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Abstract

Human activity requires an ability to generalise beyond the
available evidence, but when examples are limited – as they
nearly always are – the problem of how to do so becomes par-
ticularly acute. In addressing this problem, Shepard (1987)
established the importance of representation, and subsequent
work explored how representations shift as new data is ob-
served. A different strand of work extending the Bayesian
framework of Tenenbaum and Griffiths (2001) established the
importance of sampling assumptions in generalisation as well.
Here we present evidence to suggest that these two issues
should be considered jointly. We report two experiments which
reveal replicable qualitative patterns of individual differences
in the representation of a single category, while also showing
that sampling assumptions interact with these to drive gener-
alisation. Our results demonstrate that how people shift their
category representation depends upon their sampling assump-
tions, and that these representational shifts drive much of the
observed learning.

Keywords: categorisation; generalisation; representations;
sampling assumptions;

Introduction

Suppose that, upon encountering a wallaby for the first time,
I am reliably informed that wallabies are dax. What should
I infer to be the extension of the property dax? If I know
that dax is a biological property I might generalise to other
macropods, marsupials, or mammals. Alternatively, if dax
describes a behaviour I might instead generalise to other hop-
ping or grazing animals. As this thought experiment suggests,
human category representations are structured and complex;
multiple systems of categories are relevant to a single domain
and different systems of knowledge are relevant in different
contexts (Heit & Rubinstein, 1994; Ross & Murphy, 1999).

Although there is some work investigating how people ac-
quire multiple systems of categories (Shafto, Kemp, Mans-
inghka, & Tenenbaum, 2011) and learn which representa-
tions are relevant to inductive problems like this (Austerweil
& Griffiths, 2010), very little is known about individual dif-
ferences in representation. Do such differences exist, and can
they be measured? When people learn based on new data,
do their representations shift? If so, how and why? Do their
assumptions about how the data were generated drive any of
this? These are the questions we focus on in this paper.

Representation and generalisation
The problem we consider is ostensibly a simple one: learning
how to generalise along a single stimulus continuous dimen-
sion. Stimulus generalisation in this situation often resembles
an exponential decay as a function of distance along the rele-
vant dimension, but only when formulated with respect to the
proper stimulus representation (Shepard, 1987). When adapt-
ing Shepard’s analysis into an explicitly Bayesian frame-
work, Tenenbaum and Griffiths (2001) noted that generali-
sation from multiple examples allows for many different pos-
sible stimulus representations. Indeed, there are many differ-
ent assumptions a learner might make about category repre-
sentation. These include exemplar models (Nosofsky, 1986),
prototype models (Smith & Minda, 1998), decision bound-
aries (Ashby & Townsend, 1986), critical regions that mimic
prototype models if the regions are connected (Tenenbaum
& Griffiths, 2001), or exemplar models in which each item
corresponds to a region (Navarro, 2006). Additionally, these
representations are not fixed and stable. Evidence from cate-
gory learning has shown that human learners tend to “grow”
category representations as they see additional items, with a
shift during learning from prototype to exemplar represen-
tations (Griffiths, Canini, Sanborn, & Navarro, 2007; Love,
Medin, & Gureckis, 2004), or from exemplar to prototype
(Homa, Sterling, & Trepel, 1981), or a mixture of representa-
tions across individuals (Kalish & Kruschke, 1997).

Sampling and generalisation
An adjacent literature on inductive generalisation has re-
vealed that what the learner assumes about how this data
came to be the data has a substantial influence on the infer-
ences people draw. These sampling assumptions affect infer-
ences in concept learning tasks (Navarro, Dry, & Lee, 2012),
property induction tasks (Ransom, Perfors, & Navarro, 2016),
and word learning problems (Xu & Tenenbaum, 2007).

While there are many possible sampling assumptions that
one might adopt (e.g. Shafto, Goodman, & Griffiths, 2014;
Ransom, Voorspoels, Perfors, & Navarro, 2017), much of the
literature has focused on two simple possibilities. A helpful
teacher is likely to choose positive examples that belong to
the relevant category (known as strong sampling), whereas
a random sampling process selects exemplars independently
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of the category label (known as weak sampling). The dif-
ference between the two leads to a variety of differences in
how people generalise: most notably, people tend to tighten
their generalisations with additional data if they are assuming
strong sampling, but don’t if they aren’t (e.g., Xu & Tenen-
baum, 2007; Ransom et al., 2016).

