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ABSTRACT OF THE DISSERTATION 

Modeling and Planning for Future Multimodal Transportation Systems with Household-
owned Driverless Vehicles 

by 

Younghun Bahk 

Doctor of Philosophy in Civil and Environmental Engineering 

University of California, Irvine, 2024 

Assistant Professor Michael F. Hyland, Chair 

 

Driverless (or fully-automated) vehicles (AVs) are expected to fundamentally 

change how individuals and households travel and how vehicles interact with roadway 

infrastructure. Privately-owned AVs (PAVs), when operated within households, offer travel 

options that distinguish them from conventional vehicles (CVs), such as remote parking, 

returning home to park, and serving other household members. These options—available 

through deadheading—can lead to an increase in vehicle miles traveled (VMT). The goals of 

this dissertation are to (i) explore the expected travel patterns of PAVs, (ii) analyze their 

impacts on transportation system performance, and (iii) propose design and policy 

changes to mitigate the negative impacts of PAVs and leverage their benefits. 

In this context, this dissertation presents three models and corresponding case 

studies. First, I propose a parking assignment model to analyze the impact of PAV parking 

behavior on travel patterns and parking facility demand and performance. The case study 

finds that significant VMT increases occur due to PAVs traveling to remote parking 

locations after dropping off travelers at activity locations, and that balancing fees and 

capacities of parking spaces can reduce the extra VMT.  
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Second, I introduce a new policy and infrastructure system aimed at reducing VMT 

that is similar to a park-and-ride (PNR) system. Instead of traditional fixed-route transit, 

my proposed system includes transfer stations where travelers can switch from their PAVs 

to on-demand, door-to-door shared-use AVs (SAVs) that enhance traveler convenience and 

service reliability. By optimizing transfer station locations, the case study demonstrates 

significant reductions in both VMT and vehicle hours traveled (VHT) within the region.  

Third, I extend the routing and scheduling of PAVs to the decision-making process 

within households. I introduce the Household Activity Pattern Problem with AV-enabled 

Intermodal Trips (HAPP-AV-IT) that incorporates SAV, public transit, and transit-based 

intermodal travel options. The case study results reveal that travelers are likely to choose 

long deadheading options, such as returning home, to optimize household vehicle 

operations. The model also demonstrates that intermodal trips can reduce both the 

household’s travel distance and overall travel costs. 

Although the precise performance of AVs on road networks remains uncertain, the 

findings of this dissertation suggest that additional VMT from PAV deadheading could 

negatively affect transportation systems. As we move closer to the era of widespread AV 

adoption, it becomes increasingly important for planners and researchers to develop 

policies and infrastructure systems that reduce PAV deadheading miles. The 

methodological advancements and practical insights presented in this dissertation provide 

a strong foundation for addressing these challenges and preparing for the transformative 

impact of AVs. 
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Chapter 1  INTRODUCTION 

1.1 Background 

Automated or autonomous vehicles (AVs), including fully automated within narrow 

operational design domains, now exist in several cities. The terminology for AVs—such as 

driverless, self-driving, automated, and autonomous—are often used interchangeably, as 

there is no strict consensus on their definitions (Garsten, 2024; Levinson, 2017; Muscad, 

2023). However, the various levels of automation and the additional self-routing 

capabilities of AVs will likely necessitate more precise definitions of these terms. In this 

dissertation, the terms “driverless vehicle” and “AV” refer to fully automated vehicles that 

do not require a driver and can accelerate, decelerate, and steer without any human 

assistance, but still require an external input for destination and route choices. 

Over the last decade, a large volume of research has focused on modeling and 

predicting the impacts of AVs on travel behavior, travel demand, and transportation 

systems broadly. Two model-based findings are relatively common in the literature: the 

technological aspects of AVs and connected vehicles will improve traffic flow efficiency 

(Talebpour and Mahmassani, 2016), and AVs will increase overall vehicle miles traveled 

(VMT) (Harb et al., 2021). Given that AVs are not widely available, their overall impact on 

travel demand and traffic congestion is still uncertain (Anderson et al., 2016). However, to 

plan for AVs, including allocating resources for infrastructure investments and setting 

policies and regulations, it is important to model, understand, and forecast the potential 
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impacts of AVs on transportation systems under a variety of different conditions. This 

dissertation focuses on the changes of travel patterns—the factors that can increase the 

usage of private vehicles and overall VMT. 

The most distinguishable characteristic of AVs is that human drivers are not required, 

meaning vehicles can travel empty, and even when travelers are inside the vehicle, the 

traveler does not need to operate the vehicle or even know how to operate the vehicle. 

These changes imply that travel patterns of AVs are likely to diverge from travel patterns in 

conventional (i.e., non-driverless) vehicles. The existing literature identifies a variety of 

behavioral changes stemming from the introduction of AVs that may increase private 

vehicle usage and overall VMT. For example, people without a driver’s license, seniors, and 

people with medical conditions preventing them from driving are expected to make more 

trips and increase their vehicle-based travel when AVs enter the market (Harper et al., 

2016). From a long-term land use perspective, some people may change their home 

locations and work locations as a result of AVs reducing travel costs to/from major activity 

locations (Ahmed et al., 2020; Bansal and Kockelman, 2018; Kim et al., 2020). Also, the 

improved convenience of private vehicles will attract current transit users to switch trips 

to PAVs, thereby increasing VMT (Huang et al., 2020; Kröger et al., 2019). 

Additionally, as drivers become riders in PAVs, PAV travel patterns are likely to 

involve dropping off travelers at their exact activity locations and traveling empty (i.e., 

deadheading or relocating) to another location to park during the activity or to serve 

another traveler.  Although deadheading in PAVs is similar to current taxi and ride-hailing 

services, in the case of taxis and ride-hailing, the next location is likely to be a pickup spot 
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for the next rider, whereas in the case of PAVs, the next location could be a parking spot 

(i.e., parking space or home) as well as a pickup spot for another household member. 

As shown in Figure 1-1, there are, at least, four PAV deadheading options. First, the 

vehicle can move to a nearby or distant parking space. The parking space choice depends 

on the parking fee, vehicle operating cost per mile, and the duration of activity (Harper et 

al., 2018). The vehicle waits in the parking space until the original passenger completes 

their current activity. Second, the vehicle can go back to the home of its owner to avoid a 

parking fee (Levin and Boyles, 2015). When parking fees in the area are too expensive, and 

the distance between home and activity location is close enough or there is another 

household member planning to use the vehicle, this option is likely to be chosen (Correia 

and van Arem, 2016). Third, the vehicle can deadhead to another location to pick up 

another household member, just like ride-hailing services (Correia and van Arem, 2016; 

Khayati et al., 2021a). This is likely to occur if the locations of the household members are 

relatively close, and their activity schedules align. If PAV owners release their car to a 

mobility service provider to serve as a shared-use AV, the vehicle may also serve other 

passengers, while this dissertation assumes all PAVs are only shared within household 

members. Fourth, the vehicle can even cruise around nearly aimlessly to avoid parking, 

when the duration of activity is relatively short and parking costs are high (Millard-Ball, 

2019). Along with vehicle electrification, cruising can be an economical choice for PAV 

users in downtown areas where and when parking fees are expensive relative to fuel costs. 

Of course, this fourth option is particularly harmful to the performance of the 

transportation system. However, this dissertation does not consider this last option, 

assuming intentional cruising is prohibited. 
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Figure 1-1: Difference in Travel Pattern: (a) PCV’s Park-and-walk and (b) PAV’s Flexible Deadheading 
Options after Drop-off 

The four deadheading options in Figure 1-1 are also available in the case where the 

PAV owner/user takes the PAV to a transit station and transfers from PAV to transit before 

reaching his/her activity location. Transferring from PAV to transit is most likely to occur 

when there is congestion in the road network and the transit line has a separate right-of-

way and therefore is not subject to roadway congestion and delays. If an individual’s travel 

time saving or punctuality matters, the traveler can choose a better right-of-way transit 

mode, i.e., metro, LRT, or BRT. Considering that such modes require access/egress trips 

to/from the station by walk or another feeder mode, the PAV is clearly a useful feeder 

mode, as it does not need to park and can drop the traveler off very close to the transit 

station. Thus, the PAV drop-off point is not necessarily at the activity location but could be 

a transit station, which is illustrated in Figure 1-2. 
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Figure 1-2: Dropping off at Transit Station: (a) Possible Paths for a Home-to-Activity Travel and (b) PAV 
Deadheading Options for Selected Path (Path 4) 

One particular concern is that all the AV deadheading options will generate extra 

travel distance compared to a transportation system with all conventional vehicles. The 

increased travel distance for individual vehicles will result in an increase in overall VMT in 

the roadway network, thereby increasing congestion, energy consumption, and vehicle 

emissions. Thus, it is important for planners to analyze the impact of PAV travel patterns 

on the system and develop a modeling framework to analyze travel patterns across the four 

deadheading strategies. 
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1.2 Research Questions 

Although many studies investigate PAV travel patterns and their impacts, there is no 

analysis that comprehensively covers household decision-making on vehicle operations, 

the impacts on transportation system performance, and the development of policies to 

mitigate negative impacts of new private vehicle travel patterns. Therefore, this 

dissertation proposes three research questions: 

1. How will PAVs change private vehicle operating patterns? 

2. How will the new PAV travel patterns affect transportation system 

performance? 

3. What design and policy changes should planners make to leverage PAVs for 

mobility improvements? 

The first question relates to the decision-making process for vehicle operation. Unlike 

shared-use AVs, where transportation network companies (TNCs) or public agencies can 

centrally control vehicle routing and scheduling, PAV usage is optimized by individual 

travelers or within households. Travelers will choose their shortest or least-cost path, 

regardless of overall system-wide performance. For example, a traveler might choose a 

distant but cheaper parking space, as they do not need to remain in the vehicle while 

parking, thereby increasing vehicle travel distance within the road network. Moreover, 

since households can separate the routing of PAVs from the travelers themselves, these 

empty-seat travels are not limited to parking but also include other household needs. In 

particular, when serving other household members, the routing and scheduling of PAVs 

should consider all activity-travels of the household members. 
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Given the aforementioned individual (person/household) decision-making process, 

the second question focuses on the system-wide impacts of PAV usage. These impacts 

include changes in performance metrics such as VMT, vehicle hours traveled (VHT), and 

other travel times and costs. Increased vehicle travel distance can lead to reduced travel 

speeds and increased travel times, which may cause shifts in mode and route choices, or 

even affect activity-travel scheduling. 

The third question seeks ways to reduce the negative impacts of PAV travel patterns, 

whether through policy implementation or infrastructural investment. Based on extensive 

scenario analyses, several actions can be identified to prevent or mitigate expected traffic 

congestion resulting from individual decision-making that disregards system performance. 

For example, planners might adjust parking pricing policies to discourage remote parking 

travels or introduce a convenient intermodal pooling system to reduce the number of 

vehicles entering downtown areas. 

In order to answer these questions, this dissertation presents three studies that 

investigate PAV travel patterns, their impacts, and planners’ corresponding actions. Each 

study analyzes the PAV travels in different approaches and assumptions, as I can predict 

various scenarios based on different situations. 

1.3 Contributions 

This dissertation makes several contributions to the literature in both methodological 

and conceptual aspects. Additionally, the proposed modeling frameworks in this 

dissertation permit policy assessments aimed at improving transportation systems. 
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First, this dissertation presents a dynamic parking assignment model that routes 

parking travel near activity locations. The model captures parking space finding behavior, 

taking parking lot capacities and congestion into account. I integrate this parking lot choice 

model with a mode choice model, enabling analysis of the interaction between parking 

infrastructure performance, PAV parking demand, and mode choice. 

Second, using the aforementioned model, this dissertation examines the impact of PAV 

deadheading (remote parking) and strategies to mitigate the negative effects. Specifically, I 

apply different parking capacity distributions and parking fees to reduce VMT. 

Third, this dissertation proposes a novel future park-and-ride system connecting PAVs 

with on-demand shared-use AVs (SAVs). The system encourages single-occupancy vehicle 

(SOV) travelers to transfer to SAVs, reducing the number of vehicles entering downtown 

areas. Infrastructure investments, including PAV-SAV transfer stations and SAV-dedicated 

lanes, aim to provide convenient and reliable intermodal travel. 

Fourth, the modeling framework and its components for the PAV-SAV transfer system 

include an innovative approach for integrating shared mobility (e.g. ridesourcing or SAV) 

trips within traditional trip distribution and network assignment models. The integrated 

model consists of vehicle distribution, traffic assignment, and service choice. Moreover, I 

propose an innovative method to incorporate the stochastic arrival of PNR users and the 

corresponding routing of SAVs based on the destination clusters. 

Fifth, the case study for the PAV-SAV transfer system demonstrates significant 

reductions in VMT and VHT in the region, suggesting that the proposed infrastructure 

concept can serve as a transportation demand management (TDM) strategy for large and 

congested metropolitan areas. 
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Sixth, this dissertation introduces a new model of household activity-travel routing 

and scheduling behavior in a future world with AVs. In addition to existing mathematical 

programs that model household vehicle operations, my new formulation reflects 

multimodal and intermodal travel options available to household members, which are 

critical to capturing behavior in future transportation systems with PAVs, SAVs, and transit. 

Seventh, the case study of the new household activity-travel routing and scheduling 

problem reveals that parking-at-home could become the dominant vehicle relocation 

choice, increasing VMT and decreasing parking occupancies in urban areas. The results also 

show that intermodal trips can reduce household travel costs. 

Eighth, the regression models for the household activity-travel routing and scheduling 

problem analyze the impact of the number of vehicles, household members, and activities 

on vehicle travel distance and computational time. The results indicate how additional 

vehicles or activities affect VMT, as well as the computational complexity. 

1.4 Outlines 

I organize this dissertation as follows. 

Chapter 1 motivates the dissertation topic and presents the research questions.  

Chapter 2 introduces a parking assignment and mode choice model, assuming that 

travelers choose parking spaces based on their overall travel cost, including parking fees 

and the distance between the activity location and the parking space. This chapter 

specifically assumes that travelers only choose to park their vehicles during the activities. 

Using an iterative solution approach that integrates mode choice and parking assignment, 

the model identifies converged mode shares and performance metrics across different 



 

10 
 

scenarios. Based on the case study using a virtual network and agents, this chapter 

demonstrates that balancing parking pricing and capacities can reduce the extra VMT 

associated with parking travels. 

Chapter 3 introduces a new policy and system designed to reduce extra VMT. This 

chapter focuses on a transfer system that connects PAV with a shared-use AV (SAV) mode, 

proposing a new park-and-ride (PNR) system utilizing AVs. The solution approach in this 

chapter includes vehicle trip distribution, traffic assignment, and service choice, in order to 

consider the interactions between travel demand, service mode choice, and travel cost. 

Applied to the Greater Los Angeles area, the chapter finds that the proposed transfer 

system can significantly reduce both VMT and VHT in the region. 

Chapter 4 extends PAV operations to include interconnected decision-making within 

households. Based on the Household Activity Pattern Problem (HAPP), which stems from 

mixed integer linear programming (MILP), this chapter models the household vehicle 

routing and scheduling problem, incorporating multimodal and intermodal trip options. 

Notably, this chapter introduces transit-based intermodal trips for the first time in 

household-level activity-travel optimization models, demonstrating that such trips could 

become viable travel options in the AV era. 

Chapter 5 concludes the dissertation and discusses avenues for future research. 
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Chapter 2  PARKING TRAVEL PATTERN ANALYSIS 

2.1 Overview 

This chapter parallels Bahk et al. (2022) and focuses on the near-activity location 

travel associated with PAVs and their impact on VMT relative to the current world with 

only PCVs. Figure 2-1 displays potential travel patterns for PCVs and PAVs for the same 

person trip from a home location to an activity location. Figure 2-1 shows that PCV travel 

typically involves a traveler driving to a parking lot and then walking to the activity 

location from the parking lot. However, in the case of PAVs, the AV drives the traveler 

directly to work, negating walking, and then deadheads to a parking location. Notably, 

because the traveler does not need to walk from parking location to activity location, the 

traveler is more willing to choose parking locations farther away from the activity location 

(or allow the AV itself to choose further away parking locations) if they are cheaper.  

 

Figure 2-1: Travel Pattern of PCVs and PAVs 

The goal of this chapter is to develop a modeling framework in order to analyze the 

potential impacts of PAVs on near-activity travel patterns and overall VMT. Near-activity 
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travel patterns for PVs denote the travel between activity locations and parking lots by 

vehicles and people, in the case where the parking lot is not at the same location as the 

activity. To model this problem, this paper presents an integrated parking location choice 

and mode choice model. The parking location choice model considers factors such as 

parking fee, parking lot capacity and congestion, driving cost per mile, walking distance for 

PCV travelers, and waiting time for PAVs to pick up travelers for their return home trip. 

The mode choice model captures the potential shifts between transit, shared vehicles like 

ridesourcing and taxi, and PVs as a function of the cost and service quality provided by each 

of these modes. Moreover, by integrating the mode choice and parking choice model, the 

framework captures the balancing effects of mode shifts toward PAVs (and to a lesser 

extent PCVs) and parking lot capacity and congestion impacts on the attractiveness of PAVs 

and PCVs. 

The study also presents an iterative solution approach to solve the integrated mode 

choice and parking location choice problem. The output of the model and solution 

algorithm includes mode shares, VMT, parking lot occupancy, traveler wait times, traveler 

walk distances, and traveler in-vehicle travel time (IVTT). By varying the percentage of 

PAVs and PCVs in various scenarios, the study aims to analyze the impact of PAVs on 

overall VMT. The authors believe integrating mode choice with parking location choice is 

critical for assessing the impacts of PAVs on near-activity VMT, since PV travel is likely to 

increase in a future with AVs compared to the current transportation system without AVs.  

This chapter makes several contributions to the existing literature. First, it introduces 

an integrated mode choice and parking assignment problem with PAVs, and formulates it 

as a fixed-point problem, in order to analyze the impacts of PAVs on near-activity travel 
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patterns and VMT in particular. Previous research aims to analyze the impacts of PAVs on 

travel patterns and VMT, but those studies do not explicitly integrate mode choice and 

parking assignment. Second, this chapter proposes a novel simulation-based parking 

assignment model to evaluate near-activity travel patterns, VMT, parking lot congestion, 

traveler walking distance, and other important travel attributes. Third, this chapter 

presents an efficient iterative solution approach to solve the integrated mode choice and 

parking assignment problem. Fourth, this chapter presents valuable insights into the trade-

offs between VMT, travel time, and travel costs when comparing a system with PCVs vs. a 

system with PAVs. Fifth, this chapter provides insights into the role parking lot prices and 

the spatial distribution of parking lot capacity can have on VMT. 

The remainder of this chapter is structured as follows. The next section (Section 2.2) 

provides a brief review of the existing literature. The following section (Section 2.3) 

presents the mathematical formulation of the integrated mode choice and parking location 

choice problem. Section 2.4 presents an iterative solution approach to solve the integrated 

model. A case study based on an artificial central business district is outlined in Section 2.5. 

Section 2.6 presents computational results from the case study and associated scenario 

analyses. Section 2.7 discusses the implications of the model results. Section 2.8 concludes 

this chapter. 

2.2 Literature Review 

Although many studies analyze factors related to AVs that impact travel behavior, 

relatively few studies analyze the impact of AVs on near-activity location travel and 

parking. Moreover, most parking studies related to AVs focus on microscopic topics such as 
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optimizing parking lot configurations and how to find a parking location more efficiently 

(Abidi et al., 2015; Feeney, 1989; Han et al., 2017; Young et al., 1991). Conversely, the 

current study focuses on parking and AVs across a transportation network to understand 

and forecast the potential impacts of AVs on VMT, parking lot usage, and other relevant 

metrics for transportation planning purposes. This section provides a brief review of 

studies that analyze the relationship between parking, travel behavior, and transportation 

system performance for PCVs before reviewing the small set of recent studies that 

incorporate PAVs alongside the other factors.  

The parking location choice problem for PCVs is well established in the literature. 

Feeney (1989) provides a review of studies in the 1970s and early 1980s covering the 

impact of parking policy measures on travel demand. The behavioral models (mostly logit 

models) show that factors such as parking fees and time costs (e.g., walking time) impact 

mode choice and travel behavior (Gillen, 1978). Unlike most of the literature that relies on 

revealed preference data, Axhausen and Polak (1991) employ stated preference data to 

estimate a parking choice model. Specifically, they create a parking type choice set that 

includes off-street, surface lot, and multi-story parking. Two other studies develop and use 

agent-based parking choice models within MATSim (Bischoff and Nagel, 2017; Waraich and 

Axhausen, 2012). Bischoff and Nagel (2017) find that incorporating parking choice in 

MATSim for Klausenerplatz in Berlin increase total VMT estimates by almost 20%. Nurul 

Habib et al., (2012) incorporate parking type choice alongside activity scheduling decisions 

within an activity-based travel demand model. 

More recently, several studies analyze changes in parking behavior related to PAVs. 

Table 2-1 provides a summary of these studies alongside a summary of the current study. 
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Levin and Boyles (2015) adopt the conventional multi-class four-step trip-based model to 

predict PAV travel patterns assuming some PAVs will drive a traveler to their activity 

location before deadheading to the same traveler’s origin (home) to avoid parking fees 

near the high-demand activity center. In a PAV-only scenario, Childress et al. (2015) find a 

50% discount in parking fees results in a significant increase in VMT. Zhang et al. (2018) 

suggest that PAVs will generate unoccupied VMT due to the reduction of household vehicle 

ownership and deadheading. Zhang et al. (2018) develop an integrated parking choice and 

route choice model. Harper et al. (2018) predict that some PAVs will greedily search for 

more distant and economical parking spots including unrestricted parking areas rather 

than downtown parking lots, thereby increasing VMT. On the other hand, Zhao et al. (2018) 

propose a centrally controlled parking system that collects travelers’ destination 

information and dispatches the vehicles to the parking lots and finds that this can reduce 

VMT. 

It is not possible to compare the results of those studies directly since they each make 

different assumptions and employ different modeling approaches. However, there are 

several emerging key factors that illustrate the relationship between AVs, travel behavior, 

and VMT. For example, parking fees and walking time are the most important factors in 

parking location choice (Axhausen and Polak, 1991; Childress et al., 2015; Feeney, 1989; 

Gillen, 1978; Harper et al., 2018).  A vehicle’s cost per mile is a factor as well. For PAVs, 

waiting time should be included in behavioral models since travelers need to wait for 

pickup after calling the AV, unless the traveler summons the PAV to arrive at the pickup 

point first, in which case the PAV may have to wait for the traveler. The model in this 
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chapter incorporates all these factors into a utility maximization framework for mode 

choice and parking location choice.  

Table 2-1: Comparison of PAV Studies on Parking Behavior 

Study Purpose Approach Parking-related Findings 

Levin & 
Boyles 
(2015) 

Analyze impact of AVs on 
travel behavior and 
network performance 

Four-step trip-based travel 
forecasting model 

PAVs increase VMT due to 
deadheading to cheap parking  

Childress et 
al. (2015) 

Quantify impacts of AVs on 
travel behavior and 
network performance  

Activity-based travel 
forecasting model 

Improved road capacity, reduced 
VOT, and discounted parking 
fees increase PAV demand and 
VMT. 

Zhang et al. 
(2018) 

Quantify excess VMT 
stemming from vehicle 
deadheading 

Household travel model. 
Greedy scheduling algorithm 
for required household 
vehicles. Mixed-integer 
program for unoccupied VMT. 

Reduction of household vehicles 
increases VMT due to 
unoccupied PAV travel. 

Zhang et al. 
(2019) 

Quantify network 
equilibrium patterns under 
AV parking behavior 

Integrated route choice and 
parking assignment choice 
model and solution approach 

PAVs increase traffic congestion 
due to parking search. Some 
PAVs will park at home. 

Harper et 
al. (2018) 

Evaluate impact of AVs on 
VMT, emissions, and 
parking revenues 

Agent-based parking 
simulation model on grid 
network with greedy parking 
lot selection  

PAVs park at distant and 
economical parking locations 
and increase VMT. 

Zhao et al. 
(2021) 

Analyze improvements in 
congestion under 
centralized parking 
dispatch 

Optimization of parking 
control with macroscopic 
fundamental diagram 

Optimized parking assignment 
reduces cruising VMT for 
parking 

This 
chapter 

Estimate impacts of PAV 
parking travel patterns on 
VMT and PV demand 

Integrated mode and parking 
location choice model. 
Iterative solution approach. 

PAVs increase demand for PV 
travel and as a result, VMT 
increases.  

 

2.3 Problem Formulation 

This chapter presents the integrated mode choice and parking assignment problem, 

wherein the parking assignment model captures congestion and capacity constraints in 

parking lots throughout the analysis region. Since the demand for parking is a function of 

mode choice (i.e., higher PV demand increases parking lot congestion), and mode choice is 
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a function of parking congestion (i.e., congestion in parking lots reduces demand for PVs), 

this chapter models the integrated mode choice and parking assignment problem using a 

fixed-point problem formulation. In general, a fixed point of a function 𝑓(∙) is a value 𝑝 such 

that 𝑓(𝑝) = 𝑝, or put another way, the value 𝑝 is unchanged by function 𝑓(∙) (Boyles et al., 

2022). The variable 𝑝 can be a scalar or a vector.  

Equation 2-1 displays the general form of the integrated mode choice and parking 

assignment model in the form of a fixed-point problem. A solution to Eqn. 2-1 is a multi-

dimensional array of probabilities, 𝒑, that when input into 𝑓𝑚 (𝑓𝑝(∙)) remain unchanged. 

The parking function 𝑓𝑝(∙) in this chapter does not have a straightforward functional form, 

rather, this chapter employs a dynamic simulation-based parking assignment model that is 

detailed in the next section. Equation 2-2 shows that the function 𝑓𝑝(∙) is non-separable 

because the mode splits (𝒑𝒐𝒅𝒕) between each origin 𝑜 ∈ 𝑂 and destination 𝑑 ∈ 𝐷 at time 

interval 𝑡 ∈ 𝑇 impact the service quality, price, and therefore parking location choice for 

travelers using the parking system between all origins, all destinations, and all future time 

periods. Conversely, the mode choice function, 𝑓𝑚(∙), displayed in Eqn. 2-3, which returns 

mode splits for travelers going from origin 𝑜 ∈ 𝑂 to destination 𝑑 ∈ 𝐷 at time interval 𝑡 ∈

𝑇, is separable by origin, destination, and time interval.  

𝒑 = 𝑓𝑚 (𝑓𝑝(𝒑)) (2-1) 

𝒒 = 𝑓𝑝(𝒑) (2-2) 

𝒑𝒐𝒅𝒕 = 𝑓𝑚(𝒒𝒐𝒅𝒕) (2-3) 
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The next section describes the detailed agent-based parking simulation model, 𝑓𝑝(∙). 

The next section also provides the functional form and the parameters for the mode choice 

function, 𝑓𝑚(∙), which is a standard multinomial logit model. 

2.4 Solution Approach 

Figure 2-2 displays the proposed iterative solution approach to solve the integrated 

mode choice and parking assignment problem. The remainder of the section describes the 

iterative solution approach along with the model input and output. 

 

Figure 2-2: Solution Approach 

2.4.1 Model Inputs 

The left-most box labeled ‘Input’ in Figure 2-2 includes a scenario setting box that 

leads into an input parameters box. This chapter performs sensitivity and scenario 

analyses based on changes in a variety of model parameters. These parameters and the 

changes to them are detailed in later sections. The input data and parameters in this 

chapter include the available travel modes, mode choice model parameters, fixed modal 
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attributes for non-PV modes, the location, capacity and price of parking lots, parameters for 

the parking congestion model, the transportation network, and demand data including trip 

origins and destinations. The following subsections provide details about the available 

travel models and the mode choice model parameters. 

2.4.1.1 Travel Modes 

This chapter incorporates three types of high-level travel modes, PVs, shared vehicles 

(SVs), and public transit. PV includes conventional PV (PCV) and PAV. SV includes shared-

use automated vehicles (SAVs), ride-hailing and ride-sharing services, and taxis. SV 

travelers wait for a vehicle, travel inside an SV, pay a fare, and receive door-to-door service. 

Public transit effectively refers to high-capacity buses. Transit riders walk to a bus stop, 

wait for a bus, pay a fare, travel inside the bus as a rider, and walk to their destination—

they may also need to transfer between routes, but this chapter assumes transfers are not 

necessary. 

Specific scenario details are given in the Case Study section; however, it is important to 

note that each traveler has access to a single PV—either a PCV or PAV but not both—in this 

chapter. Additionally of note, in the scenarios with all PCVs, SVs are conventional vehicles 

(SCVs); conversely in the scenarios with all PAVs, the SVs are all SAVs.  

2.4.1.2 Mode Choice Model Parameters 

Important mode choice model parameters include the disutility of travel time for in-

vehicle travel and out-of-vehicle travel (walking and waiting) and the disutility of travel 

costs. Combining the disutility of travel time and travel costs produces estimates of a user’s 
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value of time (VOT). According to previous studies and reports, VOT varies widely 

depending on a variety of factors (Axhausen and Polak, 1991; US Department of 

Transportation, 2016). Axhausen and Polak (1991) find a wide range of walking VOT 

estimates ranging from $1.35/h to $47.43/h in the mode choice context and $7.67/h to 

$58.21/h in the parking choice context. Caltrans (2021) uses the following VOTs: $13.65/h 

for automobile and transit in-vehicle VOT and $27.30/h for transit out-of-vehicle VOT in 

2016 dollars. Kolarova et al. (2019) estimate the VOT from the German National household 

travel survey data segmented by mode and income class. Based on the middle-income 

class’s PCV commuting trips ($8.18/h), the other values of in-vehicle VOT are $5.26/h, 

$8.72/h, and $4.89/h for PAV, SAV, and public transit, respectively. The walking VOT is 

$12.03/h, while the AV and public transit waiting VOT are $9.49/h and $7.45/h, 

respectively. Zhong et al. (2020) provide ranges for the VOT for PCV, PAV, and SAV in the 

United States by place of living: $9.36/h (rural) to $53.71/h (urban) for PCV; $7.71/h to 

$40.89/h for PAV; and $8.64/h to $46.53/h for SAV. This chapter uses the values in 

Kolarova et al. (2019). 

Moreover, this chapter uses $0.50/mi as the cost per vehicle mile of travel, based on 

the 2020 electric vehicle cost provide by American Automobile Association (2020). 

Although PCV or PAV can maintain conventional fuel systems in the future, this chapter 

assumes that all private vehicles are electrified, in order to compare the route choices 

under the same vehicle unit-distance operating cost. 

According to several studies, about 40% of a ride-hailing service travel is deadheading 

miles (Balding et al., 2019; Henao and Marshall, 2019). In other words, when one mile of 

PCV travel from an origin to a destination (except the parking travel distance) is changed to 
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a ride-hailing vehicle travel, the travel distance becomes 1.67 miles (67% extra travel). 

Considering that PAVs do not cruise to find and then pick up another passenger, the PAV’s 

VMT increase depends on the parking location finding travel distance. 

2.4.2 Iterative Solution Approach 

The middle portion of Figure 2-2 displays an overview of the proposed solution 

approach that involves iterating between the mode choice model and the dynamic 

simulation-based parking assignment model. In the iterative process, the outputs of the 

parking assignment model are the performance of the transportation system, specifically 

the costs and service quality attributes associated with PAV and/or PCV travel. Given that 

the parking model is agent-based, these cost and service quality attributes are available at 

the agent level and can easily be aggregated over time and space (e.g., travel analysis 

zones). The costs and service quality attributes for the other modes—transit and SV—are 

fixed in this chapter. The costs and service quality modal attributes for PVs from the 

parking assignment model are the inputs to the mode choice model, alongside the fixed 

modal attributes for SVs and transit. The outputs of the mode choice model are the modal 

splits, which are the inputs for the next iteration of the parking assignment model. This 

iterative process repeats until there is consistency between the mode choice model and the 

parking assignment model in terms of modal service quality/costs and modal splits.  

The following two subsections describe the dynamic simulation-based parking 

assignment models and the multinomial logit mode choice model, respectively. 



 

22 
 

2.4.2.1 Dynamic Simulation-based Parking Assignment Model 

The mode choice model returns modal splits, 𝒔𝒏, where the 𝑛 superscript denotes the 

current iteration number. Given that the modal attributes for SV and transit are fixed, and 

these modes do not use the parking lots, only the modal splits for PV are needed as input 

for the parking assignment model, 𝒔𝒎=𝑷𝑽
𝒏 . The formula for the spatial (origin zone to 

destination zone) and temporal demand for PVs in the current iteration, 𝑠𝑜,𝑑,𝑡,𝑃𝑉
𝑛 , is 

displayed in Eqn. 2-4.  

𝑠𝑜,𝑑,𝑡,𝑃𝑉
𝑛 = 𝑝𝑜,𝑑,𝑡,𝑃𝑉

𝑛 × 𝐷𝑜𝑑𝑡 ∀𝑜 ∈ 𝑂, ∀𝑑 ∈ 𝐷, ∀ 𝑡 ∈ 𝑇 (2-4) 

where 𝐷𝑜𝑑𝑡 denotes the total trip demand from origin zone 𝑜 to destination zone 𝑑 

departing at time 𝑡, which is exogenous to the integrated model system, meaning it is 

independent of the iteration. Notably, the demand for origin zone 𝑜 and to destination zone 

𝑑 is based on aggregating traveler agents with origin nodes that are inside origin zone 𝑜 

and destination nodes that are inside destination zone 𝑑. 

Each traveler agent in the dynamic simulation-based parking assignment model must 

choose a parking lot, where 𝐴 is the set of parking lots, indexed by 𝑎 ∈ 𝐴. In this chapter, 

each traveler creates an ordered list of parking lot preferences, based on their own 

expected generalized cost of travel. Each traveler with a PCV drives from their origin to a 

parking lot before walking from the parking lot to their activity location. Each traveler with 

a PAV rides from their origin to their activity location (i.e., destination node) after which 

the vehicle deadheads to a parking lot. Eqns. 2-5 and 2-6 display the expected generalized 

cost functions for PCV travelers and PAV travelers respectively.  
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𝐸𝐶𝑃𝐶𝑉,𝑎 = 𝑉𝑂𝑇𝑡𝑟𝑣 × 𝑡𝑡𝑟𝑣,𝑎 + 𝑉𝑂𝑇𝑤𝑙𝑘 × 𝑡𝑤𝑙𝑘,𝑎 + 𝐶𝑃𝑀 × 𝑑𝑎 ∀𝑎 (2-5) 

𝐸𝐶𝑃𝐴𝑉 = 𝑉𝑂𝑇𝑤𝑡 × 𝑡𝑤𝑡,𝑎 + 𝐶𝑃𝑀 × 𝑑 ∀𝑎 (2-6) 

where 𝑉𝑂𝑇𝑡𝑟𝑣 is the in-vehicle VOT, and 𝑡𝑡𝑟𝑣,𝑎 is the travel time between the origin and 

parking lot 𝑎; 𝑉𝑂𝑇𝑤𝑙𝑘 is the walking VOT, and 𝑡𝑤𝑙𝑘,𝑎 is the walking time between parking lot 

𝑎 and the traveler’s destination; 𝑉𝑂𝑇𝑤𝑡 is the waiting VOT, and 𝑡𝑤𝑡,𝑎 is the length of time 

the traveler must wait at the activity location to be picked for their return home trip, when 

their PAV is in parking lot 𝑎; 𝐶𝑃𝑀 is the vehicle’s cost per mile, and 𝑑𝑎 is the travel distance 

between the traveler’s origin and parking lot 𝑎 (via the destination in the case of PAVs). 

The parking assignment model simulates the movements of PAV and PCV travelers 

and the vehicles themselves as well as the occupancy of parking lots, in a time-driven 

simulation. Hence, the simulation captures the current location of travelers, PAVs, and PCVs 

as well as the current occupancy of all parking lots in the transportation network, every 

time step, which is denoted Δ𝜏. This chapter applies six seconds for Δ𝜏 based on the 

network resolution and computational convenience. 

Each traveler has an ordered list of parking lots because it is possible that a parking lot 

is full when the PV arrives at the parking lot entrance in the simulation, in which case the 

traveler or the traveler’s PAV needs to travel to the next parking lot on their ordered list. Of 

note, this chapter assumes a traveler only becomes aware of a parking lot’s occupancy 

when they arrive at the parking lot—future studies may assume travelers always have full 

knowledge of parking lot occupancies. Additionally, since travelers can go from parking lot 

to parking lot in the simulation, the expected costs for a parking lot 𝑎, 𝐸𝐶𝑎, in a traveler’s 

ordered list does not reflect the detour travel time and distance that occurs in the 
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simulation. Hence, the ordered list of parking lots for an agent is fixed within the current 

iteration of the model, i.e., an agent does not update their ordered parking list during a 

simulation. 

In addition to capturing hard capacity constraints at each parking lot in the 

transportation network, the parking assignment model also captures in-lot parking search 

time. This is an important model feature for dense urban areas with limited parking supply, 

as drivers can spend considerable time inside parking lots finding an open parking spot. In 

this chapter, the parking time after entering the parking lot (in-lot parking time) depends 

on the volume to capacity ratio of the parking lot. For example, this chapter uses a BPR 

function to reflect the in-lot parking time, expressed as Eqn. 2-7: 

𝑡𝑝𝑟𝑘(𝑣𝑎) = 𝑡0 × {1 + 𝛼 (
𝑣𝑎

𝐶𝑎
)

𝛽

} (2-7) 

where 𝑡𝑝𝑟𝑘 is the in-lot parking time; 𝑣𝑎  is the number of vehicles currently in parking lot 𝑎 

(parking and searching for parking); 𝐶𝑎 is the capacity of parking lot 𝑎; and 𝛼, 𝛽, and 𝑡0 are 

model parameters to be calibrated based on data.  

The parking assignment model also captures network IVTT and network walking time. 

The simulation model assumes both vehicles and pedestrians travel along the shortest 

network path. The model does not currently capture congestion in the road network, as the 

assumption is that parking lot capacity is the limiting constraint on PV mode demand. 

Additionally, the simulation model does not capture congestion or capacity at drop-off 

points (i.e., activity locations).  

As noted in Figure 2-2, the simulation-based parking assignment model returns the 

service quality and costs for PV modes. It does so by taking the average values for service 
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quality and cost from all traveler agents with origin 𝑜, destination 𝑑, departure time 𝑡, and 

𝑃𝑉 mode 𝑚, as denoted in Eqn. 2-8. 

𝑞𝑜,𝑑,𝑡,𝑚,𝑘
𝑛 =

∑ 𝛿𝑜,𝑑,𝑡,𝑚
𝑟,𝑛

𝑟∈𝑅 𝑞𝑘
𝑟,𝑛

∑ 𝛿𝑜,𝑑,𝑡,𝑚
𝑟,𝑛

𝑟∈𝑅

 
∀𝑜 ∈ 𝑂, ∀𝑑 ∈ 𝐷, ∀𝑡 ∈ 𝑇 

∀𝑚 ∈ 𝑀, ∀ 𝑘 ∈ 𝐾𝑚 
(2-8) 

where, 𝛿𝑜,𝑑,𝑡,𝑚
𝑟  is an indicator variable equal to one if agent 𝑟 has origin 𝑜, destination 𝑑, 

departure time 𝑡, and was assigned to mode 𝑚 in iteration 𝑛; 𝑞𝑘
𝑟,𝑛 is agent 𝑟’s experienced 

service quality or cost metric 𝑘’s value in iteration 𝑛. The set of experienced service quality 

or cost metrics 𝐾𝑚, vary by PV mode 𝑚. For PCV, 𝐾𝑃𝐶𝑉 includes IVTT from origin to parking 

lot, in-lot parking time, parking fee, walking time from/to the parking lot, the opposite 

direction IVTT, and vehicle travel distance to calculate vehicle parking cost. On the other 

hand, for PAV, 𝐾𝑃𝐴𝑉 includes include IVTT from origin to destination, total vehicle travel 

distance, parking fee, and the waiting time for the PAV to pick up the traveler for the return 

home trip. The values in Eqn. 2-8 are then fed into the mode choice model. 

