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ABSTRACT OF THE DISSERTATION

On the Robustness of Neural Network:

Attacks and Defenses

by

Minhao Cheng

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Cho-Jui Hsieh, Chair

Neural networks provide state-of-the-art results for most machine learning tasks. Unfortu-

nately, neural networks are vulnerable to adversarial examples. That is, a slightly modified

example could be easily generated and fool a well-trained image classifier based on deep neural

networks (DNNs) with high confidence. This makes it difficult to apply neural networks in

security-critical areas.

To find such examples, we first introduce and define adversarial examples. In the first

part, we then discuss how to build adversarial attacks in both image and discrete domains.

For image classification, we introduce how to design an adversarial attacker in three different

settings. Among them, we focus on the most practical setup for evaluating the adversarial

robustness of a machine learning system with limited access: the hard-label black-box attack

setting for generating adversarial examples, where limited model queries are allowed and only

the decision is provided to a queried data input. For the discrete domain, we first talk about

its difficulty and introduce how to conduct the adversarial attack on two applications.

While crafting adversarial examples is an important technique to evaluate the robustness
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of DNNs, there is a huge need for improving the model robustness as well. Enhancing model

robustness under new and even adversarial environments is a crucial milestone toward building

trustworthy machine learning systems. In the second part, we talk about the methods to

strengthen the model’s adversarial robustness. We first discuss attack-dependent defense.

Specifically, we first discuss one of the most effective methods for improving the robustness

of neural networks: adversarial training and its limitations. We introduce a variant to

overcome its problem. Then we take a different perspective and introduce attack-independent

defense. We summarize the current methods and introduce a framework-based vicinal risk

minimization. Inspired by the framework, we introduce self-progressing robust training.

Furthermore, we discuss the robustness trade-off problem and introduce a hypothesis and

propose a new method to alleviate it.

iii



The dissertation of Minhao Cheng is approved.

Amit Sahai

Mani Srivastava

Kai-Wei Chang

Cho-Jui Hsieh, Committee Chair

University of California, Los Angeles

2021

iv



To my parents

v



TABLE OF CONTENTS

1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

I Adversarial Attacks 7

2 Adversarial Attack on Image Classi�cation : : : : : : : : : : : : : : : : : : 9

2.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Distance Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 White-box Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Soft-label Black-box Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Hard-label Black-box Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Difficulty of Hard-label Black-box Attacks . . . . . . . . . . . . . . . 17

2.4.2 Opt-attack: A Query-Efficient Hard-label Black-box based on Opti-

mization Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 Sign-OPT: Using Gradient Sign to Further Gain Query Efficiency . . 24

2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Adversarial Attacks on Discrete Domain : : : : : : : : : : : : : : : : : : : : 45

3.1 Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with

Adversarial Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.2 Handling Discrete Input Space . . . . . . . . . . . . . . . . . . . . . . 49

vi



3.1.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.5 Analysis and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 AdvAgent: Evaluating and Enhancing the Robustness of Dialogue Systems . 57

3.2.1 Competitive Negotiation Dialogues . . . . . . . . . . . . . . . . . . . 57

3.2.2 Proposed Black-box Attack Algorithms . . . . . . . . . . . . . . . . . 61

3.2.3 Proposed White-box Attack Algorithms . . . . . . . . . . . . . . . . 63

3.2.4 Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.6 Analysis and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 72

II Adversarial defenses 73

4 Attack-dependent Robust Training : : : : : : : : : : : : : : : : : : : : : : : 75

4.1 Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 CAT: Customized Adversarial Training for Improved Robustness . . . . . . . 78

4.2.1 Auto-tuning Perturbation Strength for Adversarial Training . . . . . 78

4.2.2 Adaptive Label Uncertainty for Adversarial Training . . . . . . . . . 79

4.2.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Attack-independent Robust Training : : : : : : : : : : : : : : : : : : : : : : 90

vii



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 General Framework for Formulating Robust Training . . . . . . . . . . . . . 91

