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Abstract 
 
Conceptual learning in mathematics involves more than 
getting to the right answer.  Recent efforts in math education 
reform have focused on having students work in groups on 
open-ended projects that are based in realistic contexts. We 
extend previous analyses with hypotheses about conceptual 
and interactional aspects of understanding and solving 
problems by groups. The conceptual hypothesis focuses on 
integration of information in the group’s situation model and 
its problem model. The interactional hypotheses involve 
patterns of interaction that make it easy or hard for the group 
to open up a discussion o f assumptions in its reasoning, and 
that make the group accountable to a wider audience for 
explaining relations between the situations and mathematical 
operations involved in their solutions.  Regarding educational 
practice, these findings highlight a way in which student 
groups must coordinate their conceptual and interactional 
work to arrive at satisfactory solutions to the problems posed.  
The present study suggests the importance of students in 
these environments not only connecting the contextual 
situation and the attending mathematics, but also 
reconsidering the situation in light of their new mathematical 
understanding (bringing the mathematics back into play in 
their understanding of the situation).  Interactional patterns in 
a group make this relatively easier or harder, and this must be 
accounted for in implementing new curricula and conducting 
teacher education. 

 
Introduction 

 
When a group works together on a problem involving 
mathematics, how does that work get done?  How does the 
group arrive at its understanding of the problem on which 
they are working?  How do they go about conducting the 
work?  What happens when someone questions what 
another member of the group is doing or proposing to do?  
The person questioned may offer an explanation that 
justifies the claim or action. Alternatively, the group might 
collectively take up the question, and construct a new 
understanding.   Or the question could be ignored, 
deflected, or dismissed. 

When students are involved in solving open-ended 
mathematics problems without one correct answer, it’s not 
immediately obvious when an error has been made.  So 
when a mistake is recognized by a member of a group, how 
does that happen?  This paper reports results from an 
analysis of a student group engaged in a mathematical 

modeling unit. We present two episodes in which the group's 
problem solving involved mistaken assumptions.  In one 
episode the group identified and corrected the mistake, but 
in the other they did not.  In this paper we illustrate how a 
mistake was recognized and resolved, and how that differed 
from more common instances in which mistakes are not 
corrected. Implications for cognitive theory and for the 
design of learning environments are discussed. 

 
An Interactional Aspect of Reasoning 
The interactional aspect of activity that we focus on involves 
explanatory practices. We develop our analysis using the 
schema of conversational contributions provided by Clark 
and Schaefer (1989) and adapted for analyzing discourse in 
problem solving by Greeno and Engle (1995). In this 
schema, each contribution to the process of understanding 
and solving a problem includes a presentation of information 
or action and an acceptance, resulting in grounding the 
contribution in the participants' mutual understanding.  

In much ordinary discourse, explanations occur mainly 
when someone questions or disagrees with something that 
someone else says or does (McLaughlin, Cocy & Reed, 
1992). In Clark and Schaefer’s scheme, occasions for 
explanation often arise when one participant presents some 
information and another other participant responds with a 
question, a challenge, or an alternative. When this happens, 
the group can take up the question, challenge, or the 
suggested alternatives. This "taking up" involves a kind of 
negotiation in which the question or challenge may be 
resolved, one of the alternatives may be chosen, or the group 
may leave the issue with the understanding that their 
uncertainty or disagreement remains. In such a negotiation, 
explanations may occur frequently between group members. 

The discourse patterns of different groups or of groups 
in different situations vary in how open they are to 
presenting and considering questions, challenges, or 
alternatives. A presentation provides a possible continuation 
of a trajectory in the activity. A question, challenge, or 
alternative proposal presents a potential diversion from that 
trajectory, and the resolution may bring about a change in 
the group’s direction. It is reasonable—perhaps necessary—
for groups to maintain some level of inertia in their 
interactions in order to enable them to function productively. 
The amount of that inertia can vary depending on which 
participant has the floor. It is easier to challenge and 
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question some participants than others, and some 
participants are more likely than others to discuss an issue 
rather than to forge ahead, ignoring the intrusion, or to 
simply give a justificatory explanation.  