2.4.3 Multinomial Logit Mode Choice Model 

This subsection describes the mode choice model. The chapter employs the random 

utility maximization framework to model mode choice. The utility function for each mode 

can be written as Eqns. 2-9 through 2-13: 

𝑈𝑃𝐶𝑉 = 𝛽𝐼𝑉𝑇𝑇,𝑃𝐶𝑉(𝑡𝑡𝑟𝑣 + 𝑡𝑝𝑟𝑘) + 𝛽𝑤𝑙𝑘𝑡𝑤𝑙𝑘 + 𝛽𝑐𝑜𝑠𝑡(𝑐𝑜𝑝𝑟𝑑 + 𝑐𝑝𝑟𝑘𝑡𝑑𝑢𝑟) + 𝜖 (2-9) 

𝑈𝑃𝐴𝑉 = 𝛽𝐼𝑉𝑇𝑇,𝑃𝐴𝑉𝑡𝑡𝑟𝑣 + 𝛽𝑤𝑡𝑡𝑤𝑡 + 𝛽𝑐𝑜𝑠𝑡(𝑐𝑜𝑝𝑟𝑑 + 𝑐𝑝𝑟𝑘𝑡𝑑𝑢𝑟) + 𝜖 (2-10) 

𝑈𝑆𝐶𝑉 = 𝛽𝑆𝑉 + 𝛽𝐼𝑉𝑇𝑇,𝑆𝐶𝑉𝑡𝑡𝑟𝑣 + 𝛽𝑤𝑡𝑡𝑤𝑡 + 𝛽𝑐𝑜𝑠𝑡𝑐𝑓𝑟 + 𝜖 (2-11) 
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𝑈𝑆𝐴𝑉 = 𝛽𝑆𝑉 + 𝛽𝐼𝑉𝑇𝑇,𝑆𝐴𝑉𝑡𝑡𝑟𝑣 + 𝛽𝑤𝑡𝑡𝑤𝑡 + 𝛽𝑐𝑜𝑠𝑡𝑐𝑓𝑟 + 𝜖 (2-12) 

𝑈𝑇𝑟𝑎𝑛𝑠𝑖𝑡 = 𝛽𝑇𝑟𝑎𝑛𝑠𝑖𝑡 + 𝛽𝐼𝑉𝑇𝑇,𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑡𝑡𝑟𝑣 + 𝛽𝑤𝑙𝑘𝑡𝑤𝑙𝑘 + 𝛽𝑤𝑡𝑡𝑤𝑡 + 𝛽𝑐𝑜𝑠𝑡𝑐𝑓𝑟 + 𝜖 (2-13) 

where 𝑡𝑡𝑟𝑣 is path travel time (origin to the final parking lot entrance), 𝑡𝑝𝑟𝑘 is in-lot parking 

time from Equation 2-7, 𝑡𝑤𝑙𝑘 is walking time, 𝑡𝑤𝑡 is waiting time, 𝑐𝑜𝑝𝑟 is vehicle operating 

cost per mile, 𝑑 is vehicle driving distance (including parking lot searching travel), 𝑐𝑝𝑟𝑘 is 

parking fee per hour, 𝑡𝑑𝑢𝑟 is parking duration time, 𝑐𝑓𝑟 is the fare of shared vehicle or 

transit, 𝛽𝑆𝐴𝑉 and 𝛽𝑇𝑟𝑎𝑛𝑠𝑖𝑡 are mode-specific coefficients, 𝛽𝐼𝑉𝑇𝑇 is IVTT coefficient, 𝛽𝑐𝑜𝑠𝑡 is 

cost coefficient, and 𝛽𝑤𝑙𝑘 and 𝛽𝑤𝑡 are coefficients for each variable. 

Among those variables, 𝑡𝑡𝑟𝑣, 𝑡𝑝𝑟𝑘, 𝑐𝑝𝑟𝑘, and 𝑑 change in the parking assignment model, 

and the other non-beta parameters and variables remain unchanged based on scenario 

settings. 𝛽𝐼𝑉𝑇𝑇,𝑃𝐶𝑉, 𝛽𝐼𝑉𝑇𝑇,𝑃𝐴𝑉, 𝛽𝑤𝑙𝑘, 𝛽𝑤𝑡, and 𝛽𝑐𝑜𝑠𝑡 are frequently used variables in the mode 

choice model and can be found from many studies in the literature. Wardman (2004) and 

Pratt and Evans IV (2004) collect and list relative time valuations for transit travel from 

decades of studies in UK and US, respectively. 

This chapter also assumes that the error terms, 𝜖, are independent (across modes and 

agents) and identically distributed. Hence, the functional form for mode choice is the 

multinomial logit model. Given the modal attributes from the previous iteration of the 

parking assignment model, the exogenous modal attributes and other parameter values, as 

well as the beta coefficients, determining the mode choice probabilities, 𝒑, from the 

multinomial logit model is straightforward and computationally inexpensive. 
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2.4.4 Model Output 

After the iterative solution approach converges to a solution, there are a variety of 

system-level and agent-level performance metrics that can be output for analysis purposes. 

The system-level metrics include VMT, empty VMT, final mode splits, parking lot occupancy 

and parking lot revenue. The agent-level metrics include travel time, walk time, travel cost, 

generalized cost, and systematic utility. 

2.5 Case Study 

2.5.1 Network Configuration 

This chapter uses a grid network describing an imaginary central business district 

(CBD). The network, displayed in Figure 2-3, has 8 external origin nodes (Nodes 1 to 8), 22 

activity locations (Nodes 9 to 30), and 10 in-network parking lots (Nodes 31 to 40) with 1 

out-of-network parking lot (Node 41) that accommodates unassigned vehicles. The size of a 

block is 600 ft by 500 ft and the width of the road is 60 ft. The main road links are 

unidirectional with a uniform vehicle speed (25 ft/s) and a uniform walking speed (4 ft/s). 

Parking assignment requires a fine spatial resolution, particularly in the CBD. Each 

intersection is divided into four nodes to reflect intersection delays. Each internal short 

link in each intersection has additional travel times: 12 seconds for the through direction 

and 24 seconds for a left turn and a U-turn. Each activity location and parking lot has two 

bi-directional links connected with the main road that take 18 seconds to traverse and are 

accessible only from the adjacent direction links (i.e., only right turn is available) and a 

short detour (ex: U-turn at the downstream intersection) is required for the opposite 
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direction travel. For example, assume a PAV with external origin 3 and activity location 21 

parks in lot 36 in Figure 2-3, the node sequence of the path would be: [3, 539, 537, 122, 

535, 533, 531, 529, 530, 549, 550, 212, 21, 211, 550, 552, 362, 36]. 

 

 

Figure 2-3: Grid Network for Parking Assignment Simulation 
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2.5.2 Trip Generation and Distribution 

Vehicle trips are generated every six seconds (Δ𝜏 = 6𝑠𝑒𝑐) and the simulation runs for 

four hours (i.e., there are 2,400 time steps during the process). To collect enough samples, 

each simulation runs three times (i.e., three days). There are 12,000 entering trips 

including PV and non-PV (SV or public transit) users per scenario. To balance the parking 

location availability throughout the day, 3,000 PVs randomly exit the parking lot during the 

analysis period. The 12,000 entering trips have uniformly distributed origin and 

destination nodes (and zones) and departure times. Additionally, the model does not 

explicitly model travel from activity location or parking lot to external origin. Rather, this 

chapter uses fixed values for PAV user pickup wait time and IVTT to external origin. 

2.5.3 Parking Lots 

Each parking lot has a fixed parking capacity and a fixed parking fee. The total parking 

capacity across the 10 parking lots is 4,000 and 15% of parking spots (600) are vacant at 

the beginning in the base scenario. The results section includes scenario analyses with 

respect to changes in parking fees and parking lot capacities. Parking fees range from 

$1.5/h to $5.5/h with mean (median) values of $3.65/h ($3.75/h). Parking lot fees are 

based on lots in major cities in Germany and the United States (Parkopedia, 2021). When 

all parking lots are full, vehicle must go to the out-of-network parking lot (Lot 41) that is 

0.5 miles away, costs $5.5/h, and has a capacity of 10,000.  

For the in-lot parking space search time function (Eqn. 2-7), this chapter uses the 

following parameter values for all parking lots: 𝑡0 = 1 minute and 𝛼 = 𝛽 = 2. According to 
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the function, parking time is 60 seconds when the parking lot is empty, 90 seconds at 50% 

vacancy, 120 seconds at 30% vacancy, and 180 seconds at 1% vacancy. 

2.5.4 Model Parameters and Values of Time 

The model parameters and VOTs used in this chapter are based on those in Kolarova 

et al. (2019). Since there is no experience of AV travel yet, the value of AV travel time in 

most studies relies on SP survey or assumptions. The San Diego Association of 

Governments (SANDAG) multiplies 0.75 from the PCV in-vehicle VOT as a modifier 

considering the improved convenience (Resource Systems Group, 2020), which is the same 

as Correia et al. (2019). Conversely, Kolarova et al. estimate that in-vehicle VOT in PAVs is 

0.64 of in-vehicle VOT in PCVs. According to Singleton (2019), several simulation studies 

assume various VOTs of AVs, and the value ranges from 0% to 100% of PCV VOT. This 

chapter applies Kolarova et al. (2019)’s survey-based number in the base scenario and 

adjusts the number in alternative scenarios with different modifiers. Note that Kolarova et 

al.’s SAV refers to “driverless taxi” in their survey. The coefficient values used in this 

chapter are shown in Table 2-2. 

Table 2-2: Model Parameters 

Variable PCV PAV SCV SAV Transit 

Mode-specific constant 0 0 -0.927 -0.927 -3.23 

Time-
related 

In-vehicle time (minutes) -0.0966 -0.0621 -0.11 -0.103 -0.0577 

Walking time (minutes) -0.142 - - - -0.031 

Waiting time (minutes) - -0.112 -0.112 -0.112 -0.088 

Cost-
related 

Operating cost and parking fee (USD) -0.709 -0.709 - - - 

Fare (USD) - - -0.709 -0.709 -0.709 
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2.5.5 Travel Costs for Mode Choice 

The mode choice model includes out-of-network IVTT since the mode choice is not 

only based on the travel in the simulated network, but also affected by the whole travel 

path. For each traveler, the out-of-network IVTT time for two directions are added to the 

in-network IVTTs (including the parking lot searching time) determined by the parking 

assignment model. PV and SAV users’ out-of-network IVTT is set to 20 minutes per one 

way, and transit users’ out-of-network IVTT is set to 30 minutes per one way. Including the 

in-network IVTT, the total IVTT becomes around the US average (27.6 minutes for one-way 

commute) according to recent data (Helling, 2023). Assuming the average speed is 24 mi/h, 

the out-of-network one-way travel distance is 8 miles. 

This chapter assumes 10 minutes (5 minutes in each direction) of waiting time for SAV 

and 20 (10+10) minutes of waiting time and 10 (5+5) minutes of walking time for transit. 

Transit fare is $5 (thus, $10 for the two-way trips). Uber fare consists of base fare ($2), cost 

per minute ($0.4/min), and cost per mile ($1/mi) (Chen and Kockelman, 2016), which can 

be changed when the company starts to run AVs. For SAVs, Chen and Kockelman (2016) 

use $0.75–1/mi, Kaddoura et al. (2020) assume $0.64–0.84/mi (€0.35–0.46/km), and An et 

al. (2019) estimate $0.66/min, which is a simplified cost estimation of the current Uber 

service. Considering those studies, this chapter uses $1.2/mi for SCV fare and $0.8/mi for 

SAV fare. 

2.5.6 Scenarios 

This chapter analyzes several scenarios that reflect various possible future conditions 

at different points in time. Table 2-3 displays the full set of scenarios. In the base scenario, 
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all PVs are PCVs. Those PCVs are all converted into PAVs in Scenario A. Scenarios B1 and B2 

are all PAV scenarios, but they apply different in-vehicle VOTs for PAV, 50% and 90% of 

PCV in-vehicle VOT, respectively. Scenarios C1 and C2 are also all PAV but uniformly apply 

$3.5/h fee to all parking lots, and Scenario C2 additionally attempts to evenly distribute 

parking lot capacity across the network.  

Table 2-4 displays the parking lot fees, capacity, and initial vacancy across a variety of 

scenarios. 

In the base scenario and Scenarios A–C2, the traveler agents are aggregated into a 

single origin zone and single destination zone for the mode choice model. However, in 

Scenarios D1–D5, the traveler agents are aggregated into four destination zones in the 

mode choice model. Scenarios D1 through D5 vary the proportion of PVs that are PAVs, as 

opposed to PCVs, between 0 and 1 in increments of 0.25. 
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Table 2-3: Scenarios 

Scenario Modes PAV VOT 
Parking 

fee 
Parking lot 

capacity 
PAV 

percentage 
Description 

One Origin and One Destination Spatial Aggregation in Mode Choice 

Base PCV, SCV, Transit - Varied Uneven 0% CV default 

A PAV, SAV, Transit 64.3% of PCV Varied Uneven 100% AV default 

B1 PAV, SAV, Transit 90.0% of PCV Varied Uneven 100% Variations 

in PAV 

VOT 

parameter 
B2 PAV, SAV, Transit 50.0% of PCV Varied Uneven 100% 

C1 PAV, SAV, Transit 64.3% of PCV Uniform Uneven 100% Variations 

in cost 

variable C2 PAV, SAV, Transit 64.3% of PCV Uniform Even 100% 

One Origin and Four Destinations Spatial Aggregation in Mode Choice 

D1 PCV, SCV, Transit 

64.3% of PCV Varied Uneven 

0% 

Variations 
in PAV 

Ownership 
Percentage 

D2 
PCV, PAV, SCV, SAV, 

Transit 
25% 

D3 
PCV, PAV, SCV, SAV, 

Transit 
50% 

D4 
PCV, PAV, SCV, SAV, 

Transit 
75% 

D5 PAV, SAV, Transit 100% 
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Table 2-4: Parking Lot Information across Scenarios 

Parking 
lot 

Default 
Scenarios 
C1 and C2 

Scenario C2 

Parking fee 
(USD/h) 

Capacity 
(veh) 

Initial 
vacancy 

(veh) 

Parking fee 
(USD/h) 

Capacity 
(veh) 

Initial 
vacancy 

(veh) 

31 3.5 450 60 3.5 250 38 

32 2 1,100 200 3.5 250 37 

33 3 250 75 3.5 750 112 

34 4 190 45 3.5 400 60 

35 5 140 20 3.5 500 75 

36 5.5 420 25 3.5 550 83 

37 5 320 40 3.5 350 52 

38 1.5 550 30 3.5 300 45 

39 3 380 60 3.5 300 45 

40 4 200 45 3.5 350 53 

41 5.5 10,000 10,000 5.5 10,000 10,000 
 

2.6 Results 

2.6.1 No Spatial Disaggregation Scenarios 

The Solution Approach section and Figure 2-2 describe an iterative solution approach 

to solve the fixed-point integrated mode choice and parking location choice problem, 𝒑 =

𝑓𝑚 (𝑓𝑝(𝒑)). However, when the variable 𝑝 is a scalar or low-dimensional vector, and the 

function 𝑓𝑚 (𝑓𝑝(𝒑)) is relatively easy to evaluate, it is possible to use enumeration to solve 

the fixed point problem. The base scenario and scenarios A through C2 meet these criteria 

because the mode choice model does not include any spatial or temporal disaggregation; 

hence, the dimension of 𝒑 is 1 × 1 × 1 × |𝑀|. Using an enumeration method also has the 
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added benefit of ensuring that all fixed points are identified, whereas the iterative solution 

approach may not identify all possible fixed points solutions.   

Figure 2-4 shows the results of the enumeration approach for the base scenario and 

scenarios A through C2. The x-axis displays the input values for the PV mode share, 𝑝𝑚=𝑃𝑉.  

and the y-axis displays the evaluation of the integrated parking assignment and mode 

choice function, 𝑓𝑚 (𝑓𝑝(𝑝𝑚=𝑃𝑉 )). Values along the diagonal represent solutions to the fixed-

point problem.  

Using an increment of 1%, Figure 2-4 shows that there is a unique solution for the 

base scenario and scenarios A through C2. Unsurprisingly, the lines are all downward 

sloping. Moreover, the relative flatness of Scenario C1 and C2 likely stems from the fact that 

the parking fees across the network are uniform. The existence and uniqueness of a 

solution for all scenarios engenders a straightforward analysis of the fixed-point solutions 

across scenarios. 

 

Figure 2-4: Fixed Point Solutions for Private Vehicle Mode Choice Probability--Pr(PV) 
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2.6.1.1 Mode Share Metrics 

Figure 2-5 shows the mode shares for all modes in each scenario. The mode share for 

PV is lowest in the base scenario where the PVs are PCVs, and the mode share is 50%. In 

Scenario A, where all PVs are PAVs, PV mode share significantly increases to 87% due to 

eliminating walking time, potentially reducing parking fees, and the reduction in IVTT 

disutility.  

In Scenario B2, the assumption is that PAV in-vehicle VOT is 50% of PCV in-vehicle 

VOT, and the PAV mode share increases all the way to 92%. In Scenario B1, when PAV in-

vehicle VOT is 90% of PCV in-vehicle VOT, the PAV mode share is 74%. Taken together, 

Scenario A, B1, and B2 unsurprisingly indicate that PAV IVTT disutility has a significant 

impact on mode share.  

The properties of parking lots also affect the choice probability. Instead of the varied 

parking fees that range from $1.5/h to $5.5/h in the base scenario, all parking fees are set 

to $3.5/h in Scenarios C1 and C2. In addition, Scenario C2 redistributes the parking lot 

capacities to be more evenly distributed in the network. In Scenarios C1 and C2, the PAV 

mode shares are 67% and 69%, respectively. This represents a notable reduction in mode 

share compared to Scenario A, in which the larger parking lots had lower fees. 
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Figure 2-5: Mode Share by Scenarios 

2.6.1.2 VMT Metrics 

In addition to the increase of the travel demand (Figure 2-6a), total PV VMT 

substantially increases in PAV scenarios (Figure 2-6b). Note that I only consider in-network 

VMT (starting from external origin nodes), and do not include the VMT from the actual 

origin to external nodes. In-network VMT increases by 15,000–22,000 miles in Scenarios A, 

B1, and B2 compared to the base scenario. On the other hand, the increases are reduced 

when there is no difference in parking fees in Scenario C1 and C2.  

As shown in Table 2-5 and Figure 2-6c, the average VMT for a PCV is 1.07 miles in the 

base scenario, and the average VMT for a PAV stretches from 1.18 miles to 2.57 miles in the 

other scenarios. The VMT per vehicle increases by 1.38–1.51 mi/veh in default parking lot 

settings compared to the base scenario. In Scenarios C1 and C2, VMT per vehicle increases 

by only 0.11–0.35 mi/veh. This clearly indicates that the spatial distribution of parking 

prices and parking supply have a significant impact on average VMT per vehicle. Hence, if 
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policymakers and planners are interested in reducing VMT in a future era with PAVs, 

parking supply and pricing must be considered alongside other policy measures.  

The increase in in-network VMT from PAVs shown in Figure 2-6b stems from both an 

increase in PV trips (shown in Figure 2-6a) and an increase in network VMT per vehicle 

(shown in Figure 2-6c). Hence, VMT in a future with AVs is likely to increase due to 

travelers switching to PV and also driving more miles in PAVs than they did or would have 

in PCVs. Policymakers interested in decreasing VMT will likely need a multi-pronged 

approach to address these two factors that are expected to increase VMT.  

 

Figure 2-6: PV’s VMT in the Network: (a) Number of PV Trips, (b) Total PV VMT, and (c) VMT per Vehicle 

2.6.1.3 Travel Time and Travel Cost Metrics 

Table 2-5 shows the average travel time components for travelers along several 

dimensions, along with average total travel time, and average travel distance. Travel 

distance is the distance in the grid network (counted from the external origin node) and 

includes the deadheading travel distance. The travel distance in every PAV scenario is 

longer than the distance in the PCV base scenario.  
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Since PCV travelers need to travel to parking lots and search for parking, while PAV 

travelers do not, the average IVTT of PCV travelers is 3.3 minutes longer than that of PAV 

travelers on average. On the other hand, PAVs spend more time searching for parking than 

PCVs. The reasons are twofold; first there are more vehicles in the PAV scenarios and 

second PAVs have more homogeneous parking lot preferences—they want cheap parking 

and are less sensitive to distance from activity location and parking spot search time—

making cheaper parking lots more crowded.  

The PCV users’ average (one-way) walking time from parking lot to activity location is 

about 6 minutes in one direction, and nearly 13 minutes total including the activity location 

to parking lot return walk. Of course, walking time is zero minutes for the PAV scenarios. 

The average waiting time for PAVs to pick up PAV users is 1.2-2.4 minutes in Table 2-5. The 

variation across scenarios comes from the distance between parking lots and activity 

locations.  

The final column sums average traveler IVTT, walking time, and waiting time to 

determine total travel time. The results show that the total roundtrip in-network travel 

time for PCV is significantly higher than total roundtrip in-network travel time for PAV 

users. Hence, there are significant time benefits associated with PAVs compared with PCVs.  
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Table 2-5: Average PV Traveler Distances and Times 

Scenario 
Number 

of PVs 
(veh) 

Travel 
distance 
(mi/veh) 

In-lot 
parking time 

(min/veh) 

IVTT 
(min/prs) 

Walking 
time 

(min/prs) 

Waiting 
time 

(min/prs) 

Total 
time 

(min/prs) 

Base 6,000 1.07 2.45 8.19 12.73 - 20.9 

A 10,440 2.53 2.71 4.83 - 2.37 7.2 

B1 8,880 2.45 2.70 4.83 - 2.40 7.2 

B2 11,040 2.57 2.72 4.84 - 2.35 7.2 

C1 8,040 1.42 2.61 4.84 - 1.39 6.2 

C2 8,280 1.18 2.45 4.85 - 1.22 6.1 

 

Table 2-6 presents an even more holistic comparison of the travel experiences of PV 

users across scenarios; it includes average monetary costs and monetized travel time 

components based on the values of IVTT, walking time, and waiting time in the mode 

choice model. The final column of Table 2-6 displays the total generalized cost per traveler.  

Table 2-6 shows that the in-network vehicle operating cost is $0.06 to $0.75 higher for 

PAVs than PCVs, depending on the scenario. This result stems from the deadheading 

distance that PAVs travel after dropping off travelers at their activity locations.  

Scenarios A, B1, and B2 have higher average parking fees for travelers compared with 

the base scenario. Hence, despite PAVs being able to travel further to cheap parking lots, 

the increase in total PV demand in the PAV scenarios forces some travelers to pay for 

parking at the high-cost parking lots, which more than offsets their ability to access cheap 

parking lots. Since the parking fees are unified in Scenarios C1 and C2, the popular cheaper-

than-average parking lots are not cheap anymore. Thus, the average parking fee increases 

in those scenarios.  

The monetized IVTT, monetized walking time, and monetized waiting time columns of 

Table 2-6 parallel the IVTT, walking, and waiting time columns in Table 2-5. IVTT is higher 
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and walking time is significantly higher for PCVs than PAVs, while waiting time is higher for 

PAVs.  

The final column of Table 2-6 is the sum of all the cost and monetized cost components 

in the preceding columns. Interestingly, while Scenario A and B1 have the lowest total 

generalized costs, the base scenario has a lower generalized cost than Scenarios C1 and C2. 

This latter finding stems directly from the high parking cost per person in Scenarios C1 and 

C2. 

Table 2-6: Average Monetized Traveler Costs 

Scenario 

Vehicle 
operating 

cost 
(USD/prs) 

Parking fee 
(USD/prs) 

Monetized 
IVTT 

(USD/prs) 

Monetized 
Walking time 

(USD/prs) 

Monetized 
Waiting time 

(USD/prs) 

Total 
generalized 

cost 
(USD/prs) 

Base 0.53 4.72 1.12 2.55 0 8.92 

A 1.27 (+0.73) 5.34 (+0.62) 0.42 (-0.69) 0 (-2.55) 0.37 (+0.37) 7.40 

B1 1.22 (+0.69) 5.07 (+0.35) 0.42 (-0.69) 0 (-2.55) 0.38 (+0.38) 7.10 

B2 1.29 (+0.75) 5.46 (+0.74) 0.42 (-0.69) 0 (-2.55) 0.37 (+0.37) 7.54 

C1 0.71 (+0.18) 7.77 (+3.05) 0.42 (-0.69) 0 (-2.55) 0.22 (+0.22) 9.12 

C2 0.59 (+0.06) 7.84 (+3.12) 0.42 (-0.69) 0 (-2.55) 0.19 (+0.19) 9.05 
 

Together with the VMT results, Table 2-5 and Table 2-6 illustrate trade-offs between 

PCVs and PAVs in terms of travel time, travel cost, and VMT. Compared with the base 

scenario, the PAV scenarios A, B1, and B2 significantly increase VMT, while reducing 

average traveler in-network time considerably and slightly reducing traveler generalized 

costs. On the other hand, compared with the base scenario, the PAV scenarios C1 and C2, 

only slightly increase VMT, while significantly reducing average in-network travel time. 

However, C1 and C2 have a higher total generalized cost than the baseline scenario because 

of the higher parking costs that are needed to reduce VMT. 



 

42 
 

2.6.1.4 Vehicle Hours Traveled vs. Traveler In-vehicle Travel Time Results 

Figure 2-7 displays both total VHT and total traveler IVTT under the various scenarios. 

Figure 2-7a displays the total VHT for PVs and traveler IVTT. Even though the number of 

travelers and VHT increase in the PAV scenarios, there is no significant increase in total 

traveler IVTT. Understandably, this is because the PAVs are empty during the parking 

search process. Figure 2-7b shows that PV VHT per vehicle increases in Scenarios A, B1, 

and B2 relative to the baseline scenario; conversely, PV VHT per vehicle only increase 

slightly in Scenario C1, while Scenario C2 shows a slight decrease. Figure 2-7c displays the 

average IVTT per traveler, with the main result being that IVTT per traveler is lower in the 

PAV cases than the baseline PCV scenario. The results in Figure 2-7c partially explain the 

increase in PV mode share in the PAV scenarios despite the increase in VHT with PAVs. 

 

Figure 2-7: PV’s VHT and IVTT in the Network: (a) Total PV VHT and IVTT, (b) VHT per Vehicle, and (c) 
IVTT per Traveler 

2.6.1.5 Impact from Shared AVs 

According to Balding et al. (2019) and Conway et al. (2018), using data from the 2017 

National Household Travel Survey, the share of for-hire vehicles (taxi and TNC) is around 
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0.5% across the country and up to 1.7% in San Francisco and 1.5% in Washington DC. Since 

this chapter only considers travelers who have their own vehicles, the base scenario (PCV-

SCV) shows an even lower mode share for SVs, 0.2%. However, the percentage increases in 

the PAV-SAV scenarios as the SV’s travel cost per mile decreases significantly.  

Naturally SVs, particularly SAVs, impact total network VMT in addition to PAVs. 

Assuming 40% deadheading miles for SVs (Balding et al., 2019; Henao and Marshall, 2019), 

SV travel adds 0.67 deadhead miles per in-service mile. Figure 2-8 illustrates the impact of 

SAVs on VMT. Figure 2-8a displays the number of SV trips across the scenarios. 

Interestingly, Scenarios C1 and C2 produce the highest number of SV trips. Figure 2-8b 

displays the total SV deadheading VMT, which parallels the results in Figure 2-8a. Figure 

2-8c displays the total SV and PV VMT and finds that VMT increases substantially (5,000–

22,000 miles, depending on the scenario) in the AV-based scenarios. However, the impact 

of SV VMT (green bars in Figure 2-8c) is relatively small compared to PV VMT (blue bars in 

Figure 2-8c) in nearly all scenarios. 

 

Figure 2-8: SV VMT in the Network: (a) Number of SV Trips, (b) Total SV Deadheading VMT, and (c) Total 
PV and SV VMT 
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2.6.2 Spatial Disaggregation Scenarios 

While the results in the prior subsection were based on an enumeration-based 

solution approach to the integrated mode choice and parking assignment problem, this 

section presents results using the iterative solution approach proposed in the Solution 

Approach section. Notably, the iterative solution approach is necessary in this section 

because the mode choice model aggregates the travelers into four destination zones, rather 

than just one destination zone like in the prior subsection. This subsection illustrates the 

ability of the iterative solution approach to identify a solution to the fixed-point problem. 

Figure 2-9 displays the mode choice results under a variety of different scenarios. The 

parameter 𝛼 denotes the proportion of travelers who own a PAV, as opposed to a PCV. Each 

row of graphs in Figure 2-9 denotes a separate 𝛼 value, whereas 𝛼 does not vary across 

columns. The figure varies 𝛼 between 0 and 1 in increments of 0.25. Each column in Figure 

2-9 denotes a separate initial starting point for PV mode choice in order to determine if the 

iterative solution algorithm finds different fixed points as a function of the initial starting 

points.  

The lines in each of the 15 graphs in Figure 2-9 indicate that the iterative solution 

approach converges to a fixed-point solution under all cases after less than 20 iterations. 

Moreover, given that the only thing that changes between the three graphs in each row is 

the initial starting point of PV mode choice, the 15 graphs indicate that the iterative 

solution approach finds the same fixed point, independent of starting point of the mode 

choice probabilities. The analysis below assumes a single fixed-point solution based on the 

empirical finding in Figure 2-9 that the algorithm converges to a single fixed point. 
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However, it is important to note that this chapter does not prove the model system always 

admits a unique solution. 

The results in Figure 2-9 indicate that PAV owners are much more likely to choose PV 

than PCV owners, in all scenarios. However, an interesting finding is that as the proportion 

of travelers who own a PAV, 𝛼, increases, the mode choice probabilities for PAV owners 

decrease, while they increase for PCV owners. The reason for this stems from the fact that 

PAV and PCV owners prefer different parking lots. PCV owners are highly sensitive to the 

distance between a parking lot and their activity location, whereas PAV owners are not. 

This means that as the proportion of travelers owning a PAV increases, PAV owners must 

compete with more travelers who share their parking lot preferences (i.e., PAV owners 

who mainly care about price), while PCV owners compete with fewer travelers who share 

their parking lot preferences (i.e., PCV owners who are sensitive to walking distance in 

addition to price).  

This logic also explains why the range of modal splits for PCV owners across zones 

narrows as 𝛼 increases. When 𝛼 is zero, the range of PV mode share across zones is as wide 

as 15%, indicating that PCV travelers going to a zone with congested parking lots and high 

parking costs are significantly less likely to choose PV than travelers going to zones with 

uncongested and lower cost parking lots. Conversely, the range of PAV mode shares across 

zones is quite small under all scenarios, because a traveler’s destination does not heavily 

impact where they prefer to and do park their PAV.   



 

46 
 

 

Figure 2-9: Mode Choice Convergence Plots Varying PV Mode Share Starting Points by Column from 20% 
to 80%, and PAV Ownership Proportion by Row from 0.0 to 1.0 
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2.7 Discussion 

Although the case study presented in this chapter is based on a fictional CBD, the 

results section hopefully illustrates the power of the integrated mode choice and parking 

location choice model to provide valuable, transferrable, and generalizable insights into 

VMT, parking occupancy, transportation system performance and user costs and travel 

times in a future with PAVs and PCVs. Moreover, the model can be applied to any region if 

detailed data about the road network, parking lots, and travel demand (or trips) are 

available. The proposed solution approach, incorporating the simulation-based parking 

assignment model and the multinomial logit mode choice model, are computationally 

efficient and would easily scale to large metropolitan areas given data availability. 

The proposed model should also be quite useful for policy and planning analysis and 

decision support. For example, compared to the current PCV-only case, redistributing 

parking spaces appears able to prevent dramatic increases in VMT while not reducing PV 

mode share in a future with PAVs. This suggests the spatial distribution of parking supply 

and parking pricing can significantly impact VMT in the future with PAVs.  

Moreover, although not shown explicitly in the results section, the model can 

demonstrate, under certain scenarios, that parking pricing alone may struggle to reduce 

VMT and PV demand. Rather, joint parking pricing and roadway pricing is likely necessary 

in an AV future to reduce VMT and PV demand. 

Another implicit finding from this chapter is that PAVs searching for parking would 

often look for the cheapest possible lot in the area, particularly when the driving cost per 

mile is low. Hence, if all PAVs want to access the same cheap lot(s) in the periphery of the 

CBD, this/these lot(s) will become full, and the other PAVs will need to search for and drive 
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to the next cheapest lot. This finding has important technology, policy, and modeling 

implications. From a technology standpoint, providing accurate real-time information to 

travelers and/or PAVs about parking lot occupancy could be quite useful. From a policy 

standpoint, setting parking prices based on disaggregate spatial resolutions in CBDs may 

not decrease VMT in a world of PAVs. Moreover, there is clearly a value in promoting a 

reservation system of parking lots and even spaces in parking lots to reduce both parking 

lot search time and parking space search time, respectively. Finally, from a modeling 

standpoint, a future extension involves incorporating traveler/PAV knowledge of parking 

lot occupancy into the modeling framework to analyze the benefits of this information on 

VMT. 

Another future modeling extension involves incorporating roadway congestion into 

the modeling framework. The results in this chapter clearly indicate a significant increase 

in roadway VMT as a result of the attractive attributes of PAVs as well as the increase in 

parking search distance for PAVs. However, at some point, if enough vehicles are driving 

around searching for the cheapest parking lot with available space, the network is going to 

experience congestion. This increase in congestion would normally have a leveling effect on 

parking search costs, as human drivers would perceive the time costs of sitting in 

congestion and likely choose more expensive parking locations and leave the roadway 

network. However, if the vehicles searching for a cheap parking spot are driverless, they 

will have much lower costs per minute in congestion and are much less likely to choose 

nearby parking lots and exit the roadway network. This is a particularly troubling insight 

for cities in the future. It suggests that congestion pricing in cities may become even more 
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vital to prevent gridlock and vehicles may need to be charged not just per mile but per 

minute on the road network in order to avoid regular gridlock in CBDs.  

A related future model extension includes incorporating congestion and capacity 

constraints at pickup and drop-off spots near activity locations in dense urban areas. With 

a large percentage of PAVs and/or SAVs in a dense urban area, large queues are likely to 

build at pickup and drop-off points associated with activity locations with high demand, 

such as large office buildings. These queues may even spillover into the roadway network; 

thereby requiring a response for traffic managers, planners, or regulators.  

A final research area includes conducting stated preference surveys to better estimate 

model parameters used in this chapter. Parameters associated with willingness-to-pay, 

willingness-to-wait, and willingness-to-walk are likely to have a significant impact on 

model results related to mode share and VMT. 

2.8 Conclusion 

Modeling, understanding, and forecasting the potential impacts of AVs and PAVs on 

travel behavior, travel demand, and transportation systems under a variety of possible 

future scenarios is critical in terms of planning for AVs. This chapter focuses on the 

potential transportation system implications during the transition from PCVs to PAVs for 

near-activity travel in urban areas. Specifically, given the ability of PAVs to drop-off 

travelers at their activity location and then deadhead to a parking location, under certain 

assumptions it is conceivable that PAVs will drive far distances to park and/or drive 

around looking for an open parking space. This process would significantly increase VMT 
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compared to PCVs that drive directly to a parking location close to the traveler’s activity 

location. 

To analyze the impacts of PAVs on near-activity location travel, parking lot usage, 

overall VMT, and traveler cost and travel time this chapter proposes an integrated parking 

assignment and mode choice modeling framework. The proposed mode choice model form 

is multinomial logit, while the parking model is a dynamic simulation-based model of the 

temporal dynamics of supply and demand for a system of urban parking locations. This 

chapter also proposes an iterative solution approach to solve the integrated mode choice 

and parking assignment problem. In the iterative solution approach, the parking simulation 

model calculates system performance and costs for travelers based on the demand for each 

mode—determined either by the mode choice model or the initial modal splits—while the 

mode choice model returns modal splits based on the travel costs from the parking 

simulation model.  

The chapter applies the integrated model and iterative solution approach to an 

illustrative CBD network. The model results indicate that PAVs significantly increase VMT 

compared to PCVs. The reason for this result stems from the differential between parking 

prices and driving fees in the case study. As such, PAVs do not simply look at the stations 

nearby their traveler’s activity location, instead they consider all parking locations and are 

highly price sensitive. Moreover, in the case where a few parking locations are particularly 

attractive to PAVs, these parking locations may reach capacity, requiring PAVs to detour 

and search for other parking locations, thereby further increasing VMT in dense urban 

areas. The results section also illustrates that PAVs significantly reduce in-vehicle travel 

time, eliminate walking time, but require travelers to wait a few minutes to be picked up.  
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The proposed modeling framework can provide valuable insights to researchers, 

planners, policymakers, and other city officials in terms of the potential implications of AVs 

on VMT, parking lot usage, mode share, and other measures of transportation system 

performance and user costs. 

  



 

52 
 

 

 

Chapter 3  PARK-AND-RIDE POLICY IMPLEMENTATION 

3.1 Overview 

The analysis results from the previous chapter demonstrate the excessive congestion 

by PAV deadheading miles, particularly in urban areas. In consequence, this chapter 

proposes a policy to reduce the number of vehicles entering downtown areas with 

infrastructural investments. Specifically, this chapter covers a future park-and-ride (PNR) 

system that connects urban and suburban areas using PAV and SAV. This chapter also 

parallels Bahk et al. (2024). 

Park-and-ride systems provide facilities for travelers to transfer from a private vehicle 

to public transit and vice versa. Cities usually implement PNR systems to connect low- to 

medium-density urban and suburban areas to the urban core, because high-capacity transit 

modes are often unviable or difficult for residents of low-density areas to reach via 

walking. Moreover, within the urban core, private vehicles have limited space to operate 

and park. 

Cities began implementing PNR systems to manage vehicle miles traveled (VMT) and 

congestion in dense areas in the 1960s, and the concept spread between the 1970s and 

1990s (Parkhurst, 1995; Spillar, 1997). PNR systems have contributed to the alleviation of 

vehicles entering the urban core, to some degree. However, demand for PNR systems never 

grew dramatically, and today only a small portion of travelers use PNR systems for travel.  
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There are several reasons for the limited attractiveness of PNR systems. First, unless 

there is a parking space available close to the transit platform, walking from the parking 

space to the transit stop/station and then waiting for transit service is often more 

inconvenient and uncertain than driving directly to one’s destination. Many travel models 

express the inconvenience of walking and waiting time by applying larger weights for out-

of-vehicle travel times compared with in-vehicle travel time, consistent with empirical data 

(Wardman, 2004). Some studies even specifically include transfer penalties for the 

disutility of out-of-vehicle travel time when transferring transit modes (Bahk et al., 2021; 

Liu et al., 1997). Second, finding a parking space can be challenging with congested lots or 

when only on-street parking is available (Shirgaokar and Deakin, 2005). This delay in 

finding a parking space may even cause the traveler to miss their scheduled transit service, 

which may not operate frequently or on a reliable schedule. 

Motivated by the premise of PNR systems and aware of their shortcomings, this 

chapter proposes a similar system for an era of AVs. Like existing PNR systems, the 

proposed system involves a transfer from one mode to another. However, rather than 

transferring from a private vehicle to a fixed-route public transit line, I propose transfers 

from a privately owned AV (PAV) to a shared-use, shared-ride AV (SAV), which I call the 

PAV-to-SAV transfer system. The proposed system also includes exclusive SAV-only 

highway lanes connecting transfer stations to the downtown.  

The PAV-SAV system addresses several shortcomings of existing PNR systems. First, 

the PAV can drop off the traveler at or close to the transfer point, minimizing walk time 

while eliminating the uncertainty of finding a parking spot. Existing kiss-and-ride (KNR) 

systems also have this feature, but they require a second person to drop off the transferring 
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traveler. In the proposed PAV-SAV system, the PAV can park itself at or near the transfer 

station, or even back at the user’s home. Second, because SAVs do not have drivers and are 

expected to be considerably cheaper (and smaller) than large-capacity buses, cities can 

acquire many SAVs and provide service more frequently than existing PNR transit lines. 

Third, the PAV-SAV system provides station-to-door service, reducing near-destination 

walking time compared to PNR.  

The PAV-SAV transfer system can also address the same problems as PNR systems—

private vehicle congestion and high parking costs in dense areas. The PAV-SAV system 

involves pooling travelers from several PAVs into one SAV, thereby increasing vehicle 

occupancy and reducing vehicles per person traveling downtown. SAVs also have the 

advantage, over large buses, of quickly entering and exiting pickup/drop-off locations 

(Huang et al., 2021). Moreover, like transit vehicles, SAVs will not park in dense urban 

areas. And even if some SAVs do park downtown, the parking space demand will be 

considerably lower than the private vehicles the SAVs replace. Not only is this important 

from a land use and societal perspective, but this feature is also highly valuable for users, as 

parking costs in dense urban areas can be prohibitively expensive for many individuals.  

Notably PAV-only users could avoid downtown parking costs by having their vehicles 

travel empty to their home location or inexpensive parking lots in locations outside the city 

center (Bahk et al., 2022). While this might allow PAV users to decrease costs somewhat, 

they would still need to pay the per-mile fuel/energy costs of the two deadhead trips 

(downtown to home and home to downtown). Moreover, cities may respond to such 

behavior (i.e., PAV users sending their vehicles home empty while they participate in 
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activities) through various regulations or pricing mechanisms that discourage 

deadheading.  

The high volume of vehicles in downtown areas, both parked and moving, is already a 

problem for cities and may become a bigger problem in the future with AVs (Bahk et al., 

2022). Research suggests that PAVs will dramatically change travel behavior and vehicle 

travel patterns, affecting trip generation, distribution, mode choice, and route choice. 

Specifically, PAVs are likely to lower or eliminate vehicle-based travel barriers for people 

without driver’s licenses, seniors, and people with medical conditions, thereby generating 

more travel (Harper et al., 2016). Additionally, AVs may reduce in-vehicle travel time 

disutility, thereby increasing travel distances (Auld et al., 2018; Kolarova et al., 2019; 

Zhong et al., 2020). Moreover, people may even change home and work locations, such that 

they live and work further apart, thereby increasing travel distances further {Citation}. 

Researchers also predict that PAVs will cause substantial mode shifts away from transit 

modes (Huang et al., 2020; Kröger et al., 2019). Finally, AV deadheading miles for parking 

and pickup travel may significantly increase overall VMT (Bahk et al., 2022; Cramer and 

Krueger, 2016; Henao and Marshall, 2019). 

The behavioral changes possible with PAVs that are likely to substantially increase 

VMT and congestion in dense urban areas further motivate this chapter and the proposed 

PAV-SAV transfer system. I hypothesize that the proposed PAV-SAV transfer system can 

reduce vehicle trips, congestion, and parking demand in dense urban areas or, at minimum, 

increase the number of travelers who can visit the urban core holding constant the number 

of vehicles and congestion.  