5.3 SPROUT: Scalable Robust and Generalizable Training . . . . . . . . . . . . 92

5.3.1 Self-Progressing Parametrized Label Smoothing . . . . . . . . . . . . 93

5.3.2 Gaussian Data Augmentation and Mixup . . . . . . . . . . . . . . . . 95

5.3.3 SPROUT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Understanding Robustness Trade-o� for Generalization : : : : : : : : : : 111

6.1 Preliminary and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Adversarial Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1 Batch Normalization Acts as Adversarial Masking . . . . . . . . . . . 114

6.2.2 Controlling Robustness Trade-off via Adversarial Masking . . . . . . 117

6.3 Improving Model Generalization via RobMask . . . . . . . . . . . . . . . . . 118

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 126

7.1 Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2 Adversarial Defenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

viii



LIST OF FIGURES

1.1 Illustration on adversarial examples . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 The di�culty of hard-label black-box attack . . . . . . . . . . . . . . . . . . . . 18

2.2 Opt-attack boundary-based reformulation illustration . . . . . . . . . . . . . . . 19

2.3 Examples of decision boundary and its corresponding function after reformulation 20

2.4 Single query oracle illustration to estimate gradient sign . . . . . . . . . . . . . 24

2.5 Hard-label attack: Experiments on comparison between Sign-OPT and SVM-OPT29

2.6 Hard-label attack: Experiments on untargeted attack . . . . . . . . . . . . . . . 30

2.7 Hard-label attack: Experiments on targeted attack . . . . . . . . . . . . . . . . 30

2.8 Hard-label attack: Experiments on CIFAR10 about success rate . . . . . . . . . 31

2.9 Examples of Sign-OPT and OPT targeted attack . . . . . . . . . . . . . . . . . 32

4.1 Illustration on why adversarial training works bad on uniformly large� . . . . . 78

4.2 CAT: Loss landscape comparison of di�erent adversarial training methods . . . 87

5.1 SPROUT: Multi-dimensional performance comparison of four training methods

using VGG-16 network and CIFAR-10 dataset. . . . . . . . . . . . . . . . . . . 93

5.2 SPROUT: Experiments on CIFAR-10 under PGD-̀1 attack . . . . . . . . . . . 98

5.3 SPROUT: Experiments on CIFAR-10 under C&W-̀2 attack . . . . . . . . . . . 99

5.4 SPROUT: Loss landscape comparison of di�erent training methods . . . . . . . 101

5.5 SPROUT: Experiments on di�erent combinations of the modules . . . . . . . . 104

5.6 SPROUT: Experiments for ablation study . . . . . . . . . . . . . . . . . . . . . 105

5.7 SPROUT: Experiments on the network width . . . . . . . . . . . . . . . . . . . 106

5.8 SPROUT: correlation on the learned� parameter on CIFAR-10 and VGG-16. . 107

ix



5.9 SPROUT: Experiments on hyperparameters sensitivity and C&W-`1 attack . . 108

6.1 Investigating batch statistics with and without adversarial �ne-tuning . . . . . . 114

6.2 Illustration of the Adversarial Masking e�ect . . . . . . . . . . . . . . . . . . . . 116

6.3 Illustration of Adversarial Masking hypothesis and RobMask . . . . . . . . . . . 117

x



LIST OF TABLES

1.1 Adversarial examples in text classi�cation . . . . . . . . . . . . . . . . . . . . . 2

2.1 Opt-attack: Experiments for untargeted attack on gradient boosting decision tree. 33

2.2 Hard-label attack: Experiments on untargeted attack . . . . . . . . . . . . . . . 35

3.1 Seq2sick: Statistics of the datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Seq2sick: Experiments on non-overlapping attack in text summarization . . . . 53

3.3 Seq2sick: Experiments on targeted attack in text summarization . . . . . . . . . 54

3.4 Seq2sick: Experiments on attacks in machine translation . . . . . . . . . . . . . 55

3.5 Seq2sick: Perplexity score for adversarial example . . . . . . . . . . . . . . . . . 55

3.6 Seq2sick: Machine translation adversarial examples. . . . . . . . . . . . . . . . . 57

3.7 Seq2sick: Text summarization adversarial examples using non-overlapping method 58

3.8 Seq2sick: Text summarization adversarial examples using targeted keywords method59

3.9 Competitive negotiation dialogue generated between agent and human. . . . . 60

3.10 AdvAgent: Experiments on negotiation task evaluation with di�erent adversarial

agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.11 AdvAgent: Dialogue example generated by black-box RL attack agent . . . . . 69

