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A B S T R A C T   

Objective: Drug induced sleep endoscopy (DISE) is often performed for pediatric obstructive sleep apnea (OSA) when initial diagnostic studies do not provide 
adequate information for therapy. However, DISE scoring is subjective and with limitations. This proof-of-concept study demonstrates the use of a novel long-range 
optical coherence tomography (LR-OCT) system during DISE of two pediatric patients. 
Methods: LR-OCT was used to visualize the airway of pediatric patients during DISE. At the conclusion of DISE, the OCT probe was guided in the airway under 
endoscopic visual guidance, and cross-sectional images were acquired at the four VOTE locations. Data processing involved image resizing and alignment, followed 
by rendering of three-dimensional (3D) volumetric models of the airways. 
Results: Two patients were included in this study. Patient one had 18.4%, 20.9%, 72.3%, and 97.3% maximal obstruction at velum, oropharynx, tongue base, and 
epiglottis, while patient two had 40.2%, 41.4%, 8.0%, and 17.5% maximal obstruction at these regions, respectively. Three-dimensional reconstructions of patients’ 
airways were also constructed from the OCT images. 
Conclusion: This proof-of-concept study demonstrates the successful evaluation of pediatric airway during DISE using LR-OCT, which accurately identified sites and 
degrees of obstruction with respective 3D airway reconstruction.   

1. Introduction 

Pediatric obstructive sleep apnea (OSA) is associated with decreased 
neurocognitive, pulmonary, cardiovascular, and quality of life measures 
as well as increased healthcare costs [1–5]. Polysomnography remains 
the gold standard diagnostic tool for pediatric OSA [6], but it provides 
no information on the site of obstruction. For patients who fail tonsil-
lectomy and adenoidectomy, drug induced sleep endoscopy (DISE) is 
used to aid in identifying restriction points [7–9]. During DISE, airway 
collapse is rated at the velum, oropharynx, tongue base, and epiglottis 
(VOTE system) [10]. However, VOTE can be subjective with reports of 
interobserver disagreement for the location and degree of airway 
obstruction [11,12]. As such, there is a need for the development of 
other diagnostic tools that provide objective information regarding the 
site and degree of airway obstruction. Optical coherence tomography 
(OCT) is a mesoscopic imaging modality that provides high-resolution 
cross-sectional images of biologic systems [13,14]. Long-range Optical 
Coherence Tomography (OCT) represents an advanced variant of OCT 

technology tailored for imaging the intricate anatomical features within 
hollow viscera. Similar to optical rangefinders, it employs light-based 
methodology. However, it uniquely incorporates a coherence gate to 
ascertain the temporal behavior of photons, enabling precise determi-
nation of structural characteristics by time-of-flight analysis. Our group 
has shown the efficacy of long-range OCT (LR-OCT) for imaging the 
pediatric and adult airways [15–21], but it has yet to be evaluated for 
use during DISE. The aim of this proof-of-concept study is to perform 
LR-OCT during pediatric DISE and evaluate its utility for the determi-
nation of location and degree of airway collapse during induced sleep. 

2. Methods 

This study was performed following institutional review board 
approval at the University of California, Irvine. Two patients who were 
undergoing DISE as part of their routine clinical decision-making were 
enrolled in the study. The first patient was a 7-year-old male who had 
persistent sleep disordered breathing after adenotonsillectomy. The 
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second patient was a 12-year-old male with severe autism who could not 
tolerate sleep study or physical exam. LR-OCT was used to visualize the 
airway of pediatric patients during DISE. The procedures were reim-
bursed like the usual DISE procedures, and the addition of OCT was not 
coded as it was only done for research purposes. The LR-OCT system 
utilized a 1310 nm swept light source with 50 kHz repetition rate, 100 
nm bandwidth, 11 μm axial resolution, and 150 MHz frequency shift in 
the reference arm of the acousto-optic modulator (Fig. 1A). The sam-
pling OCT probe was rotatory and fiber-based in a transparent sheath 
with a 0.7 mm outer diameter and 25 Hz rotation (Fig. 1 B–C). At the 
conclusion of DISE, the OCT probe was guided in the airway under 
endoscopic visual guidance. The probe was advanced from the nare to 
the pyriform sinus; as the probe was steadily pulled back at a rate of 1 
cm/s, cross-sectional images were acquired at the four VOTE locations. 
Continuous spiral scanning of the upper airway resulted in 300–500 

individual images of the airway. As detailed in previous studies [15–20, 
22], data processing involved image resizing and alignment, followed by 
rendering of three-dimensional (3D) volumetric models of the airways 
(Fig. 1D). 