 

56 
 

Given the potential benefits of the proposed PAV-SAV transfer system to users and 

society, the goal of this chapter is to analyze the potential transportation system impacts of 

a PAV-SAV transfer system. In particular, this chapter aims to address the following three 

research questions:  

1. How many travelers would use the PAV-SAV transfer system?  

2. How much can the PAV-SAV transfer system reduce VMT and congestion? 

3. What is the optimal, or at least a good, design for the PAV-SAV transfer 

system? 

To meet the study’s goal and address the first two research questions, I develop a 

model system that jointly captures travelers’ service choices (PAV-only vs. PAV-SAV), route 

choices, and network congestion. Moreover, to answer the third research question, this 

chapter performs scenario analyses concerning the number and location of transfer 

stations, SAV capacity, and connection links between transfer stations and freeways and 

arterial roads. 

This chapter assumes that AVs are ubiquitously available (in the future). As such, this 

implies that private-sector mobility service providers can offer their own SAV services. 

Moreover, given that SAVs do not require human drivers—the major cost in existing ride-

hailing services—point-to-point private-sector SAV services are likely to be considerably 

cheaper than existing ride-hailing services. Hence, this introduction then implicitly 

assumes (i) most travelers will purchase their own AV, rather than rely exclusively on 

private-sector point-to-point SAV services for their travel needs, and (ii) hub-and-spoke 

systems with transfers between PAVs and public-sector SAVs will offer a competitive non-

PAV alternative to private-sector point-to-point SAV service. I believe the first assumption 
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is quite reasonable given survey data indicating that respondents are reluctant to forego 

private vehicles even if point-to-point SAVs are prevalent (Menon et al., 2019). Empirical 

evidence, even stated preference survey-based evidence, for the second assumption is 

lacking, in either direction. Hence, while it is plausible that the private-sector SAVs 

providing point-to-point service will dominate a system with PAV-to-SAV transfer stations, 

I believe the proposed system of PAV-to-SAV transfer stations offers notable advantages 

over point-to-point SAV service that will make the proposed system viable. First, in many 

suburban areas that would benefit the most from the PAV-SAV system, a point-to-point SAV 

service is unlikely to provide the short wait times (e.g., < 5 minutes) consistent with the 

convenience of a PAV. Second, given the public-sector nature of the PAV-SAV system, and 

its ability to significantly increase vehicle occupancies in dense urban areas, it is likely that 

cities will subsidize SAV travel in the PAV-SAV system, in addition to providing the public-

sector SAVs exclusive highway lanes.  

I structure the remainder of this chapter as follows. The next section introduces the 

literature on conventional PNR and PAV-related transfer services. Section 3.3 defines the 

PAV-SAV transfer system design, presents the underlying problem, and mathematically 

formulates the problem. Section 3.4 presents an iterative solution approach to solve the 

mathematical formulation. Section 3.5 describes a case study in Los Angeles based on real-

world network and demand data. Section 3.6 presents the results of the case study and the 

scenario analysis. Section 3.7 discusses the model results and their planning and policy 

implications in relation to the three research questions. This section also discusses model 

limitations and the transferability of the results to other cities. The last section, Section 3.8, 
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concludes this chapter with a summary and a discussion of the study’s limitations and 

future research directions. 

3.2 Literature Review 

This section reviews the literature related to the current study. Hence, I review prior 

research on PNR systems, KNR systems, and transferring services with AVs.  

Parkhurst (2000, 1995) investigates the impacts of bus-based PNR systems in the UK 

from the 1970s to the 1990s. According to the studies, reducing vehicles in downtown 

generally helps create a pedestrian-friendly environment and reduces the demand for 

parking facilities in the area (Parkhurst, 1995). However, congestion is not likely to 

decrease because new trips often replace the trips PNR travelers used to make (Parkhurst, 

2000, 1995). Nevertheless, although PNR systems do not significantly reduce downtown 

congestion, they allow cities to accommodate more travelers without worsening the 

congestion level (Parkhurst, 1995), effectively increasing the productive capacity of cities. 

Given the similarities between PNR systems and the proposed PAV-SAV transfer station 

system, I expect comparable results for the latter system. 

Karamychev and Van Reeven, (2011) suggest that the traffic-reducing effect of PNR is 

more prominent when more individuals prefer their private vehicles, and the 

redistribution of traffic from the urban area to the suburbs improves welfare. Based on 

their logic, the net social welfare impacts of PNR, KNR, and the proposed PAV-SAV transfer 

system can be positive even if the total VMT across suburban and urban areas increases. 

Farhan and Murray (2008) introduce three major PNR station siting objectives—

maximizing coverage, minimizing distances between stations and major roadways, and 
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maximizing utilization. Their multi-objective spatial optimization model determines sites 

for PNR stations in Columbus, Ohio. While I do not formulate a PAV-SAV system design 

optimization model, I do use scenario analysis to determine a good system design. The 

main PAV-SAV system design variables are the location and number of transfer stations 

(along freeway corridors), the SAV capacity, and the connection links between the transfer 

stations and nearby roads. The system also includes SAV-only lanes on freeways that 

connect the transfer station to the dense urban core.  

The catchment area is another essential system design variable. Ortega et al. (2020b) 

use a parabola method to visualize the catchment area of PNR facilities. Setting a PNR 

station as the focus of a parabola and the downtown area as the vertex, the study suggests 

the inner area of the parabola is the catchment area of the PNR station (Ortega et al., 

2020b). Instead of relying on geometric shapes, this chapter assumes that every traveler 

utilizes one and only one transfer station—the one that minimizes the generalized travel 

cost from their trip origin to the destination. 

The current study employs an integrated mode (i.e., service) split and traffic 

assignment model to determine the market share for the PAV-SAV system and the link 

flows at equilibrium. Liu et al. (2018) combine a cross-nested logit mode choice and traffic 

assignment model for PNR implementation and find that PNR services mitigate traffic 

congestion in congested areas. 

Pineda et al. (2016) propose an integrated traffic-transit stochastic equilibrium model 

to analyze a PNR system where travel time changes with the number of PNR stations. The 

current study also adjusts the number and location of PAV-SAV transfer stations around 

the downtown area, through scenario analysis. 
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Several studies extend the PNR system to AVs. Zhou et al. (2019) consider SAVs 

combined with PNR and analyze system performance through an agent-based simulation. 

They focus on a suburban area and allow SAV-to-subway trips, subway-to-SAV trips, and 

SAV-only trips. Ortega et al. (2020a) also integrate AVs into their PNR study and simulate 

an SAV-to-transit transfer scenario within MATSim. Finally, two studies model joint SAV 

and public transit systems to analyze their impacts on transportation systems (Dandl et al., 

2021; Pinto et al., 2020). A review of the existing literature indicates that no studies 

analyze a system similar to the PAV-SAV transfer system I propose in this chapter. 

3.3 System Configuration and Problem Formulation 

3.3.1 Definitions 

Before introducing the PAV-SAV system of transfer stations and formulating the 

problem, this subsection introduces terminology that I will use throughout this chapter. Let 

us define a person trip as the human travel that occurs between a starting activity location 

(i.e., origin) and a terminating activity location (i.e., destination). A person trip is not 

dependent on mode, route, or vehicle type. In this chapter’s system model, person trips are 

exogenous. Let us also define a vehicle trip as motorized car travel between two nodes in a 

road network wherein the occupancy of the car does not change. In this chapter, if the 

occupancy of the vehicle (PAV or SAV) changes at a node in the network, a vehicle trip has 

ended. A new vehicle trip might then begin at the same node, or the vehicle’s travel might 

be complete. The vehicle trip definition does not differentiate between SAVs and PAVs. 

Importantly, vehicle trips are endogenous in this chapter’s system model. 



 

61 
 

In the case of SAVs, let us define an SAV route as the ordered sequence of SAV trips 

(and therefore an ordered sequence of network nodes where vehicle occupancy changes at 

each node). An SAV route starts with one or more passengers entering the vehicle at a 

transfer station, and then a series of one or more passenger drop-offs at nodes in the 

downtown portion of the network, before terminating downtown when there are no 

passengers left inside. Finally, let an SAV trip leg denote a SAV vehicle trip. Person A 

traveling via SAV may experience multiple SAV trip legs before reaching her destination, as 

her SAV may drop off other passengers along its route before reaching person A’s 

destination location.  

Figure 3-1 displays a person trip from an Origin node to a Destination node. It shows a 

traveler has two service options to travel between her Origin node and her Destination 

node—the PAV-only option that includes one vehicle trip between her Origin and 

Destination nodes, and the PAV-SAV option that includes an Origin node to PAV-SAV 

transfer station node PAV trip, and a series of SAV trip legs between the transfer station 

node and her Destination node. Notably, the SAV route only includes drop-off stops in the 

Downtown region.  

 

Figure 3-1: Segmentation of a Person Trip for both Mode/Service Options 
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3.3.2 System Configuration 

The proposed PAV-SAV transfer system consists of facilities and vehicles and their 

operation. Locating transfer stations on freeway sections outside a city’s urban core, the 

system operates SAVs from transfer stations to the downtown area. The system aims to 

reduce the number of vehicles entering the downtown area by pooling person trips into 

SAVs, thereby reducing congestion and parking demand during the peak period. Based on 

generalized travel costs, each traveler decides whether to use the PAV-SAV transfer system 

to complete their person trip or just use their PAV to travel directly from their origin to 

their destination. Thus, the model in this chapter includes two modes or service 

alternatives for travelers: (i) PAV-only and (ii) PAV-SAV transfer. As illustrated in Figure 

3-2 and Figure 3-3, the PAV-SAV transfer system also includes an exclusive lane for SAVs on 

freeway sections between each station and the downtown area to induce more travelers to 

use the pooled service. 

Figure 3-3 shows a station design example on a freeway section, with connections 

from both the freeway and an arterial. Setting up several platforms in both directions, the 

design minimizes walking distance from a PAV to a SAV. For the transfer station to 

downtown direction, each platform has several designated pickup locations, where each 

platform is associated with a cluster of downtown destination zones. Hence, PAVs should 

drop off travelers at the platform associated with the traveler’s downtown destination 

zone. 

Each SAV has a capacity (i.e., the number of seats), denoted 𝜌max. Moreover, SAVs have 

a maximum amount of time they will wait at the transfer station, 𝜏, thereby ensuring no 

traveler waits for more than 𝜏 minutes. These are two critical design parameters. From a 
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planning or societal perspective, increasing vehicle occupancies is an important goal, and 

increasing 𝜌max and 𝜏 will increase average vehicle occupancies. On the other hand, from a 

traveler perspective, minimizing wait and total travel time (and possibly minimizing 

interactions with strangers) are relevant goals, and decreasing 𝜌max and 𝜏 will decrease 

average wait and total travel times as well as interactions with strangers.  

 

Figure 3-2: PAV-SAV Transfer System—Network Representation 

 

Figure 3-3: PAV-SAV Transfer Station—Planning-level Configuration 

Another important design decision involves the clustering of destination zones for 

each platform and SAVs to serve. On one hand, the more zones clustered together (or the 

fewer total clusters), the easier it is to increase average vehicle occupancies given a fixed 

value of 𝜌max and 𝜏. Moreover, clustering more zones together should decrease user wait 
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times, as SAVs become full at the transfer station more quickly. On the other hand, 

clustering more zones together is likely to increase in-vehicle detours for travelers, given a 

fixed value of 𝜌max and 𝜏.  

As each platform is associated with a cluster of downtown destination zones, each SAV 

is also associated with a specific set of destination zones. I assume each platform/SAV has 

an ordered sequence of destination zones to visit. The model, presented in Subsection 

3.4.2.2, captures the cases in which (i) multiple passengers in an SAV have the same 

destination, and (ii) an SAV does not visit each destination. In the second case, the ordered 

sequence of destination zones remains the same, the SAV just skips the zone(s) without any 

passenger drop-offs. 

3.3.3 Problem Statement and Formulation 

Consider a region, denoted by the graph 𝐺(𝑁, 𝐴), composed of a set of nodes 𝑁 and a 

set of directed links 𝐴 that connect the nodes. The region includes a set of traveler origins 

𝑂 ⊂ 𝑁 and set of traveler destinations 𝐷 ⊂ 𝑁, as well as a set of PAV-SAV transfer stations 

𝑆 ⊂ 𝑁. This chapter assumes the traveler demand from origin 𝑜 ∈ 𝑂 to destination 𝑑 ∈ 𝐷, 

denoted 𝑝𝑜,𝑑, is fixed and exogenous to the model system. Let the array 𝒑 denote the 

|𝑂| × |𝐷| matrix of traveler demand flows.  

Travelers in the system can choose one of two modal/service options, PAV-only and 

PAV-SAV, from the set of modes, denoted 𝑀, and indexed by 𝑚 ∈ 𝑀. While person trips 

between activity locations are exogenous to the model system, vehicle trips between 

network nodes are not. Each traveler completes their person trip with either (i) a single 

PAV trip or (ii) a PAV trip and (one or more) SAV trip legs, depending on the traveler’s 
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service/mode choice. The SAV route determines how many SAV trip legs are associated 

with a person trip. Let 𝑞𝑖,𝑗,𝑚 denote the number of vehicle trips from node 𝑖 ∈ 𝑁 to node 𝑗 ∈

𝑁 by mode 𝑚 ∈ 𝑀. Given that travelers can choose between PAV-only and PAV-SAV, each 

PAV-only traveler goes directly from their origin node 𝑜 ∈ 𝑂 ⊂ 𝑁 to their destination node 

𝑑 ∈ 𝐷 ⊂ 𝑁 via the PAV mode. However, each PAV-SAV traveler makes a PAV trip and is 

involved in one or more SAV trip legs. The PAV-SAV traveler does not transfer between 

SAVs, but SAVs may drop off other travelers first, thereby creating a sequence of SAV trip 

legs. The PAV-SAV traveler’s PAV trip is one from their origin 𝑜 ∈ 𝑂 ⊂ 𝑁 to their assigned 

PAV-SAV transfer station 𝑠 ∈ 𝑆 ⊂ 𝑁. Their first SAV trip leg is from their assigned transfer 

station 𝑠 ∈ 𝑆 ⊂ 𝑁 to a destination 𝑑 ∈ 𝐷𝑑𝑡 ⊂ 𝐷 ⊂ 𝑁, where 𝐷𝑑𝑡  is the subset of destinations 

in the downtown or urban core. The other SAV trip legs for the traveler, if there is more 

than one, will be between destinations in the urban core, 𝐷𝑑𝑡 . 

Given the focus of this chapter is on modeling the system and network impacts of a 

PAV-SAV transfer system, I introduce the following joint mode and route choice problem. 

Given the region 𝐺(𝑁, 𝐴) and exogenous traveler demand, 𝒑, the problem is to determine 

(i) the market shares for PAV-only and PAV-SAV, (ii) vehicle trips by vehicle type, and (iii) 

route choices for each origin, destination, mode triad, such that no traveler can unilaterally 

change modes or routes and improve their utility. Equations 3-1 through 3-3 display the 

system of equations for the joint mode and route choice problem.  

𝑞𝑖,𝑗,𝑚 = 𝑓1(𝒑, 𝒓) ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁, ∀𝑚 ∈ 𝑀 (3-1) 

𝑟𝑜,𝑑 = 𝑓2(𝒄𝒐,𝒅) ∀𝑜 ∈ 𝑂, ∀𝑑 ∈ 𝐷𝑑𝑡 (3-2) 
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𝑐𝑜,𝑑,𝑚 = 𝑓3(𝒒) ∀𝑜 ∈ 𝑂, ∀𝑑 ∈ 𝐷, ∀𝑚 ∈ 𝑀 (3-3)  

Equation 3-1 shows that the array of vehicle trips by mode, 𝑞𝑖,𝑗,𝑚 is a function of 

traveler demand 𝒑, and also the market share of PAV-SAV from all traveler origins to all 

traveler destinations, 𝒓, where the market share for traveler O/D pair 𝑜-𝑑, denoted 𝑟𝑜,𝑑, is 

endogenous to the model system. Equation 3-2 shows that 𝑟𝑜,𝑑 is a function of the two-

dimensional array of generalized costs for the traveler O/D pair 𝑜-𝑑, across the two modes 

in 𝑀, denoted 𝒄𝒐,𝒅. Finally, Equation 3-3 shows that 𝑐𝑜,𝑑,𝑚, the cost for the traveler O/D pair 

𝑜-𝑑 by mode 𝑚, is a function of 𝒒, the multidimensional array of vehicle demand in the 

network. 

The next section describes the functions 𝑓1(∙), 𝑓2(∙), and 𝑓3(∙) in more detail. However, 

at a high level, 𝑓1(∙) is a continuous function that converts person trips into vehicle trips, 

given the market share of the PAV-SAV system for each O/D pair. PAV-only travelers have 

just one PAV trip that goes directly from traveler origin to traveler destination, whereas 

PAV-SAV travelers have two sets of vehicle trips—one PAV trip from traveler origin to 

transfer station and an SAV trip leg, or series of trip legs, from transfer station to the 

traveler’s destination. A series of SAV trip legs is possible as the SAVs need to make drop-

offs at multiple locations in the dense urban core.  

The function 𝑓2(∙) is relatively straightforward as 𝑟𝑜,𝑑 should be decreasing with 

increases in 𝑐𝑜,𝑑,𝑚, and cannot exceed one. Hence, this chapter uses the logit function for 

𝑓2(∙) but other functions are possible.  

Finally, 𝑓3(∙) represents the vehicle traffic assignment problem, in particular, the static 

mixed-vehicle traffic assignment problem that returns, among other variables, the link 

costs for PAVs and SAVs at the deterministic user equilibrium. Given the link costs for each 
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vehicle type, it is straightforward to calculate the costs of the used paths from each traveler 

origin to each traveler destination for both modes. 

In order to find an equilibrium solution for this problem, I can reformulate the system 

of Eqns. 3-1 through 3-3 as a fixed-point problem, as displayed in Eqn. 3-4. Since I am 

primarily interested in the market share 𝑟𝑜,𝑑 as a model output, I formulate the fixed-point 

problem over the set 𝒓. Hence, Eqn. 3-4 shows 𝒓 as a series of functions of 𝒓 and can be 

expressed as one function 𝐹(𝒓). Solution(s) to the fixed-point problem occur at 𝒓, if and 

only if 𝐹(𝒓) = 𝒓 (Boyles et al., 2022). Note that the market share 𝒓 is not a single value but 

an array of values from 𝑜-𝑑 pairs. The fixed-point problem lends itself to an iterative 

solution approach, which I describe in the next section.  

𝑟𝑜,𝑑 = 𝑓2 (𝑓3(𝑓1(𝒑, 𝒓))) = 𝐹(𝒓) ∀𝑜 ∈ 𝑂, ∀𝑑 ∈ 𝐷 (3-4) 

Brouwer’s fixed-point theorem states that a fixed-point solution exists for a continuous 

function defined over a compact (closed and bounded) and convex set (Fan et al., 2022). 

For Eqn. 3-4, the continuity condition is met as 𝑓1(∙) (vehicle trip counts between node 

pairs are a continuous function of traveler demand and market share), 𝑓2(∙) (origin-

destination pair market shares are a continuous function of travel costs), and 𝑓3(∙) (mode-

specific origin-destination travel costs are a continuous function of vehicle trips) are all 

continuous functions. Moreover, the domain and codomain of 𝐹(𝒓), the market shares in 

each origin-destination pair 𝑟𝑜,𝑑, all have a range of [0, 1], thus the function is defined over a 

compact and convex set. While Eqn. 3-4 satisfies the existence criteria for a fixed-point 

problem formulation, in the general case, it does not satisfy uniqueness criteria.  
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In similar contexts, several transportation modeling and analysis studies including 

Bahk et al. (2022), Chakraborty et al. (2021), and Pinto et al. (2020) adopt a fixed-point 

problem formulation similar to Eqn. 3-4 to model combined choices (e.g., route and mode, 

parking and mode). Chakraborty et al. (2021) employ a fixed-point problem formulation to 

model the share of AVs and conventional vehicles in a region, where the optimal location(s) 

of AV exclusive lanes is endogenous to the model system. Bahk et al. (2022) model the 

integrated mode choice and parking location choice problem with PAVs as a fixed-point 

problem. 

3.4 Solution Approach and Model Details 

3.4.1 Overview of Algorithm 

Figure 3-4 displays an overview of the iterative solution approach to solve the fixed-

point problem in Eqn. 3-4. Note that Eqn. 3-1 requires 𝑟𝑜,𝑑 to obtain 𝑞𝑖,𝑗,𝑚 and begin the 

iterative solution approach. As an initialization (at iteration 𝑛 = 0), I assume a zero percent 

market share for all origins 𝑜 ∈ 𝑂 to each downtown area destination 𝑑 ∈ 𝐷𝑑𝑡 , and the 

vehicle trip matrix 𝒒 is the same matrix as the given travel demand matrix 𝒑 at iteration 0. 

(I also test several other initial market shares.) After the first traffic assignment, the 

algorithm updates path travel costs for PAV-only and PAV-SAV routes for each O/D pair 

before determining the service choice (i.e., modal splits) for each O/D pair using a logit 

model. I use the service choice model output to calculate the market share for the system of 

PAV-SAV transfer stations for all O/D pairs. After calculating the market share, the 

algorithm performs a convergence check on the market shares. If the system converges, the 
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algorithm outputs a series of performance metrics for analysis purposes. If the system does 

not converge, the algorithm must determine a vehicle trip matrix based on the original 

person trip matrix and most recent PAV-SAV market share before solving the traffic 

assignment problem again. This process repeats until the model system (i.e., the 

relationships in Eqn. 3-4) converges to a fixed point. Given the nature of Eqn. 3-4, I am 

unable to prove the algorithm will always converge; however, I empirically test the 

convergence properties of the algorithm in Subsection 3.6.1 and find that it satisfies the 

convergence criteria for all initial market shares, 𝑟𝑜,𝑑
0 , and scenarios, I test.  

 

Figure 3-4: Solution Approach 

I define an average relative gap 𝐺avgrel
𝑛  and a maximum absolute gap 𝐺maxabs

𝑛  as 

convergence criteria. As expressed in Eqn. 3-5, the average relative gap indicates the 

average of the absolute values of each O/D pair’s relative market share gap between two 

consecutive iterations. Equation 3-6 displays the maximum absolute gap, which is the 

maximum of the absolute values of the market share gaps between two consecutive 

iterations among all O/D pairs. In theory, Eqn. 3-6 and therefore Eqn. 3-5, should reach a 

value of zero at a fixed-point solution to Eqn. 3-4.  
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𝐺𝑎𝑣𝑔𝑟𝑒𝑙
𝑛 =

∑ ∑ |
𝑟𝑜,𝑑

𝑛+1 − 𝑟𝑜,𝑑
𝑛

𝑟𝑜,𝑑
𝑛 |𝑑∈𝐷𝑑𝑡𝑜∈𝑂

‖𝑂‖ × ‖𝐷𝑑𝑡‖
 

(3-5) 

𝐺𝑚𝑎𝑥𝑎𝑏𝑠
𝑛 = 𝑚𝑎𝑥

𝑜∈𝑂,𝑑∈𝐷𝑑𝑡 
{|𝑟𝑜,𝑑

𝑛+1 − 𝑟𝑜,𝑑
𝑛 |} (3-6) 

As planners are often interested in total demand, and total market share, alongside the 

market share of individual 𝑜-𝑑 pairs, I present Eqn. 3-7, which expresses the total market 

share 𝑟̅ at iteration 𝑛. 

𝑟̅𝑛 =
∑ ∑ 𝑝𝑜,𝑑𝑟𝑜,𝑑

𝑛
𝑑∈𝐷𝑜∈𝑂

∑ ∑ 𝑝𝑜,𝑑𝑑∈𝐷𝑜∈𝑂
 (3-7) 

The remainder of this section describes the vehicle trip distribution, traffic 

assignment, and service choice models in detail. 

3.4.2 Vehicle Trip Distribution 

The vehicle trip distribution model updates the vehicle trip matrix, 𝒒, given the 

current market shares 𝑟𝑜,𝑑 and the original person trip matrix 𝑝𝑜,𝑑. The vehicle trip matrix 

consists of PAV-only trips and PAV-SAV trips.  

For PAV-only trips, the vehicle trips are equivalent to the person trips because each 

PAV directly travels from the person’s origin to the person’s destination. On the other hand, 

a PAV-SAV travel consists of more than one vehicle trip. A PAV-SAV traveler first uses a 

PAV for origin-station vehicle trip and then transfers to a SAV for station-to-destination 

vehicle trip. When a SAV stops at multiple destination zones within a destination zone 

cluster, the passenger can even experience multiple SAV trip legs, such as station-to-
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destination and destination-to-another destination, where the first destination is another 

onboard passenger’s destination. 

In addition, the PAV-SAV transfer system can include multiple transfer stations in the 

region. This chapter assumes travelers from each O/D pair use the station, 𝑠, that 

minimizes the generalized travel cost from their origin to their destination. Let 𝜃𝑠 denote 

the set of O/D pairs where transfer station 𝑠 minimizes their generalized travel cost, e.g., if 

𝑠 minimizes generalized travel costs for O/D pairs {𝑜1, 𝑑5} and {𝑜4, 𝑑9}, then 𝜃𝑠 =

{{𝑜1, 𝑑5}{𝑜4, 𝑑9}}. Moreover, let 𝑠𝑜𝑑
∗  denote the optimal transfer station for O/D pair {𝑜, 𝑑}. 

Figure 3-5 shows an example of station 𝑠1 users’ vehicle trip matrix from origins 

{𝑜1, 𝑜2, 𝑜3} ⊂ 𝑂 to downtown 𝐷𝑑𝑡 = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5} ⊂ 𝐷 when there are two destination 

zone clusters, 𝐷Φ1
= {𝑑1, 𝑑2} ⊂ 𝐷𝑑𝑡  and 𝐷Φ2

= {𝑑3, 𝑑4, 𝑑5} ⊂ 𝐷𝑑𝑡 , for vehicle trips from 

station 𝑠1. Please note that the destination clusters vary by transfer station in general, 

while all O/D pairs in this example only use 𝑠1. 

 

Figure 3-5: Person Trip Matrix and Corresponding Vehicle Trip Matrix 

The following subsections describe and formulate each group of person-to-vehicle trip 

options displayed in Figure 3-5. Subsection 3.4.2.1 formulates PAV trips from origin to 
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destination for PAV-only travels (Group 1 in Figure 3-5) and PAV trips from origin to 

station for PAV-SAV transfer travels (Group 2 in Figure 3-5). Subsection 3.4.2.2 formulate 

the SAV trip legs from station to destination cluster (Group 3 in Figure 3-5). Subsection 

3.4.2.3 describes SAV trip legs after dropping off passengers (Group 4 in Figure 3-5). 

3.4.2.1 PAV Trips: PAV-only Travel and Origin-to-station Trips of PAV-SAV Travel 

Considering that all person trips heading downtown can choose between PAV-only 

and PAV-SAV transfer, and all PAV-SAV transfer service users visit a station, person trips 

𝑝𝑜,𝑑 is the sum of the two groups of PAV trips: from origin to destination trip of PAV-only 

travel (Group 1 in Figure 3-5) and from origin to station trip of PAV-SAV transfer travel 

(Group 2 in Figure 3-5). From Eqn. 3-1, these two vehicle trip groups are functions of 𝑝𝑜,𝑑 

and 𝑟𝑜,𝑑, as shown in Eqn. 3-8 and Eqn. 3-9, respectively. 

𝑞𝑜,𝑑,𝑃𝐴𝑉 = 𝑝𝑜,𝑑(1 − 𝑟𝑜,𝑑) ∀𝑜 ∈ 𝑂, ∀𝑑 ∈ 𝐷𝑑𝑡 (3-8) 

𝑞𝑜,𝑠𝑜𝑑
∗ ,𝑃𝐴𝑉 = 𝑝𝑜,𝑑 − 𝑞𝑜,𝑑,𝑃𝐴𝑉 = 𝑝𝑜,𝑑𝑟𝑜,𝑑 ∀𝑜 ∈ 𝑂, ∀𝑑 ∈ 𝐷𝑑𝑡 (3-9) 

where 𝑞𝑜,𝑑,𝑃𝐴𝑉 is a PAV-only demand for O/D 𝑜, 𝑑, and 𝑞𝑜,𝑠𝑜𝑑
∗ ,𝑃𝐴𝑉 is PAV demand from origin 

𝑜 to the optimal transfer station for O/D pair {𝑜, 𝑑}, 𝑠𝑜𝑑
∗  (i.e., PAV-SAV travel). 

3.4.2.2 SAV Trips: Station-to-destination Cluster Trips of PAV-SAV Travel 

Formulating the station-to-destination trips (Group 3 in Figure 3-5) is relatively 

complicated. Based on 𝑝𝑜,𝑑  and 𝑟𝑜,𝑑, the model needs to capture three challenging factors: 

(i) multiple passengers traveling to one destination zone in the same SAV, (ii) an SAV 
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carrying travelers to multiple destination zones and (iii) an SAV skipping destination zones 

in a destination cluster. 

First, the number of passengers heading to the same destination zone in an SAV is 

uncertain. Thus, the number of SAVs traveling to a destination zone depends on the 

probability of passenger pickups terminating at each destination zone. Second, a SAV’s 

destination zone set is uncertain because a vehicle does not necessarily travel to every 

destination zone in the cluster, because the vehicles often have fewer travelers than zones 

or the travelers in the vehicle are going to the same zone or subset of zones.  

To assist in model comprehension, I begin with a simple case with only two 

destination zones in a cluster and a fixed number of onboard passengers (𝜌). Then I make 

the first in a series of two generalizations by allowing for more than two destination zones 

in a cluster. Finally, I further generalize the model by allowing for a variable number of 

onboard passengers. I use this final model to capture the total SAV trips between each 

transfer station and the downtown destinations, as well as between the downtown 

destinations. 

Consider a destination zone cluster 𝐷Φ = {𝑑1, 𝑑2} ⊂ 𝐷𝑑𝑡  for the SAVs with origin 

station 𝑠, where 𝑠 → 𝑑1 → 𝑑2 is the predetermined route for an SAV that includes travelers 

with destinations 𝑑1 and 𝑑2. Given this route, SAV trip legs between three network nodes 

pairs are possible. If there is at least one traveler with destination 𝑑1, then there will be a 

SAV trip leg from station 𝑠 to first destination zone 𝑑1, denoted 𝑞𝑠,𝑑1,𝑆𝐴𝑉. If there is at least 

one traveler with destination 𝑑1 and at least one traveler with destination 𝑑2, then there 

will be an SAV trip leg from destination zone 𝑑1 to destination zone 𝑑2, denoted 𝑞𝑑1,𝑑2,𝑆𝐴𝑉. 

Finally, if there is at least one traveler with destination 𝑑2 and no traveler with destination 
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𝑑1, then there will be an SAV trip leg from station 𝑠 to first destination zone 𝑑2, denoted 

𝑞𝑠,𝑑2,𝑆𝐴𝑉. (In an alternative scenario where the predetermined SAV route for travelers with 

destinations 𝑑1 and 𝑑2 is 𝑠 → 𝑑2 → 𝑑1, then the possible SAV trip legs include 𝑞𝑠,𝑑2,𝑆𝐴𝑉, 

𝑞𝑑2,𝑑1,𝑆𝐴𝑉, and 𝑞𝑠,𝑑1,𝑆𝐴𝑉.) 

Given the two uncertainties—(i) whether travelers in the same SAV share a 

destination, and (ii) whether a particular destination zone is in a particular SAV’s route—

the values for 𝑞𝑖,𝑗,𝑆𝐴𝑉 are uncertain. However, I can derive the values using probability 

theory and the concept of a complementary event (i.e., the probability that an event will not 

occur). 

I first define a complementary event to reduce the length of the following equations 

(Eqns. 3-12 through 3-14 and Eqns. 3-16 through 3-17). Let 𝐸𝑠,𝑑𝑗
 be the probability that the 

destination zone of a passenger in a SAV from station 𝑠 is not 𝑑𝑗 , which I express as a 

function of 𝑝𝑜,𝑑 and 𝑟𝑜,𝑑  in Eqn. 3-10. The numerator captures the number of PAV-SAV 

users from station 𝑠 to destination 𝑑𝑗  in the downtown over the whole analysis period. The 

denominator captures the number of PAV-SAV users from station 𝑠 to all destinations 

within the cluster, 𝐷Φ. Hence, this fraction is the probability that a passenger in a SAV is 

going to 𝑑𝑗 , and the right-hand side of Eqn. 3-10 is the probability that a passenger in a SAV 

is not going to 𝑑𝑗 . 

𝐸𝑠,𝑑𝑗
= 1 −

∑ 𝑝𝑜,𝑑𝑟𝑜,𝑑{𝑜,𝑑}∈𝜃𝑠|𝑑=𝑑𝑗

∑ 𝑝𝑜,𝑑𝑟𝑜,𝑑{𝑜,𝑑}∈𝜃𝑠|𝑑∈𝐷𝛷

 (3-10) 

Given Eqn. 3-10, the probability that a SAV with 𝜌 passengers has at least one 

passenger heading to 𝑑𝑗  is 1 − (𝐸𝑠,𝑑𝑗
)

𝜌

.  
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Equations 3-11 through 3-14 show the number of SAV trips when the number of 

passengers per vehicle is fixed at 𝜌(≥ 2), for the case with two destination zones 𝐷Φ =

{𝑑1, 𝑑2} ⊂ 𝐷𝑑𝑡  and predetermined route 𝑠 → 𝑑1 → 𝑑2. Equation 3-11 states that the total 

number of SAV trips from station 𝑠 to destination zones 𝑑1 and 𝑑2 is the sum of PAV-SAV 

travelers heading for 𝑑1 and 𝑑2 divided by the number of onboard passengers, 𝜌. From Eqn. 

3-11, Eqn. 3-12 specifies the number of SAV trips from station 𝑠 to destination zone 𝑑1, 

which excludes the SAVs with no passengers traveling to 𝑑1. Equation 3-13 shows the 

destination-to-destination (𝑑1 to 𝑑2 in this example) SAV trips in the case where the SAV 

has passengers to both destinations. Equation 3-14 covers the case where the SAV skips 𝑑1 

because there is no passenger going to 𝑑1 in the SAV. 

𝑞𝑠,𝑑1,𝑆𝐴𝑉 + 𝑞𝑠,𝑑2,𝑆𝐴𝑉 =
1

𝜌
∑ (𝑝𝑜,𝑑1

𝑟𝑜,𝑑1
+ 𝑝𝑜,𝑑2

𝑟𝑜,𝑑2
)

𝑜∈𝑂|{𝑜,𝑑}∈𝜃𝑠

 (3-11) 

𝑞𝑠,𝑑1,𝑆𝐴𝑉 =
1

𝜌
∑ (𝑝𝑜,𝑑1

𝑟𝑜,𝑑1
+ 𝑝𝑜,𝑑2

𝑟𝑜,𝑑2
)

𝑜∈𝑂|{𝑜,𝑑}∈𝜃𝑠 

× [1 − (𝐸𝑠,𝑑1
)

𝜌
] (3-12) 

𝑞𝑑1,𝑑2,𝑆𝐴𝑉 =
1

𝜌
∑ (𝑝𝑜,𝑑1

𝑟𝑜,𝑑1
+ 𝑝𝑜,𝑑2

𝑟𝑜,𝑑2
)

𝑜∈𝑂|{𝑜,𝑑}∈𝜃𝑠

× [1 − (𝐸𝑠,𝑑1
)

𝜌
− (𝐸𝑠,𝑑2

)
𝜌

] (3-13) 

𝑞𝑠,𝑑2,𝑆𝐴𝑉 =
1

𝜌
∑ (𝑝𝑜,𝑑1

𝑟𝑜,𝑑1
+ 𝑝𝑜,𝑑2

𝑟𝑜,𝑑2
)

𝑜∈𝑂|{𝑜,𝑑}∈𝜃𝑠

× (𝐸𝑠,𝑑1
)

𝜌
 (3-14) 

Now I generalize the two-destination-zone case in the prior subsection and allows for 

multiple destinations in a cluster. Equations 3-15 through 3-17 formulate the generalized 

case where there are 𝑍 = |𝐷𝛷| ≥ 3 zones in a cluster, where the predetermined route is 

𝑠 → 𝑑1 → 𝑑2  → ⋯  →  𝑑𝑍 . The destination indices themselves are ordered here from 1 to 𝑍 

in order to simplify the mathematical formulations. Given the total SAVs serving cluster 𝐷𝛷 
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(Eqn. 3-15), 𝑞𝑑𝑖,𝑑𝑗,𝑆𝐴𝑉 is the number of SAV trip legs from the previous stop 𝑑𝑖 to 𝑑𝑗 , and 

𝑞𝑠,𝑑𝑗,𝑆𝐴𝑉 is the number of SAV trip legs from station 𝑠 to destination 𝑑𝑗  (Eqn. 3-16 and Eqn. 

3-17).  

In this chapter, I assume a predetermined open vehicle route from depot 𝑠 to serve all 

destinations assigned to a cluster, 𝐷𝛷. I do not consider the return trip to the depot because 

the SAV may not return to the depot (as described in Subsection 3.4.2.3), and, if it does, it 

might return empty and have considerably lower value of time than SAV trip legs with 

vehicle occupancies greater than zero. Notably, an SAV route is unlikely to serve every 

destination in 𝐷𝛷. Hence, it is conceivable to predetermine an optimal open vehicle route 

for every combination of subsets of destinations in 𝐷𝛷. Instead, I assume a vehicle always 

follows the same sequence of destination zone stops, with the SAV skipping destination 

zones that do not have a passenger drop-off. I make this assumption in order to model a 

mobility service where travelers have some travel time reliability between their transfer 

station and their final destination. Without an ordered sequence of destination zones, a 

PAV-SAV user may experience considerably different routes and therefore travel times on 

one day compared to the next.   

Equation 3-16 is a generalization of Eqn. 3-13. The right-hand-side of Eqn. 3-16 

multiplies the total number of SAVs serving a cluster by (i) the square bracket representing 

the probability an SAV serves both passengers going to 𝑑𝑖 and 𝑑𝑗  (at least one passenger 

per destination) and (ii) the last parenthetical representing the probability there are no 

passengers with destinations between 𝑑𝑖 and 𝑑𝑗 . Equation 3-16 exhaustively captures all 

SAV trip legs between all destination zones in a cluster. Note that the final parenthetical 

becomes 1 when 𝜌 = 2 because the intermediate stops between 𝑑𝑖 and 𝑑𝑗  cannot exist. 
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Equation 3-17 represents the case where 𝑑𝑖 = 𝑠, and is the generalized case of Eqn. 3-

12 and Eqn. 3-14. Equation 3-17 measures the probability that an SAV has at least one 

passenger going to 𝑑𝑗  and there are no passengers going to destinations between 𝑠 and 𝑑𝑗 . 

∑ 𝑞𝑠,𝑑,𝑆𝐴𝑉

𝑑∈𝐷𝛷

=
1

𝜌
∑ 𝑝𝑜,𝑑𝑟𝑜,𝑑

{𝑜,𝑑}∈𝜃𝑠|𝑑∈𝐷𝛷

 (3-15) 

𝑞𝑑𝑖,𝑑𝑗,𝑆𝐴𝑉 =
1

𝜌
∑ 𝑝𝑜,𝑑𝑟𝑜,𝑑

{𝑜,𝑑}∈𝜃𝑠|𝑑∈𝐷𝛷

× [1 − (𝐸𝑠,𝑑𝑖
)

𝜌
− (𝐸𝑠,𝑑𝑗

)
𝜌

+ (𝐸𝑠,𝑑𝑖
+ 𝐸𝑠,𝑑𝑗

− 1)
𝜌

]

× ( ∑ 𝐸𝑠,𝑑𝑏

𝑗−1

𝑏=𝑖+1

+ 𝑖 − 𝑗 + 2)

𝜌−2

 

∀𝑖 ∈ 𝐷𝛷, ∀𝑗 ∈ {𝐷𝛷|𝑗 > 𝑖} 

(3-16) 

𝑞𝑠,𝑑𝑗,𝑆𝐴𝑉 =
1

𝜌
∑ 𝑝𝑜,𝑑𝑟𝑜,𝑑

{𝑜,𝑑}∈𝜃𝑠|𝑑∈𝐷𝛷

× [1 − (𝐸𝑠,𝑑𝑗
)

𝜌
] × (∑ 𝐸𝑠,𝑑𝑏

− 𝑗 + 2

𝑗−1

𝑏=1

)

𝜌−1

  

∀𝑗 ∈ 𝐷𝛷 

(3-17) 

Equations 3-11 through 3-17 assume the number of passengers per vehicle is fixed at 

𝜌. However, this is an unrealistic assumption because earlier I assumed that each SAV has a 

maximum waiting time, after the first traveler enters the SAV. I make this assumption to 

prevent low service quality in the PAV-SAV transfer system. Hence, in reality, 𝜌 is random.  

I assume that PAVs arrive at each station following a Poisson process, with the 

assumption that access travel times from origins to the station are not significantly 

correlated. As such, Eqn. 3-18 displays the probability that 𝜅 PAVs arrive in 𝜏 minutes after 

the first PAV’s arrival, when the PAV arrival rate is 𝜆. Since each SAV collects passengers 

going to the same cluster, each station’s destination cluster, 𝐷Φ, has an arrival rate 𝜆𝑠,𝐷Φ
, as 

expressed in Eqn. 3-19. 
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𝑃𝜅 =
(𝜆𝜏)𝜅

𝜅!
𝑒−𝜆𝜏 (3-18) 

𝜆𝑠,𝐷𝛷
= ∑ 𝑝𝑜,𝑑𝑟𝑜,𝑑

{𝑜,𝑑}∈𝜃𝑠|𝑑∈𝐷𝛷

 (3-19) 

Thus, if the maximum SAV waiting time after the first passenger arrival is 𝜏 and the 

maximum number of onboard passengers for a SAV is 𝜌max, I can update Eqn. 3-16 and Eqn. 

