
Lawrence Berkeley National Laboratory
Recent Work

Title
A Simpler Proof Of The Average Case Complexity Of Union-Find With Path Compression

Permalink
https://escholarship.org/uc/item/3k27r96n

Authors
Wu, Kesheng
Otoo, Ekow

Publication Date
2005-04-28

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3k27r96n
https://escholarship.org
http://www.cdlib.org/


A Simpler Proof Of The Average Case Complexity Of Union-Find

With Path Compression

Kesheng Wu and Ekow Otoo

Lawrence Berkeley National Laboratory, Berkeley, CA, USA

{KWu, EJOtoo}@lbl.gov

April 28, 2005

Abstract

We present a modified union-find algorithm that represent thedata in an array rather than the commonly used

pointer-based data structures, and a simpler proof that theaverage case complexity of the union-find algorithm is

linear.

Keywords and Phrases: union-find algorithms, analysis of algorithms, average case complexity.

1 Introduction

The disjoint set union (also known as union-find) problem hasmany applications and is well studied [1, 3]. The

data structure used in most of the successful algorithms forunion-find, is a rooted trees [3]. There are two principal

strategies for improving the union-find algorithms; path compression and weighted union [1]. In this paper, we discuss

a simple array-based implementation with the path compression strategy. We prove that the average expected time

complexity is linear in the number of union and find operations. There are two well known proofs of this linearity; the

first based on the spanning tree model [6] and, the second based on the assumption that each tree is equally likely to

participate in the next union operation [2]. The first model is considered more realistic than the second, but the proof

of the second is much simpler. In this paper, we present a proof based on the average length of find paths. The proof

is as simple as the second, and its assumption is as realisticas the first.

Givenn objects, union-find involves three operationsunion, findandmakefor building and maintaining the objects

in sets. Starting withn objects, the three operations can be defined as the followingthree functions. See Figure 1 for

an illustration.

• make(x): generate a new set containing onlyx.

1

LBNL-57527



union(b, d)b

c

d

e f

a a

d

b

c

e fFind(e) = d

Figure 1: An illustration of union-find with six objects named ’a’ through ’f’.

letter labels a b c d e f
integer labels 0 1 2 3 4 5
content of the array
before union(b, d) 0 1 1 3 3 3

after union(b, d) 0 1 1 1 3 3

Figure 2: An array representation of the rooted trees of Figure 1.

• find(x): return a representative of the set containing objectx.

• union(x, y): unite the two sets containing objectsx andy.

The complexity union-find algorithm is typically measured by the total time required to performn − 1 union

operations mixed withm find operations. Using the path compression strategy alone,there are known scenarios where

the cost ofn− 1 union operations grows super-linearly [4]. However, thesecases are so rare that the average cost is in

fact linear [2, 6].

2 An array based implementation

The equivalence information in the union-find problem is usually stored in rooted trees. Each object is represented as

a node in the trees and each node has a link to its parent. In ourarray-based implementation the parent links are stored

in an array as in [2]. It is easy to verify that any labeling of the tree can be mapped to some integer labels and therefore

allow the parent links to be stored in an array as shown in Figure 2.

Our implementation uses two basic functions;findandsetas outlined below, where the pseudo-codes are presented

with C++-like syntax. The parent links are stored in an arrayP.

Algorithm 1: Algorithm find

/* Finds the root label of node i */
Input: An array P and a Node label i
unsignedfind(const std::vector<unsigned>& P, const unsigned i)
begin

unsigned root = i;
while P[root] != root do

root = P[root];
return root

end

2



Algorithm 2: Algorithm set

/* Set all parents of node k to point to a new root node. */
Input: An array P, a Node label k and the root
void set(std::vector<unsigned>& P, unsigned k, unsigned root)
begin

unsigned i = k;
while P[i] != i do

unsigned j = P[i];
P[i] = root;
i = j;

P[i] = root;
end

The actual find operation we use will be referred to asfindCompress, which basically callsfind followed byset.

We implement theunionfunction as follows.

Algorithm 3: Algorithm Union

/* Combine the two trees containing respectively nodes i and j, */
/* and return the root of the new tree. */
Input: An array P, and two arbitrary nodes i and j.
unsignedunion(std::vector<unsigned>& P, unsigned i, unsigned j)
begin

unsigned root =find(P, i);
if i != j then

unsigned tmp =find(P, j);
if root > tmpthen

root = tmp;
set(P, j, root);

set(P, i, root);
return root;

end

When nodes i and j are not the same, the cost of thisunion function is equivalent to twofind operations with

compression plus a few additional steps. One feature of thisfunction is that at the expense of twofindCompresson the

trees before the union operation, we achieve the same effectas if the operations were performed on the united tree.

