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(Dated: March 24, 2021)

Motivated by conjectures in holography relating the entanglement of purification and reflected
entropy to the entanglement wedge cross-section, we introduce two related non-negative measures
of tripartite entanglement g and h. We prove structure theorems which show that states with
nonzero g or h have nontrivial tripartite entanglement. We then establish that in 1D these tripartite
entanglement measures are universal quantities that depend only on the emergent low-energy theory.
For a gapped system, we argue that either g 6= 0 and h = 0 or g = h = 0, depending on whether
the ground state has long-range order. For a critical system, we develop a numerical algorithm for
computing g and h from a lattice model. We compute g and h for various CFTs and show that h
depends only on the central charge whereas g depends on the whole operator content.

Quantum entanglement has come to play a key role
in our understanding of emergent phenomena in quan-
tum many-body physics and modern numerical methods.
Most attention has focused on bipartite entanglement,
e.g. properties of a pure state on two parties |ψ〉AB . The
entanglement entropy S(A) is the unique measure of bi-
partite entanglement because, up to reversible local oper-
ations and classical communication, the EPR pair is the
unique form of bipartite entanglement. In contrast, a
pure tripartite state |ψ〉ABC admits a large (presumably
infinite) number of distinct forms of entanglement, and
consequently a variety of tripartite entanglement mea-
sures have been proposed [1]. But it remains relatively
unexplored what universal features such measures might
reveal about a many-body system [2–9].

Recently two tripartite entanglement measures, the en-
tanglement of purification EP (A : B) [10] and the “re-
flected entropy” SR(A : B) [11] have been applied to
many-body physics within the context of holographic du-
ality. As motivation, recall that the Ryu-Takayanagi
formula equates the bipartite entanglement entropy of
a boundary theory to the area of a minimal surface in
its holographic dual [12], a central result in the effort to
relate the emergence of spacetime geometry to quantum
entanglement. It is then natural ask whether there are
multi-partite entanglement measures which might also
have a dual geometric interpretation. In Refs. [13, 14]
it was conjectured that the minimal cross section of the
bulk “entanglement wedge” joining two parties, EW (A :
B), is dual to the entanglement of purification in the
boundary, EP = EW . More recently, however, by de-
veloping a field-theoretic method for calculating SR in
generic conformal field theories (CFTs), it was shown
that SR = 2EW [11]. In general SR 6= 2EP , so one possi-
ble resolution is that their equality is a special property
of holographic CFTs which is violated at subleading or-
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FIG. 1. Left: A spin chain on a circle that is divided into three
parties A, B, and C. Right: Geometry in the computation of
EP (A : B). Region C is divided into CL and CR. The dashed
line represents the entanglement cut between ACL and BCR.

der in large-N expansion [15]. The gap between them,
2EP − SR, would then constitute an interesting entan-
glement measure of this violation. But investigating this
discrepancy requires a method for computing these quan-
tities in generic many-body systems.

In this work we derive a method for computing EP
and SR in 1D lattice models. To summarize our findings
it is convenient to define UV-regularized version of these
quantities [16], g(A : B) ≡ 2EP (A : B) − I(A : B) ≥ 0
and h(A : B) ≡ SR(A : B) − I(A : B) ≥ 0, where I
is the mutual information [17]. For the tripartition of a
ring shown in Fig. 1, holographic duality predicts that
they take on the universal value g = h = c

3 log(2), where
c is the central charge of the CFT [18]. But what about
in a generic lattice model? As a limiting case, we start
by proving structure theorems for states with g, h = 0
which imply that h = 0 if an only if a state is gapped
(c = 0), while g = 0 if and only if the system is gapped
and does not spontaneously break a symmetry. We then
develop a method for numerically computing g, h from a
lattice Hamiltonian on systems up to N ∼ 100 sites. As
expected, we find that h = c

3 log 2 is universal. However
we find that g ≥ h and depends on the operator content
of the CFT in addition c, yet is nevertheless completely
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universal. Thus 2EP −SR = g−h constitutes a new and
universal tripartite entanglement invariant of CFTs.
EP and SR — We first review the definitions of the

entanglement of purification EP (A : B) and reflected
entropy SR(A : B). Unlike the bipartite entanglement
entropy, which is a function of a reduced density matrix
on one party, these mixed state entanglement measures
are functions of the reduced density matrix on two par-
ties, ρAB , or equivalently its purification |ψ〉ABC , where
ρAB = TrC |ψ〉 〈ψ|.

The entanglement of purification EP (A : B) [10] is the
minimum of the entanglement entropy SACL

over all pu-
rifications |φ〉ABCLCR

of ρAB to another pair of systems
C = CLCR:

EP (A : B) ≡ min
|φ〉

SACL

(
|φ〉ABCLCR

)
. (1)

The partitions of the subsystems are depicted schemat-
ically in Fig. 1. In principle the auxiliary space CLCR
can be arbitrary, but the minimal SACL

can always be
achieved with dim(HCL

), dim(HCR
) ≤ rank(ρAB).[19]

We may alternatively rephrase Eq. (1) as a minimization
over unitary operations UC restricted to CLCR starting
from an arbitrary purification |φ0〉ABCLCR

of sufficiently
large dimension,

EP (A : B) = min
UCLCR

SACL

(
UC |φ0〉ABCLCR

)
, (2)

which is the viewpoint taken in our numerical approach.
EP is lower bounded by the mutual information [10],

EP (A : B) ≥ I(A : B)/2, so we define a non-negative
quantity

g(A : B) ≡ 2EP (A : B)− I(A : B) ≥ 0. (3)

The physical intuition behind this new quantity is that
the subtraction of the mutual information removes corre-
lations which are purely bipartite, as will be made more
precise by the structure theorems below.

To define the reflected entropy SR(A : B), we instead
pick a particular purification of ρAB known as the canon-
ical purification |√ρAB〉. It is defined as follows: we first
take the unique non-negative square root of the reduced
density matrix ρAB , and then regard the operator

√
ρAB

as a state |√ρAB〉 ∈ HA⊗HB⊗H∗A⊗H∗B . The reflected
entropy SR(A : B) is defined as

SR(A : B) ≡ SAA∗
(
|√ρAB〉

)
. (4)

It is shown in Ref. 11 that SR(A : B) ≥ I(A : B), so we
define the nonnegative quantity

h(A : B) ≡ SR(A : B)− I(A : B) ≥ 0. (5)

In order to interpret the nature of the tripartite entan-
glement captured by these quantities, we derive “struc-
ture theorems” for states which saturate these lower
bounds, i.e., states with g = 0 or h = 0.

States with g(A : B) = 0 — We first define a class of
pure tripartite wavefunctions known as triangle states.

Definition 1 (Triangle State). A state |ψ〉ABC is a tri-
angle state if for each local Hilbert space there exists a
bipartition Hα = HαL

⊗HαR
(α = A,B,C) such that

|ψ〉ABC = |ψ〉ARBL
|ψ〉BRCL

|ψ〉CRAL
, (6)

where |ψ〉αRβL
are pure states in HαR

⊗HβL
.

In other words, a triangle state can be obtained by
pair-wise distributing bipartite-entangled states followed
by local unitaries. In this sense, a triangle state lacks
nontrivial tripartite entanglement. We prove the follow-
ing theorem in the Supplemental Material (SM) [20, 21].

Theorem 2. A state |ψ〉ABC is a triangle state up to
local isometries if and only if g(A : B) = 0.

The “only if” direction can be shown by noting that
2EP (A : B) = I(A : B) in the purification |ψ〉ABC of
ρAB . The proof of the “if” direction is more complicated,
and is presented in SM [20].

Conversely, g(A : B) > 0 implies that |ψ〉ABC con-
tains tripartite entanglement that cannot be factorized
pairwise. For example, for a GHZ state |ψ〉ABC =√
d−1

∑d
j=1 |jAjBjC〉 the optimal purification of ρAB is

|ψ〉ABC itself [14], resulting in g(A : B) = log d. It can
also be shown that the W state has nonzero g(A : B).
This is in accordance with the fact the GHZ state and
W state are not triangle states [22].

States with h(A : B) = 0 — It can be verified that a
triangle state has h(A : B) = 0, so h(A : B) 6= 0 also
implies irreducible tripartite entanglement. But for the
GHZ state, g(A : B) 6= 0 while h(A : B) = 0, which
suggests that that some forms of tripartite entanglement
are “invisible” to h.

To make this precise we introduce the notion of sum
of triangle states.

Definition 3 (sum of triangle states (SOTS)). A pure
state |ψ〉ABC is a SOTS if for each local Hilbert space Hα
there exists a decomposition Hα =

⊕
j Hαj

L
⊗Hαj

R
such

that

|ψ〉ABC =
∑
j

√
pj |ψj〉Aj

RB
j
L
|ψj〉Bj

RC
j
L
|ψj〉Cj

RA
j
L
, (7)

where |ψj〉αj
Rβ

j
L

represents a pure state in Hαj
R
⊗ Hβj

L
,

etc, and
∑
j pj = 1.

