2). This is particularly important because if we can use the predicted Abraham 

descriptors instead of the experimentally determined descriptors of Chalcraft et al.,11 then 

this would simplify and accelerate the data collection for concentration predictions of 

chemicals in large datasets from NTA. As mentioned earlier, the predicted Abraham 

descriptors are always accompanied by estimated uncertainties and warnings with regards to 

the expected quality of the descriptors. In the CE-MS ESI+ dataset, there were seven 

chemicals, for which the predicted Abraham descriptors from the UFZ-LSER database were 

expected to contain large uncertainties (spreadsheet 1 in SI, sheets: “Abraham descriptors” 

and “readme for Abraham descriptors”). The chemicals were L-lysine, cystathionine, 

oxidized glutathione, oxytetracycline, L-ornithine, L-citrulline and L-arginine (spreadsheet 1 

in SI, sheet: “Abraham descriptors”; chemicals shown in red font). According to the 

explanation given by the researchers who compiled the UFZ-LSER database,16 the predicted 

Abraham descriptors are expected to be inaccurate because the chemicals are outside the 

domain of applicability of the UFZ-LSER models. This is often the case when the chemicals 

are structurally very distant from the chemicals in the training set of the UFZ-LSER models. 

A detailed explanation of how these warnings are generated is given in spreadsheet 1 in SI 

(sheet: “readme for Abraham descriptors”). After removing these chemicals and repeating 

the CV, the predictive power of the PP-LFER improved dramatically (Fig. 4; Tables S2 and 

S3). The Q2 of the testing set increased from 0.23 to 0.75 and the MAE decreased from 0.51 

to 0.32. These findings indicate that PP-LFERs are capable of producing accurate 

predictions of RRFs as long as the physicochemical descriptors, which the PP-LFERs are 

built on, do not contain any substantial uncertainties.

In order to understand if the addition of these chemicals to the dataset had a negative impact 

on the predictions of the RF and ANN models, we repeated the 5-fold CV with the reduced 

dataset (Fig. 4). Removing these chemicals did not seem to improve the predictions of the 

RF and ANN models. Interestingly enough, it slightly worsened the predictions of both the 

RF and the ANN models. However, the change seems to be minimal (Fig. 4). Perhaps this 
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observation is not connected to the removal of chemicals per se, but to a substantial 

reduction in the dataset (12%) and a reduction in structural variability.

Comparing our results to the results of Chalcraft et al.11 we observed that the MLR model 

from our study showed similar predictive power to the MLR model built in Chalcraft et al.,11 

who reported a mean absolute error of 40% for the predictions of the testing set. This value 

is very close to the MAECV we observed in our predictions of RRFs for the testing set using 

our MLR model, 0.42 log units (Fig. 2). Furthermore, our RF and ANN models showed a 

substantially improved accuracy compared to the MLR models built here and in Chalcraft et 

al.11 with the MAECV of RF and ANN (Fig. 2) being approximately half that of the MLR 

models (MAECV RF: 0.19, MAECV ANN: 0.19 vs MAECV MLR: 0.40).

LC-QTOF/MS ESI+ dataset

The predictions for the LC-QTOF/MS ESI+ dataset (Fig. 5) showed a decrease in accuracy 

compared to the predictions made for the CE-MS ESI+ dataset (Fig. 3). This observation is 

somewhat expected considering that the LC-QTOF/MS ESI+ dataset is substantially larger 

in size and a lot more structurally diverse than the CE-MS ESI+ dataset. While the CE-MS 

ESI+ dataset contains only 57 endogenous compounds many of which are structurally 

similar, the LC-QTOF/MS dataset contains 517 chemicals of diverse sources and structures. 