3 Cost analysis

Since our implementation only uses path compression, the cost analyses by Yao [6], and also by Doyle and Rivest [2]

should apply. Both analyses give the average cost ofn − 1 union operations, although typical measures of the union-

find problem is in terms of a mixture ofn− 1 union operations andm find operations. In this section, we consider the

more general cost measure. In our analysis, we consider the cost of aunionoperation to be exactly twofindCompress

operations. Since we never assign a zero cost to anyfindCompressoperation, this should not affect the asymptotic

complexity of the algorithms. This assumption simplifies our analysis and allows us to only consider the average cost

of findCompressoperations. We define the cost of afindCompressoperation to be the the number of nodes on a find

3



path, which is also referred to as path length.

To compute the average cost offindCompressoperations of any tree witht nodes, we first evaluate the total cost of

t findCompressoperations starting from every node of the tree. Note that every find path must contain a starting node

and the root node. There is one path starting with the root. Altogether, there are2t− 1 nodes at the beginning and the

end oft paths. Next, we count the number of other nodes along the paths. First we determine the number of paths that

a node participates in.

Lemma 1 Letdi be the number of children of a nodei before anyfind operation. Among thet find operations, node

i appears exactlydi times where it is neither at the starting node nor the root.

Proof. If nodei appears in a find path and it is neither the starting node nor the root, one of it children must be also

on the same find path. Each time this happens, the path compression strategy will remove the child ofi and make it

a child of the root. Since nodei initially hasdi children, it can appear in find paths at mostdi times. For any child

of nodei, the first time the child appears in a find path, nodei must also be on the same find path. Among thet find

operations, all children of nodei must be involved, and, nodei must appear in at leastdi find paths. Therefore, nodei

appears exactlydi times.

For simplicity, let the root node be node 0 and let the remaining nodes be numbered from 1 tot − 1.

Theorem 2 For a tree witht nodes, the total cost of performing onefind operation on every node is2t−1+
∑

t−1

i=1
di.

Proof. According to Lemma 1, each nodei appearsdi times as an internal node of the find paths, except the root

node 0. Therefore the total number of internal nodes in all paths is
∑

t−1

i=1
di. Including the start nodes and the root,

the total number of nodes appearing int find paths is2t − 1 +
∑

t−1

i=1
di.

A slight overestimation of the total cost is2t− 1+
∑

t−1

i=0
di. Since a tree witht nodes hast− 1 edges,

∑
t−1

i=0
di =

t − 1. The total cost oft findCompressoperations is no more than3t − 2 < 3t, and the average cost of a find is no

more than 3, i.e.,O(1).

The trees of union-find data structure forms a forest. To start with, there are only trivial edges that point back to

each node itself. After each union operation, the forest gains one nontrivial edge. The sum ofdi across all trees also

increases by one. Afteru unionoperations, the sum ofdi is u, i.e.,
∑

di = u. The number of trees isn − u. For each

tree, there is one find path containing only the root node. Thus the total cost ofn findCompressoperations is no more

than2n − (n − u) + u = n + 2u, which is less than3n. In fact, since the root of each tree is counted separately,

the contribution from
∑

di to the total cost of find operations is actually less thanu. This reduces the maximum cost.

Overall, the total number of nodes on all find paths is betweenn andn + 2u. The average cost of a find operation

is never more than 3. After afindCompressoperation is performed on each node, any subsequent find operation will

involve a starting node and the root node. The cost of this operation is no more than 2. This leads to the following

corollary.

4



Corollary 3 After any number of union operations, the average cost of a find operation isO(1).

Since the average cost of afindCompressoperations isO(1) after arbitrary number of union operations. The

average cost of (n − 1) union operations mixed withm findCompressoperations is equivalent to (m + 2n − 2)

findCompressoperations. Therefore, the total cost isO(m + n).

4 Summary

In this paper, we have presented a version of union-find algorithms with the path-compression strategy and given a

simpler proof that its average expected run time is bounded by a linear function of the number of union and find

operations. This complexity analysis indicates that our algorithm is competitive with those employing more compli-

cated optimization strategies. In separate tests, we have demonstrated that using our array based algorithm require

less memory and less time than the commonly used union-find algorithms [5]. Even though we only use a simple

optimization strategy for union-find operations, because our algorithm is more compact and has more regular memory

access patterns, it actually requires less time.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman.The Design and Analysis of Computer Algorithms. Addison - Wesley,

Reading, Mass., 1974.

[2] Jon Doyle and Ronald L. Rivest. Linear expected time of a simple union-find algorithm. Inf. Process. Lett.,

5(5):146–148, 1976.

[3] Zvi Galil and Giuseppe F. Italiano. Data structures and algorithms for disjoint set union problems.ACM Comput.

Surv., 23(3):319–344, 1991.

[4] Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms.J. ACM, 31(2):245–281,

1984.

[5] Kesheng Wu, Ekow Otoo, and Arie Shoshani. Optimizing connected component labeling algorithms. InPro-

ceedings of SPIE Medical Imaging Conference 2005, San Diego, CA, 2005. A draft appeared as LBNL report

LBNL-56864.

[6] Andrew C. Yao. On the expected performance of path compression algorithms.SIAM J. Comput., 14(1):129–133,

1985.

5