For example, the GHZ state is a SOTS with pj = 1
d

and the triangle state is a SOTS for which pj = 1 for
exactly one j. By using the structure theorem for states
satisfying strong subadditivity [23], we prove [20] the fol-
lowing:

Theorem 4. A state |ψ〉ABC is a SOTS if and only if
h(A : B) = 0.
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As a corollary, while in general h(A : B) 6= h(B : C) 6=
h(C : A), if one vanishes then all of them vanish (and
likewise for g).
g and h for 1D gapped systems — We now give a phys-

ical interpretation of these structure theorems in the con-
text of 1D Hamiltonians: we argue that on a ring with
the tripartition shown in Fig. 1, a system is gapped if
and only if h = 0, and gapped without long-range order
if and only if g = 0. As motivation, consider the two lim-
iting gapped phases of the 1D Ising model: the symmet-
ric paramagnet, |PM〉 = |→→ · · ·〉, and the ferromag-
net |FM〉 = 1√

2

(
|↑↑ · · ·〉 + |↓↓ · · ·〉

)
. When partitioned

into 3 subsystems, the |PM〉 (|FM〉) state corresponds
to a product state (GHZ state), so it will have g = 0
(g = log 2) and for both, h = 0. Indeed, we see that g is
sensitive to the “cat state” structure of the exact ground
state in a symmetry-broken phase, so will generically de-
tect the multiplicity of super-selection sectors. Away
from these extremal points, the ground state develops
additional short-range entanglement. However, so long
as sizes of the regions NA, NB , NC are larger than the
correlation length ξ, this additional entanglement simply
dresses the product state within each superselection sec-
tor into a triangle state, and so with exponential accuracy
in N/ξ, g and h are unchanged.

The argument can be phrased most precisely in the
language of matrix product states. We first take a finite-
dimensional MPS as an approximation to the ground
state of a 1D system [24]. The thermodynamic limit is
taken by fixing NA/N,NB/N and taking N →∞, where
N is the total system size. In the thermodynamic limit
we can then apply the standard MPS coarse-graining
procedure [25] to obtain a fixed-point MPS. If the ini-
tial correlation length is finite [26], the state flows to an
MPS with ξ = 0. It is straightforward to show that a
ξ = 0 MPS is precisely the N -party generalization [27]
of a triangle state [25, 28], so by the structure theorems
we obtain g = h = 0. On the other hand, if the MPS
has an infinite correlation length (e.g., it is a cat state
as occurs for spontaneous symmetry breaking or phase
coexistence), then it flows to a sum of ξ = 0 MPS which
are locally orthogonal [20, 29]. Thus in the long-range
ordered phase we have g 6= 0 and h = 0. These cases are
analyzed in greater detail in [20]. Note that the precise
statement of our claim is thus as follows: A fixed-point
MPS has h(A : B) = 0 for all contiguous tripartitions.
Since all MPS flow towards fixed-point MPS under coarse
graining, h(A : B)→ 0 as NA, NB →∞ [30].

Gapless systems — At a critical point g and h need
not vanish. In fact, they are universal constants which
depend only on the emergent CFT in the thermodynamic
limit.

We now briefly describe the algorithm to compute g
and h of the ground state of a critical quantum spin chain
with N sites and Hamiltonian H. First the ground state
|ψ〉ABC is obtained in the form of a periodic uniform MPS

………………

FIG. 2. The state before and after coarse-graining. Top: The
periodic uniform matrix product state (puMPS) represents
the ground state of a translation-invariant critical quantum
spin chain before coarse-graining. Bottom: The puMPS is
coarse-grained into a MPS with 3 tensors corresponding to
the coarse-grained Hilbert spaces HÃ,HB̃ ,HC̃ .

(puMPS) [31–33]. A puMPS consists of N copies of the
same rank-3 tensor M with dimensions D×D×d, where
d is the dimension of the Hilbert space on each site, and
D is the bond dimension which grows polynomially with
the system size N (Fig. 2). The tensor M is obtained
variationally by minimizing the expectation value of H.
We then apply the standard MPS coarse-graining pro-
cedure [20, 25] to “compress” the Hilbert space of each
region down to a smaller one via a sequence of isometries,
Hα → Hα̃. Because the entropy of each region is sub-
extensive, Sα � Nα log(d) – even at a critical point – we
can reduce the dimension of the Hilbert space d̃α � dα
while preserving all the bipartite and tripartite entangle-
ment properties among the three parties A, B and C to
high-accuracy. The coarse-grained state |ψ̃〉ÃB̃C̃ can be
represented by a MPS with three tensors Mα with dimen-
sions D ×D × d̃α (Fig. 2), where d̃α ≤ D2. D, d̃α grow
polynomial with system size; as an example, for the Ising
CFT we use D = 12, d̃α = 36 for N = 24 and D = 26,
d̃α = 100 for N = 84.

We compute SR(A : B) according to Eq. (4) in the
dense representation. Assuming that d̃A ≤ d̃B , the total
time cost scales as O

(
d̃4
Ad̃

2
B

)
. To compute EP (A : B), we

first make a random split of HC̃ into HC̃L
⊗ HC̃R

with

dimensions d̃CL
×d̃CR

. We then numerically minimize the
entanglement entropy of ÃC̃L with respect to a unitary
UC̃ on C̃,

EP (A : B) = min
UC̃

SÃC̃L

(
UC̃ |ψ̃〉ÃB̃C̃

)
. (8)

We verified numerically that the d̃α are large enough to
achieve the (near) optimal purification. The numerical
optimization can be performed with, e.g., the non-linear
conjugate gradient algorithm, since the gradient can be
constructed explicitly (see [20]). The time cost of each
gradient calculation scales as O(d̃2

Ad̃B d̃
2
C), assuming that

d̃A ≤ d̃B . The mutual information I(A : B) can also be
computed using the coarse-grained state, with time cost
O(d̃3

max), where d̃max ≡ maxα{d̃α}.
g and h for various CFTs — In order to show that g

and h are universal, we study the Ising model with an
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FIG. 3. g(A : B) and h(A : B) from the model Eq. (9) with
different λ’s. At λ = 0 and λ = 0.3, the quantities converge
to gCFT and hCFT of the Ising CFT. At λ = λ∗ ≈ 0.428, both
quantities converge to a different value that corresponds to the
tricritical Ising CFT. At λ = 0.4 we observe a renormalization
group flow from the tricritical Ising CFT to the Ising CFT.

irrelevant near-to-nearest neighbor interaction [34],

H =

N∑
j=1

[
−XjXj+1 − Zj
+λ
(
XjXj+1Zj+2 + ZjXj+1Xj+2

) ] , (9)

where Xj(Zj) are Pauli X(Z) matrices on sites j and
periodic boundary conditions are assumed. The model is
critical described by the Ising CFT for λ < λ∗, gapped for
λ > λ∗, where the transition at λ∗ ≈ 0.428 is described by
the tricritical Ising CFT [34]. We study four parameter
values, λ = 0, 0.3, 0.4, λ∗, where the first three correspond
to the Ising CFT and the last correspond to the tricritical
Ising CFT.

We fix NA = NB = NC = N/3 and compute g(A : B)
and h(A : B) as a function of N , shown in Fig. 3. We
see that both g and h converge to a constant as N →∞
[35]. Furthermore, the constant is the same for λ = 0
and λ = 0.3, indicating that g and h are universal. We
denote the universal quantities as gCFT and hCFT. At λ =
λ∗ ≈ 0.428, we obtain a different value that corresponds
to the tricritical Ising CFT. At λ = 0.4, both g and h go
through a renormalization group flow from the tricritical
Ising CFT to the Ising CFT, analogous to the spectral
flow observed in Ref. 31. The values of gCFT and hCFT for
various CFTs are summarized in Table 1.

We also verified that the values of gCFT and hCFT do not
depend on the relative sizes of A,B,C [20]. For any ratio
NA/N andNB/N , once we take the thermodynamic limit
N → ∞, both g(A : B) and h(A : B) converge to the
universal constants gCFT and hCFT.

We proceed to examine how gCFT and hCFT depend on
the conformal data of the CFT. To do so we compute
gCFT and hCFT for the free compactified boson CFT for
differing compactification radius R. All have the same
central charge c = 1, but the operator content depends
on R. A concrete lattice realization of the CFT is the

Theory c gCFT hCFT c
3

log 2

gapped symmetric 0 0 0 0

long-range ordered 0 > 0 0 0

Ising CFT 1/2 0.450 0.1155 0.11553

Tricritical Ising CFT 7/10 0.719 0.1617 0.16173

Free boson R =
√

3 1 0.920 0.2310 0.23105

Free boson R = 2 1 0.899 0.2310 0.23105

Free boson R =
√

6 1 0.906 0.2310 0.23105

TABLE I. gCFT and hCFT extracted numerically through finite
size scaling. For the gapped spin chains, the universal values
of g and h are shown. For the gapless spin chains, we show
the central charge c as well as gCFT and hCFT of the CFTs.
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h

FIG. 4. g(A : B) and h(A : B) from the XXZ model with
different ∆’s at sizes 18 ≤ N ≤ 48. We see that gCFT depends
on ∆ while hCFT is independent of ∆.