Mathematics educators such as Lampert (e.g., 1990) 
and Cobb (e.g., Cobb Yackel & Wood, 1992) have 
emphasized the importance of students' developing practices 
of explanatory discourse that support valid reasoning and 
understanding in mathematics. Cobb and Yackel (1996) 
distinguished between social norms, sociomathematical 
norms, and mathematical practices in the activity patterns of 
mathematics classrooms. Social norms, or participation 
structures (Erickson, 1986; Lampert, 1990), include the 
extent to which participants expect each other to provide 
explanations and conduct their conversations so that it is 
easy to present questions, challenges, or alternative 
proposals and have them taken up. Sociomathematical 
norms include what counts as acceptable and valued 
mathematical explanation. Mathematical practices include 
methods that are established as acceptable without need for 
explanation. 

 
A Conceptual Aspect of Reasoning 
The conceptual activity that we focus on involves the 
coordination of cognitive resources from different 
conceptual domains in activities of reasoning. Like 
heterogeneous reasoning (e.g., Stenning & Sommerfeld, this 
volume), the cognitive process that we consider involves 
reasoning that is informed by different kinds of information 
sources. In heterogeneous reasoning, the sources are 
different representations (e.g., a diagram and a set of logical 
formulas). In the reasoning that we observed, the 
information sources were from different conceptual 
domains—one primarily involving ecology and the other 
primarily involving mathematics. 

In professional practices that use mathematics, such as 
architecture or scientific research (e.g., Hall & Stevens, 
1996), the integration of information drawn from 
mathematics and another domain is often seamless; often 
one cannot be understood without the other. This ubiquitous, 
implicit coordination of mathematics with another 
conceptual domain informs professionals' evaluations of 
their work, including identification of mistakes. 

In school problem solving, the coordination of 
mathematics with other domains is often more problematic. 
In a study of primary-grade students solving word arithmetic 
problems, Kintsch and Greeno (1985) hypothesized two 
forms of understanding that they called situation models 
(following Kintsch & van Dijk, 1978), and problem models. 
According to this hypothesis, solving a mathematical 
problem includes understanding properties and relations of 
objects and events in the problem (the situation model), and 
using that information to construct an understanding in 
mathematical terms (the problem model). The problem 
model is often supported by material representations such as 
equations, which aid students in carrying out appropriate 
mathematical procedures. Nathan, Kintsch, & Young (1992) 

hypothesized that difficulty in forming a model of a situation 
and coordinating that situation with a problem model is a 
significant impediment to students' success in learning 
algebra. They designed an interactive computer system that 
supports students' construction of algebra problem situations 
and makes relations needed for the problem model salient. 
Use of this program facilitated students' problem solving and 
learning. 

 
Learning Environment 

 
The curriculum materials in this study came from the Middle 
school Mathematics through Applications Project (MMAP), 
which was organized as a design experiment (Brown, 1992; 
Collins, 1992). The design team, housed at the Institute for 
Research on Learning at Stanford, included teachers and 
curriculum developers as well as cognitive science 
researchers. The team developed a middle-school 
mathematics curriculum in which students work in groups to 
solve extensive design problems using mathematics 
(Goldman, Moschkovich, & MMAP, 1995).  Students work 
in interactive learning environments that are middle-school 
aged versions of design work in architecture, population 
biology, cryptography, or cartography. The purpose of the 
curriculum is to have students use math to address problems 
situated in non-mathematical contexts, often with the 
assistance of computer applications. 

The data we analyzed come from an 8th grade MMAP 
classroom in the San Francisco Bay Area.  They were 
collected by Rogers Hall and his colleagues (Hall, 1999; 
Hall, this volume). In the approximately 30-day unit we 
discuss, called Guppies, students created mathematical 
models of biological population growth.  For their study, 
Hall and colleagues had collaborated with the teacher in 
designing a revision of the unit that had been taught and 
observed earlier.  This revision included further emphasis 
on how to construct mathematical models of population 
growth and about the exponential functions that underlie 
them.  In addition, they included more explicit attention to 
the relation between assumptions about guppies’ 
reproduction and parameters of the mathematical model.  
Our analysis in this paper focuses on one group of students 
(Manuel, Lisa, Kera & Ned) whose improvement on 
pre/post assessments placed them about midway in learning 
of the focus groups videotaped by Hall. 
 