3-17 to Eqn. 3-20 and Eqn. 3-21, respectively, to capture uncertainty in vehicle occupancy. 

Note that 𝜌 = 𝜅 + 1 because 𝜌 counts the first boarding passenger while 𝜅 does not. The 

first term of the right-hand side of Eqn. 3-20 becomes 0 when 𝜌 = 1 (see Eqn. 3-16) 

because there is only one destination zone in case. 

𝑞𝑑𝑖,𝑑𝑗,𝑆𝐴𝑉
′  = ∑ 𝑃𝜌𝑞𝑑𝑖,𝑑𝑗,𝑆𝐴𝑉(𝜌)

𝜌𝑚𝑎𝑥−1

𝜌=1

+ (1 − ∑ 𝑃𝜌

𝜌𝑚𝑎𝑥−1

𝜌=1

) × 𝑞𝑑𝑖,𝑑𝑗,𝑆𝐴𝑉(𝜌𝑚𝑎𝑥) 
(3-20) 

𝑞𝑠,𝑑𝑗,𝑆𝐴𝑉
′ = ∑ 𝑃𝜌𝑞𝑠,𝑑𝑗,𝑆𝐴𝑉(𝜌)

𝜌𝑚𝑎𝑥−1

𝜌=1

+ (1 − ∑ 𝑃𝜌

𝜌𝑚𝑎𝑥−1

𝜌=1

) × 𝑞𝑠,𝑑𝑗,𝑆𝐴𝑉(𝜌𝑚𝑎𝑥) 
(3-21) 

where 𝑞𝑑𝑖,𝑑𝑗,𝑆𝐴𝑉
′  is the number of SAV trip legs from 𝑑𝑖 to 𝑑𝑗  under the variable number of 

onboard passenger condition, and 𝑞𝑑𝑖,𝑑𝑗,𝑆𝐴𝑉(𝜌) is the number of SAV trip legs from 𝑑𝑖 to 𝑑𝑗  

with 𝜌 passengers, from Eqn. 3-16 and 3-17. 

To capture SAV trips between each transfer station and each destination zone, as well 

as trips between destination zones in a destination cluster, I use the probability models in 

Eqn. 3-20 and 3-21. As far as I am aware, this is a novel modeling contribution that can 

convert stochastic passenger arrivals at transfer stations where there is a maximum 
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passenger waiting time and fixed vehicle capacities, into node-to-node vehicle trip counts 

for network assignment purposes. 

3.4.2.3 SAV Trips: After Dropping Off All Passengers 

There are several options for relocating SAVs after dropping off all the passengers in 

the downtown area. First, the SAV can go to the nearest parking space to avoid causing 

additional deadheading traffic in the network during the peak period. This option would 

not increase overall parking demand relative to the PAV-only case because the PAV-SAV 

system will result in fewer vehicles downtown than in the case without the PAV-SAV 

system. Second, the SAVs can relocate to the nearest, the original (Group 4 in Figure 3-5), 

or the optimal PAV-SAV transfer station where they can continue to serve travelers. This is 

the most likely usage option, as it would significantly decrease the SAV fleet size compared 

to the first option. Moreover, it is possible that some SAVs on their return to transfer 

station trip could serve some travelers moving from inside the urban core to outside. 

3.4.3 Traffic Assignment 

The traffic assignment model determines the minimum path costs for each O/D pair 

for each service type, given the current vehicle trip matrix, 𝑞𝑜,𝑑. This chapter adopts the 

conventional deterministic user equilibrium static traffic assignment approach to model 

the traffic assignment problem. Setting each station node as a new centroid and each link 

connecting to/from the station as centroid connectors, the network model only allows 

SAVs on the SAV lane links, as in Figure 3-2 and Figure 3-3. The vehicles on the SAV lanes 

must exit the lane and merge with general traffic at several freeway exits near downtown 
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area. Despite the limitations of static traffic assignment models in terms of only permitting 

certain vehicle types on specific links, I can straightforwardly model this hybrid system 

(exclusive SAV traffic on freeways and mixed traffic on downtown streets) because every 

PAV-SAV transfer user has separated trips (𝑜 to 𝑠 with PAV and 𝑠 to 𝑑 with SAV), and thus, 

only the 𝑜 to 𝑠 trips enter the station node and only 𝑠 to 𝑑 SAV trips are able to enter SAV-

only links (see Figure 3-2). This is a highly convenient model property that permits the use 

of single-class, as opposed to multi-class, traffic assignment approach for private vehicles. 

Equation 3-22 shows the objective function and constraints for the deterministic user-

equilibrium traffic assignment problem (Sheffi, 1985). 

𝑚𝑖𝑛 𝑧(𝒙) = ∑ ∫ 𝑡𝑎(𝜔)𝑑𝜔
𝑥𝑎

0𝑎

 (3-22a) 

subject to 

∑ 𝑓𝑘
𝑜,𝑑

𝑘

= 𝑞𝑜,𝑑    ∀𝑜 ∈ 𝑂, ∀𝑑 ∈ 𝐷 (3-22b) 

∑ ∑ ∑ 𝑓𝑘
𝑜,𝑑𝛿𝑎,𝑘

𝑜,𝑑 = 𝑥𝑎

𝑘𝑑𝑜

  ∀𝑎 ∈ 𝐴 (3-22c) 

𝑓𝑘
𝑜,𝑑 ≥ 0 (3-22d) 

where 𝑥𝑎 is the volume on link 𝑎, 𝑡𝑎(𝜔) is link performance function (volume delay 

function) of link 𝑎, 𝑓𝑘
𝑜,𝑑 is the vehicle trips on path 𝑘 connecting origin 𝑜 and destination 𝑑, 

and 𝛿𝑎,𝑘
𝑜,𝑑 is the link-path incidence array denoting whether link 𝑎 is on path 𝑘 for O/D pair 

𝑜-𝑑, or not.  
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I utilize the Bureau of Public Roads (BPR) link performance function, displayed in Eqn. 

3-23. 

𝑡(𝑥) = 𝑡0 [1 + 𝛼 (
𝑥

𝐶
)

𝛽

] (3-23) 

where 𝑡(𝑥) is link travel time with volume 𝑥, 𝑡0 is travel time with free flow speed, 𝐶 is link 

capacity, and 𝛼 and 𝛽 are parameters. Based on the link performance function, the traffic 

assignment provides the path travel times for each 𝑜-𝑑 pair, 𝑡𝑜,𝑑. 

3.4.4 Service Choice 

The service choice model determines the proportion of person trips from every O/D 

pair assigned to PAV-SAV and PAV-only, given the shortest path travel times and parking 

costs for each O/D pair, 𝑐𝑜,𝑑. 

Except for iteration 𝑛 = 0, this model updates the market share 𝑟𝑜,𝑑 using a choice 

model such as the binomial logit model, under the assumption that the error terms of the 

two alternatives are not significantly correlated. Equations 3-24 through 3-26 display the 

deterministic part of utility functions for the two alternatives (PAV-only and PAV-SAV) and 

the market share of PAV-SAV transfer service for each 𝑜-𝑑 travel. 

𝑐𝑜,𝑑,𝑃𝐴𝑉 = 𝛽𝐼𝑉𝑇𝑇𝑡𝑜,𝑑 + 𝛽𝑐𝑜𝑠𝑡[𝛾𝑜𝑝𝑟(𝑙𝑜,𝑑 + 𝑙𝑝𝑟𝑘) + 𝛾𝑝𝑟𝑘] (3-24) 

𝑐𝑜,𝑑,𝑃𝑆𝐴𝑉 = 𝛽𝐼𝑉𝑇𝑇(𝑡𝑜,𝑠 + 𝑡𝑠,𝑑 + 𝑡𝑑𝑡𝑟) + 𝛽𝑤𝑡𝑡𝑤𝑡 + 𝛽𝑐𝑜𝑠𝑡(𝛾𝑜𝑝𝑟𝑙𝑜,𝑠 + 𝛾𝑓𝑟𝑙𝑠,𝑑) + 𝛽𝑡𝑟𝑠𝑓(1) (3-25) 

𝑟𝑜,𝑑 =
𝑒𝑐𝑜,𝑑,𝑃𝑆𝐴𝑉

𝑒𝑐𝑜,𝑑,𝑃𝐴𝑉 + 𝑒𝑐𝑜,𝑑,𝑃𝑆𝐴𝑉
 (3-26) 
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where 𝑐𝑜,𝑑,𝑚 is the generalized travel cost of alternative 𝑚 from 𝑜 to 𝑑 at iteration 𝑛; 𝑃𝐴𝑉 

and 𝑃𝑆𝐴𝑉 are PAV-only and PAV-SAV, respectively; 𝛽𝐼𝑉𝑇𝑇, 𝛽𝑤𝑡, 𝛽𝑐𝑜𝑠𝑡, and 𝛽𝑡𝑟𝑠𝑓 are model 

parameters for in-vehicle travel time, waiting time, monetary cost, and number of transfers 

(1 for PAV-SAV travel), respectively; 𝑡𝑜,𝑑, 𝑡𝑜,𝑠, 𝑡𝑠,𝑑 , and are in-vehicle travel times between 

origin 𝑜, station 𝑠, and destination 𝑑; 𝑡𝑤𝑡, and 𝑡𝑑𝑡𝑟 are waiting time and detour time due to 

other passengers in the same SAV, respectively; 𝛾𝑜𝑝𝑟, 𝛾𝑝𝑟𝑘, and 𝛾𝑓𝑟 are PAV operating cost, 

parking fee, and SAV fare per distance respectively; and 𝑙𝑜,𝑑, 𝑙𝑜,𝑠, 𝑙𝑠,𝑑 and 𝑙𝑝𝑟𝑘  are travel 

distances. Since the actual travel distances are unknown in static traffic assignments, I use 

the path with the shortest travel distance. 

3.5 Case Study 

This chapter implements the PAV-SAV transfer system in Greater Los Angeles area 

using the 2020 Regional Transportation Plan (RTP) dataset from the Southern California 

Association of Governments (SCAG) (Southern California Association of Governments, 

2020). 

3.5.1 Model Implementation Tool 

I coded the service choice and vehicle trip distribution models in Python and used 

TransCAD 8.0 for traffic assignment. The TransCAD multiclass network assignment 

algorithm terminates when the relative gap reaches 0.001. The proposed algorithm in 

Section 3.4 (Figure 3-4) terminates when the average relative gap (Eqn. 3-5) 𝐺avgrel
𝑛 <

0.005 and the maximum absolute gap (Eqn. 3-6) 𝐺maxabs
𝑛 < 0.01. 
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3.5.2 Data Description 

The SCAG 2020 RTP dataset consists of a transportation network and travel demand 

for the SCAG region (4,192 TAZs) for the base year of 2016. The study area includes Los 

Angeles and Orange counties, a subarea of the SCAG region (3,072 TAZs including subarea 

gate nodes). The travel demand data for the 2020 RTP includes eight classes of vehicles: 

single-occupancy vehicle (SOV), high-occupancy vehicle (HOV) with 2 or 3+ persons, and 

light/medium/heavy duty trucks. The RTP model also segments HOVs by whether they use 

HOV lanes. This chapter assigns all vehicle classes to the network but targets SOV person 

trips (excluding trucks) as potential users of the PAV-SAV transfer service. I integrate all 

truck classes into one class applying passenger car equivalent (PCE) values provided by the 

dataset. According to the SCAG 2020 RTP dataset, a light-duty truck is equivalent to 1.3 

passenger cars, a medium-duty truck is equivalent to 1.5 passenger cars, and a heavy-duty 

truck is equivalent to 2.5 passenger cars. This chapter analyzes the AM peak period (from 6 

AM to 9 AM) to represent the morning commute period and assigns 7,536,809 O/D person 

trips to the network during the period. 

3.5.3 Model Parameters 

The parameters for maximum waiting time, 𝜏, and maximum onboard passengers, 

𝜌max, are 5 minutes and 4 passengers, respectively in the case study. With the fixed 𝜏 and 

Eqn. 3-18, Table 3-1 shows the probability of a given number of onboard passengers as a 

function of the inter-arrival rates. Note that the probability of 𝜌max includes the probability 

that more than 𝜌max arrivals occur in 𝜏. Considering 𝜆 represents arrivals over three hours 

in the morning, if 𝜆 for a destination cluster is 180 arrivals per 3 hours, 𝜆𝜏 becomes 5 
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arrivals per five-minute interval, and the probability that a SAV heading for that cluster 

collects four passengers would be 87.5%. 𝜌max dramatically decreases when 𝜆𝜏 drops to 3. 

Thus, in order to achieve a significant VMT decrease, the system design should ensure a 

sufficient traveler arrival rate for SAVs traveling to each cluster of destination zones.  

Table 3-1: Arrival Rates and Probabilities of the Number of Onboard Passengers 

Arrivals 
(𝜿, person) 

Arrival Rates (𝝀𝝉, person/5 min) 

10 7 5 3 2 1 

0 (𝜌 = 1) 0.0% 0.1% 0.7% 5.0% 13.5% 36.8% 

1 (𝜌 = 2) 0.0% 0.6% 3.4% 14.9% 27.1% 36.8% 

2 (𝜌 = 3) 0.2% 2.2% 8.4% 22.4% 27.1% 18.4% 

3 (𝜌 = 𝜌max) 99.7% 97.0% 87.5% 57.7% 32.3% 8.0% 
 

The SCAG Regional Travel Demand Model provides model parameters for time, cost, 

and transfers (𝛽𝐼𝑉𝑇𝑇 = −0.025, 𝛽𝑤𝑡 = −0.063, 𝛽𝑐𝑜𝑠𝑡 = −0.003, and 𝛽𝑡𝑟𝑠𝑓 = −0.250) and 

vehicle operating cost (𝛾𝑜𝑝𝑟 = 16.83 cents per mile) (Southern California Association of 

Governments, 2020). This chapter applies parameters for the service choice model as 

follows. First, the parking fee for each PAV-only trip in downtown Los Angeles (DTLA) is 6 

dollars based on parking fee information from the Downtown Center Business 

Improvement District website (Downtown Center Business Improvement District, 2022). 

Moreover, this chapter applies 0.4 USD/mile for SAV fares, based on prior research values 

for SAV and TNC fares that range between 0.64–1.00 USD/mile and Uber Pool fare that is 

about half the price of UberX (An et al., 2019; Chen and Kockelman, 2016; Doug H, 2022; 

Kaddoura et al., 2020). For PAV deadheading miles, I apply 2 miles per vehicle trip based 

on a prior PAV deadheading study (Bahk et al., 2022). This chapter also assumes that the 

SAVs serve other passengers around the area after dropping off the passengers in DTLA 
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before they go back to the original station. Thus, I do not add SAVs return trips to the 

transfer station as I assume these return SAV trips could replace PAV trips on a one-to-one 

basis at minimum. 

3.5.4 Scenarios 

This chapter assumes PAV-SAV transfer stations exist along freeway axes (i.e., spokes 

in a hub-and-spoke network) emanating from DTLA as shown in Figure 3-6 and Figure 3-7. 

Each axis has an exclusive SAV lane to DTLA and two possible PAV-SAV transfer stations 

along each freeway. Through scenario analyses, I hope to identify a good combination of 

PAV-SAV transfer stations along the four freeway axes. Locating stations closer to DTLA 

increases potential PAV-SAV demand but it reduces the travel time savings from the 

exclusive SAV lane from transfer station to DTLA. The candidate station locations for each 

axis are as follows:  

1. Axis 1: interchange of I-5 and SR 14 in Los Angeles (Station 1A) or interchange of 

SR 170 and US 101 in Los Angeles (Station 1B) 

2. Axis 2: interchange of I-5 and SR 91 in Fullerton (Station 2A) or interchange of I-5 

and I-605 in Santa Fe Springs (Station 2B) 

3. Axis 3: interchange of I-405 and I-710 in Long Beach (Station 3A) or interchange 

of I-405 and I-110 in Carson (Station 3B) 

4. Axis 4: interchange of I-10 and SR 57 in Pomona (Station 4A) or interchange of I-

10 and I-605 in Baldwin Park (Station 4B).  

In DTLA, each cluster contains four to six TAZs minimizing detours. As shown in Figure 

3-7, this chapter applies the same clustering for each axis. 
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This chapter compares all scenarios to the do-nothing scenario, where all person trips 

are PAV-only trips. I first create and compare 16 base scenarios. In each of the sixteen 

scenarios, there is one and only one transfer station along each of the four axes. The sixteen 

scenarios capture all feasible combinations of transfer stations meeting this condition.  

In addition to the 16-scenario set, I vary the number of stations (3 total stations with a 

maximum of one-station per axis for Scenario 17–20, and 8 stations for Scenario 21). 

Moreover, after identifying the best among the 16 baseline scenarios, I use this scenario 

and vary SAV capacity, 𝜌max (6 and 8 seats per vehicle). Moreover, this chapter also 

compares how connections to transfer stations impact congestion around transfer stations 

and the network as a whole. In all previous scenarios, I connect transfer stations to both 

nearby arterials and the freeway. I then create two more scenario sets: access from freeway 

only and access from arterials to compare with the baseline transfer station connections. 

Finally, this chapter compares how destination zone clustering affects the performance. 

The baseline scenarios include five clusters (4–6 TAZs per cluster) and I add two 

alternatives—the nine clusters alternative (3 TAZs per cluster) and the no clustering 

alternative (1 TAZ per SAV). 
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Figure 3-6: Possible PAV-SAV Transfer Stations along Four Axes into DTLA (TransCAD map) 

 

Figure 3-7: TAZs and TAZ Destination Clusters in DTLA (TransCAD map) 
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3.6 Results 

3.6.1 Convergence Analysis 

This subsection presents an analysis of the convergence performance of the iterative 

solution approach (Section 3.4) in terms of solving the integrated service and route choice 

problem (Section 3.3) for the Los Angeles and Orange County region (Section 3.5). Figure 

3-8a and Figure 3-8b show the average relative gap and maximum absolute gap, 

respectively, for all sixteen scenarios. All scenarios meet both stopping criteria (Eqn. 3-5 

and Eqn. 3-6 and Subsection 3.5.1) in 5 iterations or fewer. Figure 3-8d and Figure 3-8e 

show that increasing the number of iterations does not necessarily decrease the gaps 

across all O/D pairs, for Scenario 16.  

Figure 3-8c and Figure 3-8f show the convergence properties for the PAV-SAV market 

shares across all 16 scenarios. These results indicate that the market shares across to-

DTLA person trips stabilize by the third iteration in nearly every scenario.  
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Figure 3-8: Convergence Analysis Results: Scenarios 1 to 16 with 5 iterations for Average Relative Gap 
(a), Maximum Absolute Gap (b), and Market Share (c), and Scenario 16 with 10 iterations for Average 
Relative Gap (d), Maximum Absolute Gap (e), and Market Share (f) 

Table 3-2 displays an overview of PAV-SAV transfer service by scenario. The average 

relative gap, and maximum absolute gap columns display the respective gaps after five 

iterations, or ten iterations for Scenario 16. Overall, Figure 3-8 and Table 3-2 show that the 

iterative solution approach converges quickly to a small average relative gap across all 

sixteen scenarios.  

Figure 3-9 shows convergence results for Scenario 16 with different starting values for 

the PAV-SAV market share (0% to 100% in increments of 10%). As shown in Figure 3-9c, 

all the starting values for PAV-SAV market share converge to small average relative and 
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maximum absolute gaps and to a market share of 𝑟̅ = 17.7%. The fact that all 11 starting 

points converge to the same total market share indicate that the total market share of 𝑟̅ =

17.7% is highly stable. 

 

Figure 3-9: Convergence of Scenario 16 with Different Starting Points of Market Share (0% to 100%): 
(a) Average Relative Gap, (b) Maximum Absolute Gap, and (c) Market Share 

3.6.2 Base Scenarios: One Station per Axis 

Table 3-2 displays an overview of PAV-SAV transfer service across the sixteen base 

scenarios. The service users' column indicates the number of PAV-SAV transfer service 

users among the total 134,279 to-DTLA travelers during the three-hour AM peak period in 

the network. The SAV trips’ column indicates the number of SAV trips in the network, 

including SAV trips between destination zones in DTLA. The SAV column indicates the 

number of SAVs needed to serve all SAV users and SAV trips. The average onboard 

passengers’ column indicates the average number of passengers served per SAV. The 

remainder of this subsection describes the results in Table 3-2 in more detail.  

Notably, the number of SAVs only exceeds 6,000 vehicles (2,000 veh/h) in a few 

scenarios (Scenarios 8, 12, 14, and 16) while the SAV lane capacity is 2,000 veh/h and I 
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have four axes (8,000 veh/h in total) in the network. Considering that the freeway’s BPR 

parameters 𝛼 and 𝛽 for the SCAG network are 0.8 and 8.0 (Eqn. 3-23), respectively, the 

SAVs rarely experience delays on SAV-only paths.  

According to Table 3-2, the market shares range from 11–18% across the scenarios. 

Scenario 1 (1A-2A-3A-4A) shows the lowest share of 11.48%, followed by Scenario 5 (1A-

2A-3B-4A). Conversely, Scenarios 16 (1B-2B-3B-4B, 17.66%) and 14 (1B-2A-3B-4B, 

17.12%) attract over 17% and nearly 23,000 potential users. The main conclusion from 

Table 3-2 is that placing transfer stations closer to DTLA along the four main axes attracts 

more PAV-SAV travelers than scenarios with stations located farther away from DTLA. In 

the scenarios where the station is close to DTLA, travelers from TAZs near DTLA can utilize 

the transfer station, significantly impacting the total effective catchment area of the PAV-

SAV transfer system along the axes. Figure 3-10 confirms that the demand for the PAV-SAV 

significantly increases when the station is close to DTLA compared to farther away.  
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Table 3-2: Overview of Convergence and PAV-SAV System Results for Scenarios 1-16 

Scenario 
Station 

Locations 

Vehicle 
Seats 

(prs/veh) 

Convergence 

Market 
Share 

Service 
Users 
(prs) 

SAV 
Trips 
(trip) 

SAVs 
(veh) 

Avg. 
Onboard 

Passengers 
(prs/veh) 

Iter. 
Avg. 

Rel. Gap 

Max. 
Abs. 
Gap 

1 1A-2A-3A-4A 4 5 16.51 0.21% 11.48% 15,419 11,239 4,099 3.76 

2 1B-2A-3A-4A 4 5 24.35 0.33% 14.46% 19,419 14,249 5,185 3.75 

3 1A-2B-3A-4A 4 5 19.56 0.23% 13.38% 17,969 13,057 4,841 3.71 

4 1B-2B-3A-4A 4 5 20.99 0.30% 15.93% 21,384 15,638 5,758 3.71 

5 1A-2A-3B-4A 4 5 19.10 0.32% 13.10% 17,591 12,770 4,673 3.76 

6 1B-2A-3B-4A 4 5 26.73 0.22% 15.61% 20,959 15,327 5,585 3.75 

7 1A-2B-3B-4A 4 5 17.14 0.19% 14.50% 19,476 14,092 5,180 3.76 

8 1B-2B-3B-4A 4 5 22.36 0.23% 16.84% 22,618 16,468 6,023 3.76 

9 1A-2A-3A-4B 4 5 29.30 0.23% 14.16% 19,014 14,094 5,104 3.73 

10 1B-2A-3A-4B 4 5 39.08 0.50% 16.07% 21,575 15,976 5,777 3.73 

11 1A-2B-3A-4B 4 5 21.69 0.23% 14.87% 19,961 14,718 5,365 3.72 

12 1B-2B-3A-4B 4 5 17.65 0.29% 16.76% 22,509 16,592 6,036 3.73 

13 1A-2A-3B-4B 4 5 22.13 0.24% 15.32% 20,573 15,138 5,499 3.74 

14 1B-2A-3B-4B 4 5 31.68 0.32% 17.12% 22,995 16,936 6,135 3.75 

15 1A-2B-3B-4B 4 5 24.88 0.20% 15.85% 21,285 15,601 5,656 3.76 

16 1B-2B-3B-4B 
4 5 26.71 0.26% 17.66% 23,710 17,397 6,294 3.77 

4 10 25.32 0.26% 17.66% 23,720 17,404 6,296 3.77 
 

 

Figure 3-10: Number of PAV-SAV Service Users for Scenarios 1 to 16 

Figure 3-11 shows the average number of onboard passengers by station when vehicle 

capacity 𝜌max = 4. Although the average number of onboard passengers per vehicle differs 
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by station, the average across all four stations is above 3 in every scenario. Hence, the 

proposed system, in particular the five-minute time period before SAVs depart the station, 

appears to effectively pool together multiple travelers into SAVs.  

 

Figure 3-11: Average Onboard Passengers per Vehicle by Axis for Scenarios 1 to 16 

Figure 3-12a shows each scenario’s VMT change compared with the do-nothing 

scenario wherein the total network (Los Angeles and Orange counties) VMT is 67,417,000 

vehicle-miles. The overall VMT decreases in all scenarios. Since Scenario 16 includes 

stations near DTLA, the PAV-SAV transfer service users do not need to detour significantly 

to reach their station, thereby minimizing the impact of traveler detours on VMT. 

Moreover, considering PAV’s deadheading miles after dropping off the passengers, the 

do-nothing scenario may underestimate VMT. Bahk et al. (2022) suggest that a PAV in 

downtown area may require 0.1–1.4 deadheading miles to search for a parking space. 

Although the overall impact on VMT is still uncertain for both PAV and SAV, the PAV-SAV 

transfer system can reduce the parking demand in the downtown area. Additionally, while 

both PAVs and SAVs involve deadheading, if the SAVs are controlled by a public agency, it 
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will be considerably easier to implement rules that minimize the negative impacts of SAVs 

than privately-owned AVs. 

Figure 3-12b shows that VHT (2,216,000 vehicle-hours in the do-nothing scenario) 

decreases across all scenarios. The results indicate that the SAV lane takes vehicles off the 

existing freeway sections thereby contributing to the increases in vehicles speeds. Once 

again, Scenario 16 outperforms the other scenarios in terms of VHT. 

 

Figure 3-12: Network Performance Results: (a) VMT Change and (b) VHT Change from Do-Nothing 
Scenario 
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3.6.3 Variations in Number of Stations 

This subsection considers other combinations of transfer stations along the four axes. 

The total number of transfer stations is a critical planning consideration, as the 

construction costs for each station and the surrounding infrastructure are likely to be quite 

expensive, as are the operating costs. Although this chapter does not analyze cost, this 

subsection does provide insights into the relative benefits of different numbers and 

configurations of transfer stations.  

Building on the finding that Scenario 16 outperforms the other one-station per axis 

scenarios, I create and compare four new scenarios that remove one of the stations/axes 

from Scenario 16. I label these Scenarios 17 (XBBB), 18 (BXBB), 19 (BBXB), and 20 (BBBX), 

where the ‘X’ denotes an axis without a station. Finally, I also include Scenario 21 wherein 

each of the four axis has both stations.  

Table 3-3 displays the results of Scenarios 17 to 21 alongside Scenario 16. Similar to 

Scenarios 1–16, the iterative algorithm meets the convergence criteria in four iterations for 

Scenarios 17–21. 

Based on Table 3-3, Scenario 17, without a station on Axis 1, results in a 3-percentage 

point decrease in market share compared to Scenario 16. Interestingly, Scenarios 18 (no 

station on Axis 2), 19 (no station on Axis 3), and 20 (no station on Axis 4) only result in a 

1.1–1.8 percentage point decrease in market share compared to Scenario 16. Together, 

these results suggest that the station on Axis 1 is a critical station in serving the demand for 

the PAV-SAV transfer system. The stations on the other three axes can each individually be 

removed without impacting total served demand for the PAV-SAV transfer system.  



 

96 
 

Table 3-3: PAV-SAV System Results for Scenarios 16 to 21 

Scenario Station Locations 
Vehicle 

Seats 
(prs/veh) 

Market 
Share 

Service 
Users 
(prs) 

SAV Trips 
(trip) 

SAVs 
(veh) 

Avg. Onboard 
Passengers 
(prs/veh) 

16 1B-2B-3B-4B 4 17.66% 23,710 17,397 6,294 3.77 

17 2B-3B-4B 4 14.42% 19,363 14,153 5,128 3.78 

18 1B-3B-4B 4 16.52% 22,189 16,308 5,892 3.77 

19 1B-2B-4B 4 16.38% 21,995 16,153 5,834 3.77 

20 1B-2B-3B 4 15.84% 21,276 15,597 5,647 3.77 

21 1A1B-2A2B-3A3B-4A4B 4 18.29% 24,561 18,398 7,135 3.44 
 

Scenario 21, with two stations on each axis, has a higher market share than all 

scenarios with one station on each axis. This is because the larger number of stations can 

attract more users with improved accessibility and reduced overall travel time. 

Figure 3-13 displays the VMT and VHT changes from the do-nothing scenario. The 

values in each figure indicate the percentage change compared to the do-nothing scenario. 

Except Scenario 17, the three-station scenarios show only a slight change in VMT. Although 

the eight-station scenario shows a higher market share, it does not decrease VMT (-

255,023 vehicle-miles) as much as Scenario 16 (-255,551 vehicle-miles). 

Scenarios 17–21 all reduce VHT; the magnitudes of the VHT reductions are almost 

consistent with the market share of PAV-SAV, with Scenario 17 reducing VHT the least and 

Scenario 21 reducing VHT the most. 

In conclusion, the results in this subsection indicate that the eight-station scenario 

produces a higher market share and reduces VHT more than any of the three- and four-

station scenarios, while the four-station scenario reduces VMT slightly more than the eight-

station scenario. However, the gap across performance measures between Scenario 16 

with four stations and Scenarios 18 and 19 with three stations is not particularly large. As 
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such, if the estimated construction and operational costs of each station are substantial, the 

three-station option in Scenarios 18 or 19 provide good alternatives. 

 

Figure 3-13: Network Performance Reuslts for Scenarios 16 to 21: (a) VMT Change and (b) VHT Change 
from Do-Nothing Scenario 

3.6.4 Sensitivity Analysis on SAV Capacity 

This subsection analyzes the impact of changes in SAV capacity. I create two scenarios, 

Scenarios 16-6 and 16-8, that extend Scenario 16 by increasing the vehicle capacity 𝜌max 

from four seats in Scenario 16 to 6 seats and 8 seats, respectively. Larger vehicle capacities 

should further reduce vehicle trips into the urban core. However, having more travelers in 

a vehicle will increase detour times and distances for passengers in the vehicle, thereby 

making the PAV-SAV option less attractive.  

Table 3-4 displays the results of this sensitivity analysis. According to the results, as 

vehicle capacity increases, the market share for PAV-SAV increases. However, the increase 

is minor—only a 0.04 percentage point increase from a vehicle capacity of 4 to a vehicle 

capacity of 8.  
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Table 3-4: PAV-SAV System and Network Performance Results for Scenarios 16, 16-6, and 16-8 

Scenario 
Station 

Locations 

Vehicle 
Seats 

(prs/veh) 

Market 
Share 

Service 
Users 
(prs) 

SAV 
Trips 
(trip) 

SAVs 
(veh) 

Avg. 
Onboard 

Passengers 
(prs/veh) 

VMT 
Change 

VHT 
Change 

16 1B-2B-3B-4B 4 17.66% 23,710 17,397 6,294 3.77 -0.38% -1.31% 

16-6 1B-2B-3B-4B 6 17.70% 23,764 14,189 4,221 5.63 -0.42% -1.35% 

16-8 1B-2B-3B-4B 8 17.70% 23,769 12,521 3,855 6.17 -0.43% -1.35% 
 

While the number of PAV-SAV users is basically the same across the three scenarios in 

Table 3-4, as vehicle capacity increases, the number of SAV trips and SAVs required to 

serve those person trips decrease substantially. This result stems directly from the larger 

vehicle capacity and the average number of passengers per vehicle across the three vehicle 

capacities.  

The last two columns in Table 3-4 display the change in VMT and VHT, respectively. 

The results suggest that increases in vehicle capacity can significantly decrease VMT, due 

primarily to the reduction in SAV trips from nearly 17,400 in the four-seat case to around 

12,500 in the eight-seat case.  

Since there is almost no congestion on the SAV links to DTLA in Scenario 16, reducing 

the number of SAVs in Scenarios 16-6 and 16-8 does not significantly improve congestion 

in these parts of the network. Interestingly, increasing the vehicle capacity from 6 to 8 

shows even less significant improvement in performance because the average pooling of 

passengers does not increase much in Scenario 16-8. 

In conclusion, this subsection suggests that increasing SAV capacities has a negligible 

impact on demand, but it can decrease VMT and VHT via increasing vehicle occupancies 

and decreasing SAV trips. 
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3.6.5 Station Access Links 

When some travelers change their primary destination to the PAV-SAV transfer 

station, the accessing PAVs may cause another congestion near the station. This subsection 

analyzes the congestion effect near transfer station access link connections. To analyze the 

impact on the system performance, I pivot from Scenarios 16, 19, 21, and 16-6 in prior 

subsections. These scenarios all include both freeway and arterial connection links to 

transfer stations. This subsection re-runs all these scenarios with freeway-only connection 

links (denoted by ‘F’) and arterial-only connection links (denoted by ‘A’).  

Table 3-5 and Figure 3-14 show the results of the analysis. Unsurprisingly, the results 

show that the arterial-only and freeway-only alternatives perform worse than the 

alternatives with freeway and arterial connections. This is the case across Scenarios 16, 19, 

21, and 16-6, as well as all performance metrics, including market share, VHT, and VMT. 

Also consistent across all alternatives and performance metrics is that the arterial-only 

option outperforms the freeway-only option.  

The results in this subsection lead to a straightforward conclusion—having both 

arterial and freeway links to connect to transfer stations is preferable to arterial-only and 

freeway-only connection links. In general, more access connection links help avoid 

bottlenecks and congestion on links around transfer stations. With fewer access links, there 

are fewer routes that travelers can use to access a transfer station. Moreover, arterial-only 

connection links are preferable to freeway-only connection links. The reason for this 

finding is that congestion on arterial links is less harmful to the system than congestion on 

freeway links.  
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Table 3-5: PAV-SAV System Results for Transfer Station Access Link Connection Analysis 

Scenario Station Locations 
Vehicle 

Seats 
(prs/veh) 

Market 
Share 

Service 
Users 
(prs) 

SAV Trips 
(trip) 

SAVs 
(veh) 

Avg. Onboard 
Passengers 
(prs/veh) 

16 1B-2B-3B-4B 4 17.66% 23,710 17,397 6,294 3.77 

16F 1B-2B-3B-4B 4 17.18% 23,072 16,934 6,125 3.77 

16A 1B-2B-3B-4B 4 17.42% 23,392 17,145 6,208 3.77 

19 1B-2B-4B 4 16.38% 21,995 16,153 5,834 3.77 

19F 1B-2B-4B 4 15.91% 21,360 15,689 5,666 3.77 

19A 1B-2B-4B 4 16.15% 21,685 15,906 5,750 3.77 

21 1A1B-2A2B-3A3B-4A4B 4 18.29% 24,561 18,398 7,135 3.44 

21F 1A1B-2A2B-3A3B-4A4B 4 17.81% 23,921 17,956 6,992 3.42 

21A 1A1B-2A2B-3A3B-4A4B 4 18.03% 24,211 18,137 7,046 3.44 

16-6 1B-2B-3B-4B 6 17.70% 23,764 14,189 4,221 5.63 

16-6F 1B-2B-3B-4B 6 17.21% 23,116 13,816 4,118 5.61 

16-6A 1B-2B-3B-4B 6 17.46% 23,442 13,984 4,167 5.63 

Note: ‘F’ denotes freeway access-only, and ‘A’ denotes arterial access-only 

 

Figure 3-14: Variation in Station Access Links (Both, Freeway Access-Only, and Arterial Access-Only): 
(a) VMT Changes from Do-Nothing Scenario and (b) VHT Changes from Do-Nothing Scenario 

3.6.6 Destination Zone Clusters 

Figure 3-7 in Subsection 3.5.4 shows the clustering of TAZs used in all prior scenarios, 

with five clusters and four to six TAZs per cluster. In this subsection, I consider two 
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alternative clustering approaches. Specifically, as shown in Figure 3-15, I split the clusters 

into nine clusters (three TAZs per cluster) in Figure 3-15a and eliminate clusters altogether 

(i.e., one TAZ per SAV) in Figure 3-15b.  

Table 3-6 displays the results of the analysis, where ‘N’ denotes the no clustering 

alternative, and ‘C’ denotes the nine-cluster alternative. According to Table 3-6, the number 

of SAV trips in DTLA, in the no clustering alternative, decreases significantly compared to 

the clustering alternatives. I expected this outcome because SAVs will not travel between 

TAZs in the urban core if there is no clustering. On the other hand, the average number of 

onboard passengers also decreases in the no clustering alternative. Figure 3-16 provides a 

more detailed look at average vehicle occupancies across the alternatives (and Scenario 16, 

19, 21, and 16-6) and across each station in the network. The reason for the decrease in 

vehicle occupancies in the no clustering alternative is that less clustering of destinations 

means it is less likely there will be enough demand to fill each SAV in each five-minute 

interval. 

Table 3-6 also includes results related to the market share of the PAV-SAV system. The 

results clearly indicate that the no clustering alternative (i.e., the alternative where every 

zone is its own cluster) produces the highest market share. The higher market share for the 

no clustering alternative is primarily due to the reduction in detour distance and time, 

compared to the alternatives with clustering, making it the most attractive service offering 

for travelers.  
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Figure 3-15: Variation in Destination Zone Clusters: (a) 9 Clusters and (b) No Clustering (TransCAD 
maps) 

Table 3-6: PAV-SAV System Results for Destination Clustering Analysis 

Scenario Station Locations 
Vehicle 

Seats 
(prs/veh) 

Market 
Share 

Service 
Users 
(prs) 

SAV Trips 
(trip) 

SAVs 
(veh) 

Avg. Onboard 
Passengers 
(prs/veh) 

16 1B-2B-3B-4B 4 17.66% 23,710 17,397 6,294 3.77 

16C 1B-2B-3B-4B 4 17.44% 23,422 12,931 6,285 3.73 

16N 1B-2B-3B-4B 4 18.37% 24,662 6,795 6,795 3.63 

19 1B-2B-4B 4 16.38% 21,995 16,153 5,834 3.77 

19C 1B-2B-4B 4 16.13% 21,655 11,957 5,795 3.74 

19N 1B-2B-4B 4 16.86% 22,646 6,038 6,038 3.75 

21 1A1B-2A2B-3A3B-4A4B 4 18.29% 24,561 18,398 7,135 3.44 

21C 1A1B-2A2B-3A3B-4A4B 4 18.06% 24,247 14,850 8,129 2.98 

21N 1A1B-2A2B-3A3B-4A4B 4 18.97% 25,479 8,238 8,238 3.09 

16-6 1B-2B-3B-4B 6 17.70% 23,764 14,189 4,221 5.63 

16-6C 1B-2B-3B-4B 6 17.47% 23,457 9,948 4,456 5.26 

16-6N 1B-2B-3B-4B 6 18.39% 24,688 5,132 5,132 4.81 

Note: ‘C’ denotes 9 clusters, and ‘N’ denotes no clustering 
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Figure 3-16: Average Onboard Passengers per Vehicle by Zone Clustering 

Figure 3-17 displays the VMT and VHT changes across the scenarios and clustering 

alternatives. For the VMT in Figure 3-17a, there are two contradicting potential factors that 

affect total VMT. First, with fewer TAZs per cluster, the VMT decreases in DTLA because 

there are fewer TAZ-TAZ SAV trip legs in DTLA, as shown in Table 3-6. Second, however, 

with fewer TAZs per cluster, VMT increases since average vehicle occupancy in SAVs 

decreases, as shown in Table 3-6. The magnitude of these two competing factors varies 

across alternatives. The five-cluster alternative shows the largest VMT reduction with the 

highest number of onboard passengers. However, the no clustering alternative has the 

second largest VMT reduction due to the higher demand compared to the nine-cluster 

alternative. Hence, there is no consistent relationship between the number of TAZs per 

cluster and VMT. 

VHT in Figure 3-17b shows similar patterns compared with VMT. The results indicate 

that the five-cluster alternative always reduces VHT more than the nine-cluster and no 

clustering alternative. The reason for this finding is that average vehicle occupancy has a 

significant impact on congestion, and the five-cluster alternative has the highest average 
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vehicle occupancy. Hence, the benefits of fewer intra-DTLA vehicle trips do not outweigh 

the increase in transfer station to DTLA vehicle trips in terms of total congestion impact.  

 

Figure 3-17: Variation in Destination Clusters: (a) VMT and (b) VHT Changes from Do-Nothing Scenario 

The results in this subsection illustrate that the PAV-SAV system can also work 

efficiently without clusters in AM peak. In fact, not clustering TAZs increases the market 

share for the PAV-SAV system. However, there is a practical factor that the model does not 

capture, which makes the no clustering alternative unattractive, namely, the number of 

platforms. As the number of clusters increases, more platforms will be needed in order to 

reduce friction at the PAV to SAV transfer station. More platforms would require a larger 

spatial footprint for the transfer station, thereby increasing costs.  