XXZ model,

H =
∑
j

(
XjXj+1 + YjYj+1 + ∆ZjZj+1

)
, (10)

where −1 ≤ ∆ < 1 is a parameter that determines
the compactification radius R =

√
2π/ cos−1(−∆). We

compute gCFT and hCFT for different R’s by extrapolating
g(A : B) and h(A : B) for different ∆’s to the thermo-
dynamic limit. The result is shown in Fig. 4 and Tab. I,
where R =

√
3, 2,
√

6 correspond to ∆ = 0.5, 0,−0.5, re-
spectively [36].

We see that hCFT does not depend on ∆ and is compat-
ible with hCFT = c

3 log 2. On the other hand, gCFT depends
on ∆ and thus on R. For example, as shown in Table I,
gCFT takes on three different values at ∆ = 0, 0.5,−0.5,
which correspond to R = 2,

√
3,
√

6, respectively. We
conclude that hCFT only depends on the central charge
but gCFT depends on the whole operator content. This
feature of hCFT can be understood as follows. The canon-
ical purification of ρAB can be regarded as the ground
state of a CFT living on a circle, divided into four con-
tiguous segments A,B, B̄, Ā. The measure h(A : B) =
SAĀ − SA − SB + SAB involves only contiguous pieces
and is hence proportional to the central charge.

Discussion — In this work we have introduced two
positive quantities g and h which quantify the obstruc-
tion to factorizing a tripartite state into pairwise cor-
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relations. While the entanglement wedge cross section
duality EW = EP = SR/2 predicts h = g = c

3 log(2), for
low-c CFTs like the Ising model we find g > h = c

3 log(2).
The gap g − h is universal, but it remains an open ques-
tion how to compute it from the underlying data of the
CFT. It is natural to conjecture a general bound g ≥ h,
which would follow from the monotonicity of SR under a
partial trace.
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Vanishing g and triangle states

In this section we prove a structure theorem for tripartite quantum states |ψ〉ABC ∈ HA⊗HB⊗HC with vanishing
g(A : B). We first remind the reader of the definitions of conditional mutual information.

Definition 5 (Conditional mutual information). Given three parties A, B and C, the conditional mutual information
is defined by I(A : C|B) ≡ I(A : BC)− I(A : B) = S(AB) + S(BC)− S(ABC)− S(B).

We will use the following properties of the conditional mutual information:

1. I(A : C|B) = I(C : A|B) (commutativity);

2. I(A : C|B) ≥ 0 (strong subadditivity).

We first re-state the definition of a “triangle state”.

Definition 6 (Triangle state). A pure tripartite state |ψ〉ABC ∈ HA ⊗HB ⊗HC is a triangle state if for each local
Hilbert space there exists a bipartition Hα = (HαL

⊗HαR
)⊕H0

α (α = A,B,C) such that

|ψ〉ABC = |ψ〉ARBL
|ψ〉BRCL

|ψ〉CRAL
. (11)

Observe that |ψ〉ABC has no support in any H0
α. Note that for notational clarity, the main text version of this

definition defines the bipartition as Hα = HαL
⊗HαR

, and as a result that equivalence is only up to local isometry.
The triangle state is a tensor product of pure states which may be entangled between at most two out of three parties.

We now state and prove the first structure theorem [21]:

Theorem 7 (States with vanishing g). A pure tripartite quantum state |ψ〉ABC is a triangle state if and only if for
any two-party reduced density matrix (ρAB , ρBC , ρCA), g(A : B) = g(B : C) = g(C : A) = 0, respectively.

To prove Theorem 7, we will need the following theorem from Hayden et al. [23]:
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Theorem 8 (Quantum Markov property [23]). Let ρABC be a quantum state on H = HA ⊗HB ⊗HC . Then ρABC
satisfies strong subadditivity with equality—i.e., I(A : C|B) = 0—if and only if there exists a decomposition of HB

HB =
⊕
i

HiBL
⊗HiBR

(12)

such that

ρABC =
∑
i

qi ρ
i
ABL

⊗ ρiBRC , (13)

where ρiABL
, ρiBRC

are density matrices in HA⊗HiBL
,HiBR

⊗HC respectively, and {qi} forms a probability distribution
[i.e., qi ≥ 0 and

∑
i qi = 1].

For a pure tripartite state |ψ〉ABC satisfying I(A : C|B) = 0, since the density matrix of a pure state is not convex
combinations of mixed states, the sum contains only one term and |ψ〉ABC = |ψ〉ABL

|ψ〉BRC
.

Proof of Theorem 7. One direction of the theorem is straightforward to prove. That is, if a pure quantum state ρABC is
a triangle state, then for any of the three bipartite reduced density matrices, g(A : B) = g(B : C) = g(C : A) = 0. This
can be seen by computing, for example, S(ACL) and I(A : B) for Eq. (11), and observing that S(ACL) = I(A : B)/2.
Since any purification provides an upper bound on EP (A : B), this must be the optimal one, as the lower bound is
saturated. Similar computation may be done for g(B : C) and g(C : A) for reduced density matrices of the triangle
state to show that these, too, must equal zero.

To prove the converse, consider an optimal purification of ρAB to C = CL ⊗ CR. Then we can write g(A : B) as a
sum of two non-negative quantities, in two different ways

g(A : B) = I(CL : BCR|A) + I(CR : A|B) (14a)

= I(CR : ACL|B) + I(CL : B|A). (14b)

The decompositions follow from rewriting g as g(A : B) = 2S(ACL) − I(A : B) = I(ACL : BCR) − I(A : B) and
repeated use of Definition 5. Thus, if g(A : B) = 0, then all four of the condition mutual informations vanishes:

I(CL : B|A) = I(CR : A|B) = I(CL : BCR|A) = I(CR : ACL|B) = 0. (15)

In quantum information language Eqs. (15) imply that the state ρABCLCR
forms a quantum Markov chain across the

tripartitions CL|A|BCR and ACL|B|CR.

Applying Theorem 8 to Eq. (14), we obtain a decomposition along the conditioned Hilbert space of the optimally
purified state. However, for either tripartition CL : A : BCR or ACL : B : CR, the state in question is pure, so as
observed earlier, the sum in Eq. (13) can contain only one term. The pure state must therefore be a tensor product
of two pure states. Decomposing HA = HAR

⊗HAL
for the quantum Markov chain across CL : A : BCR, we obtain

|ψ〉ABCLCR
= |ψ〉CLAR

|ψ〉ALBCR
. (16)

Next, using the other Markov chain ACL : B : CR in Eq. (15) we may write |ψ〉ALBCR
as yet another tensor product

of pure states:

|ψ〉ALBCR
= |ψ〉ALBR

|ψ〉BLCR
. (17)

The optimal purification is therefore decomposed as

|ψ〉ABCLCR
= |ψ〉CLAR

|ψ〉ALBR
|ψ〉BLCR

(18)

and is therefore a triangle state. The original state is a purification which is equivalent to this triangle state up to a
local isometry on C. We note that by looking at g(A : B), we deduce that |ψ〉ABC is locally isometric to a triangle
state. However, the same argument may be applied using any pair of parties.
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Vanishing h and sums of triangle states (SOTS)

In this section we define a classes of states called Sum of polygon states (SOPS) and discuss their properties. The
main result of this section is the structure theorem for quantum states with vanishing h(A : B) (Theorem 14).

Definition 9 (Splitting). A splitting of a Hilbert space Hi is an orthogonal decomposition of the Hilbert space into a
direct sum of tensor product spaces

Hi = H0
i ⊕

⊕
j

HjiL ⊗H
j
iR . (19)

The space H0
i may be 0-dimensional.

Definition 10 (Sum of polygon states—SOPS). An N -party pure quantum state |ψ〉 ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN is a
SOPS with respect to the decomposition (H1,H2, . . . ,HN ) if for each party i, Hi admits a splitting and

|ψ〉 =
∑
j

aj
⊗
i

|j〉(iR)(i+L) such that |j〉(iR)(i+L) ∈ H
j
iR ⊗H

j
i+L . (20)

where i+ ≡ (i mod N) + 1 denote the party after i, the coefficients are normalized to
∑
j |aj |2 = 1.

We may, without loss of generality, take aj ∈ R and aj ≥ 0 by absorbing its phase into one of |j〉(iR)(i+L). A SOTS

is a special case of SOPS with N = 3; the triangle state defined in Eq. (11) may be seen as a special case of Eq. (20)
in which aj = 1 for exactly one j. The decomposition is invariant under a cyclic permutation, e.g. if a state is a SOPS
with respect to (A,B,C), it is also a SOPS with respect to (B,C,A).

We now show that a SOPS is still a SOPS when the local Hilbert spaces are re-defined to include their nearest
neighbors, a procedure we term “coarse-graining”. For example, if we define H1:3 = H1⊗H2⊗H3, then a state which
is an SOPS for H1 ⊗ H2 · · · ⊗ HN decomposition is also a SOPS for H1:3 ⊗ H4 · · · ⊗ HN . Note that an arbitrary
combination (such as one which is not nearest-neighbor) does not necessarily preserve the SOPS structure.