Analysis 
 
We examine two episodes from a videotape record of one 
student group. These episodes were chosen because each of 
them included a proposal for a move in the problem space 
that was incorrect.  However, in one case the group 
identified the error and corrected it, while in the other the 
group did not identify the error, but instead proceeded using 
a flawed piece of information.  We explain this difference 
between the successful episode and the unsuccessful one 
with two hypotheses about collaborative understanding and 
problem solving in interaction. 
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First, we hypothesize that the interaction of the group 
included a kind of threshold for taking up questions, 
challenges, and alternative proposals that could change the 
course of activity. Specifically, we hypothesize that 
detection of a misalignment between the group's situation 
model and its problem model could occur by a participant's 
questioning of an operation that was proposed or performed. 
Both episodes began with an operation initiated by one 
participant. In the first episode, another participant  
presented a new interpretation of the situation (which we 
hypothesize was based on her understanding of the situation 
model), which illustrated that the current operation was 
incorrect. In the second episode this participant questioned 
the initiated operation and expressed a lack of understanding 
of it.  The first of these episodes resulted in the group 
changing their mathematical approach to accurately reflect 
their new understanding. In the second episode, the group 
did not change the operation it was carrying out. We 
hypothesize, then, that at least in these two cases, presenting 
a persuasive interpretation based on a situation model was 
sufficient to bring about a change, while merely expressing 
uncertainty and lack of understanding of the operation was 
not. 

Second, we hypothesize that in both episodes the initial 
error involved an inadequate alignment between what the 
participants understood about the world of guppies (their 
situation model) and the mathematics (their problem 
model).  That is, the students either did not attend to all the 
relevant details in the text of the problem when formulating 
their situation model, or they did not attend to all of the 
details of the situation model when formulating the problem 
model.  This is consistent with the findings of Nathan, 
Kintsch & Young (1992), who suggested that when 
numbers are abstracted from their context, it is possible for 
students to perform operations that aren’t faithful to the 
situations they are meant to represent (cf Hall et al., 1989). 
However, such mistakes can be recognized when the 
context the math is supposed to represent is considered, 
often using a simulation of some type.  In the first episode 
such a simulation occurred, which led to a 
reconceptualization of both the problem and situation 
models.  In the second episode however, the problem and 
situation models were not integrated, and the mistake was 
not recognized.  It is important to note that we do not 
believe that situation models and problem models are static 
states, but that they ideally develop in coordination with 
each other in a recursive process.  We suggest that although 
mathematics problems can be completed successfully 
without coordination of problem and situation models, 
integration of the two can highlight when mistakes have 
been made, leading to more successful problem solving. 
 
Episode 1 - Pretest  
Our first episode comes from the pretest in which the 
students were trying to answer the question: “Given an 
initial population of twenty mice who reproduce every 
season, how large will the population be at the end of two 
years?”  The students had decided that each mouse couple 

would have four babies during each breeding season, and 
that the mice would reproduce eight times in four years. 
They were asked to show their solutions, which the students 
did by drawing a graph that depicted the size of the mouse 
population after each breeding season. Manuel had proposed 
that the vertical axis would need to extend to 340 mice. 
When questioned by Lisa and Kera, he explained this 
conclusion by repeating the mathematical procedures he 
used: there would be 40 mice born each season, resulting in 
320 births, which would be added to the initial 20. When 
they began to construct the graph, the following exchange 
occurred: 
 
180 Manuel: SO there’s sixty… so let’s see the first season 
is over here [making a mark on the graph] 
185 Lisa: Wait a minute 
186 M: and then sixty plus… is going to be a hundred 
189 L: Wait a minute, it’s forty, and then it’s like [put 
pencil down and placed fingertips together] OK.  It’s forty, 
right?… And then you have to pair those up [pressed palms 
of hands together] and then they have kids [spread the 
palms of her hands apart] 
195 Kera: pair the- 
196 M: oh yeah [laughing] 
202 K: …my gosh, that’s a lot of nasty mice. 
 