3. Results 

LR-OCT was intraoperatively obtained during DISE for two pediatric 
patients with a history of sleep disordered breathing. Supplemental 
Video 1 demonstrates a side-by-side comparison of OCT with endoscopy 
in the first patient. In accordance with the VOTE system, OCT videos of 
the velum, oropharynx, base of tongue, and epiglottis of the patients one 
and two are demonstrated in Supplemental Videos 2–3, respectively. 
OCT images of the two patients with the respective calculated maximum 
obstruction as a function of cross-sectional diameter is demonstrated in 

Fig. 1. Long-range OCT setup: (A) Hardware including an OCT arm on the right and (B–C) fiber-based rotatory probe. (D) Depicts processing and segmenting the raw 
images for creating three-dimensional volumetric airway models. 

Fig. 2. OCT images of patient one (A) and patient two (B) at the VOTE locations. Patient one had maximal obstruction at epiglottis followed by tongue-base. Patient 
two had maximal obstruction at oropharynx and velum. 
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Fig. 2. For patient one, the cross-sectional obstructions at the velum, 
oropharynx, tongue base, and epiglottis were 18.4%, 20.9%, 72.3%, and 
97.3%, respectively. For patient two, the calculated cross-sectional ob-
structions were 40.2%, 41.4%, 8.0%, and 17.5%, respectively. Fig. 3 
demonstrates a 3D reconstruction of the patients’ airways from different 
angles, which is also portrayed as a video in Supplemental Video 4. 

Supplementary data related to this article can be found online at 
https://doi.org/10.1016/j.ijporl.2024.111900 

4. Discussion 

This is the first study to evaluate the utility of LR-OCT for evaluation 
of pediatric OSA during DISE, in which we demonstrated quantitative 
assessment of the degree of airway collapse at the VOTE regions. 
Moreover, the LR-OCT cross-sectional images allowed for 3D recon-
struction of the airway, which can further assist pediatric and sleep 
surgeons by depicting airway collapse during sleep and guiding surgical 
planning for future interventions. After the DISE-OCT procedure the first 
patient underwent conservative management with 6-month sleep study, 
whereas the second patient underwent adenotonsillectomy. The OCT 
results provided numeric and objective values for targeted points of 
airway obstructions that were then discussed with the families and 
incorporated in the counselling of possible interventions in the future. 

If future large population studies continue to validate the utility and 
efficacy of this diagnostic method for OSA patients, LR-OCT can 
potentially supplement or even substitute DISE, particularly if in the 
future devices can be designed for use in native sleep. In principle LR- 
OCT catheters can have the form factor or pH monitoring probes, 
albeit a bit more rigid. While, DISE is subjective and susceptible to 
interobserver disagreement [11,12]. LR-OCT is quantitative as airway 
geometry is precisely measured. 3D airway reconstruction and compu-
tational analysis of cross-sectional airway collapse can be performed as 
well. Our future work will be to increase imaging speed with the 
incorporation of faster laser sources, to facilitate dynamic imaging and 
capture of airway motion in 3D in all locations and in all time points of 
the respiratory cycle. Two current limitations of the project were the 
setup cost and time of data analysis, both of which can limit the 

generalizability and broad implementation of this technology in clinical 
settings. Our setup had an estimated cost of ~$75,000 most of which 
was attributed to the laser and data acquisition card, Additionally, there 
was the cost of MATLAB subscription for running the program and 
analyzing the data, and creating disposable fiber probes with an 
approximate material cost of ~$100 per probe. Lastly, although the OCT 
portion only added an extra 3–5 min to the DISE procedure, the data 
processing and analysis took approximately 3–5 h per subject. Our 
future works will attempt to make improvements on the cost and 
data-processing time requirement to make this technology more 
generalizable in the future. 

5. Conclusion 

This proof-of-concept study demonstrates the successful evaluation 
of pediatric airway during DISE using LR-OCT, which accurately iden-
tified sites and degrees of obstruction with respective 3D airway 
reconstruction. Future large population studies are warranted to 
compare the efficacy and targeted surgical outcomes of this method to 
that of DISE. 
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