Sampling and representation?
If both representation and sampling assumptions shape gener-
alisation, how do they fit together? The literature on sampling
assumptions typically assumes a fixed stimulus representa-
tion, and the literature on stimulus representation has given
little consideration to the manner in which exemplars are cho-
sen. In this paper, we present empirical evidence suggesting
that these two problems should be considered together. We
report results from two experiments involving a simple in-
ductive generalisation task that manipulates the sampling as-
sumptions across conditions. We find evidence for individ-
ual differences in category representation, with different par-
ticipants appearing to represent categories in different ways.
Moreover, there appears to be an interaction between people’s
representations and the degree to which they are sensitive to
the sampling manipulation. Observations selected by a help-
ful teacher are more likely to cause people to shift their mental
representation of the category in a consistent direction than if
the same observations are selected at random. In fact, these
representational shifts seem to account for the largest share of
learning in the task.

Experiment 1
Experiment 1 is a single category generalisation experiment
that, within the same experimental framework, combines ma-
nipulations of sample size (as in Navarro et al., 2012; Vong,
Hendrickson, Perfors, & Navarro, 2013) and sampling cover
story (as in Ransom et al., 2016; Xu & Tenenbaum, 2007).
As a post-hoc analysis, we use people’s responses across all
test items to identify clusters of people who generate simi-
lar patterns of generalisation. These patterns are then used as
predicted outcomes in Experiment 2, where they are explic-
itly connected to representational clusters. Furthermore, the
assignment of individual behaviour to clusters is tracked dur-
ing learning, in order to determine whether representational
shifts correspond to learning outcomes.

Method
Participants 603 people participated in this experiment via
Amazon Mechanical Turk, where they were paid $1.30US for
the 5-10 minute task. 45% were female, 93% were from the
US, and median age was 32 (range: 19 to 77).

Design People were randomly assigned to one of three
conditions that varied the number of category exemplars
(“Wuggams”) as well as the manner in which they were sam-
pled. In the FOUR condition (N = 194) participants were
shown four exemplars with no explanation offered for how
these examples were chosen. Participants in the TWELVE

Figure 1: Example stimuli. Items varied only in the position of the
short black vertical line along the bottom edge of the rectangle.

HELPFUL (N = 200) and TWELVE RANDOM (N = 209) con-
ditions were also shown the same four exemplars with no ex-
planation, but were then subsequently shown eight more ex-
emplars for which an explanation was given. In the TWELVE
HELPFUL condition people were told that the additional ex-
amples had been intentionally chosen to help them under-
stand the category, whereas people in the TWELVE RANDOM
condition randomly selected additional items themselves.

Stimuli Stimuli consisted of a black rectangular frame
drawn against a white background, with a vertical black line
inside attached to the bottom edge (see Figure 1). To assist
with stimulus discriminability, four evenly spaced light grey
vertical and horizontal lines were drawn within the rectangle.
Stimuli varied along a single dimension, corresponding to the
horizontal position of the vertical line within the rectangle
(referred to later as the stimulus value).

The full set of training stimuli included 12 examples with
stimulus values ranging from 21% to 43% in increments of
2%. People in the TWELVE HELPFUL and TWELVE RAN-
DOM conditions saw all 12 examples, while those in the
FOUR condition saw four, including the two extreme exam-
ples (at 21% and 43%) plus two random others in between.
The test stimuli consisted of 19 items with values ranging
from 5% to 95% in increments of 5%.

Procedure The experiment consisted of a training phase
where people were shown examples from the target category,
followed by a test phase where they were asked to decide
whether previously unseen items were in that category.

Training. Participants were told that the purpose of the ex-
periment was to see how people judged whether or not unfa-
miliar objects were in the same category as known examples.
In the FOUR condition the instructions stated:

So, we’ll start by showing you some objects that all be-
long to the same category («Wuggams»).

at which point four training examples were displayed simul-
taneously on-screen. Participants in the the other two condi-
tions were given the same introduction. However, after the
initial examples were shown those in the TWELVE RANDOM
condition were further informed:

The computer has assigned you to experiment group
«J8» so we’re going to let you pick an additional «8»
items at random from our collection, and let you see any
«Wuggams» that you find.