A final point is that clusters do not need to be fixed and can vary throughout the day. 

The system operator can flexibly cluster the TAZs in DTLA in response to the time-of-day 

travel demand (e.g., no clustering in morning, nine clusters in afternoon, five clusters in 

midday, etc.). 
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3.6.7 Spatial Variance in Performance Metrics 

The prior subsections only include network-wide metrics. This subsection provides 

and analyzes VMT and VHT in different subregions of the network. Once again, I focus on 

Scenarios 16, 19, 21, and 16-6. Figure 3-18a shows the subregions that I analyze. Basically, 

I analyze DTLA as well as a three-mile radius around each transfer station. 

Figure 3-18b and Figure 3-18c show a dramatic decrease in both VMT and VHT in the 

DTLA area across all scenarios. The results indicate that VMT and VHT do not change much 

around transfer stations in any of the scenarios, despite the significant decrease in DTLA 

across all scenarios.  
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Figure 3-18: Spatial Variance in Performance Metrics: (a) Locations of 3-mile Radius Areas (TransCAD 
map), (b) VMT Changes by Area and Scenario, and (c) VHT Changes by Area and Scenario 
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3.7 Discussion 

3.7.1 Answers to Research Questions 

Section 3.1 of this chapter includes three research questions: (1) how many travelers 

would use the PAV-SAV transfer system? (2) how much can the PAV-SAV transfer system 

reduce VMT and congestion? And (3) what is the optimal, or at least a good, design for the 

PAV-SAV transfer system? The computational results address each of these questions. 

Below I discuss the answers to these research questions and their broader implications. 

The best PAV-SAV transfer system designs have a market share close to 18% of person 

trips terminating in DTLA during the morning peak period, representing 24,000 person 

trips. This is clearly a sizable portion of person trips that would benefit directly from the 

proposed system (according to the model in this chapter). Hence, the preliminary analysis 

indicates that there would be a strong market to support a system of PAV-SAV transfer 

stations in a future with ubiquitous AVs. While these 24,000 clearly benefit directly, the 

second research question addresses the benefits and disbenefits other travelers acquire 

from the system of transfer stations.  

The computational results indicate that the best PAV-SAV transfer system designs can 

decrease congestion, measured in terms of VMT, and VHT. However, the percentage change 

is relatively small, when considering all person and vehicle trips in Los Angeles and Orange 

counties. Nevertheless, for policymakers and planners interested in reducing VMT and 

VHT, they can use the proposed PAV-SAV transfer system alongside other travel demand 

management (TDM) strategies. In fact, combined with TDM strategies like parking and road 

pricing, the market share and secondary benefits of the proposed PAV-SAV transfer system 
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would likely increase. Additionally, in the case study, the transfer stations and SAVs only 

serve a small number of DTLA zones; it is possible to expand the geographic region of 

possible destination zones. 

In this chapter I performed extensive scenario and sensitivity analyses to answer the 

third research question and determine a good design for the system of transfer stations. 

According to the model results, and considering only market share, VMT, and VHT metrics 

(and not cost), the best design includes (i) four transfer stations, with one located along 

each of the four major (freeway) axes into DTLA and located relatively close to DTLA along 

the axes, (ii) a vehicle capacity of four or six passengers, (iii) connections between each 

transfer station and both nearby arterials and the freeway, (iv) no clustering of destination 

TAZs in DTLA. 

3.7.2 Model and Analysis Limitations and Their Implications 

The answers to all the research questions depend on the model system and analysis 

framework employed in this chapter. I believe the model system and analysis framework 

utilized in this chapter have been extremely useful, nevertheless they do have limitations 

that I will discuss.  

First, the analysis framework only incorporates benefits and not costs. As the 

proposed transfer stations (see Figure 3-3) are likely to require significant land acquisition 

and construction costs if/when PAVs and SAVs become commonplace, a more detailed 

analysis is necessary to determine the best system design. For example, while the results 

suggest that stations closer to DTLA have larger benefits than stations farther away, land is 

likely to be more expensive closer to the urban core. Another example mentioned 
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previously, is that clustering together destination TAZs is likely to reduce the number of 

platforms and decrease the construction and land acquisition costs. Additionally, while the 

results suggest connecting the transfer stations to more arterial and freeway links 

increases system benefits, each of these connections will increase system costs. In addition 

to facility/infrastructure costs, the number of SAVs required to serve PAV-SAV travelers 

impacts vehicle purchasing, financing, and operational costs. Hence, a detailed cost-benefit 

analysis is necessary in the future for making final design decisions and evaluating 

alternatives against the do-nothing alternative.  

Second, the model system does not capture several second order factors, namely, 

intra-zonal person (and vehicle) trips in DTLA, non-personal vehicle modes (e.g., walking, 

bicycling, conventional transit), and changes in person trip distribution and person trip 

generation. Moreover, the model system focuses solely on person trips during the morning 

commute period, therefore it does not capture the space-time or inter-household 

constraints incorporated into existing activity-based travel demand models. Incorporating 

intra-zonal person trips would slightly increase VMT and possibly VHT. Notably the 

analysis in this chapter also ignores intra-zonal person trips for the do-nothing scenario. 

Forecasting the directional impacts of incorporating non-vehicle modes in the model 

system is difficult as both the real world and model system are complex. Incorporating 

changes in person trip distribution and generation would likely decrease the VHT benefits, 

particularly in the urban core, as well as some of the VMT benefits. Travelers would likely 

respond to the decrease in vehicle congestion in the urban core by changing their non-

work activity locations to the urban core, as well as making more person trips to and 
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within the urban core. However, incorporating these behavioral changes may increase the 

market share for the PAV-SAV transfer system.  

I want to comment on the lack of non-personal vehicle modes in the model and the 

role of these modes in the final PAV-SAV transfer system design. I ignore walk to transfer 

station as the first-mile option because this chapter was motivated by the role a PAV-SAV 

transfer system can play in reducing VMT and VHT from private vehicles in a future with 

AVs, and walking trips are already the most sustainable mode of travel. Hence, in the final 

design of PAV-SAV transfer stations, it is critical that travelers can easily walk or bike 

to/from transfer stations, and that dense housing and business development can occur 

close to transfer stations in order for as many people and businesses to benefit from the 

mobility and accessibility these transportation facilities can offer. PAV-SAV transfer 

stations should not be built to only serve individuals with PAVs, even though the transfer 

stations are meant to reduce PAV trips to the urban core. 

3.7.3 Transferability of Results 

Another interesting area of discussion relates to the transferability of the results of 

this chapter to cities other than Los Angeles. Compared to other cities in the United States, 

Los Angeles (i) has the second largest population; (ii) is in the county with the highest 

population, but the metropolitan region lacks the high peaks of population and 

employment density in the urban core that are present in most East Coast cities and 

Chicago; (iii) has an extensive network of highways and major arterials that suffer from 

high congestion levels during the morning peak period; and (iv) has surface parking lots 

that consume a substantial portion of land in Southern California. The lack of concentration 
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of employment opportunities and housing as well as the extensive roadway network and 

parking space has resulted in extremely low mode shares for transit, walking, and biking in 

the region, despite the moderate year-round weather. While these features contrast with 

the northeast and Midwest of the US as well as nearly all cities outside the US, cities in 

Texas and Arizona share features with Los Angeles. 

3.8 Conclusion 

Inspired by existing PNR and KNR systems, this chapter proposes a novel PAV-SAV 

transfer system wherein travelers move via PAV to a transfer station where they transfer to 

SAVs for the final leg of their person trips into the dense urban core. To further incentivize 

usage of the PAV-SAV transfer system, the chapter assumes there are dedicated lanes on 

expressways for SAVs. I hypothesize that the proposed PAV-SAV transfer system would 

provide significant value to travelers and decrease congestion in urban areas. To test these 

two hypotheses, I analyze the market share of the proposed PAV-SAV transfer system and 

VHT, respectively, for a model-based case study in Los Angeles. The model I develop is an 

integrated service choice (PAV-only vs. PAV-to-SAV) and traffic assignment model that 

includes an intermediary model to determine the number of SAV trips, given a particular 

PAV-SAV market share for every origin-destination pair. Additionally, this chapter aims to 

identify a good PAV-SAV transfer system design through scenario analysis.  

The model-based case study results indicate that the proposed PAV-SAV transfer 

system can obtain a market share of 16–18% of all person trips terminating in downtown 

Los Angeles. Moreover, the proposed system can reduce VMT slightly and VHT 
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considerably in Los Angeles. Finally, I use scenario analyses to identify a good PAV-SAV 

transfer system design with significant system performance benefits.  

Future research directions include incorporating PAV and SAV deadheading trips into 

the analysis scope to improve the theoretical validity of the model. Additionally, future 

research can test PAV-SAV system designs using more advanced activity- and travel-

behavior models. Examples include commercial disaggregate activity-based travel demand 

models, dynamic traffic and transit assignment models, and even stochastic PAV-SAV 

transfer station choice models. A final research direction includes developing a bi-level 

PAV-SAV system/network design problem with equilibrium constraints to optimally design 

a PAV-SAV transfer system. 
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Chapter 4  HOUSEHOLD-LEVEL ACTIVITY-TRAVEL PATTERN ANALYSIS 

4.1 Overview 

This chapter parallels Bahk and Hyland (2024). Developing systems models that 

capture the flexibility of PAVs and the downstream travel behavior changes enabled by 

PAVs is critical to understanding their potential impacts on transportation system 

performance. While this fact is well-recognized in the academic literature, there are 

shortcomings associated with the models proposed in the existing literature to understand 

the potential impacts of PAVs. Most notably, only a few studies in the existing literature 

capture the usage of AVs in household travel, considering the constraints facing individuals 

and their fellow household members as they travel to complete activities throughout the 

day (Cokyasar and Larson, 2020; Correia and van Arem, 2016; Khayati et al., 2021b, 

2021a). Moreover, as far as I know, none of these studies that model household travel with 

AVs and capture spatial and temporal constraints facing travelers permit intermodal trips. 

Given the potential role of PAVs and shared-use AVs (SAVs) as transit feeder modes, I view 

this as a significant shortcoming. 

The first goal of this chapter is to develop a holistic and high-fidelity transportation 

systems modeling framework that (i) includes a multimodal transportation network, (ii) 

permits intermodal trips, and (iii) captures the detailed spatial and temporal constraints 

facing household members and vehicles as the household members complete activities 

during a typical weekday. Specifically, I want the framework to capture the key features of 
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PAVs, SAVs, transit, walking, and intermodal AV-transit travel. The second goal of this 

chapter is to apply the proposed modeling framework to analyze the potential impacts of 

AVs—PAVs and SAVs—on household travel, vehicle usage patterns, and transit usage, as 

well as the potential benefits of AV-transit intermodal travel.  

To meet these goals, I propose a generalization of the Household Activity Planning 

Problem (HAPP) proposed by Recker (1995) and the HAPP with AVs and Ridesourcing 

(HAPPAV-RS) proposed by Khayati et al. (2021b). In the HAPP model, households make 

travel decisions by solving a pickup and delivery problem with time-windows (PDPTW), 

wherein household members use their vehicles to pick up “activities” at activity locations 

and deliver them to their home location. The HAPPAV-RS model generalizes the HAPP 

model by treating household members and vehicles as separable, given the ability of AVs to 

deadhead. I generalize the HAPPAV-RS by allowing household members to use transit and 

to use PAVs and SAVs as first- or last- mile transit feeder modes. Hence, I refer to my model 

as the HAPP with AV-enabled intermodal trips (HAPP-AV-IT). I provide more details about 

each of these HAPP-based models in Subsection 4.2.1.1. 

This chapter makes several contributions to the academic literature. These 

contributions stem from generalizing the HAPP to incorporate intermodal trips, more 

realistic transit networks, and multimodal travel. Most importantly, I incorporate 

intermodal PAV-transit and SAV-transit trips into a HAPP-based math programming 

formulation.  

From a practical perspective, these model capabilities are critical to capturing travel 

behavioral more realistically and understanding, evaluating, and forecasting the potential 

impacts of AVs on household travel, vehicle kilometers (or miles) traveled (VKT or VMT; 
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Note that this chapter uses VKT, unlike the other chapters.), and transit. Prior models fail to 

capture the possibility that AVs will serve as a first- or last-mile transit mode—a distinct 

possibility in cities with rail systems or bus rapid transit systems that are more efficient 

than private cars on key corridors. Moreover, as transit agencies consider re-designing 

their transit networks in an era of shared and private AVs, these agencies need models that 

realistically capture the behavior of travelers in terms of person-level mode, path, and 

schedule choices, as well as vehicle-level routing and scheduling decisions.  

From a methodological perspective, incorporating intermodal trips in a HAPP-based 

formulation is not straightforward. To address this modeling challenge, I enhance the HAPP 

model through the following changes: (i) I establish a distinct transit network, separated 

from the road network, and I connect the two networks using transfer links; (ii) I introduce 

transit hub nodes in the HAPP graph between a home location and the household’s activity 

locations, and (iii) I introduce several novel constraints to permit intermodal transit-based 

trips.  

Finally, while this chapter focuses on intermodal AV-transit travel, the modeling 

framework, which incorporates intermodal trips and multiple distinct travel modes, 

represents a valuable starting point for developing more comprehensive HAPP-based 

models. Based on the modeling framework, incorporating new modes like microtransit and 

shared micromobility and enabling connections between these new modes and 

conventional travel modes should be straightforward. 

The remainder of this chapter is structured as follows. Section 4.2 reviews the 

literature most relevant to this chapter. Section 4.3 describes the decision problem facing 

households as they determine the modes, routes, and travel schedules of all household 
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members who must conduct a given set of activities. Section 4.4 describes the HAPP-AV-IT 

model formulation. Section 4.5 presents a case study to illustrate HAPP-AV-IT's capabilities 

and analyze the impacts of AV deadheading and intermodal trips on household travel, VKT, 

and transit usage. Finally, Section 4.6 concludes this chapter with a summary and a 

discussion of future research directions. 

4.2 Literature Review 

This section reviews the current literature on household AV routing and scheduling 

problems, as well as vehicle routing problems involving en-route transfers. Given that most 

of the relevant studies involve HAPP-based models, I organize the review into subsections 

distinguishing between HAPP- and non-HAPP-based models. Additionally, I highlight the 

gaps in the existing literature that this chapter addresses. 

4.2.1 Household Vehicle Routing and Scheduling Models 

4.2.1.1 HAPP-based Models 

As mentioned in the introduction, Recker (1995) proposes the HAPP and formulates it 

as PDPTW. In the HAPP, a household member ‘picks up’ an activity at an activity location 

and travels back home to complete the activity ‘delivery’. Starting from a base formulation 

that allows any household member to travel alone to perform any activity, Recker (1995) 

formulates more realistic cases such as restricting activity participation to specific 

household members and allowing car-pooling within the household. The HAPP objective 

function incorporates household travel costs such as travel time, and the household-level 
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decision problem is to determine the cost-minimizing travel routes and schedules across 

household members on a given day. 

Several studies extend the original HAPP formulation—see Table 4-1 for a list. Gan and 

Recker (2013, 2008) propose the Household Activity Rescheduling Problem (HARP) and 

the Stochastic Preplanned HAPP with Uncertain Activity Participation (SHAPP) that 

capture uncertainty in activity scheduling and enable travelers to reevaluate their 

preplanned schedules and decide if they should modify their remaining schedule. Chow and 

Recker (2012) propose an inverse optimization problem to calibrate HAPP (Inverse HAPP, 

InvHAPP). In addition, Kang and Recker (2013) propose the Location Selection Problem for 

HAPP (LSP-HAPP) that models household members choosing among several activity 

locations to conduct a particular activity type, e.g., grocery shopping. Kang and Recker 

(2014) also suggest HAPP-Refueling (HAPPR) and HAPP-Charging (HAPPC) to consider 

refueling and recharging travels for alternative fuel vehicles such as hydrogen fuel cell 

vehicles (HFCVs) and battery electric vehicles (BEVs). Chow (2014) improves the 

computational efficiency of HAPP using two reoptimization algorithms in the Generalized 

Selective Household Activity Routing Problem (G-SHARP), enabling activity location 

selection as well. Yuan (2014) incorporates time-of-day activity utility and duration utility 

in HAPP (UHAPP) to consider the temporal variations in activity-related utility. Yuan 

(2014) also includes a transit mode in the model, expanding the HAPP to consider multiple 

modes. However, the specification of the transit network in the current study is much more 

detailed than the one in Yuan (2014). Chow and Nurumbetova (2015) suggest an inventory 

routing problem (Inventory-based Selective Household Activity Routing Problem, iSHARP) 

to consider needs satisfaction over a period of days, which captures heterogeneity in travel 
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time across days. Chow and Djavadian (2015) propose the multimodal HAPP (mHAPP) and 

determine the market equilibrium for each mode using a discrete choice model. Khayati 

and Kang (2019, 2015) propose the HAPP with Electric Vehicles (HAPPEV) to capture and 

simulate the potential activity-travel patterns of BEVs. They conduct scenario analysis to 

understand EV-induced behavioral changes under different charging conditions. Xu et al. 

(2018) propose a random utility-based estimation framework for HAPP and provide a tool 

for estimating utilities for work and shopping and disutilities for travel times. Furthermore, 

several HAPP-based studies consider road congestion, including J. Liu et al. (2018) and 

Najmi et al. (2020), who assign trips from the HAPP model to a road network using 

conventional traffic assignment methods. 

Two recent HAPP studies incorporate AVs. Khayati et al. (2021a, 2021b) propose the 

HAPP with Autonomous Vehicles (HAPPAV) and the HAPPAV with Ride Sourcing (HAPPAV-

RS) to capture driverless vehicle operations. The HAPPAV-RS accommodates shared AVs 

(SAVs) as a travel option and Khayati et al. (2021b) conduct scenario analysis under 

different PAV operating cost and SAV fare parameters. As mentioned in Section 4-1, I 

generalize the HAPPAV-RS model to incorporate transit travel and intermodal PAV-transit 

and SAV-transit trips.  
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Table 4-1: HAPP Studies 

Study Application 
Mode 

Choice 
Carpool in 
Household 

Intermodal 
Trip 

Recker (1995) 
Household Activity Pattern Problem 
(HAPP) 

PV Yes No 

Gan and Recker (2008) HAPP with rescheduling problem (HARP) PV, walk No No 

Chow and Recker (2012) Inverse HAPP (InvHAPP) PV No No 

Gan and Recker (2013) 
Stochastic preplanned HAPP with uncertain 
activity participation (SHAPP) 

PV No No 

Kang and Recker (2013) 
Location selection problem for HAPP (LSP-
HAPP) 

PV No No 

Kang and Recker (2014) 
HAPP for refueling (HAPPR) and for 
charging (HAPPC) 

PV (HFCV, 
BEV) 

No No 

Chow (2014) 
Generalized selective household activity 
routing problem (G-SHARP) 

PV No No 

Yuan (2014) Travel time-dependent HAPP (TUHAPP) PV, transit No No 

Chow and Nurumbetova 
(2015) 

Multi-day inventory routing model with 
space-time-needs constraints (iSHARP) 

PV No No 

Chow and Djavadian, 
(2015) 

Multimodal HAPP (mHAPP) 
PV, walk, 

walk+transit 
No No 

J. Liu et al. (2018) HAPP with DTA PV Yes No 

Xu et al. (2018) 
Random utility-based estimation 
framework for HAPP 

PV No No 

Khayati and Kang (2019) HAPP with electric vehicle (HAPPEV) PV No No 

Najmi et al. (2020) 
Multimodal HAPP with demand calibration 
and network assignment 

PV, bicycle, 
walk, transit 

No No 

Khayati et al. (2021a) HAPP with autonomous vehicles (HAPPAV) PAV Yes No 

Khayati et al. (2021b) HAPPAV with ride sourcing (HAPPAV-RS) PAV, SAV Yes No 

This chapter 
HAPP with AV-enabled intermodal trips 
(HAPP-AV-IT) 

PAV, SAV, 
walk+transit 

Yes Yes 

 

Figure 4-1 illustrates the possible mode and route choice options captured in existing 

HAPP models and the model in this chapter for the same activity profile. In the example, 

starting from home, three household members travel to three different activity locations 

using the available travel options in each HAPP-based model. Figure 4-1a displays the 

original HAPP Recker (1995) that includes conventional private vehicles travel with 

carpooling as an option. Figure 4-1b displays the mHAPP (Chow and Djavadian, 2015; 
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Najmi et al., 2020) with PV, walking, and transit modal options. The mHAPP considers 

access/egress walk trips between activity locations and parking spaces or transit stations. 

However, the mHAPP does not consider carpooling as an option. Figure 4-1c displays the 

HAPPAV-RS Khayati et al. (2021b)  that considers carpooling, mode choice (PAV and SAV), 

and PAV deadheading. Figure 4-1d displays my model, HAPP-AV-IT, which include mode 

choice with transit (PAV, SAV, and transit), carpooling, AV deadheading, and PAV-transit 

and SAV-transit transfers.  

Figure 4-1 illustrates that as the capabilities of the model change, I can expect notable 

changes in the routing and scheduling of both vehicles and travelers. Hence, in regions with 

robust transit networks, and in future scenarios with SAVs and PAVs, prior models will fail 

to capture the modal options available to travelers, and therefore are likely to fail to 

forecast vehicle usage and transit demand.  
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Figure 4-1: Comparing Possible Activity Travel Patterns among Studies for a 3-activity Case: (a) HAPP, 
(b) Multimodal HAPP, (c) HAPP with AV and Ride Sourcing, and (d) HAPP with AV and Intermodal Trip 

4.2.1.2 Other PAV Routing and Scheduling Models 

There are two studies that develop PAV routing and scheduling models that are not 

primarily based on the HAPP (Cokyasar and Larson, 2020; Correia and van Arem, 2016). 

Correia and van Arem (2016) propose and formulate the User Optimum Privately Owned 

Automated Vehicles Assignment Problem (UO-POAVAP) as a Mixed Integer Program (MIP). 

Their model captures the expected travel patterns of PAVs and they assign PAV trips to the 

roadway network based on user-equilibrium traffic assignment principles. Like in HAPP-
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based models, the objective in Correia and van Arem (2016) is to minimize total 

generalized household travel costs. They capture temporal constraints on activities 

through late and early arrival time penalties, rather than through hard time-window 

constraints as in HAPP-based models. The household travel costs in the UO-POAVAP 

include (i) distance-based costs for PAVs, (ii) public transit fares for trips not satisfied by 

PAVs, (iii) PAV parking costs, and (iv) penalties for arriving early or late to each activity 

location. The study analyzes the activity profiles of 29 households assuming they all have at 

least one PAV, with a small network and two competing modes: PAV and public transit. 

However, unlike the model purposed in this chapter, Correia and van Arem (2016) do not 

consider SAVs, carpooling in PAVs, or inter-modal trips.  

Cokyasar and Larson (2020) also develop a PAV routing and scheduling problem using 

a Mixed Integer Linear Program (MILP). The objective in their model is to minimize total 

household travel costs, including the fixed daily PAV costs, in-vehicle travel costs, 

deadheading costs, early and late arrival penalties, and parking costs. Household members 

can choose travel modes between PAV and SAV in their model, but their model does not 

include transit or intermodal transit-based trips. They also do not separate persons and 

vehicles.  

As a concluding note, neither of these two studies (Cokyasar and Larson, 2020; Correia 

and van Arem, 2016)  incorporate intermodal travel. This is an important gap that the 

proposed model in this chapter addresses. 
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4.2.2 Vehicle Routing Problems with En-route Transfers and Intermodal Trips 

For traveling to out-of-home activities, travelers often use multiple modes to travel 

between consecutive activity locations (e.g. park-and-ride between home and work 

locations), and certainly to travel between multiple activity locations within a multi-stop 

trip chain or home-based tour (e.g., taking transit to the grocery store, then taking ride-hail 

back home). In this subsection, I discuss research that tries to model this type of behavior.  

Studies that enable transfers in the Pickup and Delivery Problem (PDP) model 

framework mainly focus on freight deliveries. However, there are a few passenger 

transport examples. Cortés et al. (2010) introduce the Pickup and Delivery Problem with 

Transfers (PDPT) that involves predetermined transfer points where passengers can 

switch vehicles. Masson et al. (2014) extend the PDPT and develop the Dial-A-Ride Problem 

with Transfers (DARPT). The DARPT also allows travelers to change vehicles at specific 

locations, and computational experiments show that transfers can reduce costs by 8%. 

Additionally, Fu and Chow (2022) propose the Pickup and Delivery Problem with 

Synchronized En-route Transfers (PDPSET) for microtransit services. Utilizing MILP, they 

provide an en-route transfer option between two vehicles to reduce the total travel cost. 

However, while these PDP- or PDPTW-based models address general passenger routing 

problems, they do not specifically focus on the household activity-travel routing and 

scheduling problem. 

Moreover, with the availability of AVs, a new viable option emerges: PAV-transit 

intermodal trips, which can potentially replace current park-and-ride and kiss-and-ride 

services (Bahk et al., 2024). For example, if a household’s home location is far from a transit 

station, a household member can use a PAV to travel to the transit station, and transfer to a 
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transit mode. Following the drop-off, the PAV can either return home or proceed to another 

location to transport other household members. Such flexibility from PAVs can: 1) increase 

accessibility to transit and destinations along transit lines, 2) produce significant vehicle 

deadheading and VKT, and (3) further increase vehicle productivity in terms of household 

activities completed per vehicle per day. Importantly, the total VKT impacts before and 

after the introduction of PAV are not straightforward to determine and analyze—a detailed 

model of activity-travel behavior and vehicle usage is necessary, particularly one that 

captures intermodal travel. 

Similar to PAV-to-transit intermodal trips, SAV-to-transit intermodal trips can 

complement the limited transit service coverage in some cities. When an SAV-to-transit 

intermodal trip replaces an SAV-only trip, it not only increases transit usage but it also 

reduces total system VKT. Liang et al. (2016) present integer programming models for a 

last mile SAV system designed for SAV-transit intermodal trips, aiming to maximize the 

total profit from the SAV system operation. However, Liang et al. (2016) do not extend their 

models to incorporate other modes or household-level AV routing and scheduling. 

There are currently no holistic models of household member and household vehicle 

travel that consider intermodal trips. The model in this chapter, the HAPP-AV-IT, aims to 

address this shortcoming. 

4.3 Problem Statement 

In this chapter, I address the problem of a household collectively making travel 

decisions to complete a set of given activities over the course of a day. Each activity has a 

time-window for when a person can arrive, a time-window for departure, a duration, a 
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location, and a non-empty set of household members who can complete the activity. Each 

household includes a non-empty set of household members and a home location where all 

household members and household PAVs begin their day.  

To complete all activities, household members make one or more home-based tours. 

To travel between locations, household members can choose a single mode such as PAV, 

SAV, or transit (including en-route transfers between transit lines) or intermodal trips (e.g., 

PAV-transit and SAV-transit). Moreover, household members can carpool in a PAV. The 

PAVs transport household members between the home location, activity locations, and 

transit stations. In addition to traveling between the home location, activity locations, and 

transit stations, empty PAVs can also travel to/from parking locations. And, to clarify, PAVs 

can choose among many parking locations within a city, and PAVs can also drop-off one 

household member and deadhead to another location to serve a second household 

member. Hence, the specific household travel decisions include the routes and schedules for 

each household member and PAV, where household member routes between activity 

locations are multimodal paths. 

I assume the household wants to minimize its combined travel costs. I include the 

following household travel costs: in-vehicle and out-of-vehicle (e.g., walk and wait) travel 

time, PAV operating costs, PAV parking fees, SAV fares, and transit fares. I assume that the 

household has full information about network travel times and travel costs for all travel 

modes.   

In terms of constraints, I assume that both vehicles and household members face 

numerous logical constraints based on the physical reality of how humans and vehicles can 

and cannot move through space and time. Additionally, I require a household to complete 
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all activities, and the time-window constraints on activities are hard constraints. Finally, I 

assume that PAVs can only wait curbside for a few minutes, 𝜏, before they must travel 

home, to a parking location, or another activity location. 

4.4 Modeling Framework 

In this section, I formulate the HAPP-AV-IT described in Section 4.3. 

4.4.1 The Activity-travel Graph 

This subsection describes the HAPP-AV-IT graph's entities and activity nodes (A-

nodes). There are three entity types in the model: activities (𝑎 ∈ 𝐀 = {1, 2, … , 𝐴}), PAVs 

(𝑣 ∈ 𝐕 = {1, 2, … , 𝑉}), and household members (𝑝 ∈ 𝐏 = {1, 2, … , 𝑃}). Each activity 𝑎 ∈ 𝐀 

has its assigned household member, 𝑝 ∈ 𝐏𝑎 ⊂ 𝐏 and each household member travels by 

PAV, SAV, transit, PAV-transit, or SAV-transit. The number of activities, PAVs, and 

household members are 𝐴, 𝑉, and 𝑃, respectively. 

Table 4-2 displays the A-nodes defined in the HAPP-AV-IT. Each A-node type indicates 

whether the node is a home location, activity location, transit station, or parking space and 

whether the node is for pickup, drop-off, parking, or an at-home activity. 
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Table 4-2: Definition of Activity Nodes 

A-Node Type Notation Description 

Initial node 𝐍0 = {0} Initial departure node 

Home pickup 𝐍ℎ𝑝 = {1, 2, … , 𝐴} Home pickup node for each activity 

Activity drop-off 𝐍𝑎𝑑 = {𝐴 + 1, … , 2𝐴} Activity drop-off node for each activity 

Transit drop-off 𝐍𝑡𝑑 = {2𝐴 + 1, … , 4𝐴} 
Transfer node for PAV-to-transit and SAV-to-transit 
- Transit station nearest from 𝐍ℎ𝑝 ({2𝐴 + 1, … , 3𝐴}) 

- Transit hub ({3𝐴 + 1, … , 4𝐴}) 

Activity pickup 𝐍𝑎𝑝 = {11𝐴 + 1, … , 12𝐴} Activity pickup node for each activity 

Transit pickup 𝐍𝑡𝑝 = {12𝐴 + 1, … , 14𝐴} 
Transfer node for transit-to-PAV and transit-to-SAV 
- Transit station nearest from 𝐍ℎ𝑝 ({12𝐴 + 1, … , 13𝐴}) 

- Transit hub ({13𝐴 + 1, … , 14𝐴}) 

Parking space 𝐍𝑝𝑘 = {4𝐴 + 1, … , 11𝐴} 

PAV parking space node 
- Parking space nearest from each node in 𝐍𝑎𝑝 and 𝐍𝑡𝑝 

({4𝐴 + 1, … , 7𝐴}) 
- Nearest cheapest parking for each node in 𝐍𝑎𝑝 and 𝐍𝑡𝑝 

({7𝐴 + 1, … , 10𝐴}) 
- Parking at home ({10𝐴 + 1, … , 11𝐴}) 

Home drop-off 𝐍ℎ𝑑 = {14𝐴 + 1, … , 15𝐴} Home drop-off node for each activity 

At-home activity 𝐍ℎ𝑠 = {15𝐴 + 1, … , 16𝐴} 
Household member stays at home between out-of-home 
activities 

Final node 𝐍𝑓 = {16𝐴 + 1} Tour terminating node (𝑓) 

Set of A-node 
types 

𝐍𝑃𝑈 = 𝐍ℎ𝑝 ∪ 𝐍𝑎𝑝 ∪ 𝐍𝑡𝑝 All pickup nodes 

𝐍𝐷𝑂 = 𝐍𝑎𝑑 ∪ 𝐍𝑡𝑑 ∪ 𝐍ℎ𝑑  All drop-off nodes 

𝐍𝑃𝑈𝐷𝑂 = 𝐍𝑃𝑈 ∪ 𝐍𝐷𝑂 All pickup and drop-off nodes 

𝐍̂ = 𝐍𝑃𝑈𝐷𝑂 ∪ 𝐍𝑝𝑘 ∪ 𝐍ℎ𝑠 All activity nodes but initial and final nodes 

𝐍 = 𝐍̂ ∪ 𝐍0 ∪ 𝐍𝑓 All activity nodes 
 

The home pickup node is the starting node for each household member. An activity 

drop-off node corresponds to a physical activity location that an assigned household 

member must visit. An activity pickup node also corresponds to a physical activity location. 

However, in the HAPP-AV-IT graph, the drop-off and pickup A-nodes associated with a 

physical activity location are distinct, as the two nodes have distinct time-windows, and the 

traveler must visit the drop-off A-node before the pickup A-node. Transit drop-off and 
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pickup nodes represent a transit station where a household member is dropped off or 

picked up, respectively, if the person chooses a PAV-transit or SAV-transit intermodal trip.  

Before providing further information on the A-nodes, I want to illustrate the 

relationship between the A-nodes in the HAPP-AV-IT graph and a physical network with 

travel modes and activity locations. Figure 4-2 shows the physical network nodes and 

corresponding A-nodes for an example where 𝐴 = 2. Two household members (Persons 1 

and 2) travel, and each has one activity (Activities 1 and 2) to complete. 

Figure 4-2a and Figure 4-2b show the physical network and their A-nodes for the 

example household activities, respectively. The home location and activity locations are 

given, and those locations determine the candidate transit pickup/drop-off stations and 

parking spaces. As shown in Figure 4-2b, the two transit stations (nearest to home and 

transit hub) have drop-off and pickup nodes for each activity. Hence, each household 

member can use the same transit station more than once during their tours in a day, while 

they can only visit each A-node (except for the initial and final nodes) once during the day. 

Likewise, the nearest parking spaces from transit stations and cheap parking spaces also 

have an A-node for each household activity. 

Figure 4-2c and Figure 4-2d show the result of the optimization. Figure 4-2c displays 

the activity-travel tours for the two household members. Persons 1 and 2 use a PAV 

together from the home pickup nodes (A-nodes 1 and 2) to a transit hub (A-node 8: 3𝐴 +

2). Person 2 gets out of the PAV at the transit hub while Person 1 stays in the PAV to reach 

their activity location (A-node 3: 𝐴 + 1). Before Person 1 finishes their activity, the PAV 

goes to a parking lot (A-node 9: 4𝐴 + 1) nearest to Person 1’s activity location. When 

Person 1 finishes their activity, the PAV picks up Person 1 (A-node 23: 11𝐴 + 1), returns 
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home (A-node 29: 14𝐴 + 1), and completes a tour (A-node 33: 16𝐴 + 1). In the meantime, 

Person 2 finishes their activity (A-node 24: 11𝐴 + 2), takes an SAV home (A-node 30: 

14𝐴 + 2) and terminates their tour (A-node 33: 16𝐴 + 1). Figure 4-2d displays the 

corresponding activity-travel routes on the physical network. 

 

Figure 4-2: An Example of Two Household Members with Two Activities in HAPP-AV-IT: (a) Locations 
on the Physical Network, (b) Corresponding Activity Nodes, (c) Optimized Activity-travel Routes, and 
(d) Corresponding Activity-travel Routes on the Physical Network 
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The home pickup node is the starting node for each household member. An activity 

drop-off node corresponds to a physical activity location that an assigned household 

member must visit. An activity pickup node also corresponds to a physical activity location. 

However, in the HAPP-AV-IT graph, the drop-off and pickup A-nodes associated with a 

physical activity location are distinct, as the two nodes have distinct time-windows, and the 

traveler must visit the drop-off A-node before the pickup A-node. Transit drop-off and 

pickup nodes represent a transit station where a household member is dropped off or 

picked up if the person chooses a PAV-transit or SAV-transit intermodal trip. In the HAPP-

AV-IT, I assume travelers use the nearest station from their home or a transit hub in the 

urban core where they can transfer to various transit routes, thereby enabling PAVs to 

access multiple convenient transit routes. If there are multiple transit hubs, I assume 

travelers consider the transit hub nearest to the home location. A parking space node is 

where PAVs can visit between any activity drop-off and pickup. The home drop-off node is 

where a household member returns after they complete one or more activities. The at-

home activity node is the waiting node for household members before they depart for their 

next activity. 

The nodal structure for the HAPP-AV-IT graph is similar to in the original HAPP model 

(Recker, 1995). For example, if a household member travels from home to the activity 

location for Activity 2, the person visits A-node 2 and then heads for A-node 𝐴 + 2. 

Performing the activity, the household member virtually moves from A-node 𝐴 + 2 to A-

node 11𝐴 + 2, the activity pickup node for Activity 2. After the completion of Activity 2, the 

household member travels from the activity pickup node to the corresponding home drop-

off node, A-node 14𝐴 + 2. 
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4.4.2 Decision Variables 

Table 4-3 displays the decision variables in the HAPP-AV-IT. Several decision variables 

capture the movements of persons and vehicles over arcs connecting A-node pairs; these 

include movements on arc (𝑖, 𝑗) by: 

1. a household PAV 𝑣, 𝑋𝑖,𝑗
𝑣  

2. a household member in an SAV, 𝑌𝑖,𝑗 

3. a household member using transit, 𝑍𝑖,𝑗  

4. a household member 𝑝, 𝐻𝑖,𝑗
𝑝 .  

The model also includes temporal decision variables. 𝑇𝑖 denotes when node 𝑖 is visited. 

Given that I have an initial node, 𝑖 = 0, and final node, 𝑖 = 𝑓, where all 𝑃 household 

members and all 𝑉 household PAVs start and end their day, respectively, I need to denote 

the times that each household member 𝑝 ∈ 𝐏 and each household PAV 𝑣 ∈ 𝐕 start and end 

their day. I define these variables—𝑇0
𝑣, 𝑇𝑓

𝑣, 𝑇0
𝑝

, and 𝑇𝑓
𝑝

—in Table 4-3. 

I also define a temporal variable, 𝑄𝑖, which tracks how long a household member must 

wait for a vehicle at node 𝑖. Similarly, I define a variable, 𝐾𝑖, which tracks how long a vehicle 

parks at node 𝑖.  

Finally, I define a variable, 𝜌𝑖
𝑣 , that tracks the number of passengers onboard PAV 𝑣, 

when it departs from node 𝑖. Only when the PAV is empty (i.e., 𝜌𝑖
𝑣 = 0), can the PAV go to a 

parking space.  
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Table 4-3: Decision Variables 

Decision 
Variable 

Type Description 

𝑋𝑖,𝑗
𝑣  Binary 1 if PAV 𝑣 ∈ 𝐕 travels from 𝑖 ∈ 𝐍 to 𝑗 ∈ 𝐍 

𝑌𝑖,𝑗  Binary 1 if a household member uses SAV to travel from 𝑖 ∈ 𝐍 to 𝑗 ∈ 𝐍 

𝑍𝑖,𝑗  Binary 1 if a household member uses transit to travel from 𝑖 ∈ 𝐍 to 𝑗 ∈ 𝐍 

𝐻𝑖,𝑗
𝑝

 Binary 1 if household member 𝑝 ∈ 𝐏 travel from 𝑖 ∈ 𝐍 to 𝑗 ∈ 𝐍 

𝑇𝑖  Continuous Arrival time of visited node 𝑖 

𝑇0
𝑣 Continuous Time that PAV 𝑣 ∈ 𝐕 leaves the initial node, 0 

𝑇𝑓
𝑣 Continuous Time that PAV 𝑣 ∈ 𝐕 arrives at the final node, 𝑓 

𝑇0
𝑝

 Continuous Time that household member 𝑝 ∈ 𝐏 begins their tour from initial node, 0 

𝑇𝑓
𝑝

 Continuous Time that household member 𝑝 ∈ 𝐏 terminates their tour at the final node, 𝑓 

𝑄𝑖  Continuous Household member’s waiting time for PAV arrival at 𝑖 ∈ 𝐍𝑎𝑝 ∪ 𝐍𝑡𝑝 

𝐾𝑖  Continuous PAV parking duration time at 𝑖 ∈ 𝐍𝑝𝑘 

𝜌𝑖
𝑣 Integer Number of onboard passengers of PAV 𝑣 ∈ 𝐕 when departed from visited node 𝑖 

 

4.4.3 Model Parameters 

Table 4-4 lists the parameters used in the HAPP-AV-IT. I segment the parameters into 

network information (e.g., arc travel times), modal attributes (e.g.., wait time by mode), 

activity information (i.e., activity durations and time windows), policy parameters (i.e., 

parking fees and maximum curb loading/unloading time), behavioral parameters (e.g., 

value of time savings broken down by mode and in-vehicle, waiting, and walking time), and 

one “big M” parameter for the math program. 

I can obtain network information from open-source data including mapping services 

(e.g. Google Maps) and for transit most agencies publish their routes and schedules using 

the General Transit Feed Specification (GTFS). For modal attributes, vehicle manufacturing 

companies, transportation network companies (TNCs), and transit agencies can provide 

travel time and travel cost information. Information related to activity durations is 
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available through the American Time Use Survey (ATUS), and I can infer the time windows 

for each activity type (purpose). Parking fees are available on parking information 

websites, and I can refer to TNCs for maximum curbside loading time. For behavior 

parameters, I can use the stated preference (SP) survey data and discrete choice models for 

the target region. 
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Table 4-4: Model Parameters 

Type Parameter Description Possible Data Source 

Network 
Information 

𝑡𝑖,𝑗  
Travel time from 𝑖 ∈ 𝐍 to 𝑗 ∈ 𝐍 on road 
network 

Google Maps, HERE Maps, 
other APIs. 
Alternatively, a travel 
forecasting model with 
equilibrated link travel 
times. 