Lemma 11 (SOPS structure preserved under coarse-graining). Let N ≥ 3. If |Ψ〉 ∈ H1 ⊗ · · · ⊗ HN is an N -party
SOPS, then |Ψ〉 is an (N−1)-party SOPS with respect to the decomposition (H1, . . . ,Hi:i+1,Hi+2, . . . ,HN ), where
Hi:i+1 = Hi ⊗Hi+1.

Proof. Without loss of generality, we show this for i = 1; we coarse-grain H1 ⊗ H2 → H1:2. Because 1-2 always
appear in Eq. (20) through the combination |j〉(NR)(1L) |j〉(1R)(2L) |j〉(2R)(3L), we can identify the splitting Hj1:2,L =

Hj1L ⊗H
j
1R ⊗H

j
2L and Hj1:2,R = Hj2R. Identifying |j〉(NR)(1:2,L) = |j〉(NR)(1L) |j〉(1R)(2L), the claim follows.

SOPS satisfy a number of interesting properties which we now state.

Porism 12. Let N ≥ 4 and |ψ〉 be a SOPS with respect to (H1, . . . ,HN ). Then I(Hi−1,Hi+1|Hi) = 0 for all i.

To simplify notation, here we identify the parties (and their respective Hilbert spaces) 0↔ N and 1↔ N + 1.

Proof. Without loss of generality we take i = 2. Under coarse-graining, it suffices to prove the statement for N = 4.
For a state |ψ〉1234 ∈ SOPS(N = 4) written in the form Eq. (20), the density matrix ρ123 is

ρ123 =
∑
j

|aj |2
(
ρj1L ⊗ |j〉(1R)(2L) 〈j|(1R)(2L)

)
⊗
(
|j〉(2R)(3L) 〈j|(2R)(3L) ⊗ ρ

j
3R

)
, (21)

where ρj1L = Tr4R |j〉(4R)(1L) 〈j|(4R)(1L) is the density matrix within Hj1R, and ρj3R = Tr4L |j〉(3R)(4L) 〈j|(3R)(4L) the

density matrix within Hj3L. This is precisely in the form of Eq. (13) with (1, 2, 3) = (A,B,C) of Theorem 8, and
hence I(H1 : H3|H2) = 0.

Lemma 13. Let |ψ〉 be a SOPS with respect to (H1, . . . ,HN ), and ρa:b be its density matrix for any contigu-
ous subgroup of parties Ha ⊗ Ha+1 ⊗ · · · ⊗ Hb. Then the canonical purification of ρa:b is a SOPS with respect to
(Ha,Ha+1, . . . ,Hb−1,Hb,Hb,Hb−1, . . . ,Ha).
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Proof. Again, we may combine all the parties outside of the a, . . . , b range into a single party, which we label as 1.
Hence, without loss of generality we take (a, b) = (2, n). The density matrix on H2 ⊗ · · · ⊗ Hn is

ρ2:n =
∑
j

|aj |2 ρj2L ⊗

[
n−1⊗
i=2

|j〉(iR)(i+L) 〈j|(iR)(i+L)

]
⊗ ρjnR , (22)

where ρj2L = Tr1R |j〉(1R)(2L) 〈j|(1R)(2L) and ρjnR = Tr1L |j〉(nR)(1L) 〈j|(nR)(1L) are the density matrices in their respec-

tive spaces after tracing out H1. As each term in Eq. (22) are orthogonal, its canonical purification is

CanonPur
[
ρ2:n

]
=
∑
j

|aj |CanonPur
[
ρj2L
]
⊗

[
n−1⊗
i=2

|j〉(iR)(i+L) 〈j|(iR)(i+L)

]

⊗ CanonPur
[
ρjnR

]
⊗

[
n−1⊗
i=2

|j〉
(iR)(i+L)

〈j|
(iR)(i+L)

]
.

(23)

The canonical purifications CanonPur
[
ρj2L
]

and CanonPur
[
ρjnR

]
live in the Hilbert spaces Hj2L⊗H

j
2L and HjnR⊗H

j

nR

respectively. After we swap the left/right labels for the splittings (Def. 9) of Hi, Eq. (23) takes on the form a SOPS
with respect to the decomposition

(
H2,H3, . . . ,Hn,Hn,Hn−1, . . . ,H2

)
.

We now state the main result of the section, the second of the structure theorems.

Theorem 14 (States with vanishing h). A pure tripartite quantum state |ψ〉ABC is a sum of triangle states (a SOPS
with N = 3) if and only if h(A : B) = 0 for ρAB.

To prove the “only if” direction of Theorem 14, we use Porism 12 and Lemma 13. To prove the “if” direction, we will
additionally need Lemma 15, Fact 16, and Proposition 17 below.

Lemma 15. Given a pure state on four parties A,B,C,D, if it is both a product state under the bipartition (AB,CD)
and (AD,BC):

|ABCD〉 = |AB〉 |CD〉 = |AD〉 |BC〉 , (24)

then it is a product state across all four parties, i.e.,

|ABCD〉 = |A〉 |B〉 |C〉 |D〉 . (25)

Proof. Since the state is a product state under the bipartition (AB,CD), then ρAD = ρA ⊗ ρD. The state is also
a product state under the bipartition (AD,BC), hence ρAD is a pure-state density matrix with rank 1, so ρA and
ρD must be pure. The same argument applies to ρB and ρC . Therefore the state is a product state across the four
parties.

Fact 16. Let pa and qa be two probability distributions on 1 ≤ a ≤ N . Then the sum

N∑
a=1

paqa = 1 (26)

if and only if the distribtions p, q are identical with a single nonzero entry. That is, there exist u such that pu = qu = 1
and pa = qa = 0 for all a 6= u.

Proof. Because 0 ≤ pa, qa ≤ 1, the probabilities obey the inequalities(
N∑
a=1

paqa

)2

≤

(
N∑
a=1

p2
a

)(
N∑
a=1

q2
a

)
≤

(
N∑
a=1

pa

)(
N∑
a=1

qa

)
= 12 = 1. (27)

The first inequality is the Cauchy-Schwarz inequality, where equality holds iff pa ∝ qa. The second inequality follows
from the fact that p2

a ≤ pa, where equality holds iff pa = 0 or 1.
The first term is unity iff both inequalities are satified equality, i.e., all the terms of Eq. (27) are equal. From the

normalization constraint
∑
a pa =

∑
a qa = 1, this is equivalent to pa = qa for all a, and that exactly one of pa is

unity, while the remaining p’s vanishes.
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Proposition 17. Let |ψ〉1234 be a pure 4-party state in H1 ⊗ H2 ⊗ H3 ⊗ H4. If I
(
Hi−1 : Hi+1

∣∣Hi) = 0 for all
i ∈ {1, . . . , 4}, then |ψ〉1234 is a SOPS with respect to (H1,H2,H3,H4).

Proof. We first consider H1 and the condition I(H1 : H3|H2) = 0 and use Theorem 8 to observe that there exists a
decomposition

H2 =
⊕
k

Hk2L ⊗Hk2R (28)

such that the reduced density matrix ρ123 on H1 ⊗H2 ⊗H3 may be written as

ρ123 =
∑
k

q
(2)
k ρk1(2L) ⊗ ρ

k
(2R)3 (29)

where
{
q

(2)
k

}
form a probability distribution. For convenience, we take q

(2)
k > 0 for all k (truncating the sum if

necessary). We consider the canonical purification of the reduced density matrix ρ123 to H1 ⊗ H2 ⊗ H3. From
Eq. (29), the canonical purification is

CanonPur
[
ρ123

]
=
∑
k

√
q

(2)
k

∣∣k〉
1(2L)1(2L)

⊗
∣∣k〉

(2R)3(2R)3
, (30)

where
∣∣j〉

1(2L)1(2L)
∈ H1 ⊗ H2 ⊗ H1 ⊗ H2 is the canonical purification of ρj1(2L), etc. Note that the canonical

purification may be obtained by isometry acting on H4 of the original pure state |ψ〉1234. This may alternatively be
viewed as identification of a particular basis in H4, and this viewpoint is just the difference between active and passive
transformation. As a result, the isometry does not change any entanglement properties among the four parties. The
state |ψ〉1234 must take the form

|ψ〉1234 =
∑
k

√
q

(2)
k

∣∣k〉
(4R)1(2L)

∣∣k〉
(2R)3(4L)

, (31)

where the decomposition of H4

H4 =
⊕
m

Hm4R ⊗Hm4L (32)

is induced by the reflection of Eq. (28) in the canonical purification. We have interchanged the labeling of L and R
for later convenience.