Manuel’s participation at the beginning of this episode was 
consistent with the group’s usual pattern, in which Manuel 
initiated actions and responded to questions by explaining 
why his proposals were satisfactory. Lisa indicated a 
question (“Wait a minute”) then, when Manuel proposed 
adding 40 to the first data point to infer the next data point, 
Lisa took the floor, capturing attention with a gesture along 
with her speech, presenting a reasoned explanation for a 
different operation that would take account of the 40 mice 
that were in the population after the first season when they 
calculated the number born in the second season. 

As the students began to graph their results, Lisa realized 
that the ending population had been miscalculated, and she 
interrupted the trajectory of the group with a suggestion that 
was recognized, acknowledged and finally implemented. 
Lisa’s suggestion (line 189) recalled the context of the 
problem—how mice reproduce—which enabled the 
students to evaluate the mathematical model they were 
creating.  The linear model that they had previously created 
had made sense to all three of the members until Lisa 
simulated a model of the situation they were supposed to be 
addressing. Thinking about the population growth in those 
terms enabled her to recognize the error of adding the same 
number of newborn mice every season. This served to relate 
the problem model back to the situation model, as the 
students were forced to think incrementally about the 
growth of their population. 

We interpret this conceptually as follows. First, Manuel's 
proposal that there would be 320 births involved applying a 
familiar schema of mathematical practice. A process that 
increases a quantity may do so by producing a constant 
quantity during each of several intervals. Inferences about 
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this kind of process can be made using a schema with three 
variables: an amount per unit, a number of units, and a total 
amount. We hypothesize that Manuel applied this schema, 
using the number of mice the group had calculated for the 
first year as the amount per unit (births per season) and the 
number of seasons as the number of units. When Manuel 
specified and represented 60 as the number mice after the 
first season, Lisa related this to a situation model in which 
the number of births in each season depends on the number 
of mice in the population that season. In that model, the 
number of births during the second season had to be 
calculated by considering how many mouse couples there 
were during the second season. This contradicted Manuel's 
method and required a change in the problem model, one in 
which there was a separate calculation of the number of 
births for each season, rather than a single calculation of the 
total number of births during eight seasons 
 
Episode 2 - Birthrate worksheet 
Our second example is more typical of the type of error 
recognition that we observed in this group. This episode 
comes from the middle of the unit. Students were trying to 
create their own model of guppy population growth.  They 
were told that a population of ten guppies would be coming 
from Venezuela, and the students’ task was to determine 
how large a tank they would need to hold the guppy 
population at the end of two years.  In order to solve the 
problem the students needed to determine the specific 
composition of their original ten guppies (gender and age) 
and tabulate their birth rate- a complex equation that used 
multiple variables (see also Stenning & Sommerfeld, this 
volume). 

The interaction in this episode was different than the 
first episode: although in this group ideas and questions 
were almost always acknowledged and attended to, one 
member’s suggestion did not always serve to stop or change 
the trajectory of the group.  In this episode Manuel 
proposed a “shortcut” through the mathematics of a 
worksheet (line 444).  Apparently realizing that this 
suggestion did not fit into the expectations of the worksheet, 
Lisa questioned Manuel many times and attempted to stop 
the group.  In this case however, Lisa’s interjections (lines 
451, 497, 501 and 505) did not successfully redirect the 
group.   

 
444 M:  …If four percent of the frys survive, why don’t we 
just forget about the fry survival and just put that amount 
for the, for how much are born. 
447 L: ‘cause the number born are not how much survived.   
448 M: Yes.  Yes, the ones who survive are the ones we 
count, not the ones who are dead, because we don’t make 
room for the ones that are dead. 
451 L:  …I’m kinda confused 
462 M: …why don’t we just put four percent on the 
guppies’ birth, because that’s how many are going to 
survive. 
497 L: but what’s that four percent? 
498 K: the ones that survive 

501 L: yeah, I know, but how many… of the guppies are 
four percent? 
503 M: we don’t know, we’ll let that mechanical thing work 
and tell us 
505 L: wait, are you answering assumption- 
506 M: let’s just try it out. 
 