The RF models performed comparably well to the ANN models, with the RFs showing 

slightly better performance than the ANNs (Fig. 5). Contrary to the findings for the CE-MS 

ESI+ dataset, the addition of the ChemmineR descriptors to the LC-QTOF/MS datasets 

resulted in a slight improvement of the predictions increasing the Q2 and decreasing the 

MAE of the testing sets (Fig. 5A-B and E-F). This finding suggests that the addition of these 

descriptors might be of value in larger and structurally more diverse datasets compared to 

the CE-MS ESI+ dataset. In the LC-QTOF/MS ESI+ dataset there were 69 chemicals for 

which at least one descriptor was expected to contain high uncertainties according to the 

warnings given by the UFZ-LSER database (SI spreadsheet 2, sheet “Abraham descriptors 

ESI+”). Contrary to the findings from the CE-MS ESI+ dataset, removing these chemicals 

slightly improved the predictions of the models for the testing set increasing the Q2 and 

decreasing the MAE for both the RF and the ANN (Fig. 5A-C and E-G). However, also in 

this case, the effect of that change seems to be minimal. The RF built with the Mordred 

descriptors, RF [m], showed slightly better performance compared to RF, RF [+] and RF [-]. 

However, in the case of the ANN models, the ANN built with the Mordred descriptors, ANN 

[m], produced slightly less accurate predictions compared to the ANN [+] and ANN [-] 

scenarios (Fig. 5). Comparing the RF [m] with the ANN [m] models (Fig. 5), the RF [m] 

performed slightly better in terms of Q2. However, in terms of prediction errors, the MAECV 

for the testing set of the two models were very similar (Fig. 5D and H).

Comparing our findings from the LC-QTOF/MS ESI+ dataset to the study of Chalcraft et al.
11, we observed that the MAECV of the best machine learning model, RF [m] (Fig. 5D), was 

0.08 log units lower than that of the MLR of Chalcraft et al.11 It is also important to note 

that the LC-QTOF/MS ESI+ contained 518 chemicals whereas the Chalcraft et al.11 dataset 

contained only 57 chemicals. This comparison, together with the findings for the CE-MS 
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dataset, demonstrates the greater potential of RFs and ANNs compared to MLRs in 

predictions of RRFs.

LC-QTOF/MS ESI− dataset

The predictions for the LC-QTOF/MS ESI− dataset (Fig. 6) were overall less accurate than 

the predictions for LC-QTOF/MS ESI+ dataset (Fig. 5). Although the exact reason behind 

this observation remains unknown, this finding suggests that the process of negative 

ionization could not be effectively described with the physicochemical descriptors that were 

examined in this study. Overall, the RF models made slightly more accurate predictions for 

the testing set compared to the ANN models increasing the Q2 and decreasing the MAECV 

(Fig. 6). As in the case of the LC-TOF/MS ESI+ dataset, the addition of the ChemmineR 

descriptors showed a slight improvement in the predictions increasing the Q2 and decreasing 

the MAECV for both the RF and ANN models (Fig. 6A-B and E-F). In the LC-QTOF/MS 

ESI− dataset, there were 39 chemicals, for which at least one descriptor was expected to 

contain high uncertainties (SI spreadsheet 2, sheet “Abraham descriptors ESI-”). Removing 

these chemicals from the dataset resulted in slightly improved predictions for the RF model, 

RF [-], but slightly worse predictions for the ANN [-] (Fig. 6A-C and E-G). The models built 

with the Mordred descriptors, RF [m] and ANN [m], showed the best performance 

compared to the other models with the RF [m] performing better than ANN [m]. However, 

in terms of prediction errors, the MAECV of the two models were very similar (Fig. 6). 

These findings are in good agreement with the observations we made for the LC-QTOF/MS 

ESI+ dataset.

We compared our findings from the LC-QTOF/MS ESI− dataset to the study of Kruve et al.
37, which developed an MLR for predicting ionization efficiencies of chemicals analyzed 

with an ion trap mass spectrometer operated in ESI-. We observed that the MAECV of our 

best model, RF [m], was 0.02 log units higher than error reported for the testing set of the 

MLR model of Kruve et al.37 (RMSE = 0.48 log units). It is important to note here that the 

LC-QTOF/MS ESI− contained 254 chemicals, whereas the dataset of Kruve et al.37 

contained only 63 chemicals, which were structurally similar comprising three chemical 

classes: benzoic acids, phenols, and salicylic acids. This observation confirms our previous 

conclusions about the greater potential of RFs and ANNs compared to MLRs in predictions 

of RRFs.