Similarly, from I(H4 : H2|H1) = 0, there exists a splitting on H1 and H3 such that

|ψ〉1234 =
∑
j

√
q

(1)
j

∣∣j〉
(1R)2(3L)

∣∣j〉
(3R)4(1L)

. (33)

Up to now, we have introduced a splitting on the four Hilbert spaces and the Schmidt decompositions between two
different cuts. Comparing Eqs. (33) and (31), it is not clear that there is a term-by-term equivalence. We now use
projectors onto the orthogonal subspaces of each Hilbert space, such as in Eq. (28), to find that there is indeed such
an equivalence and that that each term in the sum is precisely a term in Eq. (20).

Let P
(i)
k be a projector on to the kth subspace in the decomposition of Hi, i.e., HkiL ⊗HkiR. As they are projectors

onto the Schmidt bases,
∑
k P

(i)
k |ψ〉1234 = |ψ〉1234. In addition, from Eqs. (28), (31), and (32), we have

P
(2)
j P

(4)
k |ψ〉1234 = δjkP

(2)
k |ψ〉1234 . (34a)

Similarly, Eq. (33) implies that

P
(1)
` P (3)

m |ψ〉1234 = δ`mP
(1)
` |ψ〉1234 . (34b)

We iet
∣∣k, j〉

(4R)1(2L)
be the normalized state from the projection P

(1)
j

∣∣k〉
(4R)1(2L)

; we rewrite part of Eq. (31) as

P
(1)
j

∣∣k〉
(4R)1(2L)

= M
(1)
k→j

∣∣k, j〉
(4R)1(2L)

∈ Hk4R ⊗H
j
1L ⊗H

j
1R ⊗H

k
2L , (35a)
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where
∑
j

∣∣M (1)
k→j

∣∣2 = 1 as the normalization condition. (If one of the projections Pj |k〉 vanishes, i.e., Mk→j = 0, we
may simply assign |k, j〉 to be an arbitrary normalized state in the respective Hilbert space.)

Likewise, the projection on the Schmidt states in Eqs. (31) and (33) are denoted as

P
(2)
k

∣∣`〉
(1R)2(3L)

= M
(2)
`→k

∣∣`, k〉
(1R)2(3L)

∈ H`1R ⊗Hk2L ⊗Hk2R ⊗H`3L , (35b)

P
(3)
`

∣∣m〉
(2R)3(4L)

= M
(3)
m→`

∣∣m, `〉
(2R)3(4L)

∈ Hm2R ⊗H`3L ⊗H`3R ⊗Hm4L , (35c)

P (4)
m

∣∣j〉
(3R)4(1L)

= M
(4)
j→m

∣∣j,m〉
(3R)4(1L)

∈ Hj3R ⊗H
m
4L ⊗Hm4R ⊗H

j
1L , (35d)

with
∑
k

∣∣M (2)
`→k

∣∣2 =
∑
`

∣∣M (3)
m→`

∣∣2 =
∑
m

∣∣M (4)
j→m

∣∣2 = 1.

Let Pjk`m ≡ P (1)
j P

(2)
k P

(3)
` P

(4)
m be a product of (commuting) projectors. We look at its action on |ψ〉1234 written in

two different ways [Eqs. (31) and (33)]. By Eqs. (34), any projector for which j 6= ` or k 6= m will annihilate the state
|ψ〉1234; it therefore suffices to consider only projectors of the form Pjkjk.

Pjkjk |ψ〉1234 =

√
q

(2)
k M

(1)
k→jM

(3)
k→j

∣∣k, j〉
(4R)1(2L)

∣∣k, j〉
(2R)3(4L)

[from Eq. (31)], (36a)

Pjkjk |ψ〉1234 =

√
q

(1)
j M

(2)
j→kM

(4)
j→k

∣∣j, k〉
(1R)2(3L)

∣∣j, k〉
(3R)4(1L)

[from Eq. (33)]. (36b)

Consider the application of P
(1)
j P

(3)
j on |k〉(4R)1(2L) |k〉(2R)3(4L), individual terms in the RHS of Eq. (31).∣∣k〉

(4R)1(2L)

∣∣k〉
(2R)3(4L)

=
∑
j

P
(1)
j P

(3)
j

∣∣k〉
(4R)1(2L)

∣∣k〉
(2R)3(4L)

=
∑
j

M
(1)
k→jM

(3)
k→j

∣∣k, j〉
(4R)1(2L)

∣∣k, j〉
(2R)3(4L)

. (37)

The normalization condition for the projection is

∀k,
∑
j

∣∣M (1)
k→jM

(3)
k→j

∣∣2 = 1 (38)

Applying Fact 16 to the probability distributions
∣∣M (1)

k→j
∣∣2 and

∣∣M (3)
k→j

∣∣2, we conclude that there exist a map j(k),

such that
∣∣M (1)

k→j(k)

∣∣ =
∣∣M (3)

k→j(k)

∣∣ = 1, and that the other terms vanishes. Likewise, the same argument applied to the

individual terms in the RHS of Eq. (33) implies that there exists a single nonzero entry M
(2,4)
j→k(j). In equation form,

∣∣M (1)
k→j

∣∣ =
∣∣M (3)

k→j
∣∣ =

{
1 j = j(k),

0 j 6= j(k).

∣∣M (2)
j→k

∣∣ =
∣∣M (4)

j→k
∣∣ =

{
1 k = k(j),

0 k 6= k(j).
(39)

Next, the Eqs. (36a) and (36b) implies that the coefficients have equal absolute values. This is possible only if j(k)

and k(j) are inverse functions: i.e., j(k(j)) = j and k(j(k)) = k. In addition we have q
(1)
j = q

(2)
k(j).

Finally, applying Lemma 17 to Eqs. (36), we can write each Pjkjk |ψ〉1234 as a product of states.

|ψ〉1234 =
∑
j,k

Pjkjk |ψ〉1234

=
∑
j

Pj,k(j),j,k(j)

√
q

(2)
k(j)M

(1)
k(j)→jM

(3)
k(j)→j

∣∣k, j〉
(4R)(1L)

∣∣j, k〉
(1R)(2L)

∣∣k, j〉
(2R)(3L)

∣∣j, k〉
(3R)(4L)

, (40)

where |x, y〉(AR)(BL) ∈ HxAR ⊗H
y
BL. This is precisely the form of a SOPS (Def. 10).

To summarize, we used quantum Markov property [Theorem 8] to find a decomposition of each local Hilbert space
Hi =

⊕
µH

µ
iL ⊗ H

µ
iR. The decomposition gives us orthogonal projectors onto a basis in which the Schmidt vectors

along each cut factorized. Aided by Lemmas 15 and 16, we then found that there is a bijection between the Schmidt
vectors and values along different cuts. This enabled us to find orthogonal projectors Pjkjk which when applied to
|ψ〉1234, return a polygon state.

With the bulk of the technical work behind us, we now complete the proof of the structure theorem for h.
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Proof of Theorem 14. Let |ψ〉ABC be a 3-party state on A, B, and C. We denote the canonical purification of ρAB as

|Ψ〉ABB̄Ā ≡ CanonPur
[
ρAB

]
∈ HA ⊗HB ⊗HB ⊗HA. (41)

We recast h(A : B) as a conditional mutual information:

h(A : B) = SAĀ + (SAB − SA − SB)

= SĀA + SAB − SA − SĀAB
= I
(
Ā : B

∣∣A). (42)

Because of the symmetry A↔ B and A,B ↔ Ā, B̄, the following quantities are equal.

h(A : B) = I
(
Ā : B

∣∣A) = I
(
A : B̄

∣∣B) = I
(
B : Ā

∣∣A) = I
(
B̄ : A

∣∣Ā). (43)

If |ψ〉ABC is a SOTS (SOPS with N = 3), then by Lemma 13 the canonical purification |Ψ〉ABB̄Ā is a SOPS with
respect to (HA,HB ,HB ,HA). Via Porism 12, Eq. (43) is identically zero. Thus, if |ψ〉ABC is a SOTS, h(A : B) = 0.

The proof for the converse statement is as follows. If h(A : B) = 0 for |ψ〉ABC , then Eq. (43) vanishes for |Ψ〉ABB̄Ā.
It follows from Proposition 17 that |Ψ〉ABB̄Ā is a 4-party SOPS. Finally observe that |ψ〉ABC is isometric to |Ψ〉ABB̄Ā
after coarse-graining B̄Ā→ C, which by Lemma 11 makes |ψ〉ABC a 3-party SOPS.

This complete the proof that h(A : B) = 0 if and only if |ψ〉ABC is a SOTS.

Remark. The converse of Porism 12 is the statement

∀i I(Hi−1 : Hi+1|Hi) = 0
?

=⇒ |ψ〉1...N ∈ SOPS(H1, . . . ,HN ). (44)

Proposition 17 proves that this is indeed true for N = 4. The statement is trivially true for N = 3, since for three
parties the left-hand-side implies that |ψ〉123 is a product state. Evidently this statement is false for N ≥ 6, because
of the existence of a 6-party perfect tensor. The case for N = 5 remains an open problem.