The group was working on a worksheet for calculating a 
value of the birth rate to enter into the computer model. The 
worksheet included four steps. First, the students made 
assumptions about the gender and age distribution of an 
initial population of ten guppies. Second, they were to 
calculate the total number of guppy fry that would be born 
according to data provided about the number of fry per 
female of each age in the population. Third, they were to 
apply a percentage of infant mortality, due to the fact that 
about 95% of newborn guppies are eaten by their mothers. 
Fourth, they were to calculate an effective birth rate by 
dividing the number of surviving fry by 10, the size of the 
initial population, and converting this to a percentage. 

Manuel proposed that the survival rate (which he 
incorrectly remembered as 4% instead of 5%) could be 
entered in the computer model as the birth rate. Lisa 
questioned this, (“how many … of the guppies are four per 
cent?) but Manuel did not take up the question. 

We interpret this episode using a hypothesis about a 
problem model that was based on an incomplete use of a 
situation model. The computer program and the worksheet 
required an entry labeled "birth rate," intended to be 
expressed as a percentage of the population in the previous 
season. The group understood that the value of this 
parameter should reflect the loss of most of the guppies that 
had been born. The percentage of surviving guppy fry — 
4% — fit these specifications, and Manuel proposed to use 
that as the birth rate. Lisa's questions about this operation 
were analogous to the challenge she presented in Episode 1. 
The correct value should have taken into account the 
number or percentage of guppy fry born in relation to the 
previous total population, and then take 5% of that (or 4%, 
on Manuel's misremembered figure). If Lisa's questions had 
specified the neglected quantity in this case, as she did in 
Episode 1, she might have succeeded in having her 
alternative taken up and considered. 

In this interaction, Lisa’s question was not sufficient to 
force the group to recognize the mathematical error they had 
made.  In the earlier episode, Lisa stopped the group with a 
suggestion that simulated the situation model they were 
supposed to be working from, enabling the group to identify 
an error in their mathematical reasoning.  In this case, Lisa 
attempted to stop the trajectory of the group without either 
making a specific suggestion about the relation of the 
problem model to the situation model, or proposing a new 
situation model.  The other members of the group were not 
forced to think differently about what they are saying, and 
consequently, no change was made. 
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Comparison 
We chose these two episodes because they present a useful 
contrast for thinking about group problem solving.  In both 
episodes, the group was working along a mathematically 
incorrect path, and one student questioned that path; but in 
one case the group corrected itself, and in the other it did 
not.  Specifically, both episodes began with a proposal by 
one student (Manuel), which involved a mathematical 
shortcut.  These shortcuts appear to have made some sense 
to the other students in the group, but neither proposal 
would have led to a successful solution to the problem at 
hand.  What factors may have been involved in the first 
episode becoming a successful problem solving effort, 
while the second did not? 

We hypothesize that the principal conceptual difference 
between these two interactions lay in the students relating 
the situation model and the problem model. The curriculum 
was designed so that students necessarily developed a 
situation model about guppies, and used that situation 
model to construct their mathematical problem model.  
When they constructed problem models that neglected 
significant aspects of the situations, incorrect assumptions 
and conclusions could be easily missed.  

The patterns of interaction between the two episodes 
also differed. In this group, one student (Manuel) 
consistently took the function of directing the process, 
initiating and performing operations. Two other students 
(Lisa and Kera) frequently asked questions or expressed 
uncertainty. Generally Manuel responded to these by 
justifying the operation he had initiated or performed. In the 
first episode (the pretest problem), Lisa not only questioned 
Manuel’s line of thinking, she presented a definite 
alternative to Manuel’s operation. It appears that this met 
the threshold required for Manuel and Kera to attend to 
Lisa’s idea and to accept it. In the second episode (the 
birthrate worksheet), Lisa questioned Manuel’s shortcut and 
referred to a critical property of the situation. But, 
apparently, raising a question rather than proposing an 
alternative was insufficient to meet the threshold needed to 
open up a negotiation of how they should proceed. 
 