𝑑𝑖,𝑗  
Travel distance from 𝑖 ∈ 𝐍 to 𝑗 ∈ 𝐍 on road 
network 

𝑡𝑖,𝑗
𝑇𝑅𝑁 

Transit travel time from the nearest transit 
station from 𝑖 ∈ 𝐍 to the nearest transit 
station from 𝑗 ∈ 𝐍 on transit network General Transit Feed 

Specification (GTFS) 

𝑡𝑖,𝑗
𝑇𝑅𝑁𝑤𝑘  

Access walk time between node 𝑖 and the 
nearest transit station plus egress walk time 
between node 𝑗 and the nearest transit station 

Modal 
Attributes 

𝑡𝑆𝐴𝑉𝑤𝑡  Average wait time for SAV arrival 
Transportation network 
companies (TNCs) 

𝑡𝑇𝑅𝑁𝑤𝑡  Average wait time for transit arrival 
General Transit Feed 
Specification (GTFS) 

𝛽𝑜𝑝
𝑃𝐴𝑉  PAV operating cost per unit distance 

Bureau of Transportation 
Statistics (BTS), vehicle 
manufacturing companies 

𝛽𝑓𝑏
𝑆𝐴𝑉  SAV base fare per trip 

TNCs 
𝛽𝑓𝑑

𝑆𝐴𝑉  SAV fare per unit distance 

𝛽𝑓𝑟
𝑇𝑅𝑁 Transit fare per trip Transit agencies 

Activity 
Information 

𝑒𝑖  Earliest arrival time at 𝑖 ∈ 𝐍0 ∪ 𝐍𝑎𝑑 ∪ 𝐍𝑎𝑝 

American Time Use Survey 
(ATUS) 

𝑙𝑖  Latest arrival time at 𝑖 ∈ 𝐍𝑎𝑑 ∪ 𝐍𝑎𝑝 ∪ 𝐍𝑓 

𝑠𝑖  Activity duration time at 𝑖 ∈ 𝐍𝑎𝑑 

Policy 
Parameters 

𝜔𝑖  Parking fee per unit time at 𝑖 ∈ 𝐍𝑝𝑘 
Parking information 
websites (e.g., Parkopedia) 

𝜏 
Maximum curbside loading time at each 
pickup or drop-off node 

TNCs 

Behavioral 
Parameters 

𝛽𝑤𝑡
𝑃𝐴𝑉  Value of PAV waiting time 

Stated preference (SP) 
survey data 

𝛽𝑖𝑣
𝑃𝐴𝑉  Value of PAV in-vehicle travel time 

𝛽𝑤𝑡
𝑆𝐴𝑉  Value of SAV waiting time 

𝛽𝑖𝑣
𝑆𝐴𝑉  Value of SAV in-vehicle travel time 

𝛽𝑤𝑘
𝑇𝑅𝑁 Value of transit access/egress walk time 

𝛽𝑤𝑡
𝑇𝑅𝑁 Value of transit wait time 

𝛽𝑖𝑣
𝑇𝑅𝑁 Value of transit in-vehicle travel time 

Math 
Programming 

Parameters 
𝑀 A large number  



 

135 
 

𝑡𝑖,𝑗
𝑇𝑅𝑁 and 𝑡𝑖,𝑗

𝑇𝑅𝑁𝑤𝑘  are transit travel time and transit access plus egress walk times from 

A-node 𝑖 to A-node 𝑗. In this case, the A-nodes can be either home, activity location, or 

transit station. Note that the routes in the HAPP-AV-IT use transit station A-nodes only for 

PAV-transit and SAV-transit intermodal trips. When traveling by transit-only, the transit 

travel time between the home/activity location to activity location/home is directly 

calculated by designating the nearest transit station for each location. 

The PAVs cannot stay at a pickup or drop-off node longer than 𝜏, which is the 

maximum curbside loading time. Thus, if there is no upcoming service in 𝜏, the PAVs must 

find a parking space.  

Unlike PAVs, SAVs and transit have fixed wait times, 𝑡𝑆𝐴𝑉𝑤𝑡  and 𝑡𝑇𝑅𝑁𝑤𝑡, respectively. I 

assume fixed wait time values for modeling convenience.  

4.4.4 Objective Function 

The objective of HAPP-AV-IT is to minimize total household travel costs, as shown in 

Eqn. 4-1. Household travel costs include wait time for each mode, in-vehicle travel time for 

each mode, access/egress walk time for transit, operating cost for PAV, fares for SAV and 

transit, and parking fee for PAV.  
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min 𝛽𝑤𝑡
𝑃𝐴𝑉 ∑ 𝑄𝑖

𝑖

+ 𝛽𝑖𝑣
𝑃𝐴𝑉 ∑ 𝑡𝑖,𝑗𝐻𝑖,𝑗

𝑝

𝑖, 𝑗,𝑝

+ 𝛽𝑜𝑝
𝑃𝐴𝑉 ∑ 𝑑𝑖,𝑗𝑋𝑖,𝑗

𝑣

𝑖,𝑗,𝑣

+ ∑ 𝜔𝑖𝐾𝑖

𝑖

+ 𝛽𝑤𝑡
𝑆𝐴𝑉 ∑ 𝑡𝑆𝐴𝑉𝑤𝑡𝑌𝑖,𝑗

𝑖, 𝑗

+ (𝛽𝑖𝑣
𝑆𝐴𝑉 − 𝛽𝑖𝑣

𝑃𝐴𝑉) ∑ 𝑡𝑖,𝑗𝑌𝑖,𝑗

𝑖,𝑗

+ 𝛽𝑓𝑏
𝑆𝐴𝑉 ∑ 𝑌𝑖,𝑗

𝑖, 𝑗

+ 𝛽𝑓𝑑
𝑆𝐴𝑉 ∑ 𝑑𝑖,𝑗𝑌𝑖,𝑗

𝑖, 𝑗

+ 𝛽𝑤𝑘
𝑇𝑅𝑁 ∑ 𝑡𝑖,𝑗

𝑇𝑅𝑁𝑤𝑘𝑍𝑖,𝑗

𝑖,𝑗

+ 𝛽𝑤𝑡
𝑇𝑅𝑁 ∑ 𝑡𝑇𝑅𝑁𝑤𝑡𝑍𝑖,𝑗

𝑖,𝑗

+ (𝛽𝑖𝑣
𝑇𝑅𝑁 − 𝛽𝑖𝑣

𝑃𝐴𝑉) ∑ 𝑡𝑖,𝑗
𝑇𝑅𝑁𝑍𝑖,𝑗

𝑖,𝑗

+ 𝛽𝑓𝑟
𝑇𝑅𝑁 ∑ 𝑍𝑖,𝑗

𝑖,𝑗

 

(4-1) 

4.4.5 Constraints on Travel Modes 

Naturally, the household faces several constraints that prevent illogical and physically 

impossible trips. Spatial conditions include flow conservation rules and mode-specific 

node-visiting constraints. Temporal conditions include the sequence of activities and time 

windows to ensure the timely completion of each activity. Additionally, I incorporate 

constraints for AV travel patterns, such as parking and relocating without passengers. 

Finally, I set constraints to link vehicles and household members, ensuring that PAVs serve 

the passengers accordingly. 

The base of the vehicle constraints derives from the PDPTW (Solomon and Derosiers, 

1988) and HAPP (Khayati et al., 2021a; Recker, 1995) studies. HAPP-AV-IT reformulates 

and adds several constraints to enable multimodal and intermodal trips. 

4.4.5.1 Spatial Connectivity Constraints 

As described below, the spatial connectivity constraints on vehicles (Eqns. 2 through 

20) ensure logical movements for all travel modes (PAV, SAV, and transit). 



 

137 
 

Equations 4-2 through 4-4 are basic PDPTW constraints that ensure each PAV has one 

connected tour (or no tours if not used) from initial node to final node during a day. 

Equation 4-2 ensures that at most one outflow is allowed for each node. Equation 4-3 

ensures that each PAV has a connected path and there are no revisited A-nodes. Equation 

4-4 requires all used PAVs to come back home at the end of the day. 

∑ 𝑋𝑖,𝑗
𝑣

𝑗∈𝐍̂

≤ 1; 𝑖 ∈ 𝐍,  𝑣 ∈ 𝐕 (4-2) 

∑ 𝑋𝑖,𝑗
𝑣

𝑗∈𝐍

− ∑ 𝑋𝑗,𝑖
𝑣

𝑗∈𝐍

= 0; 𝑖 ∈ 𝐍̂,  𝑣 ∈ 𝐕 (4-3) 

∑ 𝑋0,𝑗
𝑣

𝑗∈𝐍𝑃𝑈

− ∑ 𝑋𝑖,𝑓
𝑣

𝑖∈𝐍𝐷𝑂

= 0; 𝑣 ∈ 𝐕 (4-4) 

Equations 4-5 through 4-10 are connectivity constraints within A-nodes. Equation 4-5 

connects home pickup nodes with their corresponding activity location drop-off nodes. The 

drop-off node can be the activity location or one of the three nearest transit stations from 

the pickup node. Equations 4-6 and 4-7 ensure that all activities are accessed by a PAV, 

SAV, transit, PAV-transit, or SAV-transit trip. Equations 4-8 and 4-9 connect the AV origin-

to-transit station trip and the transit station-to-AV destination trip for each PAV-transit or 

SAV-transit intermodal trip. Equation 4-10 connects the activity drop-off trips and their 

corresponding activity pickup trips. Any mode can complete these trips. 

∑ 𝑋𝑖,𝑗
𝑣

𝑖∈𝐍

− ∑ ∑ 𝑋𝑖,𝑗+𝑘𝐴
𝑣

𝑘∈{1, 2, 3}𝑖∈𝐍𝑃𝑈𝐷𝑂

= 0; 𝑗 ∈ 𝐍ℎ𝑝,  𝑣 ∈ 𝐕 (4-5) 

∑ ∑ ∑ 𝑋𝑖,𝑗+𝑘𝐴
𝑣

𝑘∈{0, 1, 2}𝑖∈𝐍𝑃𝑈𝐷𝑂𝑣∈𝐕

+ ∑ ∑ 𝑌𝑖,𝑗+𝑘𝐴

𝑘∈{0, 1, 2}𝑖∈𝐍𝑃𝑈

+ ∑ 𝑍𝑖,𝑗

𝑖∈𝐍ℎ𝑝∪𝐍𝑎𝑝

= 1; 𝑗 ∈ 𝐍𝑎𝑑 (4-6) 
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∑ ∑ ∑ 𝑋𝑖+𝑘𝐴,𝑗
𝑣

𝑘∈{0, 1, 2}𝑗∈𝐍𝑃𝑈𝐷𝑂𝑣∈𝐕

+ ∑ ∑ 𝑌𝑖+𝑘𝐴,𝑗

𝑘∈{0, 1, 2}𝑗∈𝐍𝐷𝑂

+ ∑ 𝑍𝑖,𝑗

𝑗∈𝐍𝑎𝑑∪𝐍ℎ𝑑

= 1; 𝑖 ∈ 𝐍𝑎𝑝 (4-7) 

(∑ ∑ 𝑋𝑖,𝑗+𝑘𝐴
𝑣

𝑖∈𝐍𝑃𝑈𝐷𝑂𝑣∈𝐕

+ ∑ 𝑌𝑖,𝑗+𝑘𝐴

𝑖∈𝐍𝑃𝑈

) − 𝑍𝑗+𝑘𝐴,𝑗 = 0; 𝑗 ∈ 𝐍𝑎𝑑,  𝑘 ∈ {1,  2}  (4-8) 

(∑ ∑ 𝑋𝑖+𝑘𝐴,𝑗
𝑣

𝑗∈𝐍𝑃𝑈𝐷𝑂𝑣∈𝐕

+ ∑ 𝑌𝑖+𝑘𝐴,𝑗

𝑗∈𝐍𝐷𝑂

) − 𝑍𝑖,𝑖+𝑘𝐴 = 0; 𝑖 ∈ 𝐍𝑎𝑝,  𝑘 ∈ {1,  2} (4-9) 

∑ ∑ ∑ 𝑋𝑖,𝑗+𝑘𝐴
𝑣

𝑘∈{1,2, 3}𝑖∈𝐍𝑃𝑈𝐷𝑂𝑣∈𝐕

+ ∑ ∑ 𝑌𝑖,𝑗+𝑘𝐴

𝑘∈{1,2, 3}𝑖∈𝐍𝑃𝑈

+ ∑ 𝑍𝑖,𝑗+𝐴

𝑖∈𝐍ℎ𝑝∪𝐍𝑎𝑝

− ∑ ∑ ∑ 𝑋𝑗+𝑘𝐴,𝑖
𝑣

𝑘∈{11, 12, 13}𝑖∈𝐍𝑃𝑈𝐷𝑂𝑣∈𝐕

− ∑ ∑ 𝑌𝑗+𝑘𝐴,𝑖

𝑘∈{11, 12, 13}𝑖∈𝐍𝐷𝑂

− ∑ 𝑍𝑗+11𝐴,𝑖

𝑖∈𝐍𝑎𝑑∪𝐍ℎ𝑑

= 0; 

𝑗 ∈ 𝐍ℎ𝑝 (4-10) 

Equations 4-11 through 4-14 prohibit illogical PAV trips to form a complete vehicle 

tour, which are similar to the constraints in PDPTW and original HAPP. Equations 4-11 and 

4-12 prevent preceding and succeeding nodes for the initial and final nodes, respectively. 

Equations 4-13 and 4-14 ensure all vehicles start travel from a pickup node and terminate 

the travel after drop-off. 

∑ 𝑋𝑖,0
𝑣

𝑖∈𝐍

= 0; 𝑣 ∈ 𝐕 (4-11) 

∑ 𝑋𝑓,𝑗
𝑣

𝑗∈𝐍

= 0; 𝑣 ∈ 𝐕 (4-12) 

∑ 𝑋0,𝑗
𝑣

𝑗∈𝐍\𝐍𝑃𝑈

= 0; 𝑣 ∈ 𝐕 (4-13) 
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∑ 𝑋𝑖,𝑓
𝑣

𝑖∈𝐍\𝐍𝐷𝑂

= 0; 𝑣 ∈ 𝐕 (4-14) 

Equations 4-15 through 4-20 are additional prohibition constraints for PAV, SAV, and 

transit trips. Equations 4-15 and 4-16 ensure every SAV trip starts at a pickup node and 

ends at a drop-off node. Equation 4-17 prohibits unnecessary trips within home location. 

Equations 4-18 through 4-20 restrict transit trip starting and ending nodes. 

∑ ∑ 𝑌𝑖,𝑗

𝑗∈𝐍𝑖∈𝐍\𝐍𝑃𝑈

= 0  (4-15) 

∑ ∑ 𝑌𝑖,𝑗

𝑗∈𝐍\𝐍𝐷𝑂𝑖∈𝐍

= 0  (4-16) 

∑ ∑ (∑ 𝑋𝑖,𝑗
𝑣

𝑣∈𝐕

+ 𝑌𝑖,𝑗)

𝑗∈𝐍ℎ𝑑𝑖∈𝐍ℎ𝑝

= 0  (4-17) 

∑ ∑ 𝑍𝑖,𝑗

𝑗∈𝐍𝑖∈𝐍\{𝐍ℎ𝑝∪𝐍𝑡𝑑∪𝐍𝑎𝑝} 

= 0  (4-18) 

∑ ∑ 𝑍𝑖,𝑗

𝑗∈𝐍\{𝐍𝑎𝑑∪𝐍𝑡𝑝∪𝐍ℎ𝑑} 𝑖∈𝐍

= 0  (4-19) 

∑ ∑ 𝑍𝑖,𝑗

𝑗∈𝐍\𝐍𝑎𝑑𝑖∈𝐍ℎ𝑝

= 0  (4-20) 

4.4.5.2 Temporal Constraints 

Equations 4-21 through 4-26 ensure that the arrival time at each visited node is later 

than the preceding node’s arrival time plus the travel time between consecutive nodes. 

Equations 4-21 through 4-23 apply to PAV travel (pickup and drop-off nodes, initial node, 

and final node). Equation 4-24 applies to SAV travel, accounting for SAV waiting time at 
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pickup. Equations 4-25 and 4-26 apply to transit travel, considering walk access and egress 

times and transit waiting time at station. 

𝑇𝑖 + 𝑡𝑖,𝑗 − 𝑇𝑗 ≤ 𝑀(1 − 𝑋𝑖,𝑗
𝑣 ); 𝑖, 𝑗 ∈ 𝐍̂,  𝑣 ∈ 𝐕 (4-21) 

𝑇0
𝑣 − 𝑇𝑗 ≤ 𝑀(1 − 𝑋0,𝑗

𝑣 ); 𝑗 ∈ 𝐍𝑃𝑈,  𝑣 ∈ 𝐕 (4-22) 

𝑇𝑖 − 𝑇𝑓
𝑣 ≤ 𝑀(1 − 𝑋𝑖,𝑓

𝑣 ); 𝑖 ∈ 𝐍𝐷𝑂,  𝑣 ∈ 𝐕 (4-23) 

𝑇𝑖 + 𝑡𝑖,𝑗 + 𝑡𝑆𝐴𝑉𝑤𝑡 − 𝑇𝑗 ≤ 𝑀(1 − 𝑌𝑖,𝑗); 𝑖 ∈ 𝐍𝑃𝑈, 𝑗 ∈ 𝐍𝐷𝑂 (4-24) 

𝑇𝑖 + 𝑡𝑖,𝑗
𝑇𝑅𝑁 + 𝑡𝑖,𝑗

𝑇𝑅𝑁𝑤𝑘 + 𝑡𝑇𝑅𝑁𝑤𝑡 − 𝑇𝑗 ≤ 𝑀(1 − 𝑍𝑖,𝑗); 𝑖 ∈ 𝐍ℎ𝑝 ∪ 𝐍𝑡𝑑 ∪ 𝐍𝑎𝑝,  𝑗 ∈ 𝐍𝑎𝑑 (4-25) 

𝑇𝑖 + 𝑡𝑖,𝑗
𝑇𝑅𝑁 + 𝑡𝑖,𝑗

𝑇𝑅𝑁𝑤𝑘 + 𝑡𝑇𝑅𝑁𝑤𝑡 − 𝑇𝑗 ≤ 𝑀(1 − 𝑍𝑖,𝑗); 𝑖 ∈ 𝐍𝑎𝑝,  𝑗 ∈ 𝐍𝑎𝑑 ∪ 𝐍𝑡𝑝 ∪ 𝐍ℎ𝑑 (4-26) 

Equation 4-27 ensures the activity duration time between activity drop-off node and 

corresponding activity pickup node. 

𝑇𝑖 + 𝑠𝑖 ≤ 𝑇𝑖+10𝐴; 𝑖 ∈ 𝐍𝑎𝑑 (4-27) 

Equations 4-28 through 4-37 require trips to arrive at the destination within the time 

windows given for each activity drop-off and pickup. 

Equations 4-28 and 4-29 are the earliest home departure time and the latest home 

return time for the household.  

𝑒0 ≤ 𝑇0
𝑣; 𝑣 ∈ 𝐕 (4-28) 

𝑇𝑓
𝑣 ≤ 𝑙𝑓; 𝑣 ∈ 𝐕 (4-29) 

Equations 4-30 through 4-33 are the time windows for PAV, SAV, and transit single 

modal trips. 
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𝑒𝑗 − 𝑇𝑗 ≤ 𝑀 (1 − ∑ ∑ 𝑋𝑖,𝑗
𝑣

𝑖∈𝐍𝑣∈𝐕

− ∑ 𝑌𝑖,𝑗

𝑖∈𝐍

− ∑ 𝑍𝑖,𝑗

𝑖∈𝐍ℎ𝑝∪𝐍𝑡𝑑∪𝐍𝑎𝑝

) ; 𝑗 ∈ 𝐍𝑎𝑑 (4-30) 

𝑇𝑗 − 𝑙𝑗 ≤ 𝑀 (1 − ∑ ∑ 𝑋𝑖,𝑗
𝑣

𝑖∈𝐍𝑣∈𝐕

− ∑ 𝑌𝑖,𝑗

𝑖∈𝐍

− ∑ 𝑍𝑖,𝑗

𝑖∈𝐍ℎ𝑝∪𝐍𝑡𝑑∪𝐍𝑎𝑝

) ; 𝑗 ∈ 𝐍𝑎𝑑 (4-31) 

𝑒𝑖 − 𝑇𝑖 ≤ 𝑀 (1 − ∑ ∑ 𝑋𝑖,𝑗
𝑣

𝑗∈𝐍𝑣∈𝐕

− ∑ 𝑌𝑖,𝑗

𝑗∈𝐍

− ∑ 𝑍𝑖,𝑗

 𝑗∈𝐍𝑎𝑑∪𝐍𝑡𝑝∪𝐍ℎ𝑑

) ; 𝑖 ∈ 𝐍𝑎𝑝 (4-32) 

𝑇𝑖 − 𝑙𝑖 ≤ 𝑀 (1 − ∑ ∑ 𝑋𝑖,𝑗
𝑣

𝑗∈𝐍𝑣∈𝐕

− ∑ 𝑌𝑖,𝑗

𝑗∈𝐍

− ∑ 𝑍𝑖,𝑗

 𝑗∈𝐍𝑎𝑑∪𝐍𝑡𝑝∪𝐍ℎ𝑑

) ; 𝑖 ∈ 𝐍𝑎𝑝 (4-33) 

Equations 4-34 through 4-37 are the time windows for PAV/SAV and transit 

intermodal trips, which determine the arrival time windows at intermodal transit drop-off 

and pickup nodes. 

(𝑒𝑗 − 𝑡𝑗+𝑘𝐴,𝑗
𝑇𝑅𝑁 − 𝑡𝑗+𝑘𝐴,𝑗

𝑇𝑅𝑁𝑤𝑘 − 𝑡𝑇𝑅𝑁𝑤𝑡) − 𝑇𝑗+𝑘𝐴

≤ 𝑀 (1 − ∑ ∑ 𝑋𝑖,𝑗+𝑘𝐴
𝑣

𝑖∈𝐍̂𝑣∈𝐕

− ∑ 𝑌𝑖,𝑗+𝑘𝐴

𝑖∈𝐍̂

) ; 
𝑗 ∈ 𝐍𝑎𝑑,  𝑘 ∈ {1,  2} (4-34) 

𝑇𝑗+𝑘𝐴 − (𝑙𝑗 − 𝑡𝑗+𝑘𝐴,𝑗
𝑇𝑅𝑁 − 𝑡𝑗+𝑘𝐴, 𝑗

𝑇𝑅𝑁𝑤𝑘 − 𝑡𝑇𝑅𝑁𝑤𝑡)

≤ 𝑀 (1 − ∑ ∑ 𝑋𝑖,𝑗+𝑘𝐴
𝑣

𝑖∈𝐍̂𝑣∈𝐕

− ∑ 𝑌𝑖,𝑗+𝑘𝐴

𝑖∈𝐍̂

) ; 
𝑗 ∈ 𝐍𝑎𝑑,  𝑘 ∈ {1,  2} (4-35) 

(𝑒𝑖 + 𝑡𝑖,𝑖+𝑘𝐴
𝑇𝑅𝑁 − 𝑡𝑖,𝑖+𝑘𝐴

𝑇𝑅𝑁𝑤𝑘 − 𝑡𝑇𝑅𝑁𝑤𝑡) − 𝑇𝑖+𝑘𝐴

≤ 𝑀 (1 − ∑ ∑ 𝑋𝑖+𝑘𝐴,𝑗
𝑣

𝑗∈𝐍̂𝑣∈𝐕

− ∑ 𝑌𝑖+𝑘𝐴,𝑗

𝑗∈𝐍̂

) ; 

𝑖 ∈ 𝐍𝑎𝑝,  𝑘 ∈ {1,  2} (4-36) 
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𝑇𝑖+𝑘𝐴 − (𝑙𝑖 − 𝑡𝑖,𝑖+𝑘𝐴
𝑇𝑅𝑁 − 𝑡𝑖,𝑖+𝑘𝐴

𝑇𝑅𝑁𝑤𝑘 − 𝑡𝑇𝑅𝑁𝑤𝑡)

≤ 𝑀 (1 − ∑ ∑ 𝑋𝑖+𝑘𝐴,𝑗
𝑣

𝑗∈𝐍̂𝑣∈𝐕

− ∑ 𝑌𝑖+𝑘𝐴,𝑗

𝑗∈𝐍̂

) ; 

𝑖 ∈ 𝐍𝑎𝑝,  𝑘 ∈ {1,  2} (4-37) 

4.4.5.3 Parking and Relocating Constraints 

Equations 4-38 through 4-42 keep track of onboard passengers for each PAV. 

Accordingly, an empty PAV can enter a parking lot, as shown in Eqn. 4-43. Equation 4-44 

requires all vehicles to leave the pickup or drop-off node within 𝜏 minutes, which is the 

maximum curbside loading time. 

𝜌0
𝑣 = 0; 𝑣 ∈ 𝐕 (4-38) 

𝜌𝑖
𝑣 + 1 − 𝜌𝑗

𝑣 ≤ 𝑀(1 − 𝑋𝑖,𝑗
𝑣 ); 𝑖 ∈ 𝐍,  𝑗 ∈ 𝐍𝑃𝑈,  𝑣 ∈ 𝐕 (4-39) 

𝜌𝑗
𝑣 − 𝜌𝑖

𝑣 − 1 ≤ 𝑀(1 − 𝑋𝑖,𝑗
𝑣 ); 𝑖 ∈ 𝐍,  𝑗 ∈ 𝐍𝑃𝑈,  𝑣 ∈ 𝐕 (4-40) 

𝜌𝑖
𝑣 − 1 − 𝜌𝑗

𝑣 ≤ 𝑀(1 − 𝑋𝑖,𝑗
𝑣 ); 𝑖 ∈ 𝐍,  𝑗 ∈ 𝐍𝐷𝑂 ,  𝑣 ∈ 𝐕 (4-41) 

𝜌𝑗
𝑣 − 𝜌𝑖

𝑣 + 1 ≤ 𝑀(1 − 𝑋𝑖,𝑗
𝑣 ); 𝑖 ∈ 𝐍,  𝑗 ∈ 𝐍𝐷𝑂 ,  𝑣 ∈ 𝐕 (4-42) 

𝜌𝑖
𝑣 + 𝜌𝑗

𝑣 ≤ 𝑀(1 − 𝑋𝑖,𝑗
𝑣 ); 𝑖 ∈ 𝐍̂,  𝑗 ∈ 𝐍𝑝𝑘 ,  𝑣 ∈ 𝐕 (4-43) 

𝑇𝑗 − 𝑇𝑖 − 𝑡𝑖,𝑗 − 𝜏 ≤ 𝑀(1 − 𝑋𝑖,𝑗
𝑣 ); 𝑖 ∈ 𝐍𝑃𝑈𝐷𝑂 ,  𝑗 ∈ 𝐍̂, 𝑣 ∈ 𝐕 (4-44) 

Equations 4-45 and 4-46 prohibit unnecessary deadheading between parking spaces 

and accessing at-home activity node, respectively. 

∑ ∑ 𝑋𝑖,𝑗
𝑣

𝑗∈𝐍𝑝𝑘𝑖∈𝐍ℎ𝑝∪𝐍𝑝𝑘

= 0; 𝑣 ∈ 𝐕 (4-45) 
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∑ ∑ 𝑋𝑖,𝑗
𝑣

𝑗∈𝐍ℎ𝑠𝑣∈𝐕

= 0; 𝑖 ∈ 𝐍 (4-46) 

Equations 4-47 and 4-48 calculate parking duration times. The parking duration time 

and hourly parking fee, 𝜔𝑖 , determine the total parking fees in the household. 

𝑇𝑗 − 𝑇𝑖 − 𝑡𝑖,𝑗

60
+ 1 − 𝐾𝑖 ≤ 𝑀 (1 − ∑ 𝑋𝑖,𝑗

𝑣

𝑣∈𝐕

) ; 𝑖 ∈ 𝐍𝑝𝑘 ,  𝑗 ∈ 𝐍̂ (4-47) 

𝐾𝑖 −
𝑇𝑗 − 𝑇𝑖 − 𝑡𝑖,𝑗

60
− 1 ≤ 𝑀 (1 − ∑ 𝑋𝑖,𝑗

𝑣

𝑣∈𝐕

) ; 𝑖 ∈ 𝐍𝑝𝑘 ,  𝑗 ∈ 𝐍̂ (4-48) 

4.4.6 Constraints on Household Members 

4.4.6.1 Spatial Connectivity Constraints 

Equations 4-49 through 4-66 cover household members’ tours. Many of the 

constraints have the same format as vehicle spatial constraints in the previous subsection. 

Equations 4-49, 4-51, and 4-52 parallel Eqns. 4-2 through 4-4. Equation 4-50 indicates 

that a person can either perform out-of-home activities or not. Equation 4-53 ensures that 

only the assigned household member can perform the activity. Equations 4-54 and 4-55 

ensure that the assigned household member arrives/departs at/from the activity drop-

off/pickup node at least once, respectively. Equations 4-56 and 4-57 ensure that each 

household member visits transit drop-off/pickup nodes when they choose an intermodal 

trip. 
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∑ 𝐻𝑖,𝑗
𝑝

𝑖∈𝐍

≤ 1; 𝑗 ∈ 𝐍̂,  𝑝 ∈ 𝐏 (4-49) 

∑ 𝐻0,𝑗
𝑝

𝑗∈𝐍

≤ 1; 𝑝 ∈ 𝐏 (4-50) 

∑ 𝐻𝑖,𝑗
𝑝

𝑗∈𝐍

− ∑ 𝐻𝑗,𝑖
𝑝

𝑗∈𝐍

= 0; 𝑖 ∈ 𝐍̂,  𝑝 ∈ 𝐏 (4-51) 

∑ 𝐻0,𝑗
𝑝

𝑗∈𝐍ℎ𝑝

− ∑ 𝐻𝑖,𝑓
𝑝

𝑖∈𝐍ℎ𝑑

= 0; 𝑝 ∈ 𝐏 (4-52) 

∑ 𝐻𝑎+𝐴,𝑎+11𝐴
𝑝

𝑝∈𝐏𝑎

= 1; 𝑎 ∈ 𝐀, 𝑖 ∈ 𝐍𝑎𝑑 (4-53) 

∑ ∑ 𝐻𝑖,𝑎+𝐴
𝑝

𝑖∈𝐍𝑃𝑈𝐷𝑂𝑝∈𝐏𝑎

≥ 1; 𝑎 ∈ 𝐀 (4-54) 

∑ ∑ 𝐻𝑎+11𝐴,𝑗
𝑝

𝑗∈𝐍𝑃𝑈𝐷𝑂𝑝∈𝐏𝑎

≥ 1; 𝑎 ∈ 𝐀 (4-55) 

1 − ∑ 𝐻𝑖,𝑎+𝑘𝐴
𝑝

𝑖∈𝐍𝑃𝑈𝐷𝑂

≤ 𝑀(1 − 𝐻𝑎+𝑘𝐴,𝑎+𝐴
𝑝

); 𝑎 ∈ 𝐀,  𝑘 ∈ {2,  3},  𝑝 ∈ 𝐏𝑎 (4-56) 

1 − ∑ 𝐻𝑎+𝑘𝐴,𝑗
𝑝

𝑗∈𝐍𝑃𝑈𝐷𝑂

≤ 𝑀(1 − 𝐻𝑎+11𝐴, 𝑎+𝑘𝐴
𝑝

); 𝑎 ∈ 𝐀,  𝑘 ∈ {12,  13},  𝑝 ∈ 𝐏𝑎 (4-57) 

Equation 4-58 connects previous activity tour and next activity tour via at-home 

activity node. If a household member has another out-of-home activity after being dropped 

off at home, the person can stay at home before being picked up at another home pickup 

node. Equations 4-59 through 4-61 prevent unnecessary trips within home nodes. 

Household members cannot directly travel from home pickup node to home drop-off node 

(Eqn. 4-59), they can visit home pickup node only when they begin the first trip or when 
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they are at at-home activity node (Eqn. 4-60), and they can only visit at-home activity node 

or final node when they are dropped off at home drop-off node (Eqn. 4-61). 

∑ 𝐻𝑖,𝑎+15𝐴
𝑝

−

𝑖∈𝐍ℎ𝑑

𝐻𝑎+15𝐴,𝑎
𝑝

= 0; 𝑎 ∈ 𝐀,  𝑝 ∈ 𝐏𝑎 (4-58) 

∑ ∑ 𝐻𝑖,𝑗
𝑝

𝑗∈𝐍ℎ𝑠∪𝐍ℎ𝑑𝑖∈𝐍ℎ𝑝∪𝐍ℎ𝑠

= 0; 𝑝 ∈ 𝐏 (4-59) 

∑ 𝐻𝑖,𝑎
𝑝

𝑖∈𝐍̂\𝐍ℎ𝑠

= 0; 𝑎 ∈ 𝐀,  𝑝 ∈ 𝐏𝑎 (4-60) 

∑ 𝐻𝑎+14𝐴,𝑗
𝑝

𝑗∈𝐍̂\𝐍ℎ𝑠

= 0; 𝑎 ∈ 𝐀,  𝑝 ∈ 𝐏𝑎 (4-61) 

Equation 4-62 prohibits performing activity by household members other than the 

assigned person. Equation 4-63 prohibits household members visiting parking spaces. 

Equations 4-64 and 4-65 ensure that every tour starts at the initial node and ends at the 

final node, which are equivalent to Eqns. 4-11 and 4-12. Equation 4-66 ensures that 

household members visit home pickup node after the initial node. 

∑ 𝐻𝑎+𝐴,𝑎+11𝐴
𝑝

𝑝∈𝐏\𝐏𝒂

= 0; 𝑎 ∈ 𝐀 (4-62) 

∑ ∑ 𝐻𝑖,𝑗
𝑝

𝑗∈𝐍𝑝𝑘𝑖∈𝐍

= 0; 𝑝 ∈ 𝐏 (4-63) 

∑ 𝐻𝑖,0
𝑝

𝑖∈𝐍

= 0; 𝑝 ∈ 𝐏 (4-64) 

∑ 𝐻𝑓,𝑗
𝑝

𝑗∈𝐍

= 0; 𝑝 ∈ 𝐏 (4-65) 
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∑ ∑ 𝐻0,𝑗
𝑝

𝑗∈𝐍\𝐍ℎ𝑝𝑝∈𝐏

= 0  (4-66) 

4.4.6.2 Temporal Constraints 

Equations 4-67 through 4-69 are arrival time constraints paralleling Eqns. 4-21 

through 4-23. 

𝑇𝑖 + 𝑡𝑖,𝑗 − 𝑇𝑗 ≤ 𝑀(1 − 𝐻𝑖,𝑗
𝑝

); 𝑖, 𝑗 ∈ 𝐍̂,  𝑝 ∈ 𝐏 (4-67) 

𝑇0
𝑝

− 𝑇𝑗 ≤ 𝑀(1 − 𝐻0,𝑗
𝑝

); 𝑗 ∈ 𝐍ℎ𝑝,  𝑝 ∈ 𝐏 (4-68) 

𝑇𝑖 − 𝑇𝑓
𝑝

≤ 𝑀(1 − 𝐻𝑖,𝑓
𝑝

); 𝑖 ∈ 𝐍ℎ𝑑 ,  𝑝 ∈ 𝐏 (4-69) 

Equations 4-70 and 4-71 are the earliest and latest arrival times according to the given 

activity’s time window, paralleling Eqns. 4-28 and 4-29. 

𝑒0 ≤ 𝑇0
𝑝

; 𝑝 ∈ 𝐏 (4-70) 

𝑇𝑓
𝑝

≤ 𝑙𝑓; 𝑝 ∈ 𝐏 (4-71) 

Equations 4-72 through 4-74 calculate each household member’s waiting time at home 

pickup, activity pickup, and transit pickup nodes, respectively. 

𝑄𝑖 ≥ 𝑇𝑖+𝑘𝐴 − 𝑡𝑖,𝑖+𝑘𝐴 − 𝑇𝑖; 𝑖 ∈ 𝐍ℎ𝑝,  𝑘 ∈ {1,  2,  3} (4-72) 

𝑄𝑖 ≥ 𝑇𝑖 − (𝑇𝑖−10𝐴 + 𝑠𝑖−10𝐴); 𝑖 ∈ 𝐍𝑎𝑝 (4-73) 

𝑄𝑖+𝑘𝐴 ≥ 𝑇𝑖+𝑘𝐴 − (𝑇𝑖−10𝐴 + 𝑠𝑖−10𝐴)

− (𝑡𝑖,𝑖+𝑘𝐴
𝑇𝑅𝑁 + 𝑡𝑖,𝑖+𝑘𝐴

𝑇𝑅𝑁𝑤𝑘 + 𝑡𝑇𝑅𝑁𝑤𝑡); 
𝑖 ∈ 𝐍𝑎𝑝,  𝑘 ∈ {1,  2} (4-74) 
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4.4.7 Travel Mode and Household Member Coupling Constraints 

The last set of constraints involves coupling the vehicle and household member trips. 

Equation 4-75 ensures that a household member uses at least one mode to complete a trip. 

Equations 4-76 through 4-79 connect vehicle trips with household member trips when the 

household member uses a vehicle for travel (Eqn. 4-76: home pickup and activity pickup 

nodes, Eqn. 4-77: activity drop-off and home drop-off nodes, Eqn. 4-78: transit pickup 

nodes, and Eqn. 4-79: transit drop-off nodes). Equation 4-80 allows only one person per 

SAV trip.  

1 − (∑ 𝑋𝑖,𝑗
𝑣

𝑣∈𝐕

+ 𝑌𝑖,𝑗 + 𝑍𝑖,𝑗) ≤ 𝑀(1 − 𝐻𝑖,𝑗
𝑝

) ; 𝑖 ∈ 𝐍̂\𝐍𝑎𝑑 ,  𝑗 ∈ 𝐍𝑎𝑑 ∪ 𝐍𝑡𝑑 ∪ 𝐍𝑎𝑝 ∪ 𝐍𝑡𝑝,  𝑝 ∈ 𝐏 (4-75) 

𝐻𝑎+𝑘𝐴,𝑗
𝑝

− (∑ 𝑋𝑎+𝑘𝐴,𝑗
𝑣

𝑣∈𝐕

+ 𝑌𝑎+𝑘𝐴,𝑗 + 𝑍𝑎+𝑘𝐴,𝑗) = 0 ; 𝑎 ∈ 𝐀,  𝑗 ∈ 𝐍̂,  𝑘 ∈ {0,  11},  𝑝 ∈ 𝐏𝑎  (4-76) 

𝐻𝑖,𝑎+𝑘𝐴
𝑝

− (∑ 𝑋𝑖,𝑎+𝑘𝐴
𝑣

𝑣∈𝐕

+ 𝑌𝑖,𝑎+𝑘𝐴 + 𝑍𝑖,𝑎+𝑘𝐴) = 0 ; 𝑎 ∈ 𝐀, 𝑖 ∈ 𝐍̂, 𝑘 ∈ {1,  14},  𝑝 ∈ 𝐏𝑎  (4-77) 

𝐻𝑎+𝑘𝐴,𝑗
𝑝

− (∑ 𝑋𝑎+𝑘𝐴,𝑗
𝑣

𝑣∈𝐕

+ 𝑌𝑎+𝑘𝐴,𝑗) = 0 ; 𝑎 ∈ 𝐀, 𝑗 ∈ 𝐍̂,  𝑘 ∈ {12, 13},  𝑝 ∈ 𝐏𝑎 (4-78) 

𝐻𝑖,𝑎+𝑘𝐴
𝑝

− (∑ 𝑋𝑖,𝑎+𝑘𝐴
𝑣

𝑣∈𝐕

+ 𝑌𝑖,𝑎+𝑘𝐴) = 0 ; 𝑎 ∈ 𝐀, 𝑖 ∈ 𝐍̂,  𝑘 ∈ {2,  3},  𝑝 ∈ 𝐏𝑎  (4-79) 

∑ 𝐻𝑖,𝑗
𝑝

𝑝∈𝐏

− 1 ≤ 𝑀(1 − 𝑌𝑖,𝑗); 𝑖 ∈ 𝐍𝑃𝑈 ,  𝑗 ∈ 𝐍̂ (4-80) 
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4.5 Case Study 

In this section I present a two sets of case studies to illustrate the relationship between 

HAPP-AV-IT inputs and outputs, and also evaluate the computational complexity of the 

HAPP-AV-IT. Subsection 4.5.1 describes the fictitious network and lists the model 

parameter values I use for the two case studies. Subsection 4.5.2 briefly describes the 

optimization solver I use to solve the HAPP-AV-IT. Subsection 4.5.3 presents the results of 

three fictitious households that I created to illustrate the capabilities of the HAPP-AV-IT 

model. Subsection 4.5.4 presents the results from a synthetic population of households 

based on households and activity patterns in San Diego California. This subsection also 

analyzes the computational run time of HAPP-AV-IT with respect to household size, 

number of household vehicles, and number of activities. Finally, Subsection 4.5.5 provides 

additional insights into deadheading and PAV parking using the HAPP-AV-IT model. 

4.5.1 System Configuration 

4.5.1.1 Virtual Base Network 

This chapter uses a virtual network that is 9.6 km (6 mi) × 8 km (5 mi) with a higher 

density downtown area surrounded by a lower density uptown area. Figure 4-3 illustrates 

the base network with two rail transit lines. The road system consists of a grid street 

network and two crossing freeways. The block sizes in downtown and uptown are 400 m × 

400 m and 800 m × 800 m, respectively. Free flow link travel speeds are 100km/h 

(freeway), 60 km/h (freeway ramp), 50 km/h (uptown street), 40 km/h (downtown 

street), and 30 km/h (street intersection). I apply 30% speed reduction from the free flow 
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speed to reflect traffic congestion, and thus the actual link travel speeds are 70 km/h 

(freeway), 42 km/h (freeway ramp), 35 km/h (uptown street), 28 km/h (downtown 

street), and 21 km/h (street intersection). With the fixed link travel times, each trip uses 

the shortest path. I separate the rail transit lines from the road system, and transit stations 

connect the road and transit systems.  