Coarse-graining of matrix product states

Here we present the details of the matrix product state techniques that are used to compute EP (A : B) and
SR(A : B) for a critical quantum spin chain. As mentioned in the main text, we coarse-grain spins in regions A,B,C
and truncate the Hilbert spaces HA,HB ,HC into HÃ,HB̃ ,HC̃ . The starting point is a periodic uniform matrix
product state (puMPS) that represents the ground state. A puMPS is composed of N identical rank-3 tensors M ,

|ψ(M)〉 =
∑

s1s2···sn

Tr(Ms1Ms2 · · ·MsN ) |s1s2 · · · sN 〉 , (45)

where Msi is a D × D matrix, si = 1, 2, . . . , d is the index for the Hilbert space on one site, and D is the bond
dimension. The bond dimension D restricts the amount of entanglement in the ansatz. Specifically, the reduced
density matrix of a puMPS on any contiguous region has rank at most D2. In order to represent the ground state
faithfully, D grows polynomially with N for a critical spin chain, but stays constant for a gapped spin chain [37].
We employ methods in Ref. 31 to minimize the energy with respect to the Hamiltonian H and obtain the optimized
puMPS |ψ(M)〉 as an approximation to the ground state.

M

si

βα

(a)

T
βα

γ δ

βα

γ δ

M

M ∗
=

(b)

FIG. 5. (a) Unit cell tensor M . Virtual indices are labeled α, β and physical index is labeled si. (b) Tαγ,βδ is formed by the
contraction of the unit cell tensors along the physical index.
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Next, we block spins to obtain a series of tensors M (n) that represents the coarse-grained tensor for n contiguous
sites. Consider the transfer matrix

Tαβγδ =

d∑
s=1

MsαβM
∗
sγδ. (46)

For clarity, the indices and multiplication are shown using graphical tensor notation as well in Fig. 5. Grouping the
indices (α, γ) and (β, δ), this tensor can be viewed as a D2 ×D2 matrix. We can take its n-th power Tn, e.g.

(T 2)αγ,βδ =
∑
β1,δ1

Tαβ1γδ1Tβ1βδ1δ. (47)

Now we regroup the indices (α, β) and (γ, δ) for each tensor (Tn)αβγδ to obtain a D2 × D2 matrix (different from
above) that is Hermitian and positive. These matrices admit an eigenvalue decomposition,

(Tn)αβ,γδ =

d(n)∑
S=1

λ
(n)
S U

(n)
SαβU

(n)∗
Sγδ , (48)

where d(n) is the number of positive eigenvalues. It can be easily shown that d(n) ≤ min (D2, dn). Let

M
(n)
Sαβ =

d(n)∑
S=1

√
λ

(n)
S U

(n)
Sαβ , (49)

then the nth power of the transfer matrix can be recovered by M
(n)
Sαβ ,

(Tn)αβγδ =

d(n)∑
S=1

M
(n)
SαβM

(n)∗
Sγδ . (50)

So far we have obtained a series of tensors M (n) as a result of coarse-graining n spins.
Now we can compute the mutual information I(A : B) = SA + SB − SAB . First, we would like to compute SA,

where A contains NA contiguous sites, and the complement Ā contains N −NA sites. We can use the tensors M (NA)

and M (NĀ) to construct a coarse-grained state

|ψ̃〉AĀ =
∑
SA,SĀ

D∑
α,β=1

M
(NA)
SAαβ

M
(NĀ)
SĀβα

|SASĀ〉 (51)

A Schmidt decomposition on |ψ〉AĀ gives the entanglement spectrum {λ2
j} between A and Ā, which amounts to a

singular value decompostion,

M
(NA)
SAαβ

M
(NĀ)
SĀβα

=
∑
j

USAjλjV
∗
SĀj

, (52)

where ∑
SA

USAjU
∗
SAk = δjk,

∑
SĀ

V ∗SĀj
VSĀk = δjk, (53)

and λj ≥ 0. Note that U depends on NA, and we do not explicitly show the dependence in the notation. Also note
that the U here is not to be confused with the U (n) in Eq. (49). The entanglement entropy between A and Ā is

SA = −
∑
j

λ2
j log(λ2

j ). (54)

Repeating the same procedure with NA substituted by NB or NA +NB gives the entanglement entropy SB or SAB .
We thus obtain the mutual information I(A : B) = SA + SB − SAB . For later convenience, we further truncate the
physical dimension of M (NA) using the Schmidt vectors USAj ,

M̃
(NA)

S̃Aαβ
=
∑
SA

U∗
SAS̃A

M
(NA)
SAαβ

, (55)
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where we have restricted the index S̃A such that

λS̃A
> ε, ∀S̃A, (56)

given an error threshold ε > 0. The physical dimension is truncated to d̃(NA), the number of Schmidt coefficients
{λj} larger than a threshold ε. By virtue of the singular value decomposition, the truncation only keeps the Schmidt
vectors with Schmidt values larger than ε. Again, the truncation can be done for any M (n) with 1 ≤ n ≤ N , by
substituting the NA above with n.

Given the coarse-grained tensor M̃ (n) and NA, NB , NC , we are ready to construct the coarse-grained tripartite state
as a MPS with three sites,

|ψ̃〉ÃB̃C̃ =
∑

S̃A,S̃B ,S̃C

∑
αβγ

M̃
(NA)

S̃Aαβ
M̃

(NB)

S̃Bβγ
M̃

(NC)

S̃Cγα
|S̃AS̃BS̃C〉 . (57)

This is the state that is used to compute EP (A : B) and SR(A : B) in the main text. The whole renormalization
procedure is summarized in Fig. 6.

Gradient optimization for EP

We consider a tripartite state |ψ〉ABC where C is further split into CL and CR, HC = HCL
⊗HCR

. Since |ψ〉ABCLCR

is a purification of the reduced density matrix ρAB , all states of the form

|ψ(UCLCR
)〉 = UCLCR

|ψ〉ABCLCR
(58)

gives purifications of ρAB , where UCLCR
is a unitary operator on CLCR. Assume that the optimal purification can

be achieved with the prescribed Hilbert space HCL
and HCR

, then

EP (A : B) = min
UCLCR

SACL:BCR
(|ψ(UCLCR

)〉). (59)

We will find the minimum by a gradient optimization. The gradient optimization requires the gradient of the objective
function over the argument. To compute the gradient, we first express the reduced density matrix ρACL

as

ρACL
= TrBCR

ρ, (60)

where

ρ = UCLCR
|ψ〉 〈ψ|U†CLCR

. (61)

The entanglement entropy is

SACL:BCR
= −TrACL

(ρACL
log ρACL

), (62)

where ρACL
depends on UCLCR

by Eqs. (60), (61).
Let s be the label for a step of the gradient optimization. Initially at s = 0 we have

UCLCR
(s = 0) = 1CLCR

, (63)

which amounts to picking the original state |ψ〉ABCLCR
as the purification. At each step of gradient optimization, We

perform an update of UCLCR
of the form

UCLCR
(s+ 1) = eiΘCLCR

δtUCLCR
(s), (64)

where ΘCLCR
is an Hermitian operator on HCL

⊗ HCR
and δt||ΘCLCR

|| � 1. Up to higher order terms in δt, the
change in the entanglement entropy SACL:BCR

is

δSACL:BCR
= −TrACL

(δρACL
log ρACL

)

= −iδtTrACL
(TrBCR

([ΘCLCR
, ρ]) log ρACL

)

= −iδtTr([ΘCLCR
, ρ] log ρACL

⊗ 1BCR
)

= −iδtTr(ΘCLCR
[ρ, log ρACL

⊗ 1BCR
])

= δtTrCLCR
(ΘCLCR

ECLCR
), (65)
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 6. Coarse-graining of the periodic uniform matrix product state. (a) The original MPS as the ground state of the spin
chain Hamiltonian, Eq. (45). (b) The eigenvalue decomposition of the n-th power of the transfer matrix Tn, Eq. (48). (c) The

coarse-grained tensor M (n) as a tensor for n sites, Eq. (49). (d) The Schmidt decomposition of the coarse-grained MPS with
respect to A and its complement Ā with n and n̄ = N − n sites, respectively, Eq. (52). (e) Truncation of physical dimensions

of the coarse-grained MPS tensors, Eq. (55). (f) The final state |ψ̃〉 in Eq. (57).
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where

ECLCR
= −iTrAB([ρ, log ρACL

⊗ 1BCR
]). (66)

In the first line we have differentiated Eq. (62) and used TrACL
(δρACL

) = 0 since TrACL
ρACL

≡ 1, in the second line
we have used the Heisenberg evolution of density matrix ρ and traced out BCR, in the third line we have rearranged
the tracings into an overall tracing on the full Hilbert space, in the fourth line we have used the cyclic property of
trace, and in the last line we have rearranged the tracing.