Discussion 
 
The hypotheses arising from analysis of these two episodes 
point to potential contributions both in fundamental 
cognitive science and the design of learning environments. 

First, consistent with Nathan, Kintsch, and Young 
(1992), we see that students working on contextual 
problems get into conceptual difficulty when they do not 
adequately align their situation model with their domain-
specific problem model.  However, we extend that finding 
to suggest that for problem solving in real-world contexts it 
is also important to realign the problem model to the 
situation model, checking for sensibility in the integrated 
understanding of the context-mathematics relationship.  In 
this way the problem and situation models develop in 
coordination with each other and are constantly changing in 
response to one another.  The details of this mapping 

between situation model and problem model and back again 
are subject to further study.  From an educational 
standpoint, it seems that it is important to do more than 
provide students with a contextual situation from which 
they can extrapolate a problem model.  Another important 
step is for students to connect the numbers back to the 
situation model, for it is all too easy to get lost in the 
abstract world of numbers and forget about their meanings. 
(See also, Stenning and Sommerfeld, this volume.) 

Links between a situation model and a problem model 
could also be accomplished through the use of material 
representations.  In this unit the students are given 
worksheets and a computer program in an effort to help 
them understand the components of making a model, and to 
guide their understanding of how math can work to create 
that model.  In its current state, the MMAP technology 
presents a problem model in the form of a network of 
problem quantities. However, it does not have provisions to 
facilitate relating the math back to a situation model. One 
way that the technology might be changed is to present a 
mathematical representation (as it currently does) alongside 
a simulation of the components that are taking place. 
Simulations of that sort might serve to create more links 
from the problem model back to the situation model, 
forcing students to think situationally about the math they 
are producing, making it more likely that they will notice 
their own mistakes if the simulation doesn’t work as they 
expected. 

Still another way to increase students' attention to links 
between situation models and problem models would be to 
develop a socio-mathematical norm (Cobb & Yackel, 1996) 
in which students expect to be accountable for explanations 
that justify mathematical operations and representations in 
terms of properties and relations of quantities in situations.  

Additionally, interactional patterns create thresholds for 
questioning, which affect how a suggestion is taken up or 
explained.  Although in this group the students seemed to 
feel that a mutual understanding was important in order to 
proceed, oftentimes that understanding was not a consensus.  
One potential way that such a pattern may be altered is 
through the larger classroom learning practices, including 
aspects of reasoning and explaining for which students are 
accountable to each other and to the teacher. Accountability 
is provided through discourse activities at different levels, 
as Hall and Rubin (1998) discussed in their analysis of 
Magdalene Lampert’s teaching.  Lampert had an explicit 
policy that any member of a group could be called on to 
provide an explanation for any of the group’s results. This 
policy made each group of students accountable for 
achieving mutual understanding so that the individual 
members could satisfy the expectation that they would be 
able to understand the group’s results.   

Introducing this order of accountability into classroom 
practices can serve the conceptual linking as well.  It is 
necessary to include some sort of provision for making sure 
that students understand that finding the “correct” 
mathematical answer is only part of their responsibility.  
They also should be responsible for relating what they 
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found back to the model that they were trying to create and 
to share that information with their peers.  In another 
example involving FCL classrooms (Brown and Campione, 
1994), at the end of a unit students are made accountable for 
what they have learned by sharing their findings with the 
rest of their class. Therefore, assumptions that are made 
throughout the unit need to be accounted for and explained.  
In the course of doing the birthrate sheet, Manuel made 
many assumptions about the number of guppies, their 
survival rate, and how that affected the birth rate.  If the 
group had felt some accountability to a “larger audience,” 
that is, if they had to present their findings to the class and 
explain the elements of their model, they might have been 
less likely to take logical leaps without trying to understand 
how they related to the model being created. 
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