Following this a 6 × 5 arrangement of icons resembling
packing boxes was displayed on screen, and people were
asked to select eight boxes one by one. After clicking on an
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(a) Experiment 1. (b) Experiment 2.

Figure 2: Performance on a one category generalisation task as
a function of sampling procedure (manipulated between subjects)
and sample size (manipulated between subjects in Experiment 1 and
within subjects in Experiment 2). The graphs show the proportion
of positive responses to the question: “Do you think this object is in
the «Wuggam» category?” for each of the test stimuli. The perfor-
mance of people who saw four examples of the target category (grey
line) is contrasted with two groups of people who saw 12 examples
(black lines). In Experiment 1, people tightened their generalisations
as more data is observed, but the sampling manipulation had little
effect; whether people actively sampled the additional examples at
random (red squares) or were told that the items had been selected by
a helpful teacher (blue diamonds), they generalised less when they
saw 12 examples rather than 4. In Experiment 2, where the wording
of the sampling manipulation was slightly adjusted, tightening with
increased sample size occurs, but only in the HELPFUL condition.

icon the image was replaced with that of an open box, people
were informed that they had found a «Wuggam» inside, and
one of the training examples was added to the display. The
TWELVE HELPFUL condition proceeded along similar lines,
but people were instead told:

The computer has assigned you to experiment group
«K8» so we’re going to help you by showing you an
additional «8» «Wuggams» chosen by a helpful teacher
to give you a good idea of the full range of «Wuggams».

Following this, the array of boxes was displayed with eight
of the boxes already opened. Simultaneously, the display was
updated with the eight additional examples. In all conditions
the on-screen presentation order was randomised.

Testing. To minimise any memory effects, the training ex-
amples remained on screen during testing, along with a re-
minder of how the exemplars were selected. Participants in
all conditions were shown the 19 test stimuli one at a time
in random order; this sequence was repeated four times. The
test query was a simple yes or no question, “Do you think this
object is in the «Wuggam» category?”

Results and discussion
The results are shown in Figure 2(a), which plots the pro-
portion of trials on which each test item was assigned to the
Wuggam category in each condition. There is a clear effect
of sample size: people who saw 12 examples generalised
to a narrower range of test items than those who saw 4. A
Bayesian ANOVA reveals strong evidence (BF10 > 106) for
a model that includes effects of stimulus value, sample size
and an interaction, tested against a null model that includes
only the effect of stimulus value.1 However, the cover story

1Model comparisons included a random intercept for each sub-
ject, and were fit using default priors from the BayesFactor package
(version 0.9.12-2) in R (version 3.4.3).

appeared to have little to no effect, with modest evidence
favouring the null hypothesis (BF01 = 10) that generalisation
patterns were the same in both 12-item conditions.

The one exception to this pattern is the three test items to
the far left of Figure 2(a). Visual inspection suggests that par-
ticipants in the TWELVE HELPFUL condition were somewhat
less willing to generalize to these items than were people in
the TWELVE RANDOM condition. This asymmetric pattern is
not predicted by “standard” implementations of the Bayesian
generalisation model (e.g. Navarro et al., 2012; Vong et al.,
2013). However, it is consistent with a shift in the proportion
of people using a single decision boundary, which should not
fall off on the far (left) side of the observed exemplars.

To examine this possibility we conducted a post hoc clus-
tering analysis of generalisation curves at the individual sub-
ject level. This analysis, which was based on a Dirichlet
process mixture model, automatically identified 11 different
“patterns” of generalisation curves. Nine of the 11 patterns
accounted for 98% of the data; and of these nine, three were
minor variants of the others.2 The remaining six patterns (il-
lustrated in Figure 3) form the core of the analysis in Experi-
ment 2, and cover 85% of the data from that experiment. We
turn to it next.

Experiment 2
Participants 404 people participated in this experiment via
Amazon Mechanical Turk, where they were paid $1.50US for
the 10-15 minute task. 48% were female, 94% were from the
US, and median age was 32 (range: 18 to 71).