If we use the gradient descent algorithm, we choose ΘCLCR
to be

ΘCLCR
= −ECLCR

. (67)

In order to determine δt, we perform a line search to find the δt that minimizes SACL:BCR
, given the update rule

Eq. (64) and the gradient direction Eq. (67). We then obtain UCLCR
(s + 1) which can be substituted into Eq. (61)

and Eq. (66) to compute the gradient direction ECLCR
for the next step of the update. The gradient optimization

goes so on and so forth, until the norm of gradient ||ECLCR
|| is smaller than some tolerance η. In a typical gradient

descent optimization, the error is quadratic in the norm of gradient. In this work we choose η = 10−4 such that
the error in EP (A : B) is small compared to the finite-size corrections. In practice, we use the nonlinear conjugate
gradient (NLCG) method instead of the simple gradient descent. The search direction ΘCLCR

in NLCG is a suitable
linear combination of the gradient and the search direction in the previous step of iteration.

The computation of Eq. (66) is the most expensive step in the optimization. Given the tripartite state |ψ〉ÃB̃C̃ in
Fig. 6, we follow the steps below to compute Eq. (66). First, we contract the tensor network in Fig. 6(f), resulting
in a three-leg tensor in Fig. 7(a), where we have omitted the tilde to simplify the notation. Then we split the leg C
into CL and CR as prescribed by the decomposition of the Hilbert space. In order to find log ρACL

, we first do the
Schmidt decomposition with respect to ACL and BCR, as shown in Fig. 7(b). Then log ρACL

can be represented by
Fig. 7(d). The density matrix ρ is shown in Fig. 7(c). We can then compute TrAB(ρ(log ρACL

⊗1BCR
)) by contracting

the tensor network in fig, 7(e). Finally, Eq. (66) can be computed by

ECLCR
= −i[TrAB(ρ(log ρACL

⊗ 1BCR
))− h.c.], (68)

where h.c. denotes the Hermitian conjugate of TrAB(ρ(log ρACL
⊗ 1BCR

)).

Different subregion sizes

First, we argue that g(A : B) and h(A : B) will be independent of the sizes of A and B in the thermodynamic limit.
In the thermodynamic limit, the quantum spin chain is described by a 1+1D conformal field theory (CFT). As shown
in Refs. [11, 14], the UV divergences in 2EP (A : B), SR(A : B), and I(A : B) are of the same form – they scale with
the UV cutoff Λ as

2EP (A : B), SR(A : B), I(A : B) ∼ cCFT

3
log Λ. (69)

The UV divergences in the quantities g(A : B) ≡ 2EP (A : B)− I(A : B) and h(A : B) ≡ SR(A : B)− I(A : B) should
therefore cancel, making them scale-invariant. In a conformal field theory a scale-invariant quantity is also conformally
invariant. In 1+1D, a change in the length of the regions can be implemented by conformal transformations, which
includes rescaling the space with arbitrary local weights. Therefore, in a CFT, g(A : B) and h(A : B) do not depend
on the sizes of A and B. We then expect that on the lattice, g(A : B) and h(A : B) also do not depend on the sizes
of A and B, once the thermodynamic limit is taken.

We study how g(A : B) and h(A : B) depend on subregion sizes using the O’Brien-Fendley model at λ = 0.3. It
is in the Ising universality class but has larger finite-size effect than the Ising model, and we can see the finite-size
corrections in g(A : B) and h(A : B) more easily. We fix ratios (rA, rB , rC) = (NA/N,NB/N,NC/N) that determine
the relative sizes and then take the thermodynamic limit N →∞. Results with different ratios are shown in Fig. 8.

In Fig. 8, the intercept of the lines with the vertical axis shows the extrapolation of g(A : B) and h(A : B) to the
thermodynamic limit. We see that both g(A : B) and h(A : B) converge to independent values regardless of subregion
sizes. The slight differences in the values of extrapolation is caused by linearly fitting the data points with 1/N2,
whereas the finite-size corrections scale in a more complicated way.
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(a)

(b)

(c)

(d)

(e)

FIG. 7. Computation of the gradient Eq. (66). (a) Given a bipartition HC = HCL ⊗HCR , reshape the state |ψ〉 into a rank
4 tensor. (b) The Schmidt decomposition of the state |ψ〉 bipartite into ACL and BCR. (c) The density matrix ρ of the state
|ψ〉.(d) The logarithm of the reduced density matrix ρACL . (e) The first term in the square bracket of Eq. (68).

Multipartite entanglement for gapped systems

In this section, we study g and h for 1D gapped systems in more detail. First and foremost. we assume that
the ground state in the thermodynamic limit can be represented as a MPS with finite bond dimension D, and that
the multipartite entanglement quantities of the ground state can be extracted from the MPS. This assumption is,
however, not rigorous proven. Despite tremendous success of infinite MPS algorthms which have been widely used
to study general 1D gapped systems, it has only been rigorously proven that local properties can be captured by a
MPS with finite bond dimension [39]. Therefore, the argument below should be taken as rigorous only for the gapped
systems whose ground state can be exactly represented as a MPS. For a general gapped system, the argument below
should be taken as heuristic rather than exact.
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FIG. 8. g(A : B) and h(A : B) for the O’Brien-Fendley model [34] with λ = 0.3 In brackets we show the relative size ratios
(rA, rB , rc) of regions A,B,C and we use a sequence of increasing system sizes 36 ≤ N ≤ 84. We use bond dimensions

18 ≤ D ≤ 26 and truncated MPS physical dimensions d̃A = d̃B = 64 and d̃CL = d̃CR = 12. Lines show linear extrapolations of
the data points.

Fixed-point MPS

We begin with translation invariant MPS in the thermodynamic limit. Such a state flows toward fixed-point MPS
under coarse-graining [28, 29, 41]. We will show that a fixed-point MPS is a SOTS for any contiguous tripartition. In
particular, the MPS is a triangle state if it is injective, which corresponds to no long-range order. Therefore, in the
thermodynamic limit the MPS has h(A : B) = 0, and if the MPS is injective then also g(A : B) = 0.

We consider a periodic uniform MPS (puMPS) with N sites. Each site has a d-dimensional degree of freedom with
associated rank-3 tensor M with shape d × D × D, where D is the bond dimension. We denote by Msi , where si
indexes the d physical basis states on the i-th site, a D ×D matrix.

In puMPS representation, the many-body ground state may be written in terms of N identical rank-3 tensors M :∣∣ψ(M)
〉

=
∑

s1s2···sn

Tr
(
Ms1Ms2 · · ·Msn

)
|s1s2 · · · sn〉 , (70)

The puMPS representation is invariant under a local similarity transformation Ai → SMsiS
−1 for all si and an

invertible S. As before, we define a transfer matrix derived from the matrices above

Tαγ,βδ =
∑
s

Msαβ(Msγδ)
∗ (71)

shown graphically in Fig. 5. The grouping of the indices indicates that we will treat the four-index tensor formed
by the contraction instead as a D2 ×D2 matrix with legs grouped as αγ and βδ. We then denote the product of n
adjacent transfer matrices Tnαγ,βδ.

For ground states of gapped spin systems, as n → ∞, Tnαγ,βδ approaches a fixed-point transfer matrix T fp
αγ,βδ.

In other words, by coarse-graining more sites, the corresponding transfer matrix converges to a single tensor which
represents the renormalization fixed point. Such fixed-point tensors exhibit interesting properties shown in Refs. 28
and 29. We briefly review those properties and then use them to show that h(A : B) = 0 for any contiguous tripartition
of a MPS in the thermodynamic limit.

Suppose |ψ〉 is short-range correlated. Correlation functions of observables on two sites separated by L sites must
decay to zero as exp(−L/ξ) where ξ is the correlation length. As observed in Ref. 28, by considering the Jordan
normal form of Tαγ,βδ, it can be seen that short-range correlation requires that Tαγ,βδ must have a non-degenerate
largest eigenvalue. By using the similarity transformation, the canonical form introduced in Ref. 29 can be imposed
so that the corresponding right eigenvector of Tαγ,βδ is |ΦR〉 =

∑
α |αα〉 and the corresponding left eigenvector is
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FIG. 9. Fixed-point MPS matrices. Solid lines connect indices which are related by a Kronecker delta. (a) M
(fp)

(jL)(jR)αβ for

short-range correlated fixed-point states (given in Eq. (73)). (b) M
(fp)

i(jL)(jR)α̃(α̃L)β̃(β̃R)
for long-range correlated fixed-point

states (given in Eq. (74)).

|ΦL〉 =
∑
β λβ |ββ〉 where

∑
β λβ = 1. In that case, the fixed-point tensor is given by

(T fp)αγ,βδ = |ΦR〉 〈ΦL| =
∑
αβδγ

λβδα,γδβ,δ (72)

In this canonical form, it is easy to read off what the coarse-grained matrices M
(fp)
sαβ defined in Eq. (50) could be by

using two physical indices jL and jR instead of just one (s):

M
(fp)
(jL)(jR)αβ = δ(jL)αδ(jR)β

√
λα (73)

This matrix is shown in graphical tensor notation in Fig. 9 (a). We may interpret this matrix as follows. The
indices jL and jR label basis vectors of the coarse-grained physical Hilbert space Hcg composed of two degrees of

freedom Hcg = HL ⊗HR such that dim(Hcg) ≤ D2. Consider a fixed-point MPS composed of matrices M
(fp)
(jL)(jR)αβ .

By connecting Kronecker deltas of adjacent sites, say sites k and k+, it can be seen that this state is a tensor product
of bipartite states shared by HR of site k and HL of site k+ with Schmidt coefficients {

√
λα}. With any contiguous

tripartition the fixed-point MPS is clearly a triangle state. Thus g(A : B) = 0 for short-range correlated MPS in the
thermodynamic limit.

More generally, a long-range correlated state, such as a superposition of macroscopically different ground states,
may be described by a transfer matrix with degenerate largest eigenvalue, allowing for some nonzero correlation even
at infinite separation. It is shown in Ref. 29 that by similarity transformations, the D × D matrices {Msαβ} may
be put in block-diagonal form so that each eigenvalue corresponds to an orthogonal subspace of the D-dimensional
virtual space. Each block may then be put in canonical form as in Eq. (72). Suppose the largest eigenvalue is m-fold
degenerate. The fixed-point transfer matrix then has m blocks satisfying Eq. (72). The corresponding generalization
of Eq. (73) can be seen most easily by introducing a physical index i which indexes the orthogonal subspace and using
a pair of labels instead of just one for each virtual index α→ (α̃, α̃L) and β → (β̃, β̃R):

M
(fp)

i(jL)(jR)α̃(α̃L)β̃(β̃R)
= δiα̃δα̃β̃δ(jL)(α̃L)δ(jR)(β̃R)

√
λα̃(α̃L) (74)

For a fixed value of i = α = β, then, the matrix reduces to the form of Eq. (73) and the interpretation as a product
of bipartite states holds. We may then interpret the overall matrix in Eq. (74) to mean that the many-body state is
sum of m states, each described by Eq. (73). A many-body state defined by such matrices is therefore a SOPS. With
any contiguous tripartition the fixed-point state is thus a SOTS and h(A : B) = 0.

In conclusion, we have shown that a translation invariant MPS flows to a fixed-point MPS which is a SOPS in the
thermodynamic limit. By Lemma 11, such a state has h(A : B) = 0 for all contiguous tripartitions. If the MPS is short-
range correlated, then the fixed-point MPS is further simplified to a triangle state, which has g(A : B) = h(A : B) = 0
for all contiguous tripartitions.

Translation invariant MPS at finite sizes

One can go further to bound g(A : B) and h(A : B) where the sizes of A and B are taken to be finite. The aim
of this section is to show that they are exponentially close (in terms of the lengths of A and B) to the fixed-point
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values. This essentially follows from the continuity of EP (A : B), SR(A : B) and I(A : B) with respect to the
density matrices. Let ρAB and σAB be two density matrices on the Hilbert space HA ⊗ HB , where the dimensions
of HA/B is dA/B . Let ∆(ρAB , σAB) = (1/2)|ρAB − σAB | denote the trace distance between ρAB and σAB where

|A| = Tr
√
A†A. Then if ∆(ρAB , σAB) ≤ ε and for ε sufficiently small we have the three theorems below. The

continuity of g(A : B) = 2EP (A : B) − I(A : B) and h(A : B) = SR(A : B) − I(A : B) is then implied by the
theorems.

Theorem 18 (Continuity of EP [10]). |EP (ρAB)− EP (σAB)| ≤ 40
√
ε log d− 4

√
ε log(4

√
ε), where d = dAdB .

Theorem 19 (Continuity of SR [40]). |SR(ρAB)− SR(σAB)| ≤ 4
√

2ε log(min{dA.dB})− 2
√

2ε log ε.

Theorem 20 (Continuity of Mutual Information [10]). |I(ρAB)− I(σAB)| ≤ 3ε log d− 3ε log ε, where d = dAdB.

To be more concrete, we consider a puMPS of N sites and bond dimension D and take each of the three regions
A,B,C to be of size N/3. We use the coarse-graining of the MPS to make a puMPS on three sites (Eq. (57)), where
each site represents the coarse-grained Hilbert space of A,B and C. Note that here no truncation on the physical
Hilbert space is used, so the physical dimension of each site is dA = dB = dC = D2 and the three tensors in Eq. (57)
are the same. The puMPS on three sites are related to the original state by local isometries, so the coarse-graining
itself does not change any entanglement properties, including EP (A : B), SR(A : B) and I(A : B). We now show that
the coarse-grained MPS is exponentially close in N to the fixed-point MPS on three sites, so by continuity of g(A : B)
and h(A : B), they are also exponentially close to the their fixed-point values (gfp(A : B) = 0 for injective MPS and
hfp(A : B) = 0 regardless of injectivity).

First, we assume the MPS is injective and derive a bound on g(A : B). The transfer matrix has a unique eigenvalue
1. Denote the second-largest eigenvalue as λ2 < 1. The correlation length is then ξ = −1/ log λ2. The injectivity of
the MPS is then equivalent to finite correlation length. The transfer matrix has an eigenvalue decomposition

Tαγ,βδ = T fp + λ2rαγ lβδ + · · · (75)

where r and l are the right/left eigenvectors of the eigenvalue λ2 and · · · denotes contributions of smaller eigenvalues.
Taking large powers of Tαγ,βδ, the · · · term vanishes faster than the second term, so we will drop the dots. Then we
have

T
N/3
αγ,βδ = T fp + e−N/(3ξ)rαγ lβδ. (76)

We will measure the difference in terms of the norm ||Aabc...|| =
√
Aabc...A∗abc..., where repeated indices are summed.

Then

||TN/3αγ,βδ − T
fp|| = e−N/(3ξ)

√
Tr(r†r) Tr(l†l), (77)

which decays exponentially with system size N . Denote the coarse-grained tensor on A,B,C as M , then

T
N/3
αγ,βδ =

∑
s

Msαβ(Msγδ)
∗. (78)

Recall that M can be obtained by an eigenvalue decomposition Eq. (48) and (49). One can use the Rayleigh-
Schrodinger perturbation theory to derive the difference between M and M fp. Notice that the differences in the
eigenvalues and eigenvectors are of order e−N/(3ξ), and the combination Eq. (49) at most change on the order of
e−N/(6ξ) because of the square root in the eigenvalues. Then at large sizes

||M −M fp|| ≤ O(1) ·De−N/(6ξ), (79)

Let |ψN 〉 be a puMPS with tensor M on 3 sites, and |ψfp〉 be a puMPS with tensor M fp on 3 sites, then

∆(|ψN 〉 〈ψN | , |ψfp〉 〈ψfp|) ≤ O(1) ·De−N/(6ξ). (80)

Finally, let ρAB = TrC |ψN 〉〈ψN | and σAB = TrC |ψfp〉〈ψfp|. Since the trace distance is monotonic under tracing out
a subsystem,

∆(ρAB , σAB) ≤ O(1) ·De−N/(6ξ). (81)
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Finally we can derive a bound on g(A : B) and h(A : B),

g(A : B) ≤ 2|EP (ρAB)− EP (σAB)|+ |I(ρAB)− I(σAB)| (82)

and

h(A : B) ≤ |SR(ρAB)− SR(σAB)|+ |I(ρAB)− I(σAB)|. (83)

Upon using the continuity theorems 18, 19, and 20, we see that both g(A : B) and h(A : B) are upper bounded by
an exponentially decaying quantity.

For a general MPS we can again decompose it into a sum of superselection sectors which are locally orthogonal.
The coarse-graining transformation acts on each of the superselection sectors separately. At finite sizes the state is
coarse-grained into a SOTS with an expoentially small correction and therefore h(A : B) is upper bounded by an
exponentially small quantity.

MPS without translation invariance

The requirement of translation invariance above is not essential. As noted in Refs. 28 and 29, the coarse graining
can be done in a similar way for MPS without translation invariance. Here we briefly review how this is done. Denote
the tensor on site k as M (k) and the corresponding transfer matrix as T (k). It has been shown in Ref. 29 that an
injective MPS can be put into the central canonical form, where the (unique) dominant eigenvalue of T (k) is 1 and the

corresponding left/right eigenvectors are Λ
(k)
αγ =

√
λ

(k)
α δαγ and Λ

(k+1)
βδ =

√
λ

(k+1)
β δβδ, where

∑
α λ

(k)
α = 1. Note that

the left dominant eigenvector of T (k+1) is the same as the right dominant eigenvector of T (k). The transfer matrices
have the eigenvalue decomposition

T
(k)
αγ,βδ = Λ

(k+1)
βδ Λ(k)

αγ + λ
(k)
2 r

(k)
βδ l

(k)
αγ + · · · . (84)

We assume that the transfer matrix has a finite gap, λ
(2)
k < 1−ε′,∀k for some ε′ > 0. This is equivalent to exponentially

decaying correlation functions typical in gapped systems. The coarse-graining amounts to multiplying the transfer
matrices in an interval together. If the interval is long enough, then the only remaining part is the multiplication of
the first term in the expansion. This gives the coarse-grained tensor on the left of Fig. 9. The resulting state is then
a triangle state. Similarly, in the case of a generic MPS one can decompose it into a sum of injective MPS and then
apply the coarse-graining to give a SOTS.
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