In the base network, there are 50 home locations (Nodes 401 to 450), 50 activity 

locations (Nodes 201 to 250), 17 transit stations (Nodes 301 to 317), and 40 parking 

spaces (Nodes 101 to 140). The transit network has a fixed travel speed of 40 km/h with a 

headway of 6 minutes. The transfer time at the transfer station (Nodes 306 and 313) is 2 

minutes, which is shorter than the initial wait time because I assume a timed transfer is 

available. Walk assume the walk speed is 80 m/min (4.8 km/h). For a transit trip, there is 

an additional 1 minute of walking time for platform access and egress. 
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Figure 4-3: Base Network 

4.5.1.2 Parameters 

This subsection lists the model parameter values I use. For PAV and transit, I adopt 

$4.8/h as the value of in-vehicle travel time (𝛽𝑖𝑣
𝑃𝐴𝑉 and 𝛽𝑖𝑣

𝑇𝑅𝑁), and $7.8/h for SAV (𝛽𝑖𝑣
𝑆𝐴𝑉). I 

adopt $9.6/h for the PAV and SAV value of wait time (𝛽𝑤𝑡
𝑃𝐴𝑉 and 𝛽𝑤𝑡

𝑆𝐴𝑉) and $7.2/h for transit 

(𝛽𝑤𝑡
𝑇𝑅𝑁). I adopt $13.2/h for the transit value of walk time (𝛽𝑤𝑘

𝑇𝑅𝑁). I based these values on 
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prior studies (Correia et al., 2019; Singleton, 2019). I set the wait times for SAV and transit 

(𝑡𝑆𝐴𝑉𝑤𝑡  and 𝑡𝑇𝑅𝑁𝑤𝑡) 6 minutes and 3 minutes, respectively, while the PAV wait time is a 

decision variable in the HAPP-AV-IT. For the PAV operating cost, USDOT provides a range 

of $0.3/mi to $0.5/mi for AV operating costs in the next decade (Cortright, 2017). I use 

$0.3/mi as the PAV operating cost (𝛽𝑜𝑝
𝑃𝐴𝑉). The SAV base and distance fares (𝛽𝑓𝑏

𝑆𝐴𝑉 and 𝛽𝑓𝑑
𝑆𝐴𝑉) 

are $1.0/trip and $1.5/km ($2.4/mi), respectively, which more accurately represents 

current TNC prices (Helling, 2023). I set the transit fare (𝛽𝑓𝑟
𝑇𝑅𝑁) to $1.75/trip. The hourly 

parking fee (𝜔) for each parking space ranges from $1 in the periphery to $6 in the urban 

core. The maximum curbside loading time (𝜏) is 5 minutes. 

4.5.2 Optimization Tools 

For the case study, I used Gurobi in Python to solve the HAPP-AV-IT instances with 12 

logical processors and 16 GB memory. The computational time for each household varies 

by the household’s number of PAVs and activities. I investigate the relationship between 

household attributes (i.e. number of PAVs, number of activities, and number of household 

members) and computational time in Subsection 4.5.4.6. 

4.5.3 Case 1: Three Fictitious Households 

This section presents the results of three fictitious household and activity patterns I 

designed to demonstrate the capability of the HAPP-AV-IT model. Subsection 4.5.3.1 

presents the base model inputs, Subsection 4.5.3.2 presents the outputs from the base 

model, and Subsection 4.5.3.3 presents sensitivity analysis results. 
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4.5.3.1 Base Model Inputs 

Table 4-5 displays the model inputs for three distinct households. The model inputs 

include information about the household and the activities the household members must 

complete.  

Household 1 includes three persons (Persons 11 to 13) and one PAV. All three 

household members have a work/school activity with nearly the same drop-off time 

window and pickup time window. With only one PAV, I expect household members to 

carpool in their PAV, and for some members to possibly use SAV, transit, PAV-transit, or 

SAV-transit.  

Household 2, with three persons (Persons 21 to 23) and two PAVs, has four activities 

with different time windows; thus, I expect heavy utilization of the two PAVs. Person 22 

has two activities (personal and shopping); they can go home between activities or perform 

both activities without returning home. Note that time windows for shopping are very 

flexible.  

Household 3, with two persons (Persons 31 and 32) and 0 PAVs, has three activities. 

This household must use SAV or transit (or SAV-transit) to complete tours because they do 

not have any PAVs.  



 

153 
 

Table 4-5: Household Activity Profiles of Case 1 

Household 
ID 

Activity 
ID 

Activity 
Type 

Physical 
Network 
Node ID 

Assigned 
Household 
Member ID 

Earliest 
Drop-off 

Latest 
Drop-off 

Activity 
Duration 

(min) 

Earliest 
Pickup 

Latest 
Pickup 

1 
(1 PAV, 

3 persons) 

Home 409 Trip available time 06:00–23:30 

1 Work 246 11 08:50 09:00 510 17:30 17:40 

2 Work 229 12 08:50 09:00 510 17:30 17:40 

3 School 212 13 09:00 09:10 480 17:10 17:20 

2 
(2 PAVs, 

3 persons) 

Home 424 Trip available time 06:00–23:30 

1 Work 225 21 08:40 09:00 510 17:30 17:50 

2 Personal 217 22 20:00 21:00 90 21:30 22:30 

3 School 212 23 07:50 08:30 480 16:30 17:00 

4 Shopping 202 22 10:00 20:00 30 10:00 20:00 

3 
(0 PAVs, 

2 persons) 

Home 432 Trip available time 06:00–23:30 

1 Work 201 31 10:30 11:00 240 14:30 15:00 

2 Shopping 241 32 14:00 17:00 60 14:00 17:00 

3 Personal 218 31 14:40 15:10 120 16:40 17:10 
 

4.5.3.2 Base Model Outputs 

Figure 4-4 through Figure 4-6 display the model outputs for Households 1 through 3, 

respectively. 

Household members in Household 1 use PAV, SAV, and PAV-transit for their activities. 

As Household 1 owns only 1 PAV, and the three household members have overlapping 

activities each with tight time windows, the PAV cannot serve all trips. As shown in Figure 

4-4b, Person 12 uses the PAV to access the nearest transit station (Node 302) and transfers 

to the transit network, using two transit lines (transit-transit transfer between Node 306 

and Node 313) to go to work at Node 229. The PAV comes back home and picks up Persons 

11 and 13 together and drops the two travelers off at their respective activity drop-off 

nodes: work (Node 246) and school (Node 212). Then, the vehicle parks at home until 
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school finishes. Then the vehicle picks up Person 13, and drops them off at home. After 

another park-at-home phase, the PAV picks up Person 11 from work, comes back home, 

and terminates its tour. Person 12 uses transit for their return-home trip. In fact, Person 12 

walks home from the transit station instead of using a PAV because lone PAV is serving 

another household member when Person 12 arrives at the transit station.  

The members of Household 2 complete all their activities with their two PAVs; they do 

not make any SAV or transit trips. PAV 1 serves Persons 21 and 23, and PAV 2 serves 

Persons 21 and 22. After dropping off the household members at activity locations, both 

vehicles deadhead home to park. Due to the flexible time windows for Person 22’s 

shopping activity, the vehicle drops off Person 22 before Person 23’s school pickup and 

then goes back to pick up Person 22. As a result, PAV 2 moves directly from the shopping 

drop-off location to the school pickup location without parking at home. 

The members of Household 3 travel exclusively via SAV and transit, because the 

household does not own any PAVs. As the home location (Node 432) is far from transit 

stations, household members use SAV for each first- and last-mile transit leg. From Figure 

4-6b, I observe that Person 31’s work (Node 201) and personal (Node 218) activity 

locations are close to transit stations (Nodes 301 and 305, respectively), and those 

activities are temporally adjacent. As a result, Person 31 completes the two activities in one 

tour, with a transit-SAV intermodal trip when returning home. On the other hand, Person 

32 makes an SAV round trip for the shopping activity since the shopping location (Node 

241) has no nearby transit stations. 

By analyzing all three households collectively, I can draw several conclusions. In terms 

of the HAPP-AV-IT modeling framework, collectively the three households use every mode 
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(PAV, SAV, transit, walking) and modal combination (SAV-transit and PAV-transit) at least 

once. Given the constraints that the three fictitious households face in terms of vehicle 

availability and activity time-windows, the HAPP-AV-IT produces quite reasonable mode, 

path, pooling, and schedule decisions for persons as well as routing and scheduling 

decisions for household vehicles.  

In terms of potential changes in travel in a future with PAVs, while I do not want to 

make any strong conclusions because I did not calibrate the model parameters, it is clear 

that the flexibility that PAV deadheading provides will increase VKT. Moreover, the number 

of PAVs a household has will dramatically impact usage of transit and SAVs, not unlike the 

current situation with private non-automated vehicles. 
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Figure 4-4: Activity Pattern of Household 1: Tours on (a) Activity-travel Graph and (b) Physical Network 
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Figure 4-5: Activity Pattern of Household 2: Tours on (a) Activity-travel Graph and (b) Physical Network 



 

158 
 

 

Figure 4-6: Activity Pattern of Household 3: Tours on (a) Activity-travel Graph and (b) Physical Network 
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4.5.3.3 Sensitivity Analysis Results 

In this subsection, I conduct sensitivity analyses on the three fictitious households. For 

Household 1, I consider three variations: (i) the number of household PAVs increases to 

two, (ii) there is a 50% discount on SAV fare, and (iii) transit is not available. For 

Household 2, I consider one variation: the number of household PAVs reduces to one. For 

Household 3, I consider two variations: (i) PAV household ownership increases to one and 

(ii) there is a 50% discount on SAV fare. Table 4-6 shows the baseline results and the 

results of the various scenarios analysis, for all three households.  
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Table 4-6: Sensitivity Analysis on Simple 3 Households 

 

Household 1 
(1 PAV base) 

Household 2 
(2 PAV base) 

Household 3 
(No PAV base) 

(base) +1 PAV 
SAV 
dis-

count 

No 
transit 

(base) -1 PAV (base) +1 PAV 
SAV 
dis-

count 

Number of 
trips 

PAV 

Single-
occupant 

12 16 12 11 22 22 N/A 9 N/A 

Carpool 1 1 1 0 0 0 N/A 1 N/A 

SAV 0 0 1 2 0 0 4 0 4 

Transit 2 0 1 N/A 0 0 3 1 1 

Inter-
modal 
trips 

PAV-transit 1 0 1 N/A 0 0 N/A 0 N/A 

SAV-transit 0 0 0 N/A 0 0 2 0 0 

Travel 
time (min) 

Person 

Wait 10 0 11 12 0 0 37 3 27 

In-vehicle 78 77 76 62 73 73 57 53 50 

Walk 27 0 10 N/A 0 0 27 13 13 

PAV 

Total 71 117 71 77 140 143 N/A 71 N/A 

Onboard 42 64 42 40 73 73 N/A 36 N/A 

Dead-
heading 

29 
(41%) 

52 
(45%) 

29 
(41%) 

38 
(49%) 

67 
(48%) 

70 
(49%) 

N/A 
35 

(49%) 
N/A 

SAV Onboard 0 0 10 22 0 0 28 0 43 

Transit Onboard 24 0 12 N/A 0 0 29 7 7 

Travel 
distance 

(km) 

PAV 

Total 36.7 64.3 36.7 42.2 61.2 62.6 N/A 36.3 N/A 

Onboard 22.1 35.9 22.1 23.2 31.9 31.9 N/A 17.5 N/A 

Dead-
heading  

14.6 
(40%) 

28.4 
(44%) 

14.6 
(40%) 

19.0 
(45%) 

29.3 
(48%) 

30.7 
(49%) 

N/A 
18.9 

(52%) 
N/A 

SAV Onboard 0 0 5.1 11.4 0 0 14.3 0 21.4 

Out-of-
home 

parking 

Number of parking 0 0 0 0 0 1 N/A 1 N/A 

Parking time (min) 0 0 0 0 0 0.1 N/A 32 N/A 

Parking fee (USD) 0 0 0 0 0 0.003 N/A 0.54 N/A 

Fare 
(USD) 

SAV 0 0 4.34 19.13 0 0 25.45 0 18.04 

Transit 3.50 0 1.75 N/A 0 0 5.25 1.75 1.75 

Total travel cost (USD) 29.55 25.42 29.09 42.21 24.21 24.64 52.21 21.44 37.30 
 

For Household 1, compared to the base scenario, in the first new scenario when the 

number of PAVs increases to 2, household members no longer take transit. As a result, PAV 
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operating time and distance dramatically increase, while person travel time decreases as 

the replaced transit trip takes longer than the PAV trip. In the second new scenario, I 

consider a 50% discount on SAV fare. In this new scenario, Person 12 returns home via SAV 

instead of transit. Replacing the transit trip with a SAV trip significantly reduces walk time, 

thereby reducing overall household travel cost. Finally, in the third new scenario wherein 

transit service is not available, Person 12’s work tour (previously PAV-transit and transit-

only) switches to a PAV trip and a SAV trip, and Person 11 uses SAV and PAV for their work 

tour. The total household travel cost increases due to the extended PAV operation and the 

SAV fare. 

For Household 2, compared to the base case with two PAVs, with only one household 

PAV total household travel cost only reduces slightly. The household members can 

complete all four activities with one PAV. Interestingly, in the case of this household, one 

fewer PAV slightly increases PAV operating time and VMT. Another interesting finding is 

that despite the number of out-of-home parking events increasing from zero to one, the 

parking time is nearly zero indicating that the PAV immediately leaves the parking lot once 

it enters.  

For Household 3, when going from 0 to 1 PAV, household travel drastically changes. 

The household members can complete all their activities with one PAV and one transit trip. 

Moreover, adding the PAV reduces the total household travel cost significantly. This is 

mainly due to avoiding SAV and transit fares and reduced person travel times. For the SAV 

discount case (with no PAVs), the members of Household 3 mainly use SAV for all three 

activities, while only Person 31 uses transit when traveling between work and a personal 

activity. 
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The sensitivity analysis results show that vehicle ownership is the most critical factor 

in household travel behavior. An additional PAV always significantly increases the amount 

of PAV travel as an additional PAV can reduce person travel time in nearly all cases. In a 

further analysis, I vary the number of PAVs for each household to determine the minimum 

number of PAVs needed to complete all their activities without using other modes. 

According to the results, Households 1, 2, and 3 require 2, 1, and 2 PAVs, respectively. 

4.5.4 Case 2: Synthetic San Diego-based Households 

4.5.4.1 Generating Synthetic Households and Activity Patterns 

In this subsection, I generate household activity profiles using output from the 

activity-based travel forecasting model (ABM), ActivitySim, employed by the San Diego 

Association of Governments (SANDAG). Like most ABMs in use by planning agencies, 

ActivitySim determines activity locations and also person tours and travel schedules for 

household members. Below, I describe how I use the SANDAG ABM model to generate the 

inputs for the HAPP-AV-IT model.  

I extract 200 synthetic households and aspects of their activity-travel profiles from 

ActivitySim. Since I do not use the SANDAG network, I randomly assign each household a 

home location in the virtual network in this chapter and also randomly assign non-home-

activity locations to non-home-activity locations in the virtual network.  

ActivitySim outputs the type and location of every activity. Unfortunately, it does not 

output activity duration or activity start time, which I need for the model in this chapter. 

Rather, it only outputs the departure time of trips from activity locations and travel times 



 

163 
 

between activity locations. Hence, I need to modify ActivitySim output to create activity 

durations as well as activity drop-off and pickup time-windows.  

Table 4-7 displays the rules I implement to convert the information available from 

ActivitySim into HAPP-AV-IT inputs. SANDAG classifies the ActivitySim activities into 

mandatory activities (work, school, and university), maintenance activities (escorting, 

shopping, and other maintenance), or discretionary activities (social/recreational, eating 

out, and other discretionary). For each activity type, I have different rules for generating 

HAPP-AV-IT inputs for the earliest drop-off (𝑒𝐷𝑂), latest drop-off (𝑙𝐷𝑂), activity duration 

(𝑠), earliest pickup (𝑒𝑃𝑈), and latest pickup (𝑙𝑃𝑈).  

Most of the rules pivot around “𝐷”, the time at which the household member departs 

for a given activity, and “𝐷′”, the departure time for the household member’s next activity. 

Unfortunately, the temporal resolution for 𝐷 and 𝐷′ is one-hour in ActivitySim. As such, I 

create different rules for cases where 𝐷 = 𝐷′ and 𝐷 ≠ 𝐷′. Also, to obtain temporal values 

with a higher resolution, I draw uniform random variates for times within the hour. 

Table 4-7 shows 30-minute pickup and drop-off time-window lengths for mandatory 

activities. The time-window lengths for escort and discretionary activities are 60 minutes 

and 6 hours, respectively. For shopping, the time windows are very large, as household 

members often have considerable flexibility in terms of when they complete these 

activities. 
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Table 4-7: Generating Household Activity Profile for Case 2 Households 

Activity Type 
Earliest 

Drop-off, 𝑒𝐷𝑂 
(min) 

Latest 

Drop-off, 𝑙𝐷𝑂 
(min) 

Activity 
Duration, 𝑠 

(min) 

Earliest 

Pickup, 𝑒𝑃𝑈  
(min) 

Latest 

Pickup, 𝑙𝑃𝑈 
(min) 

Mandatory 

𝑈[𝐷 − 60, 𝐷] 

𝑒𝐷𝑂 + 30 

𝑈[5, 15] if 𝐷 =
𝐷′, otherwise, 

𝑈[𝐷′ − 𝐷 − 50,
𝐷′ − 𝐷 − 30] 

𝑙𝐷𝑂 + 𝑠 𝑒𝑃𝑈 + 30 𝑎𝑃𝑈 + 30 School 

University 

Maintenance 

𝑈[𝐷 − 60, 𝐷] 𝑒𝐷𝑂 + 60 5 𝑒𝐷𝑂 + 𝑠 𝑙𝐷𝑂 + 𝑠 𝑏𝐷𝑂 + 𝑠 

𝑈[360, 600] 
(6 AM–10 AM) 

𝑒𝐷𝑂 + 840 

(8 PM–12 AM) 

𝑈[5, 15] if 𝐷 =
𝐷′, otherwise, 

𝑈[𝐷′ − 𝐷 − 50,
𝐷′ − 𝐷 − 30] 

𝑒𝐷𝑂 

(6 AM–10 AM) 
𝑙𝐷𝑂 

(8 PM–12 AM) 
𝑏𝐷𝑂  

(8 PM–12 AM) 

𝑈[𝐷 − 180, 𝐷] 

𝑒𝐷𝑂 + 360 

𝑈[5, 10] if 𝐷 =
𝐷′, otherwise, 

𝑈[𝐷′ − 𝐷 − 50,
𝐷′ − 𝐷 − 30] 

𝑒𝐷𝑂 + 𝑠 𝑙𝐷𝑂 + 𝑠 𝑏𝐷𝑂 + 𝑠 
Discretionary 

Social/ 
recreational 

Eat out 

Other 
discretionary 

Note1: 𝐷 and 𝐷′ are departure times for the activity and the next activity, respectively, in minutes. 

Note2: 𝑈[𝑎, 𝑏] denotes a continuous uniform distribution with parameters 𝑎 and 𝑏. 

I sample households this way to obtain a reasonable representation of the activities a 

household conducts within a day and the temporal distribution of those activities. Note that 

some ActivitySim household activity profiles were infeasible. Infeasibility often arose when 

households had more than ten activities (up to 15 activities), as schedule conflicts were 

common in these cases. As a result, I excluded these households and resampled to obtain 

200 households in total. 

4.5.4.2 Scenario Analysis Set-up 

For the synthetic SANDAG households, I have a baseline scenario and two additional 

scenarios. The first additional scenario includes more transit lines in order for us to analyze 

the relationship between key performance metrics (e.g., mode choice) and transit supply. 
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In the base network, two transit lines cross each other. Figure 4-7 displays a transit-

enhanced network with three more transit lines: two horizontal lines and one vertical line. 

As a result, the number of transit stations increases from 17 to 40 (Nodes 318 to 340 

added), and there are 7 transit transfer stations (i.e., transit hubs) in the network. (Note 

that the transit hub nearest to the home location becomes a possible drop-off or pickup 

station for an intermodal trip.) With the transit-enhanced network, I expect more transit-

only, PAV-transit, and SAV-transit trips. 
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Figure 4-7: Transit-enhanced Network 

The second additional scenario involves household PAV ownership. The San Diego 

ABM includes a statistical model (i.e., a discrete choice model based on survey data) that 

forecasts household vehicle ownership for synthetic households in the region. While the 

model forecasts non-automated vehicles for the base year, vehicle ownership may differ in 

the AV era since PAVs do not require a driver. As such, some households may consider 
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owning fewer vehicles. Considering the possibility of reduced vehicle ownership, I analyze 

a second scenario that includes the transit-enhanced network and one fewer vehicle per 

household.  

Table 4-8 shows the scenario settings and summarizes the household activity profile 

inputs. The household size ranges from 1 to 7 persons, and the average number of 

household members is 2.44. The number of activities is around 4 on average, with a 

maximum of 10. Household vehicle ownership ranges from 0 to 4 PAVs, averaging 1.92 

vehicles per household. The average number of household vehicles decreases to 0.95 in 

Scenario B, where I decrease household vehicles by one vehicle per household.  

Table 4-8: Household Activity Profile Overview and Scenarios for Case 2 

Scenario Baseline Scenario A Scenario B 

Network Base Transit-enhanced Transit-enhanced 

PAV ownership Base Base 1 PAV reduced 

Number of households 200 

Household size 

Minimum 1 

Mean 2.44 

Maximum 7 

Number of activities 

Minimum 1 

Mean 3.80 

Maximum 10 

Number of PAVs 

Minimum 0 0 

Mean 1.92 0.95 

Maximum 4 3 
 

4.5.4.3 Model Complexity and Stopping Criteria 

As an NP-hard problem, previous HAPP studies generally apply relatively simple 

household activity profiles, similar to Case 1 in this chapter. Table 4-9 shows the 
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complexities of household activity profiles in HAPP-based studies. The table indicates that 

compared with prior studies, the households in the numerical experiments in this chapter 

have the most people, conduct the most activities, have the most vehicles, and have the 

greatest number of modal options.  

Table 4-9: Comparison of Household Activity Profile Complexities among HAPP Studies 

Study 
Number of 

Households 

Max. 
Household 

Size 

Max. 
Number of 
Activities 

Max. 
Number of 

PVs 

Number of 
Mode 

Options 

Recker (1995) 1 2 3 2 1 

Gan and Recker 
(2008) 

Example 1 2 6 2 2 

Real-world 1 2 7 2 2 

Chow and Recker (2012) 78 1 4 2 1 

Gan and Recker (2013) 1 1 3 1 1 

Kang and Recker 
(2013) 

Example 1 2 2 2 1 

Real-world 13 1 1 1 1 

Kang and Recker (2014) 302 1 2.4 (mean) 1 1 

Chow (2014) 500 1 4 1 1 

Yuan (2014) 1 2 3 2 2 

Chow and Nurumbetova (2015) 510 1 4 1 1 

Chow and Djavadian 
(2015) 

Example 1 1 2 1 3 

Real-world 166 1 1 1 3 

Liu et al. (2018) 
Medium case 1 3 7 2 1 

Large case 1.35M 1 1 1 1 

Xu et al. (2018) 1 1 4 1 1 

Khayati and Kang (2019) 92 2 3 2 1 

Najmi et al. (2020) 600 1 3 (mean) 1 4 

Khayati et al. (2021b) 
Example 1 2 3 1 (AV) 1 

Real-world 300 3 6 1 (AV) 1 

Khayati et al. (2021a) 300 3 5–6 (mean) 1 (AV) 2 

This chapter 
Case 1 3 3 4 2 (AVs) 5 

Case 2 200 7 10 4 (AVs) 5 
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Computational effort is undoubtedly an issue with HAPP-based formulations. Khayati 

et al. (2021b) mention that optimizing a household with 3 household members, 5 activities, 

and 1 PAV takes more than 3 days with a commercial solver, and they reduce the runtime 

by 48% with their proposed algorithm. Similarly, I face long run times on laptop and 

desktop computers.  

In this case study, I apply two stopping criteria to prevent long run times: (i) maximum 

unchanged incumbent solution time threshold and (ii) maximum running time threshold, 

to prevent extremely long runtimes. If the current best incumbent integer solution does not 

improve within the specified maximum incumbent solution time threshold, or if the 

optimization is not complete before two pre-defined time values, the optimization 

terminates, providing the current solution. I set the maximum unchanged incumbent 

solution time threshold to 900 seconds and the maximum running time threshold to 1,800 

seconds. 

4.5.4.4 Scenario Analysis Results 

The following two tables (Table 4-10 and Table 4-11) give an overview of the results 

from the synthetic SANDAG households. Table 4-10 shows the average travel costs across 

households, and Table 4-11 shows the total costs among the 200 households. 

The number of trips for each mode varies across scenarios, consistent with the 

changes in transit accessibility and PAV ownership. In the baseline case, there are 35 

transit trips (or 0.2 per household). Scenario A has 29 more transit trips than the baseline 

scenario due to the enhanced transit network. However, the availability of PAV is a more 
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critical factor, as the number of transit trips increases to 202 (or 1 transit trip per 

household) in Scenario B. 

The travel time and distance metrics mostly follow the number of trips. In the baseline 

case, the average household operates PAVs for 95.3 minutes in a day, and all the household 

PAVs travel 48.0 km during that time on average. Total PAV distance decreases as transit 

accessibility improves in Scenarios A and B and as PAV ownership decreases by one vehicle 

per household in Scenario B.  

Compared with the baseline case, personal travel time increases while total household 

travel costs decrease in Scenario A. I certainly expect both of these findings. Regarding total 

household travel cost, as transit service improves and all other modes remain the same in 

Scenario A compared to the baseline, household travel cost should decrease. Although less 

intuitive, as transit service improves, more people use transit, and since transit is typically 

slower than a personal vehicle and more people take transit in Scenario B, person travel 

time increases in Scenario B.  

According to Table 4-11, the total number of intermodal trips increases in the transit-

enhanced network scenarios. Interestingly, in Scenario A, the number of PAV-transit trips 

is the highest, while in Scenario B, the number of SAV-transit trips is the highest. The 

reduction in PAV-transit trips in Scenario B compared to Scenario A is likely because PAVs 

per household decrease in Scenario B.  
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Table 4-10: Scenario Output: Per Household 

Scenario Baseline Scenario A Scenario B 

Number of trips 

PAV 17.3 16.9 14.0 

SAV 0.4 0.3 0.6 

Transit 0.2 0.3 1.0 

Travel time (min/hh) 

Person 69.3 70.7 82.8 

PAV 95.3 92.5 76.1 

SAV 1.7 1.0 2.6 

Transit 1.0 2.6 9.6 

Travel distance (km/hh) 
PAV 48.0 46.6 38.2 

SAV 0.7 0.4 1.2 

Out-of-home parking time (min/hh) 19.1 16.1 15.0 

Fare (USD/hh) 
SAV 1.48 0.91 2.32 

Transit 0.31 0.56 1.77 

Total travel cost (USD/hh) 24.13 23.74 28.07 

Note: Multiple transit trips with transit-transit transfer(s) are counted as 1 transit trip. 

Table 4-11: Scenario Output: Total 200 Households 

Scenario Baseline Scenario A Scenario B 

Number of trips 

PAV 3,450 3,381 2,794 

SAV 77 61 117 

Transit 35 64 202 

Number of intermodal 
trips 

PAV-transit 2 10 5 

SAV-transit 5 1 14 

Travel time (h) 

PAV 317 309 254 

SAV 6 3 9 

Transit 3 9 32 

Travel distance (km) 
PAV 9,605 9,311 7,649 

SAV 146 81 231 

Note: Multiple transit trips with transit-transit transfer(s) are counted as 1 transit trip. 

Given the computational complexity of the HAPP-AV-IT model, solving the problem for 

every household in a metropolitan region (although feasible with the stopping criteria) 

would require significant computational resources. Hence, I use a multiple linear 
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regression model to understand the relationship between a key transportation system 

performance metric, VKT, and the attributes of a household, including household size, 

household vehicle count, and household activity count. I also include a binary variable for 

whether the transportation system includes an enhanced transit network or not, to 

differentiate between observations in Scenarios A/B and the baseline Scenario. As a 

reminder, VKT includes occupied and unoccupied PAV travel distance, as well as occupied 

SAV travel distance. It does not include SAV deadheading.  

Table 4-12 presents the parameter estimates for the multiple linear regression model. 

Interestingly, the results indicate that, while adding transit routes to the network decreases 

VKT, the effect is not statistically significant. This finding is not surprising, given the 

dominance of PAVs in each of the scenarios in Table 4-10 and Table 4-11. 

The parameter estimates also indicate that as the number of household members 

increases, VKT increases. The same relationship is true of the number of household 

activities and VKT. It is somewhat surprising that there is a positive statistically significant 

relationship between the number of household members and VKT even after controlling 

for the number of household activities.  

The relationship between the number of activities and VKT is quite interesting. The 

parameter estimates indicate that the relationship is monotonic but nonlinear. However, 

this finding is reasonable. Each additional activity is likely to require additional VKT. 

However, for a household already conducting many activities, an additional activity can 

most likely be incorporated into an existing activity-travel chain.  

The relationship between the number of household PAVs and VKT is also interesting. 

The result indicates that going from zero household PAVs to one or more household PAVs 
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drastically increases VKT. However, as a household increases their number of PAVs beyond 

1, VKT remains steady or even slightly decreases. This result is due to the ability of PAVs to 

deadhead. For a household with just one PAV, the PAV can most likely serve a lot of 

household member trips, but serving those trips will require significant deadheading. If the 

household has another PAV, maybe they complete a couple more activities via PAV, but the 

two PAVs do not need to deadhead nearly as much as with one household PAV.  

Finally, I interact the transit enhancement indicator variable with each of the other 

explanatory variables, to determine if the different transportation network in Scenarios A 

and B (compared to the baseline scenario) impacts any relationships. Although not 

statistically significant, the results indicate that a transit-enhanced network does decrease 

the strength of the positive relationship between household size and VKT. Additionally, the 

results indicate no practical or statistically significant difference between number of 

household activities and VKT when accounting for the enhanced transit network. However, 

there is a statistically significant impact of transit enhancement on the relationship 

between number of household vehicles and VKT. Surprisingly, with an enhanced transit 

network, the size of the relationship between household vehicles and VKT actually 

increases. 
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Table 4-12: Linear Regression Model on VKT with the Numbers of Household Members, Activities, and 
PAVs 

 
Explanation of VKT 

(600 Households in 3 Scenarios) 

Estimation Result 

 Coefficient Std. Error P-value 
Constant -6.12 6.295 0.332 

Base: baseline scenario    

Transit enhanced scenarios -4.67 6.969 0.503 

Base: baseline scenario + 1 HH member    

2 HH members 5.33 5.706 0.351 

3 HH members 7.85 6.337 0.216 

4 HH members 10.91 6.823 0.110 

5 HH members 21.67 10.427 0.038 

6 HH members 27.39 11.945 0.022 

7 HH members 50.46 16.472 0.002 

2 HH members × Transit enhanced scenarios -9.98 6.843 0.145 

3 HH members × Transit enhanced scenarios -8.26 7.596 0.277 

4 HH members × Transit enhanced scenarios -10.04 8.198 0.221 

5 HH members × Transit enhanced scenarios -11.12 12.675 0.381 

6 HH members × Transit enhanced scenarios -16.50 14.564 0.258 

7 HH members × Transit enhanced scenarios -7.58 20.001 0.705 

Base: baseline scenario + 1 Activity    

2 activities 10.74 4.511 0.018 

3 activities 20.78 4.644 0.000 

4 activities 29.30 4.469 0.000 

5 activities 31.70 5.000 0.000 

6 activities 36.95 5.033 0.000 

7 activities 50.68 5.795 0.000 

8 activities 64.76 7.328 0.000 

9 activities 45.32 15.665 0.004 

10 activities 34.12 15.290 0.026 

2 activities × Transit enhanced scenarios -1.45 5.522 0.793 

3 activities × Transit enhanced scenarios -1.64 5.681 0.773 

4 activities × Transit enhanced scenarios -5.65 5.468 0.302 

5 activities × Transit enhanced scenarios -5.25 6.122 0.391 

6 activities × Transit enhanced scenarios -4.55 6.145 0.459 

7 activities × Transit enhanced scenarios -3.59 7.083 0.612 

8 activities × Transit enhanced scenarios -13.02 8.968 0.147 

9 activities × Transit enhanced scenarios -1.73 19.104 0.928 

10 activities × Transit enhanced scenarios -24.14 18.706 0.197 

Base: baseline scenario + 0 PAVs    

1 PAV 26.44 6.811 0.000 

2 PAVs 23.76 7.023 0.001 

3 PAVs 24.14 7.789 0.002 

4 PAVs 19.59 9.888 0.048 

1 PAV × Transit enhanced scenarios 13.65 7.281 0.061 

2 PAVs × Transit enhanced scenarios 16.28 7.521 0.031 

3 PAVs × Transit enhanced scenarios 16.99 8.679 0.051 

4 PAVs × Transit enhanced scenarios 17.51 12.186 0.151 

Model Fit 
Observations 600 

R-squared 0.666 

Adjusted R-squared 0.643 

Log-likelihood -2436.0 
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4.5.4.5 Usefulness of Intermodal Trips 

Given that incorporating intermodal travel in a household person and vehicle routing 

and scheduling problem is a key contribution of this chapter, this subsection explores the 

households that benefit from intermodal travel in Case 2.  

Across the three scenarios in Case 2, there are 37 intermodal trips made by 19 out of 

200 households. In this subsection, I re-run the model in Section 4.4 for these households 

but change the constraints such that intermodal travel is impossible. Table 4-13 lists all 

intermodal trips in Case 2 scenarios and shows the travel cost differences between with 

and without intermodal trips.  

According to Table 4-13, intermodal trips decrease household travel costs by 

significantly reducing AV travel distance. Intermodal travel does increase person travel 

time on average due to additional walk and transit transfer wait times. Intermodal travel 

decreases household travel costs by 15% for one household, while most households save 

2–5%.  

The bottom of Table 4-13 shows the reduction in AV travel distance across the 

households that benefit from intermodal travel in the baseline scenario and Scenarios A 

and B. The results indicate that intermodal travel has the potential to decrease VKT.  



 

176 
 

Table 4-13: Comparison of With and Without Intermodal Trips 

HH 
ID 

Scenario 
Intermodal 

Trips 

Person Travel Time 
(min) 

AV Travel Distance 
(km) 

Total Travel Cost (USD) 

Without With Change Without With Change Without With Change 

35 B 1 SAV-transit 260 277 +7% 20.2 16.3 -19% 96.45 94.72 -2% 

76 B 3 SAV-transit 331 378 +14% 27.2 11.6 -57% 123.43 112.36 -9% 

87 B 1 PAV-transit 80 91 +14% 73.0 58.5 -20% 28.32 28.23 -0% 

111 B 2 SAV-transit 294 332 +13% 10.5 4.1 -61% 88.17 87.96 -0% 

329 A 2 PAV-transit 49 71 +45% 56.8 21.2 -63% 20.91 19.95 -5% 

345 
A 1 PAV-transit 132 139 +5% 62.2 49.0 -21% 33.75 33.71 -0% 

B 1 PAV-transit 132 139 +5% 62.2 49.0 -21% 33.76 33.71 -0% 

360 
A 1 PAV-transit 94 105 +12% 61.7 44.0 -29% 27.49 27.02 -2% 

B 1 PAV-transit 94 105 +12% 61.7 44.0 -29% 27.57 27.10 -2% 

367 
A 1 SAV-transit 136 152 +12% 8.2 4.2 -49% 45.55 43.30 -5% 

B 1 SAV-transit 136 152 +12% 8.2 4.2 -49% 45.55 43.30 -5% 

369 A 1 PAV-transit 186 188 +1% 79.2 74.1 -6% 47.88 47.21 -1% 

445 Baseline 3 SAV-transit 142 149 +5% 25.5 18.9 -26% 74.49 68.70 -8% 

475 
Baseline 1 PAV-transit 132 140 +6% 76.7 62.1 -19% 37.69 37.56 -0% 

A 1 PAV-transit 132 140 +6% 76.7 62.1 -19% 37.69 37.56 -0% 

577 

Baseline 1 PAV-transit 147 151 +3% 62.5 60.6 -3% 34.37 33.64 -2% 

A 1 PAV-transit 147 151 +3% 62.5 60.6 -3% 34.50 33.64 -2% 

B 1 PAV-transit 147 151 +3% 62.5 60.6 -3% 34.37 33.64 -2% 

796 B 1 SAV-transit 104 122 +17% 17.1 9.3 -46% 51.25 43.75 -15% 

805 Baseline 2 SAV-transit 66 62 -6% 5.7 4.6 -19% 24.53 23.41 -5% 

809 
A 2 PAV-transit 121 144 +19% 112.4 80.4 -28% 43.41 43.00 -1% 

B 1 PAV-transit 121 134 +11% 112.9 96.9 -14% 44.60 44.35 -1% 

859 
A 1 PAV-transit 114 108 -5% 85.7 72.9 -15% 35.11 34.42 -2% 

B 2 SAV-transit 238 273 +15% 12.4 3.0 -76% 75.07 69.61 -7% 

903 B 2 SAV-transit 181 175 -3% 15.7 15.6 -1% 69.61 69.27 -0% 

961 B 1 SAV-transit 54 68 +26% 13.2 10.1 -23% 33.90 33.27 -2% 

1030 B 1 SAV-transit 71 89 +26% 21.3 17.5 -18% 50.24 49.28 -2% 

Totals by Scenario 

Baseline 

PAV-transit 279 291 +4% 139.2 122.7 -12% 72.06 71.20 -1% 

SAV-transit 208 211 +1% 31.2 23.5 -25% 99.02 92.11 -7% 

Total 487 502 +3% 170.4 146.2 -14% 171.08 163.31 -5% 

Scenario A 

PAV-transit 975 1,046 +7% 597.2 464.3 -22% 280.74 276.51 -2% 

SAV-transit 136 152 +12% 8.2 4.2 -49% 45.55 43.30 -5% 

Total 1,111 1,198 +8% 605.4 468.5 -23% 326.29 319.81 -2% 

Scenario B 

PAV-transit 574 620 +8% 372.3 309.0 -17% 168.62 167.03 -1% 

SAV-transit 1,669 1,866 +12% 145.8 91.7 -37% 633.67 603.52 -5% 

Total 2,243 2,486 +11% 518.1 400.7 -23% 802.29 770.55 -4% 

Note: AV travel distance does not include SAV deadheading distance. 
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4.5.4.6 Computational Time Analysis 

To determine the key factors affecting computational time, I systematically vary model 

inputs (i.e., household size, number of household activities, and number of PAVs) to create 

200 HAPP-AV-IT instances. For each instance, I store the computational run time and then 

regress the computational run time against the model inputs. Given that the model 

terminates some households based on the stopping criteria in this chapter, I created two 

datasets with separate dependent variables: (i) the full optimization time for households 

with 4 or fewer activities and (ii) the time to find the first feasible solution for all 200 

households. 

Table 4-14 summarizes the descriptive statistics of each dataset. For the first dataset, 

note that I use two relaxed stopping criteria: (i) 86,400 seconds (1 day) of maximum 

running time and (ii) 10% gap tolerance. The second dataset has no stopping criteria. The 

average optimization time for households with 4 or fewer activities is around 15 minutes, 

while the range is between 0.1 seconds and the maximum running time, 86,400 seconds. 

On the other hand, the first feasible solution searching time is relatively short across all 

households. 

Table 4-14: Computational Time Analysis: Descriptive Statistics 

Variable 

Fully Optimizing Time 
(138 households with four or fewer 

activities) 

First Feasible Solution Time 
(All 200 households) 

Mean Std. Dev. Min. Median Max. Mean Std. Dev. Min. Median Max. 

Runtime (sec) 904 7,424 0.1 3.0 86,400 32 184 0.1 2.3 2,424 

Household size 2.3 0.7 1 2 5 2.4 0.9 1 2 7 

Activities 2.7 1.1 1 3 4 3.8 1.9 1 4 10 

PAVs 1.9 0.7 0 2 4 1.9 0.7 0 2 4 
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In each regression model, the dependent variable is computational time, while the 

independent variables include household size, the number of activities, and the number of 

PAVs. Due to the exponential nature of the computational times (optimization time and 

first feasible solution searching time), I log-transform the dependent variables. For the 

independent variables, I use ordinal/categorical variables considering the discreteness of 

the data. 

Table 4-15 presents the multiple linear regression model estimates for the two 

datasets. The estimates for the first dataset indicate that neither the number of household 

members nor the number of PAVs explains the optimization time. However, I can infer that 

the number of activities has a statistically significant impact on the optimization time. As 

the number of activities increases, the optimization time dramatically increases. For 

example, a household with 4 activities is likely to have a runtime approximately 6 times 

longer than a household with 1 activity.  