Y-randomization

For the y-randomization analysis, we selected the best performing models from the three 

datasets (Fig. 7). In all three cases, y-randomization resulted in substantially lower Q2 values 

and increased the MAE in the testing set for the majority of the RF and the ANN models 

(Fig. 5-7). This observation supported our findings from the 5-fold CV analysis and 

confirmed that the selected physicochemical descriptors have predictive importance and that 

the RF and ANN models do not predict randomly. The largest differences were observed for 

the CE-MS ESI+ dataset, where the MAE of the testing set increased from 0.19 to 0.56 for 

the RF model and from 0.19 to 0.61 for the ANN model (Fig. 7 and 4). Interestingly enough, 

even for the negative ionization data, LC-QTOF/MS ESI-, where the predictions carried 
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substantial errors, randomizing the y-variable increased the MAE of the testing set from 0.54 

to 0.63 (Fig 7H and 6H).

Limitations and future considerations

To our knowledge, this is the first study to evaluate applications of machine learning to in 

silico quantification of chemicals when using ESI MS. One limitation of our approach that 

needs to be taken into consideration is that non-targeted analysis is conducted using various 

types of instruments such as CE-MS, QTOF/MS, ion trap MS, and Orbitrap MS, and the 

ionization efficiencies of chemicals may vary depending on the instrument used for analysis.
38 Additionally, different analytical methods and different sample matrices, such as blood, 

urine or water, are also known to influence ionization efficiency.39-41

For these reasons, when applying our methodology, it is important to note that safe 

predictions can only be made for the specific instrument type and analytical method used 

when building the models. Thus, validation of the constructed models with an external 

dataset from a different instrument and/or a different method is not expected to provide 

useful conclusions. In future studies, we aim to test our quantitative models using various 

datasets of structurally diverse chemicals from various instruments and various analytical 

methods to expand on the applicability of our models.

One shortcoming when working with machine learning algorithms is that it is often difficult 

to interpret features from the developed algorithm making it hard to draw useful conclusions 

about the influence of each feature on the predictions. Nonetheless, machine learning 

algorithms have shown great promise in providing concentration estimates for chemicals 

when it is not feasible to quantify these using analytical standards or when analytical 

standards are not commercially available. We hope with our study that we can make a 

contribution to the ongoing discussion about non-targeted analysis and the in silico 

quantification of chemicals and to help bridge the gap between non-targeted analysis, 

environmental fate, and human exposure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Workflow diagram for the collection of the experimental data from three independent 

datasets (CE-MS ESI+, LC-QTOF/MS ESI+, and LC-QTOF/MS ESI−), the 

physicochemical descriptors that were used as input parameters for the models (Chalcraft 

descriptors: MV, log D, μo, zeff, Abraham descriptors, ChemmineR descriptors, and 

Mordred descriptors) the models used for each dataset (MLR, PP-LFER, RF, and ANN), the 

output of the model (RRF) and the model validation (5-fold cross-validation and y-

randomization).
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Figure 2: 
Results of the 5-fold CV for the CE-MS ESI+ dataset. (A): MLRs built with the 

experimentally determined physicochemical descriptors from Chalcraft et al.,11 (B): PP-

LFER, (C): RF and (D): ANN built using the Abraham physicochemical descriptors.9,10 The 

5-fold CV was conducted by randomly dividing the dataset into training and testing sets 

following an 80/20 split, building the model using the training set and testing it using the 

testing set. The process was repeated five times for each model and the models were 

assessed based on the CV mean absolute error (MAECV) of the predictions and the CV 

coefficient of determination (Q2).
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Figure 3: 
Results of the 5-fold CV for the CE-MS ESI+ dataset. A and B: Training and testing sets of 

RF and ANN models built using only the Abraham physicochemical descriptors. C and D: 

RF [+] and ANN [+] models built using both the Abraham and the ChemmineR descriptors. 