3.12 AdvAgent: Dialogue example generated by reactive attack agent . . . . . . . . . 70

3.13 AdvAgent: Dialogue example generated by RA+PA+DA attack agent . . . . . . 70

3.14 AdvAgent: Experiments on negotiation task evaluation with di�erent adversarial

trained agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.15 AdvAgent: Experiments on negotiation task evaluation di�erent choices ofn . . 72

4.1 In
uence of di�erent �xed � values used in adversarial training . . . . . . . . . . 77

xi



4.2 CAT: Experiments on VGG-16 models trained by various defense methods . . . 83

4.3 CAT: Experiments on Wide Resnet models trained by various defense methods . 84

4.4 CAT: Experiment on transfer attack on CIFAR-10 dataset . . . . . . . . . . . . 86

4.5 CAT: Experiment on transfer attack on Restricted Imagenet dataset . . . . . . . 86

4.6 CAT: Experiment on ablation study . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Summary of robust training methods using VRM formulation . . . . . . . . . . 92

5.2 SPROUT: Experiments on CIFAR-10 under transfer attack . . . . . . . . . . . . 100

5.3 SPROUT: Experiments on ImageNet under PGD-`1 attack . . . . . . . . . . . 100

5.4 SPROUT: Experiments under invariance tests . . . . . . . . . . . . . . . . . . . 103

5.5 SPROUT: Experiments on training time . . . . . . . . . . . . . . . . . . . . . . 103

5.6 SPROUT: Exact performance metrics . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 SPROUT: Experiments under PGD-̀1 attack using di�erent number of random

starts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.8 SPROUT: Experiment under PGD-̀ 1 random targeted attack on ImageNet and

ResNet-50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.9 SPROUT: Average pair-wise cosine similarity of the three modules . . . . . . . 110

6.1 AdvMask: Experiment on ResNet-18 models trained under di�erent settings on

CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 AdvMask: Experiment on di�erent combination coe�cient p on CIFAR-10 with

ResNet-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 AdvMask: Experiments on CIFAR-10/100 datasets . . . . . . . . . . . . . . . . 121

6.4 AdvMask: Experiments on ImageNet datasets . . . . . . . . . . . . . . . . . . . 122

xii



6.5 AdvMask: Experiments on di�erent levels of PGD`1 attacks and AutoAttack on

CIFAR-10 with ResNet-18 architecture . . . . . . . . . . . . . . . . . . . . . . . 123

6.6 AdvMask: Experiment on ablation study . . . . . . . . . . . . . . . . . . . . . . 125

xiii



ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Cho-Jui Hsieh. When I started my

Ph.D. study, I have little knowledge about machine learning and struggled to �nd a research

direction. From the �rst day, Cho has shown and guided me how to conduct machine learning,

�nd new ideas and formalize the idea into a successful project. It is impossible for me to

�nish my Ph.D. study with him de�nitely. I am really grateful and enjoy the time working

with him.

I would also thank all of my collaborators throughout the years for the work we have

done and my growth as a researcher. Especially, I want to thank Pin-Yu Chen for guiding

me into the �eld of adversarial machine learning and being a caring mentor for my internship

at IBM Research. I thank Xiaocheng Tang, Wei Wei, Jinfeng Yi, Sijia Liu. All of you are

tremendously knowledgeable and taught me so much.

Many thanks as well to both the current and past members of Cho's Lab both in UC

Davis and UCLA. I am grateful to spend a fruitful and enjoyable time with you. Special

thanks to my close collaborators Huan Zhang, Xuanqing Liu, Yao Li, Xiangning Chen, and

Ruochen Wang. I wish you have great success in the future career!