Design, stimuli & procedure Experiment 2 was a prereg-
istered3 replication and extension of Experiment 1. The two
experiments were identical except for three key differences.
First, we adopted a within subject manipulation of sam-
ple size. Regardless of condition, participants were shown
four exemplars with no sampling explanation given and then
tested. They were then shown an additional eight exemplars
– either within a HELPFUL (N=205) cover story or a RAN-
DOM one (N=199) – and then tested a second time. Testing
each person twice allows us to assess how their representation
changed based on four examples or twelve.

Second, at the end of each test phase participants were
asked to identify the strategy they used, selecting one of the
six options listed in Figure 3(b). This data is useful for de-
termining whether their reported strategies correspond to the
generalisation patterns our model assigns to them.

2We used the BayesianGaussianMixture class from the
scikit.learn module v0.19.1) under Python 3.6.3. The concen-
tration parameter for the Dirichlet process was set to 1, the multi-
variate Gaussian distribution assumed a diagonal covariance struc-
ture, and the random seed was set to 1. Each generalisation pattern
was encoded as a point in 19-dimensional space with each dimen-
sion corresponding to a stimulus value included in the test items and
the value along each dimension corresponding to the probability of
generalising the category label to that test stimulus. Supplemen-
tal materials describing details of the model and all 11 patterns are
here: https://tinyurl.com/RPNH18

3https://aspredicted.org/3tq89.pdf
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Generalisation Representation % Capture Generalisation Representation % Capture
PARTITION
An item is a «Wuggam» if
the short black line is on
one side of a certain
boundary. I use the
examples to work out
where that boundary is,
and which side the
«Wuggams» are on..

ALL
An item is a «Wuggam» if
it contains a short black
line. No matter where the
line is, I mark all such
items as «Wuggams».

RANGE
An item is a «Wuggam» if
the short black line
appears within a certain
range from side to side. I
use the example
«Wuggams» to work out
where that range starts
and ends.

ANY
Any item could be a
«Wuggam», there’s no way
to tell, so I just guess.

BY EXAMPLE
An item is a «Wuggam» if
the short black line is in
the same position as one
of the examples given. I
use the examples given to
check for a match

OTHER
None of the above. An
item is a «Wuggam» if...
(a free text box followed)

(a) (b) (c) (a) (b) (c)

Figure 3: A graphical depiction of individual differences in generalisation in Experiment 2. The panel columns represent: (a) Aggregate
generalisation curves for people grouped by data driven pattern definition (black lines) and by response to self report question (grey lines).
(b) The response options for the questions that asked people about their response strategy (title added). There is a one-to-one mapping
between the patterns shown and the representation associated with each response option. (c) The proportion of people allocated to a given
pattern. The three bars from left to right represent people after seeing four examples, and after seeing 12 examples in the RANDOM (red)
and HELPFUL (blue) conditions respectively. The rows of pixels within each bar constitutes a grey-scale representation of the generalisation
data of individuals in that pattern and condition (see main text for detail). Both sample size and sampling assumption impact people’s
representation of the target category.

Third, the cover story in the RANDOM condition was al-
tered slightly in order to leave open the possibility that some
boxes might not contain Wuggams. People were told that
“some of the boxes are stuck and won’t open; in that case just
try another.” Each person sampled 11 boxes but saw only 8
«Wuggams» in total; the other three times (when the box re-
mained closed) occurred in a random order with the constraint
that the first and last item was always a «Wuggam».

Results and discussion
Generalisation Generalisation patterns in Experiment 2
partially replicated the results from Experiment 1, as shown
in Figure 2(b). As before, we find a clear effect of sample
size (BF10 > 106), but unlike Experiment 1 we also find an
effect of the sampling manipulation. On an aggregate level,
people in the HELPFUL condition tightened their generalisa-
tions (BF10 > 106) whereas those in the RANDOM condition
did not (BF01 = 31). This suggests that the changed word-
ing in the RANDOM condition, which provided a mechanism
for potentially seeing a non-«Wuggam», helped to make the
sampling cover story believable.

Representational analysis Our primary question was
whether people used different representations and whether
their representations shifted in different conditions or with
extra data. To address this, we used the six main gener-
alisation patterns identified in Experiment 1, shown in Fig-

ure 3(a). They are each suggestive of qualitatively differ-
ent mental representations: a one-sided decision boundary
(Partition), a two-sided Range, several different kinds of non-
contiguous regions (By Example, Any, Other), and an assign-
ment of All test items to the category. Each participant at each
test phase in Experiment 2 was then separately assigned to the
most similar pattern using the model derived from the results
of Experiment 1.