The 5-fold CV was conducted by randomly dividing the dataset into training and testing sets 

following an 80/20 split, building the model using the training set and testing it using the 

testing set. The process was repeated five times for each model and the models were 

assessed based on the CV mean absolute error (MAECV) of the predictions and the CV 

coefficient of determination (Q2).
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Figure 4: 
Results of the 5-fold CV for the CE-MS ESI+ dataset. A, B and C: Training and testing sets 

of the models built using the Abraham physicochemical descriptors before removing the 

compounds (n=7) for which at least one descriptor was expected to be inaccurate. D, E, and 

F: Training and testing sets after removing the seven compounds. The 5-fold CV was 

conducted by randomly dividing the dataset into training and testing set following an 80/20 

split, building the model using the training set and testing it using the testing set. The 

process was repeated five times for each model and the models were assessed based on the 

CV mean absolute error (MAECV) of the predictions and the CV coefficient of 

determination (Q2).
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Figure 5: 
5-fold CV analysis for the LC-QTOF/MS ESI+ dataset for scenario 1 (only Abraham 

descriptors; A and E), scenario 2 (Abraham and ChemmineR descriptors; B and F), scenario 

3 (Abraham and ChemmineR without high-risk descriptors; C and G) and scenario 4 

(Mordred descriptors; D and H). The top panels (A-D) present the calculations for the RF 

models and the bottom panels (E-H) present the calculations for the ANN models. The 5-

fold CV was conducted by randomly dividing the dataset into training and testing set 

following an 80/20 split, building the model using the training set and testing it using the 

testing set. The process was repeated five times for each model and the models were 

assessed based on the CV mean absolute error (MAECV) of the predictions and the CV 

coefficient of determination (Q2).
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Figure 6: 
5-fold CV analysis for the LC-QTOF/MS ESI− dataset for scenario 1 (only Abraham 

descriptors; A and E), scenario 2 (Abraham and ChemmineR descriptors; B and F), scenario 

3 (Abraham and ChemmineR without high-risk descriptors; C and G) and scenario 4 

(Mordred descriptors; D and H). The top panels (A-D) present the calculations for the RF 

models and the bottom panels (E-H) present the calculations for the ANN models. The 5-

fold CV was conducted by randomly dividing the dataset into training and testing sets 

following an 80/20 split, building the model using the training set and testing it using the 

testing set. The process was repeated five times for each model and the models were 

assessed based on the CV mean absolute error (MAECV) of the predictions and the CV 

coefficient of determination (Q2).
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Figure 7: 
Y-randomization for the best performing models for both the CE-MS ESI+ and the LC-

QTOF/MS ESI+ and ESI− datasets. A and B: RF and ANN for the CE-MS ESI+ dataset 

using the Abraham descriptors. C and D: RF [+] and ANN [+] for the LC-QTOF/MS ESI+ 

dataset using the Abraham and ChemmineR descriptors. E and F: RF [m] and ANN [m] for 

the LC-QTOF/MS ESI+ dataset using the Mordred descriptors. G and H: RF [m] and ANN 

[m] for the LC-QTOF/MS ESI− dataset using the Mordred descriptors. For the y-

randomization, we kept the X variable as it was and we randomized the y-variable. We 

divided the dataset into training and testing set following an 80/20 split, building the model 

using the training set and testing it using the testing set. The process was repeated five times 

for each model, as for the 5-fold CV, and the models were assessed based on the CV mean 

absolute error (MAECV) of the predictions and the CV coefficient of determination (Q2).

Abrahamsson et al. Page 20

J Chem Inf Model. Author manuscript; available in PMC 2021 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Materials and Methods
	Data
	Data Analysis
	CE-MS ESI+ dataset
	LC-QTOF/MS ESI+ and ESI− datasets
	Model Validation

	Results and Discussion
	CE-MS ESI+ dataset
	LC-QTOF/MS ESI+ dataset
	LC-QTOF/MS ESI− dataset
	Y-randomization
	Limitations and future considerations

	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:



