Lawrence Berkeley National Laboratory
Recent Work

Title
A Simpler Proof Of The Average Case Complexity Of Union-Find With Path Compression

Permalink
https://escholarship.org/uc/item/3k27r96n

Authors

Wu, Kesheng
Otoo, Ekow

Publication Date
2005-04-28

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3k27r96n
https://escholarship.org
http://www.cdlib.org/

LBNL-57527

A Simpler Proof Of The Average Case Complexity Of Union-Find

With Path Compression

Kesheng Wu and Ekow Otoo
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
{KWI, EJO:o00}@ bl . gov

April 28, 2005

Abstract

We present a modified union-find algorithm that representtta in an array rather than the commonly used
pointer-based data structures, and a simpler proof thaatbeage case complexity of the union-find algorithm is

linear.

Keywordsand Phrases. union-find algorithms, analysis of algorithms, averagescesmplexity.

1 Introduction

The disjoint set union (also known as union-find) problem sy applications and is well studied [1, 3]. The
data structure used in most of the successful algorithmarimmn-find, is a rooted trees [3]. There are two principal
strategies for improving the union-find algorithms; patmgoession and weighted union [1]. In this paper, we discuss
a simple array-based implementation with the path comnestrategy. We prove that the average expected time
complexity is linear in the number of union and find operadiofhere are two well known proofs of this linearity; the
first based on the spanning tree model [6] and, the second loasihe assumption that each tree is equally likely to
participate in the next union operation [2]. The first modetdnsidered more realistic than the second, but the proof
of the second is much simpler. In this paper, we present & pased on the average length of find paths. The proof
is as simple as the second, and its assumption is as realstte first.

Givenn objects, union-find involves three operatiamson, find andmakefor building and maintaining the objects
in sets. Starting witm objects, the three operations can be defined as the follathheg functions. See Figure 1 for

an illustration.

e makéx): generate a new set containing only

@ @ union(b, d) @
o © ® : @ ©
Find(e) = d e @

Figure 1: An illustration of union-find with six objects nath@’ through 'f".

letter labels a
integer labels 0
content of the array

before union(b,d) 0|1 [1[3]3] 3]

b ¢ d e f
1 2 3 4 5

afterunion(b,d) [0 1]1]1[3]3]

Figure 2: An array representation of the rooted trees offeigu

e find(z): return a representative of the set containing object
e union(z, y): unite the two sets containing objeatandy.

The complexity union-find algorithm is typically measureg the total time required to perform — 1 union
operations mixed witl find operations. Using the path compression strategy atbaee are known scenarios where
the cost ofn — 1 union operations grows super-linearly [4]. However, thesses are so rare that the average costis in

fact linear [2, 6].

2 Anarray based implementation

The equivalence information in the union-find problem isallgustored in rooted trees. Each object is represented as
a node in the trees and each node has a link to its parent. br@y-based implementation the parent links are stored
inan array as in [2]. Itis easy to verify that any labelinglod tree can be mapped to some integer labels and therefore
allow the parent links to be stored in an array as shown inr€igu

Our implementation uses two basic functiofisgl andsetas outlined below, where the pseudo-codes are presented

with C++-like syntax. The parent links are stored in an afPay

Algorithm 1: Algorithm find

/* Finds the root |abel of node i */
Input: An array P and a Node label i
unsignedind(const std::vectarunsigned-& P, const unsigned i)
begin

unsigned root = i;

while P[root] !=root do

| root = P[root];

return root

end

Algorithm 2: Algorithm set

/* Set all parents of node k to point to a new root node. */
Input: An array P, a Node label k and the root
void se{std::vectork unsigned-& P, unsigned k, unsigned root)
begin
unsigned i =k;
while P[i] =i do
\; unsigned j = PJi];

P[i] = root;
i=j;
P[i] = root;
end

The actual find operation we use will be referred tdindCompresswhich basically callgind followed by set

We implement theinionfunction as follows.

Algorithm 3: Algorithm Union

/* Combine the two trees containing respectively nodes i and j, */
/* and return the root of the new tree. */
Input: An array P, and two arbitrary nodes i and .

unsignedunion(std::vectokunsigned-& P, unsigned i, unsigned j)

begin
unsigned root Ffind(P, i);
ifi!=] then

unsigned tmp Find(P, j);
if root > tmpthen
| root=tmp;
set(P, j, root);
set(P, i, root);
return root;

end

When nodes i and j are not the same, the cost ofdhisn function is equivalent to twdind operations with
compression plus a few additional steps. One feature ofuhistion is that at the expense of tiindCompressn the

trees before the union operation, we achieve the same afiétthe operations were performed on the united tree.