The results of this analysis are displayed in Figure 3. First,
we note that the six patterns identified by our model are in-
deed roughly equivalent to the six self-report options offered
during the test phase (shown in the middle panels (b)).4 This
is clear when we compare the black lines in panel (a) on the
left (which plot the average response for all people assigned
to the relevant pattern) to the grey lines in the same panels
(which plot the average generalisation curve for all people
who chose the relevant self-report option). In most respects,
the grey and black curves mirror each other very closely, illus-
trating that the data-derived patterns (based on classifications)

4Alignment of the self-report to the model-identified patterns
was done based on our qualitative assignment, but we also per-
formed all analyses using assignments based on RMSE fit (which
differ from the qualitative assignments for 2 of the 11 clusters), or
using the (somewhat noisy) self-report data directly. In all cases the
conclusions are the same. Even collapsing Partition and Range into a
single representation and the remaining representations into another
produces a qualitatively similar pattern of results.
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Figure 4: The mean effect of additional examples on the marginal
probability of generalising the learned category to novel stimuli, as
a function of sampling assumption and representational shift. Over
half of the participants in Experiment 2 (N=119, from the RANDOM
condition and N=111, from the HELPFUL condition) maintained a
stable representation of the underlying category in response to ob-
serving an additional 8 examples, and showed little change in gen-
eralisation overall. Likewise, for people in the RANDOM condition
who did undergo a representational shift (N=80). But for many peo-
ple in the HELPFUL condition (N=94), the additional examples led
to a representational shift resulting in a significant and consistent
contraction in generalisation overall.

and self-reported strategy are very similar.
Although the six patterns shown in Figure 3 are quite dis-

similar to one another, there is a remarkable degree of within-
pattern homogeneity, especially with respect to the first four
patterns: most people assigned to a pattern do genuinely ap-
pear to be closely matching that pattern. This can be seen
in Figure 3(c), which depicts a compressed grayscale repre-
sentation of the raw responses for every participant within a
pattern. Each panel shows three bars corresponding to one
of the three possible conditions (4 exemplars, 12 exemplars
RANDOM and 12 exemplars HELPFUL). The height of each
bar captures how many people’s generalisations best matched
that pattern (thus, for instance, many more people matched
the Range pattern in the HELPFUL condition than any other).
Within each bar, every row of black pixels displays the re-
sponses of a single participant: each row consists of 19 cells,
each colour coded to represent the probability of assigning the
relevant test item to the «Wuggam» category. For instance, an
all black row occurs if all items are assigned to the «Wuggam»
category, whereas a grey bar with a patch of black in the mid-
dle would represent a generalisation pattern where only the
middle group of test items were labelled as «Wuggams».

Representational shifts We are now in a position to ad-
dress the central questions motivating this experiment. To
what extent are changes in generalisation driven by a change
in people’s representation of the underlying category struc-
ture (e.g., shifting from Partition to Range), as opposed to
learning the parameters of a representation (e.g., learning
where the boundary in a partition lies)? Do sampling assump-
tions have an effect on how people shift their representations?

To investigate this, note that the rightmost panels of Fig-
ure 3 are effectively bar charts, displaying the proportion of
participants assigned to each of the six patterns, broken down

by experimental condition. Visual inspection reveals marked
differences as a function of sample size: when only 4 exem-
plars are observed, people are most likely to be assigned to
the Any or Other patterns, whereas by the time 12 exemplars
are observed the generalisation patterns are closer to Partition,
Range or Other. Similarly there is evidence of a sampling ef-
fect: helpful sampling guides learners towards a Range rep-
resentation whereas random sampling does not. A Bayesian
contingency test (3 conditions × 6 patterns) finds strong ev-
idence (BF10 > 105) for a difference in pattern assignments
across conditions.