Finally, my family and friends have been the strongest support throughout my Ph.D.

study. It is your encouragement and unconditional support that enabled me to pursue this

journey. I would thank my cousin Hongyang Chen who let me �rst know what scienti�c

research is and endless support from the beginning to the end of my graduate study. Also,

I cannot express more gratitude to my parents so that I dedicate this thesis to them. It is

you that encouraged me to pursue my dreams from my childhood, help me overcome any

di�culties when I was growing up, and continues to be my greatest source of strength.

xiv



VITA

2015 B.S. (Computer Science and Technology), University of Electronic Science

and Technology of China.

2015{2018 Teaching Assistant, Computer Science Department, UC Davis.

2015{2018 Research Assistant, Computer Science Department, UC Davis.

2018{present Teaching Assistant, Computer Science Department, UCLA.

2018{present Research Assistant, Computer Science Department, UCLA.

xv



CHAPTER 1

Introduction

It has been shown that neural networks achieve state-of-art results in nearly every task in

both computer vision and natural language processing. Moreover, extensive use of deep

learning-based applications can be seen in safety and security-critical environments, such as

self-driving cars, malware detection, drones, and robotics where the security requirement is

crucial. These developments make security aspects of machine learning increasingly important.

However, recently, it has been shown that neural networks are vulnerable to adversarial

examples (SVI16). For example, a slightly modi�ed image can be easily generated and fool a

well-trained image classi�er based on DNNs with high con�dence (GSS15; CW17; ACW18).

As shown in Figure 1.1, a bagle image could be turned into a piano classi�ed by neural

networks model by only adding a very small human imperceptible perturbation. This problem

may get worse if a stop-sign could be recognized as an irrelevant object in the self-driving car

system. Similar results could be observed in other domains as well. Table 1.1 has shown a

neural network-based text classi�cation model could be easily fooled with only changing a

single character. The original text is classi�ed as world news with 57% con�dence. However,

after changing d in "mood" to P, the classi�cation result becomes Sci/Tech news.

Consequently, the inherent weakness of lacking robustness to adversarial examples for

DNNs brings out serious security concerns. Since then, a lot of methods have been proposed

to produce those adversarial examples and improve the model's abilities to counter such

examples. Speci�cally, given a victim neural network model and a correctly classi�ed example,

an adversarial attack aims to compute a small perturbation such that with this perturbation

1




	Introduction
	I Adversarial Attacks
	Adversarial Attack on Image Classification
	Problem Setting
	Distance Metric

	White-box Adversarial Attacks
	Soft-label Black-box Attacks
	Hard-label Black-box Attacks
	Difficulty of Hard-label Black-box Attacks
	Opt-attack: A Query-Efficient Hard-label Black-box based on Optimization Approach
	Sign-OPT: Using Gradient Sign to Further Gain Query Efficiency

	Experimental Results
	Proofs

	Adversarial Attacks on Discrete Domain
	Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Adversarial Examples
	Problem Setting
	Handling Discrete Input Space
	Experimental Results
	Empirical Results
	Analysis and Discussions

	AdvAgent: Evaluating and Enhancing the Robustness of Dialogue Systems
	Competitive Negotiation Dialogues
	Proposed Black-box Attack Algorithms
	Proposed White-box Attack Algorithms
	Adversarial Training
	Experimental Results
	Analysis and Discussions



	II Adversarial defenses
	Attack-dependent Robust Training
	Adversarial Training
	Limitation

	CAT: Customized Adversarial Training for Improved Robustness
	Auto-tuning Perturbation Strength for Adversarial Training
	Adaptive Label Uncertainty for Adversarial Training
	Theoretical Analysis
	Experimental Results
	Proofs


	Attack-independent Robust Training
	Introduction
	General Framework for Formulating Robust Training
	SPROUT: Scalable Robust and Generalizable Training
	Self-Progressing Parametrized Label Smoothing
	Gaussian Data Augmentation and Mixup
	SPROUT Algorithm
	Experimental Results


	Understanding Robustness Trade-off for Generalization
	Preliminary and Related Work
	Adversarial Masking
	Batch Normalization Acts as Adversarial Masking
	Controlling Robustness Trade-off via Adversarial Masking

	Improving Model Generalization via RobMask
	Experimental Results

	Conclusion
	Adversarial Attacks
	Adversarial Defenses
	Future Directions