3 Cost analysis

Since our implementation only uses path compression, thieactalyses by Yao [6], and also by Doyle and Rivest [2]
should apply. Both analyses give the average cost-efl union operations, although typical measures of the union-
find problem is in terms of a mixture af — 1 union operations anah find operations. In this section, we consider the
more general cost measure. In our analysis, we considep#t@taunionoperation to be exactly twiindCompress
operations. Since we never assign a zero cost tdfiadCompres®peration, this should not affect the asymptotic
complexity of the algorithms. This assumption simplifies analysis and allows us to only consider the average cost

of findCompresgperations. We define the cost ofiadCompressperation to be the the number of nodes on a find

path, which is also referred to as path length.

To compute the average costfifdCompressperations of any tree withnodes, we first evaluate the total cost of
t findCompresgperations starting from every node of the tree. Note thatyefind path must contain a starting node
and the root node. There is one path starting with the rodtgklther, there argt — 1 nodes at the beginning and the
end oft paths. Next, we count the number of other nodes along the paitst we determine the number of paths that

a node participates in.

Lemmal Letd,; be the number of children of a nodéefore anyfind operation. Among thefind operations, node

i appears exactly; times where it is neither at the starting node nor the root.

Proof. If nodei appears in a find path and it is neither the starting node morahit, one of it children must be also
on the same find path. Each time this happens, the path cosigmestrategy will remove the child éfand make it
a child of the root. Since nodgeinitially hasd; children, it can appear in find paths at mdstimes. For any child
of nodes, the first time the child appears in a find path, nedeust also be on the same find path. Amongtifiad
operations, all children of nodemust be involved, and, nodenust appear in at leag} find paths. Therefore, node

appears exactly; times. |
For simplicity, let the root node be node 0 and let the renmagimiodes be numbered from 1ite- 1.
Theorem 2 For a tree witht nodes, the total cost of performing ofived operation on every node & — 1 + Zf;i d;.

Proof. According to Lemma 1, each nodeppears!; times as an internal node of the find paths, except the root
node 0. Therefore the total number of internal nodes in @i > '~} d;. Including the start nodes and the root,

the total number of nodes appearing ifind paths it — 1 + Zﬁ;} d;. [|

A slight overestimation of the total costds — 1 + 25;3 d;. Since a tree with nodes has — 1 edgesZ‘;;é d; =
t — 1. The total cost of findCompressperations is no more that — 2 < 3¢, and the average cost of a find is no
more than 3, i.eQ(1).

The trees of union-find data structure forms a forest. Td stéh, there are only trivial edges that point back to
each node itself. After each union operation, the foresiggane nontrivial edge. The sum @facross all trees also
increases by one. After unionoperations, the sum @f is v, i.e.,>_ d; = u. The number of trees is — u. For each
tree, there is one find path containing only the root node sTha total cost ofi findCompressperations is no more
than2n — (n — u) + u = n + 2u, which is less than. In fact, since the root of each tree is counted separately,
the contribution fron) _ d, to the total cost of find operations is actually less thafhis reduces the maximum cost.
Overall, the total number of nodes on all find paths is betweandn + 2u. The average cost of a find operation
is never more than 3. AfterndCompressperation is performed on each node, any subsequent findtapewill
involve a starting node and the root node. The cost of thisadjm® is no more than 2. This leads to the following

corollary.

Corollary 3 After any number of union operations, the average cost oftadperation isO(1).

Since the average cost offilmdCompres®perations iO(1) after arbitrary number of union operations. The
average cost ofr{ — 1) union operations mixed withn findCompres®perations is equivalent ton{ + 2n — 2)

findCompressperations. Therefore, the total costi$m + n).

4 Summary

In this paper, we have presented a version of union-find &lgos with the path-compression strategy and given a
simpler proof that its average expected run time is bounded linear function of the number of union and find
operations. This complexity analysis indicates that ogoathm is competitive with those employing more compli-
cated optimization strategies. In separate tests, we hewmstrated that using our array based algorithm require
less memory and less time than the commonly used union-fgatigtims [5]. Even though we only use a simple
optimization strategy for union-find operations, becaugeatgorithm is more compact and has more regular memory

access patterns, it actually requires less time.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullmaihe Design and Analysis of Computer Algorithiddison - Wesley,
Reading, Mass., 1974.

[2] Jon Doyle and Ronald L. Rivest. Linear expected time ofrapge union-find algorithm. Inf. Process. Lett.

5(5):146-148, 1976.

[3] zvi Galil and Giuseppe F. Italiano. Data structures algathms for disjoint set union problemACM Comput.

Surv, 23(3):319-344,1991.

[4] Robert E. Tarjan and Jan van Leeuwen. Worst-case asabjsiet union algorithmsJ. ACM 31(2):245-281,
1984.

[5] Kesheng Wu, Ekow Otoo, and Arie Shoshani. Optimizingreeted component labeling algorithms. Pro-
ceedings of SPIE Medical Imaging Conference 2005, San Di&gp2005. A draft appeared as LBNL report
LBNL-56864.

[6] Andrew C. Yao. On the expected performance of path cosgia algorithmsSIAM J. Comput.14(1):129-133,
1985.