Looking more closely at these data, we can examine
whether the sampling conditions each had a different impact
on how people shifted their representations. To do so, we
used the representation label assigned to each generalisation
pattern (see Figure 3). If people were assigned to one pattern
after seeing four examples and a different pattern after see-
ing 12 examples, and those patterns had different representa-
tion labels, then and only then would they be considered as
having undergone a representational shift. Figure 4 plots the
results of this analysis. It is clear that for those people who
believed that examples were selected by a helpful teacher, ad-
ditional exemplars led to an overall narrowing of generalisa-
tion, largely as a consequence of a representational shift.5 A
Bayesian ANOVA reveals strong evidence (BF10 > 106) in
favour of a model that includes effects of sample size, sam-
pling condition, representational shift and interactions, tested
against a null model which includes only the participant as a
random nuisance parameter.

General discussion
The present work examines how people generalise a concept
on the basis of learned examples. In a single experimental
framework, we jointly considered two important considera-
tions known to shape such generalisation: namely, people’s
assumptions about how the data was sampled, and their rep-
resentation of the concept they seek to generalise.

In an initial between-subject experiment we found an ef-
fect of sample size consistent with other inductive general-
isation tasks of this kind (e.g Navarro et al., 2012; Vong et
al., 2013). While there was no aggregate effect of sampling
assumption, a post hoc analysis of individual responses re-
vealed common patterns of generalisation suggestive of men-

5At first glance, Figure 4 appears to reveal a difference in gen-
eralisation between people in the RANDOM and HELPFUL groups
at the point when only four examples have been observed and for
which no sampling explanation was offered. But this difference
is not reflective of the two conditions as a whole; rather it occurs
only when the data is conditioned on representational shift. It re-
flects the fact that helpful sampling was interpreted more consis-
tently than random sampling. Those people in the HELPFUL con-
dition who already generalised narrowly after seeing only four ex-
amples, were less likely to narrow further upon observing additional
examples, and thus more likely to maintain a stable representation;
conversely, those who generalised more widely at first were more
likely to change representation. This selection effect is not the case
for those in the RANDOM group where representational shift was
less consistent in direction.

934



tal representations explored in the literature. These included
non-contiguous regions (Nosofsky, 1986), a one-sided deci-
sion boundary (Ashby & Townsend, 1986), and a two-sided
connected region (Tenenbaum & Griffiths, 2001). This anal-
ysis also suggested that people’s sampling assumptions might
play a role in determining their representation of the category,
a hypothesis we tested in a second pre-registered experiment.

The second experiment was based closely on the first but
was within-subjects and involved a random sampling cover
story that was slightly modified to be more suggestive of
weak sampling. It replicated the effect of sample size and also
found an effect of the revised sampling manipulation. More-
over, by linking response patterns identified in the first exper-
iment to people’s responses in the second, we found that ob-
serving additional examples causes some people to undergo a
change in their mental representation. This shift drove much
of their change in generalisation, and the nature and consis-
tency of the change critically depended upon people’s sam-
pling assumptions.

In many ways our results are consistent with previous work
finding that people tighten their generalisations when strong
sampling holds but fail to do so when it does not (Xu &
Tenenbaum, 2007; Ransom et al., 2016; Voorspoels, Navarro,
Perfors, Ransom, & Storms, 2015). This work has attributed
such tightening to the operation of the size principle, which
favours smaller hypotheses in a fixed (researcher defined) hy-
pothesis space (Tenenbaum & Griffiths, 2001). However, our
results suggest that while the size principle may still be at
work in some fashion, the truth may be more complex. Learn-
ing may in fact be operating on (at least) two levels in an hi-
erarchical space, one with different representations (hypoth-
esis spaces) at the top level and fixed hypotheses within each
representation at the lower level. Behaviour that on aggre-
gate looks like generalisation according to the size principle
may actually reflect individuals shifting their representations
more than individuals tightening their generalisations within
the same representational space. An interesting line for future
research would be to attempt to account for this behaviour us-
ing a hierarchical model that learns on both of these levels.

Conclusion
“Is this a dagger which I see before me...?” – Macbeth
“That’s not a knife. That’s a knife.” – Crocodile Dundee
On the question of how best to classify sharp pointy things,

great literary protagonists differ. And life, in this respect, may
imitate art. Individual differences in representations, known
to be driven by data, may be driven by sampling assumptions
as well. By taking such differences seriously we have begun
to understand that relationship; we hope that further research
in this direction will continue to yield richer insights.
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