The estimates from the second data set indicate that the number of activities and PAVs 

impact the time to obtain a feasible solution. However, it is challenging to conclude that the 

number of PAVs is a significant variable since households with 2 PAVs and 3 PAVs show no 

significant difference in computational time. On the other hand, runtime increases 

consistently as the number of activities increases, where the only exception is that the 

runtime is relatively short when the number of activities is 9. This result is because there is 

only one household with 9 activities, and the household has 3 PAVs. 

Therefore, I can conclude that the number of activities is the most critical factor in 

terms of finding the optimal solution and the first feasible solution for the HAPP-AV-IT.  
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Table 4-15: Computational Time Analysis: Log-linear Regression Model Estimation Result 

 
Fully Optimizing Time 

(Households with four or fewer activities) 
First Feasible Solution Time 

(All 200 households) 

Estimation Result 

 Coefficient Std. Error P-value Coefficient Std. Error P-value 

Constant -1.79 0.744 0.018 -2.42 0.309 0.000 

Base: 1 HH member       

2 HH members 0.10 0.644 0.882 0.05 0.280 0.869 

3 HH members -0.14 0.738 0.847 0.42 0.311 0.184 

4 HH members -0.20 0.819 0.806 0.51 0.335 0.130 

5 HH members    0.90 0.512 0.080 

6 HH members    0.30 0.587 0.609 

7 HH members    1.03 0.810 0.207 

Base: 1 Activity       

2 activities 1.19 0.472 0.013 0.92 0.222 0.000 

3 activities 2.59 0.486 0.000 1.67 0.228 0.000 

4 activities 5.66 0.473 0.000 2.37 0.220 0.000 

5 activities    3.20 0.246 0.000 

6 activities    4.08 0.247 0.000 

7 activities    4.91 0.285 0.000 

8 activities    5.74 0.360 0.000 

9 activities    3.97 0.770 0.000 

10 activities    7.37 0.751 0.000 

Base: 0 PAVs       

1 PAV 0.35 0.823 0.667 0.56 0.335 0.097 

2 PAVs 0.80 0.850 0.347 1.03 0.345 0.003 

3 PAVs 1.95 0.956 0.043 1.02 0.383 0.008 

4 PAVs 0.66 1.216 0.591 1.83 0.486 0.000 

Model Fit 

Observations 138 200 

R-squared 0.725 0.860 

Adjusted R-squared 0.701 0.845 

Log-likelihood -241.83 -205.77 
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4.5.5 Additional Activity-travel Pattern Analysis: Deadheading and PAV Parking 

I can obtain the deadheading times and distances from the sensitivity and scenario 

analyses. Figure 4-8a shows household-level PAV travel distances from the Case 1 

sensitivity analysis. In all variations, more than 40% of PAV travel distance consists of 

empty-seat travel. The large portion of deadheading is because the PAVs tend to park at 

home to avoid parking fees. If the parking fees are free or very cheap in the downtown area, 

the empty PAVs might not choose to return home. However, cheaper pricing for downtown 

parking is likely not a wise public policy decision given the inherent value of space 

downtown. Instead, planners may consider area-based congestion pricing or mileage-based 

pricing policies to mitigate the expected congestion from AV deadheading. 

Figure 4-8b shows the aggregated VKT for each mode in the Case 2 scenarios. In all 

scenarios, 32% of PAV travel distance is deadheading, which is smaller than in Case 1. 

There are several possible reasons for this. In Case 2, households have more activities to 

complete, which might increase carpooling and, therefore, decrease the number of empty 

vehicle trips back home. Also, the activity duration of some activities in Case 2 is 5 minutes, 

which allows PAV to wait curbside at activity locations for the household member(s) 

because the maximum curbside loading time is 5 minutes. 

This chapter does not calculate SAV deadheading distances. According to Henao and 

Marshall (2019), the proportion of deadheading in TNC services is nearly 40%. If I apply 

the same proportion to SAVs, VKT exceeds 9,800 km in the baseline, while the VKT 

decreases to under 9,500 km and 8,000 km in Scenarios A and B, respectively.  
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Figure 4-8: Deadheading Distance and VKT: (a) Household-level PAV Travel Distances from Case 1 
Sensitivity Analysis and (b) Aggregated VKTs (PAV and SAV) from Case 2 Scenario Analysis 

In the meantime, parking PAVs at home dramatically reduces occupancies in parking 

spaces. Figure 4-9a shows the PAV location by time of day for Case 1. Throughout all PAVs, 

only Household 3 has out-of-home parking, which amounted to 0.54 hours. Figure 4-9b 

illustrates the average PAV parking durations from the Case 2 scenarios. Even though 

Scenario B reduces 1 PAV for each household from Scenario A, the out-of-home PAV 

operating time does not exceed 2 h/day on average. 
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Figure 4-9: PAV Parking Duration by Location: (a) Household-level PAV Parking Durations from Case 1 
Sensitivity Analysis and (b) Aggregated Parking Durations from Case 2 Scenario Analysis (HH: 
Household) 

Note that the parking duration and travel time may vary based on regional commuting 

patterns, particularly travel distance. This change in commuting patterns, in turn, affects 

the feasibility of parking the PAV at home rather than in a nearby parking space. For 

instance, if a household member travels a considerable distance from home, the PAV may 

remain parked until the activity is complete. Nevertheless, I observe that most activity-

travel choices in the case study involve parking at home to avoid parking fees, an option 

not available with conventional vehicles. However, PAVs can free up parking spaces in 

downtown areas, leading to more efficient use of urban space. 

4.6 Conclusion 

In this chapter, I introduce and formulate the HAPP-AV-IT. The HAPP-AV-IT models 

travel decisions for a household with access to AVs, consistent with household members' 

activity participation constraints as they complete daily activities. Only a few other studies 

in the literature model activity-constrained household-level travel decisions wherein the 
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household has access to AVs (Cokyasar and Larson, 2020; Correia and van Arem, 2016; 

Khayati et al., 2021a, 2021b), and of these studies, none incorporate intermodal travel.  

The HAPP-AV-IT jointly models the mode, route, and schedule decisions of all 

household members and the route and schedule decisions of all household vehicles. The 

model permits travel by PAV, SAV, walk-transit, PAV-transit, and SAV-transit. The 

incorporation of PAV-transit and SAV-transit travel represents a valuable methodological 

contribution, given the potential impacts of AVs on future transportation systems. I believe 

the HAPP-AV-IT represents the state-of-the-art in terms of capturing household-level 

activity-constrained travel in a future era of AVs, particularly for researchers, analysts, 

planners, and decision-makers interested in the potential for AVs to impact transit systems. 

This chapter includes two case studies using a fictitious but detailed multimodal 

transportation network and synthetic household-level activity participation. The two case 

studies show that: (i) AVs generate excess VKT due to deadheading, particularly from AVs 

deadheading back home to park after dropping off a household member at an activity 

location, (ii) this “parking-at-home” behavior reduces the demand for downtown parking 

spaces, and (iii) AV-based intermodal trips can reduce both VKT and household travel 

costs. The first result implies that policy or infrastructure changes are necessary to mitigate 

VKT increases from AVs in the future. Potential policies to reduce VKT include distance-

based road-user pricing and relaxing land use and zoning regulations to permit more 

housing and more land uses in urban areas. Potential infrastructure changes include 

enhancing major transit stations to more easily permit intermodal AV-transit trips and 

reducing space in urban areas dedicated to large, motorized vehicles. Improving transit 

infrastructure can further reduce household travel costs according to the third result.  
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The current study's limitations are similar to many other detailed activity-constrained 

household-level travel forecasting models (e.g., HAPP). These limitations include inflexible 

activity locations, reliance on hard time-window constraints, and challenges with model 

calibration. Another limitation of the study is that travel times are exogenous. Given the 

substantial changes in travel behavior and roadway usage that may occur due to AVs, link 

travel times are likely to change. Future research should integrate network assignment 

models with the HAPP-AV-IT. Lastly, the model requires more precise input data, including 

household activity profiles and model parameters. If the starting and ending times and the 

duration of activities are available, I can frame the time windows more accurately. 

Moreover, calibrated model parameters, such as the value of time, will provide a better 

reflection of real-world household travel patterns. Future research can consider integrating 

the model parameter calibration process into the HAPP-AV-IT model, as Chow and Recker 

(2012) demonstrated using inverse optimization. 

In terms of future research, the HAPP-AV-IT is ideal for evaluating transit network 

design alternatives and policies related to parking and pricing. In particular, HAPP-AV-IT 

can serve to evaluate alternative designs in an algorithm that seeks to find the optimal 

multimodal transit network with AVs providing first-/last-mile service. Additionally, future 

research can improve the HAPP-AV-IT model by capturing walk-only and pooling in SAVs. 

Finally, in future research, I plan to compare the results from this chapter with scenarios 

where only non-automated vehicles exist. Similarly, I plan to model the case where a 

household has a mix of automated and non-automated vehicles. 
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Chapter 5  CONCLUDING REMARKS 

5.1 Summary and Answers to Research Questions 

This dissertation forecasts the future of transportation systems with the integration of 

household AVs. The introduction of AVs has the potential to improve traffic flow by 

reducing headway (Swaroop et al., 1994), decreasing accidents (Koopman and Wagner, 

2017), mitigating bad driving behaviors (Talebpour and Mahmassani, 2016), and even 

eliminating the need for traffic signals (Zohdy et al., 2012). However, in terms of travel 

demand, AVs may increase VMT due to more frequent trips (Harper et al., 2016), longer 

trips (Ahmed et al., 2020; Auld et al., 2018; Bansal and Kockelman, 2018; Kim et al., 2020; 

Kolarova et al., 2019; Zhong et al., 2020), mode shifts to light-duty vehicles (Huang et al., 

2020; Kröger et al., 2019), and AV deadheading/relocating. This dissertation specifically 

focuses on the impact of the latter, which arises from the assumption that individuals or 

households optimize PAV operations for their own benefit, without considering overall 

system performance. Such “selfish” vehicle operations include remote parking, returning 

home, and serving other household members. Since vehicle owners do not directly 

experience deadheading, each vehicle prioritizes minimizing generalized travel costs over 

travel time during deadheading. 

Based on the motivation above, Chapter 1 outlines three research questions aimed at: 

(i) predicting travel behaviors and patterns with PAVs, (ii) analyzing their impact on 

transportation systems, and (iii) proposing effective designs and policies to leverage PAVs 
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for mobility improvements. The following three chapters address these questions 

comprehensively. 

PAV deadheading/relocating can significantly increase VMT. The parking assignment 

model in Chapter 2 shows that remote parking can increase vehicle travel distances by 

1.38–1.51 miles per activity. Moreover, the household activity-travel routing and 

scheduling problem (HAPP-AV-IT) analyzed in Chapter 4 demonstrates that household AVs 

are more likely to return home for free parking or to serve other household members, 

resulting in deadheading accounting for 30–40% of total AV travel distance. Given that the 

deadheading proportion for TNC vehicles is nearly 40% and is known to exacerbate traffic 

congestion (Henao and Marshall, 2019), it is crucial for planners to develop policies aimed 

at reduce extra PAV travel distance. 

This dissertation suggests several potential policies to reduce VMT and traffic 

congestion. Chapter 2 explores adjustments in parking fees and parking space capacities, 

which reduce extra VMT from 1.38–1.51 miles per activity to 0.11–0.35 miles per activity. 

Chapter 3 proposes a PAV-SAV transfer system, which shows a VMT decrease of up to 

0.43% and a VHT decrease of up to 1.39% in the case study area, based on the optimal 

positioning of transfer stations. Chapter 4 suggests that encouraging intermodal trips can 

reduce both household travel costs and vehicle travel distance. The case study 

demonstrates that households utilizing intermodal trips can reduce vehicle travel distance 

by 23% and household travel costs by 5% due to the transit-based intermodal trips. 

Answering the research questions forms the core contributions of this dissertation. 

Additionally, this dissertation advances methodological progress in travel behavior 

research. First, the iterative solution approaches in Chapter 2 and Chapter 3 propose 
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robust integrated mode and route choice models that incorporate AV travel patterns. More 

importantly, the vehicle trip distribution step in Chapter 3 efficiently integrates stochastic 

PAV arrivals at transfer stations and the redistribution of travel demand from PAV trips to 

SAV trip legs via these stations. Researchers can apply this method to general park-and-

ride or other intermodal systems, extending beyond just AVs. Chapter 4 not only proposes 

a multimodal AV routing problem but also incorporates intermodal trips, which previous 

household vehicle routing problems do not consider. Given that intermodal trips 

demonstrate benefits in terms of transportation system performance, the intermodal-

related models presented in Chapter 3 and Chapter 4 will be valuable for future studies. 

5.2 Future Research Areas 

Based on the analyses in this dissertation and previous studies, I anticipate that 

exploring potential travel patterns in the AV era will remain a key issue in travel behavior 

research. However, before reaching the fully automated era, we will experience a transition 

stage with mixed use of PCVs and PAVs. Therefore, it is also important to consider both 

conventional and driverless vehicles as alternatives within households. 

In an ongoing study, I extend the HAPP-AV-IT model by adding PCV options, such as 

PCV-as-a-driver, PCV-as-a-rider, and PCV-transit intermodal trips (park-and-ride and kiss-

and-ride) to the activity-travel route and schedule choices. I implement the extended model 

in the San Diego area to analyze how travelers choose between PCV and PAV modes, and 

how these choices will alter travel patterns in the region. Figure 5-1 illustrates the routing 

and scheduling results for a household on both an activity-travel graph and the San Diego 

network. In this example, a household with two members and two PCVs undertakes six 
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activities, utilizing drive-alone, carpooling, park-and-ride, kiss-and-ride, transit, nearby 

parking, and home parking all within the same day. Using this model, the research will 

conduct a broad scenario analysis involving households with varying demographics, 

numbers of activities, and vehicle ownership levels. 

Additionally, to capture changes in traffic congestion and VHT, the research should 

incorporate traffic assignments. The new model will provide sophisticated origin-

destination pairs, enabling more accurate traffic assignments. These results will 

demonstrate how the mixed use of PCVs and PAVs affects transportation system 

performance and how travelers adjust their travel mode, route, and schedule choices 

accordingly. 

Moreover, applying dynamic traffic assignments will capture the different travel times 

and speeds on each activity-travel path. This dissertation excludes a possible PAV 

deadheading option: cruising. Cruising will heavily impact transportation system 

performance, especially when vehicles intentionally travel at low speeds to save their fuel 

and align with pickup times. Planners and researchers should analyze the effects of cruising 

and develop appropriate restrictions on PAV operations without destinations. 
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Figure 5-1: An Example of Household Activity Pattern in Ongoing Research: Tours on (a) Activity-travel 
Graph and (b) San Diego Network 
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Traffic assignments will also enable us to capture more diverse travel patterns with 

PAVs. Another future research topic involves the concept of dynamic mode shift, where 

travelers can change their mode during their trips. For example, if travelers encounter 

unexpected severe traffic congestion while traveling in a PAV, they could redirect the 

vehicle to a nearby metro station or BRT stop and transfer to a rapid transit mode. The 

“abandoned” vehicle would then start an unplanned deadheading trip. This behavior is 

already possible when a traveler is using a shared mobility vehicle (e.g., taxi or TNC) or a 

bus in mixed traffic. PAV travelers will also be able to choose this option since the vehicle 

can operate autonomously. Figure 5-2 illustrates dynamic mode shifts to rapid transit from 

various travel modes. However, dynamic mode shifts with PAVs could worsen traffic 

congestion, as the number of vehicles on the road remains unchanged while the traveler 

adds more load to the transit system. 

 

Figure 5-2: Dynamic Mode Shift 

It is critical to investigate the performance of AVs on the road system. Although this 

dissertation does not account for efficiency improvements brought by AVs, future research 

should incorporate new road capacity parameters that reflect AV performance. 

Homogeneous vehicle movements, connected AV fleet operations, and dynamic operations 

are expected to significantly increase road capacities. Therefore, incorporating these 

factors into future studies will enable more precise forecasting and help identify 

equilibrium points in travel choices. 
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Exploring travel behavior with PAVs goes beyond macroscopic aspects. The concept of 

“driverlessness” will lead to dramatic changes in building and site designs, road alignments, 

and land use. While the results in this dissertation indicate a significant decrease in parking 

demand in urban cores, I anticipate that the space demand for pickup and drop-off will 

increase, much like the current use of TNC vehicles for individual travel. Figure 5-3 

graphically compares between the current parking-and-walking system with PCVs and 

pickup-and-drop-off system with PAVs (and shared mobility vehicles). Designers should 

account for arrival and departure rates at buildings and facilities to prevent serious 

spillbacks onto local streets or arterials. 

 

Figure 5-3: PAV Pickup and Drop-off (PUDO) Point Delay in a Facility 

Additionally, PAV pickup zones require multiple slots to avoid long waiting lines. 

Considering the uncertainties in individuals’ arrival times, vehicle-finding times, and 

boarding times, spillback could become a significant issue in the future (see Figure 5-4). 

Thus, researchers need to investigate PAV travel patterns from both microscopic traffic 

control and macroscopic travel demand forecasting perspectives. 
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Figure 5-4: Spillbacks Due to Vehicle/Passenger Delays in a Facility 

The era of AV is approaching. As a transportation planner and engineer, I am eager to 

continue investigating and forecasting our future travel patterns and contribute to the 

effective utilization of this emerging technology. 

  



 

193 
 

REFERENCES 

 

Abidi, S., Krichen, S., Alba, E., Molina, J.M., 2015. A new heuristic for solving the parking 

assignment problem, in: Procedia Computer Science. Elsevier B.V., pp. 312–321. 

https://doi.org/10.1016/j.procs.2015.08.132 

Ahmed, T., Hyland, M., Sarma, N.J.S., Mitra, S., Ghaffar, A., 2020. Quantifying the Employment 

Accessibility Benefits of Shared Automated Vehicle Mobility Services: Consumer 

Welfare Approach Using Logsums. Transp. Res. Part Policy Pract. 141, 221–247. 

https://doi.org/10.1016/j.tra.2020.09.002 

American Automobile Association, 2020. Your Driving Costs [WWW Document]. URL 

https://newsroom.aaa.com/wp-content/uploads/2020/12/Your-Driving-Costs-2020-

Fact-Sheet-FINAL-12-9-20-2.pdf (accessed 12.15.21). 

An, S., Nam, D., Jayakrishnan, R., 2019. Impacts of Integrating Shared Autonomous Vehicles 

into a Peer-to-Peer Ridesharing System. Procedia Comput. Sci. 151, 511–518. 

https://doi.org/10.1016/j.procs.2019.04.069 

Anderson, J.M., Kalra, N., Stanley, K.D., Sorensen, P., Samaras, C., Oluwatola, O.A., 2016. 

Autonomous Vehicle Technology: A Guide for Policymakers. 

Auld, J., Verbas, O., Javanmardi, M., Rousseau, A., 2018. Impact of Privately-Owned Level 4 

CAV Technologies on Travel Demand and Energy. Procedia Comput. Sci. 130, 914–919. 

https://doi.org/10.1016/j.procs.2018.04.089 

Axhausen, K.W., Polak, J.W., 1991. Choice of parking: Stated preference approach. 



 

194 
 

Bahk, Y., Baek, K., Chung, J.-H., 2021. A Practical Method to Adjust Bus Routes Based on 

Transfer Penalties Using Trip-Chain Data and SP Survey, in: Transportation Research 

Board 100th Annual Meeting. 

Bahk, Y., Hyland, M., 2024. Household Activity Pattern Problem with Automated Vehicle-

enabled Intermodal Trips. http://dx.doi.org/10.2139/ssrn.4736532 

Bahk, Y., Hyland, M., An, S., 2024. Re-envisioning the Park-and-Ride concept for the 

automated vehicle (AV) era with Private-to-Shared AV transfer stations. Transp. Res. 

Part Policy Pract. 181, 104009. https://doi.org/10.1016/j.tra.2024.104009 

Bahk, Y., Hyland, M.F., An, S., 2022. Private Autonomous Vehicles and Their Impacts on 

Near-Activity Location Travel Patterns: Integrated Mode Choice and Parking 

Assignment Model. Transp. Res. Rec. J. Transp. Res. Board. 

https://doi.org/10.1177/03611981221077982 

Balding, M., Whinery, T., Leshner, E., Womeldorff, E., 2019. Estimated TNC Share of VMT in 

Six US Metropolitan Regions (Revision 1). 

Bansal, P., Kockelman, K.M., 2018. Are We Ready to Embrace Connected and Self-Driving 

Vehicles? A Case Study of Texans. Transportation 45, 641–675. 

https://doi.org/10.1007/s11116-016-9745-z 

Bischoff, J., Nagel, K., 2017. Integrating explicit parking search into a transport simulation. 

Procedia Comput. Sci. 109, 881–886. https://doi.org/10.1016/j.procs.2017.05.414 

Boyles, S.D., Lownes, N.E., Unnikrishnan, A., 2022. Transportation Network Analysis 

Volume I: Static and Dynamic Traffic Assignment. 



 

195 
 

Caltrans, 2021. Transportation Economics [WWW Document]. URL 

https://dot.ca.gov/programs/transportation-planning/economics-data-

management/transportation-economics (accessed 12.15.21). 

Chakraborty, S., Rey, D., Levin, M.W., Waller, S.T., 2021. Freeway network design with 

exclusive lanes for automated vehicles under endogenous mobility demand. Transp. 

Res. Part C Emerg. Technol. 133. https://doi.org/10.1016/j.trc.2021.103440 

Chen, T.D., Kockelman, K.M., 2016. Management of a Shared Autonomous Electric Vehicle 

Fleet: Implications of Pricing Schemes. Transp. Res. Rec. 2572, 37–46. 

https://doi.org/10.3141/2572-05 

Childress, S., Nichols, B., Charlton, B., Coe, S., 2015. Using an activity-based model to explore 

the potential impacts of automated vehicles. Transp. Res. Rec. 2493, 99–106. 

https://doi.org/10.3141/2493-11 

Chow, J.Y.J., 2014. Activity-based travel scenario analysis with routing problem 

reoptimization. Comput.-Aided Civ. Infrastruct. Eng. 29, 91–106. 

https://doi.org/10.1111/mice.12023 

Chow, J.Y.J., Djavadian, S., 2015. Activity-based market equilibrium for capacitated 

multimodal transport systems. Transp. Res. Part C Emerg. Technol. 59, 2–18. 

https://doi.org/10.1016/j.trc.2015.04.028 

Chow, J.Y.J., Nurumbetova, A.E., 2015. A multi-day activity-based inventory routing model 

with space–time–needs constraints. Transp. Transp. Sci. 11, 243–269. 

https://doi.org/10.1080/23249935.2014.958120 



 

196 
 

Chow, J.Y.J., Recker, W.W., 2012. Inverse optimization with endogenous arrival time 

constraints to calibrate the household activity pattern problem. Transp. Res. Part B 

Methodol. 46, 463–479. https://doi.org/10.1016/j.trb.2011.11.005 

Cokyasar, T., Larson, J., 2020. Optimal assignment for the single-household shared 

autonomous vehicle problem. Transp. Res. Part B Methodol. 141, 98–115. 

https://doi.org/10.1016/j.trb.2020.09.003 

Conway, M., Salon, D., King, D., 2018. Trends in Taxi Use and the Advent of Ridehailing, 

1995–2017: Evidence from the US National Household Travel Survey. Urban Sci. 2, 79. 

https://doi.org/10.3390/urbansci2030079 

Correia, G.H. de A., Looff, E., van Cranenburgh, S., Snelder, M., van Arem, B., 2019. On the 

impact of vehicle automation on the value of travel time while performing work and 

leisure activities in a car: Theoretical insights and results from a stated preference 

survey. Transp. Res. Part Policy Pract. 119, 359–382. 

https://doi.org/10.1016/j.tra.2018.11.016 

Correia, G.H. de A., van Arem, B., 2016. Solving the User Optimum Privately Owned 

Automated Vehicles Assignment Problem (UO-POAVAP): A model to explore the 

impacts of self-driving vehicles on urban mobility. Transp. Res. Part B Methodol. 87, 

64–88. https://doi.org/10.1016/j.trb.2016.03.002 

Cortés, C.E., Matamala, M., Contardo, C., 2010. The pickup and delivery problem with 

transfers: Formulation and a branch-and-cut solution method. Eur. J. Oper. Res. 200, 

711–724. https://doi.org/10.1016/j.ejor.2009.01.022 



 

197 
 

Cortright, J., 2017. What price for autonomous vehicles? [WWW Document]. City Obs. URL 

https://cityobservatory.org/what-price_autonomous_vehicles/ (accessed 7.29.23). 

Cramer, J., Krueger, A.B., 2016. Disruptive Change in the Taxi Business: The Case of Uber. 

Am. Econ. Rev. 106, 177–182. https://doi.org/10.1257/aer.p20161002 

Dandl, F., Engelhardt, R., Hyland, M., Tilg, G., Bogenberger, K., Mahmassani, H.S., 2021. 

Regulating Mobility-on-Demand Services: Tri-level Model and Bayesian Optimization 

Solution Approach. Transp. Res. Part C Emerg. Technol. 125. 

https://doi.org/10.1016/j.trc.2021.103075 

Doug H, 2022. Uber Pool vs Express Pool: What’s the Difference? [WWW Document]. URL 

https://www.ridesharingdriver.com/whats-uberpool-shared-ride-cheaper-than-

other-uber-services/ (accessed 4.15.23). 

Downtown Center Business Improvement District, 2022. Park Smart in DTLA [WWW 

Document]. URL https://downtownla.com/maps/getting-around/parking (accessed 

5.5.23). 

Fan, Y., Ding, J., Liu, H., Wang, Y., Long, J., 2022. Large-scale multimodal transportation 

network models and algorithms-Part I: The combined mode split and traffic 

assignment problem. Transp. Res. Part E Logist. Transp. Rev. 164. 

https://doi.org/10.1016/j.tre.2022.102832 

Farhan, B., Murray, A.T., 2008. Siting Park-and-Ride Facilities Using a Multi-Objective 

Spatial Optimization Model. Comput. Oper. Res. 35, 445–456. 

https://doi.org/10.1016/j.cor.2006.03.009 



 

198 
 

Feeney, B.P., 1989. A review of the impact of parking policy measures on travel demand. 

Transp. Plan. Technol. 13, 229–244. https://doi.org/10.1080/03081068908717403 

Fu, Z., Chow, J.Y.J., 2022. The pickup and delivery problem with synchronized en-route 

transfers for microtransit planning. Transp. Res. Part E Logist. Transp. Rev. 157, 

102562. https://doi.org/10.1016/j.tre.2021.102562 

Gan, L.P., Recker, W., 2013. Stochastic preplanned household activity pattern problem with 

uncertain activity participation (SHAPP). Transp. Sci. 47, 439–454. 

https://doi.org/10.1287/trsc.1120.0426 

Gan, L.P., Recker, W., 2008. A mathematical programming formulation of the household 

activity rescheduling problem. Transp. Res. Part B Methodol. 42, 571–606. 

https://doi.org/10.1016/j.trb.2007.11.004 

Garsten, E., 2024. What Are Self-Driving Cars? The Technology Explained. Forbes. 

Gillen, D.W., 1978. PARKING POLICY, PARKING LOCATION DECISIONS AND THE 

DISTRIBUTION OF CONGESTION*, Transportation. 

Han, Y., Shan, J., Wang, M., Yang, G., 2017. Optimization design and evaluation of parking 

route based on automatic assignment mechanism of parking lot. Adv. Mech. Eng. 9. 

https://doi.org/10.1177/1687814017712416 

Harb, M., Stathopoulos, A., Shiftan, Y., Walker, J.L., 2021. What do we (Not) know about our 

future with automated vehicles? Transp. Res. Part C Emerg. Technol. 123. 

https://doi.org/10.1016/j.trc.2020.102948 



 

199 
 

Harper, C.D., Hendrickson, C.T., Mangones, S., Samaras, C., 2016. Estimating Potential 

Increases in Travel with Autonomous Vehicles for the Non-Driving, Elderly and People 

with Travel-Restrictive Medical Conditions. Transp. Res. Part C Emerg. Technol. 72, 1–

9. https://doi.org/10.1016/j.trc.2016.09.003 

Harper, C.D., Hendrickson, C.T., Samaras, C., 2018. Exploring the Economic, Environmental, 

and Travel Implications of Changes in Parking Choices due to Driverless Vehicles: An 

Agent-Based Simulation Approach. J. Urban Plan. Dev. 144, 04018043. 

https://doi.org/10.1061/(ASCE)UP.1943-5444.0000488 

Helling, B., 2023. Uber Cost: Fare Pricing, Rates, and Cost Estimates [WWW Document]. 

Ridester. URL https://www.ridester.com/uber-rates-cost/ (accessed 7.30.23). 

Henao, A., Marshall, W.E., 2019. The Impact of Ride-Hailing on Vehicle Miles Traveled. 

Transportation 46, 2173–2194. https://doi.org/10.1007/s11116-018-9923-2 

Huang, Y., Kockelman, K.M., Quarles, N., 2020. How Will Self-Driving Vehicles Affect U.S. 

Megaregion Traffic? The Case of the Texas Triangle. Res. Transp. Econ. 84, 101003. 

https://doi.org/10.1016/j.retrec.2020.101003 

Huang, Y., Kockelman, K.M., Truong, L.T., 2021. SAV Operations on a Bus Line Corridor: 

Travel Demand, Service Frequency, and Vehicle Size. J. Adv. Transp. 2021. 

https://doi.org/10.1155/2021/5577500 

Kaddoura, I., Bischoff, J., Nagel, K., 2020. Towards Welfare Optimal Operation of Innovative 

Mobility Concepts: External Cost Pricing in a World of Shared Autonomous Vehicles. 

Transp. Res. Part Policy Pract. 136, 48–63. https://doi.org/10.1016/j.tra.2020.03.032 



 

200 
 

Kang, J.E., Recker, W., 2013. The location selection problem for the household activity 

pattern problem. Transp. Res. Part B Methodol. 55, 75–97. 

https://doi.org/10.1016/j.trb.2013.05.003 

Kang, J.E., Recker, W.W., 2014. Measuring the inconvenience of operating an alternative fuel 

vehicle. Transp. Res. Part Transp. Environ. 27, 30–40. 

https://doi.org/10.1016/j.trd.2013.12.003 

Karamychev, V., Van Reeven, P., 2011. Park-and-Ride: Good for the city, Good for the 

Region? Reg. Sci. Urban Econ. 41, 455–464. 

https://doi.org/10.1016/j.regsciurbeco.2011.03.002 

Khayati, Y., Kang, J.E., 2019. Comprehensive scenario analysis of household use of battery 

electric vehicles. Int. J. Sustain. Transp. 14, 85–100. 

https://doi.org/10.1080/15568318.2018.1529210 

Khayati, Y., Kang, J.E., 2015. Modeling intra-household interactions for the use of battery 

electric vehicles, in: Transportation Research Board 94th Annual Meeting. 

Khayati, Y., Kang, J.E., Karwan, M., Murray, C., 2021a. Household use of autonomous vehicles 

with ride sourcing. Transp. Res. Part C Emerg. Technol. 125. 

https://doi.org/10.1016/j.trc.2021.102998 

Khayati, Y., Kang, J.E., Karwan, M., Murray, C., 2021b. Household Activity Pattern Problem 

with Autonomous Vehicles. Netw. Spat. Econ. 21, 609–637. 

https://doi.org/10.1007/s11067-021-09537-6 



 

201 
 

Kim, S.H., Mokhtarian, P.L., Circella, G., 2020. Will Autonomous Vehicles Change Residential 

Location and Vehicle Ownership? Glimpses from Georgia. Transp. Res. Part Transp. 

Environ. 82, 102291. https://doi.org/10.1016/j.trd.2020.102291 

Kolarova, V., Steck, F., Bahamonde-Birke, F.J., 2019. Assessing the Effect of Autonomous 

Driving on Value of Travel Time Savings: A Comparison between Current and Future 

Preferences. Transp. Res. Part Policy Pract. 129, 155–169. 

https://doi.org/10.1016/j.tra.2019.08.011 

Koopman, P., Wagner, M., 2017. Autonomous Vehicle Safety: An Interdisciplinary Challenge. 

IEEE Intell. Transp. Syst. Mag. 9, 90–96. https://doi.org/10.1109/MITS.2016.2583491 

Kröger, L., Kuhnimhof, T., Trommer, S., 2019. Does Context Matter? A Comparative Study 

Modelling Autonomous Vehicle Impact on Travel Behaviour for Germany and the USA. 

Transp. Res. Part Policy Pract. 122, 146–161. 

https://doi.org/10.1016/j.tra.2018.03.033 

Levin, M.W., Boyles, S.D., 2015. Effects of autonomous vehicle ownership on trip, mode, and 

route choice. Transp. Res. Rec. 2493, 29–38. https://doi.org/10.3141/2493-04 

Levinson, D., 2017. On the Differences between Autonomous, Automated, Self-driving, and 

Driverless Cars. David Levinson Transp. URL 

https://transportist.org/2017/06/29/on-the-differences-between-autonomous-

automated-self-driving-and-driverless-

cars/#:~:text=In%20SAE%20terms%2C%20driverless%20is,that%20an%20autono

mous%20car%20has. (accessed 9.7.24). 



 

202 
 

Liang, X., Correia, G.H.D.A., Van Arem, B., 2016. Optimizing the service area and trip 

selection of an electric automated taxi system used for the last mile of train trips. 

Transp. Res. Part E Logist. Transp. Rev. 93, 115–129. 

https://doi.org/10.1016/j.tre.2016.05.006 

Liu, J., Kang, J.E., Zhou, X., Pendyala, R., 2018. Network-oriented household activity pattern 

problem for system optimization. Transp. Res. Part C Emerg. Technol. 94, 250–269. 

https://doi.org/10.1016/j.trc.2017.09.006 

Liu, R., Pendyala, R.M., Polzin, S., 1997. Assessment of Intermodal Transfer Penalties Using 

Stated Preference Data. Transp. Res. Rec. J. Transp. Res. Board 1607, 74–80. 

https://doi.org/10.3141/1607-11 

Liu, Z., Chen, X., Meng, Q., Kim, I., 2018. Remote Park-and-Ride Network Equilibrium Model 

and Its Applications. Transp. Res. Part B Methodol. 117, 37–62. 

https://doi.org/10.1016/j.trb.2018.08.004 

Masson, R., Lehuédé, F., Péton, O., 2014. The Dial-A-Ride Problem with Transfers. Comput. 

Oper. Res. 41, 12–23. https://doi.org/10.1016/j.cor.2013.07.020 

Menon, N., Barbour, N., Zhang, Y., Pinjari, A.R., Mannering, F., 2019. Shared autonomous 

vehicles and their potential impacts on household vehicle ownership: An exploratory 

empirical assessment. Int. J. Sustain. Transp. 13, 111–122. 

https://doi.org/10.1080/15568318.2018.1443178 

Millard-Ball, A., 2019. The autonomous vehicle parking problem. Transp. Policy 75, 99–108. 

https://doi.org/10.1016/j.tranpol.2019.01.003 



 

203 
 

Muscad, O., 2023. Autonomous vs Automated vs Self-Driving: A Comparison Guide [WWW 

Document]. Natl. Highw. Traffic Saf. Adm. URL 

https://datamyte.com/blog/autonomous-vehicle/ (accessed 9.7.24). 

Najmi, A., Rey, D., Waller, S.T., Rashidi, T.H., 2020. Model formulation and calibration 

procedure for integrated multi-modal activity routing and network assignment 

models. Transp. Res. Part C Emerg. Technol. 121. 

https://doi.org/10.1016/j.trc.2020.102853 

Nurul Habib, K.M., Morency, C., Trépanier, M., 2012. Integrating parking behaviour in 

activity-based travel demand modelling: Investigation of the relationship between 

parking type choice and activity scheduling process. Transp. Res. Part Policy Pract. 46, 

154–166. https://doi.org/10.1016/j.tra.2011.09.014 

Ortega, J., Hamadneh, J., Esztergár-Kiss, D., Tóth, J., 2020a. Simulation of the Daily Activity 

Plans of Travelers Using the Park-and-Ride System and Autonomous Vehicles: Work 

and Shopping Trip Purposes. Appl. Sci. 10, 2912. 

https://doi.org/10.3390/APP10082912 

Ortega, J., Tóth, J., Péter, T., 2020b. Mapping the Catchment Area of Park and Ride Facilities 

within Urban Environments. ISPRS Int. J. Geo-Inf. 9, 501. 

https://doi.org/10.3390/ijgi9090501 

Parkhurst, G., 2000. Influence of Bus-Based Park and Ride Facilities on Users’ Car Traffic. 

Transp. Policy 7, 159–172. 



 

204 
 

Parkhurst, G., 1995. Park and Ride: Could It Lead to an Increase in Car Traffic? Transp. 

Policy 2, 15–23. 

Parkopedia, 2021. Parkopedia [WWW Document]. URL https://www.parkopedia.com 

(accessed 11.26.21). 

Pineda, C., Cortés, C.E., Jara-Moroni, P., Moreno, E., 2016. Integrated Traffic-Transit 

Stochastic Equilibrium Model with Park-and-Ride Facilities. Transp. Res. Part C Emerg. 

Technol. 71, 86–107. https://doi.org/10.1016/j.trc.2016.06.021 

Pinto, H.K.R.F., Hyland, M.F., Mahmassani, H.S., Verbas, I.Ö ., 2020. Joint design of 

multimodal transit networks and shared autonomous mobility fleets. Transp. Res. Part 

C Emerg. Technol. 113, 2–20. https://doi.org/10.1016/j.trc.2019.06.010 

Pratt, R.H., Evans IV, J.E., 2004. Bus Routing and Coverage, Traveler Response to 

Transportation System Changes Handbook. National Academies of Sciences, 

Engineering, and Medicine. 

Recker, W.W., 1995. The household activity pattern problem: General formulation and 

solution. Transp. Res. Part B Methodol. 29, 61–77. https://doi.org/10.1016/0191-

2615(94)00023-S 

Resource Systems Group, 2020. SANDAG Travel Model Enhancements to Support 2021 

Long-Range Transportation Plan. 

Sheffi, Y., 1985. Urban Transportation Networks: Equilibrium Analysis with Mathematical 

Programming Methods. Prentice-Hall, Inc., Englewood Cliffs, NJ. 



 

205 
 

Shirgaokar, M., Deakin, E., 2005. Study of Park-and-Ride Facilities and Their Use in the San 

Francisco Bay Area of California. Transp. Res. Rec. J. Transp. Res. Board 1927, 46–54. 

Singleton, P.A., 2019. Discussing the “positive utilities” of autonomous vehicles: will 

travellers really use their time productively? Transp. Rev. 39, 50–65. 

https://doi.org/10.1080/01441647.2018.1470584 

Solomon, M.M., Derosiers, J., 1988. Survey Paper - Time Window Constrained Routing and 

Scheduling Problems. Transp. Sci. 22, 1–13. https://doi.org/10.1287/trsc.22.1.1 

Southern California Association of Governments, 2020. 2016 Regional Travel Demand 

Model and Model Validation. Southern California Association of Governments. 

Spillar, R.J., 1997. Park-and-Ride Planning and Design Guidelines. 

Swaroop, D., Hedrick, J.K., Chien, C.C., Ioannou, P., 1994. A Comparision of Spacing and 

Headway Control Laws for Automatically Controlled Vehicles. Veh. Syst. Dyn. 23, 597–

625. https://doi.org/10.1080/00423119408969077 

Talebpour, A., Mahmassani, H.S., 2016. Influence of connected and autonomous vehicles on 

traffic flow stability and throughput. Transp. Res. Part C Emerg. Technol. 71, 143–163. 

https://doi.org/10.1016/j.trc.2016.07.007 

US Department of Transportation, 2016. The Value of Travel Time Savings: Departmental 

Guidance for Conducting Economic Evaluations Revision 2 (2016 Update). 

Waraich, R., Axhausen, K., 2012. Agent-based parking choice model. Transp. Res. Rec. 39–

46. https://doi.org/10.3141/2319-05 



 

206 
 

Wardman, M., 2004. Public transport values of time. Transp. Policy 11, 363–377. 

https://doi.org/10.1016/j.tranpol.2004.05.001 

Xu, Z., Kang, J.E., Chen, R., 2018. A random utility based estimation framework for the 

household activity pattern problem. Transp. Res. Part Policy Pract. 114, 321–337. 

https://doi.org/10.1016/j.tra.2018.01.036 

Young, W., Thompson, R.G., Taylor, M.A.P., 1991. A review of urban car parking models: 

Foreign summaries. Transp. Rev. 11, 63–84. 

https://doi.org/10.1080/01441649108716773 

Yuan, D., 2014. Incorporating Individual Activity Arrival and Duration Preferences within a 

Time-of-day Travel Disutility Formulation of the Household Activity Pattern Problem 

(HAPP). University of California, Irvine. 

Zhang, W., Guhathakurta, S., Khalil, E.B., 2018. The impact of private autonomous vehicles 

on vehicle ownership and unoccupied VMT generation. Transp. Res. Part C Emerg. 

Technol. 90, 156–165. https://doi.org/10.1016/j.trc.2018.03.005 

Zhao, Y., Kockelman, K.M., Asce, M., 2018. Anticipating the Regional Impacts of Connected 

and Automated Vehicle Travel in Austin, Texas. 

https://doi.org/10.1061/(ASCE)UP.1943 

Zhong, H., Li, W., Burris, M.W., Talebpour, A., Sinha, K.C., 2020. Will Autonomous Vehicles 

Change Auto Commuters’ Value of Travel Time? Transp. Res. Part Transp. Environ. 83, 

102303. https://doi.org/10.1016/j.trd.2020.102303 



 

207 
 

Zhou, Y., Li, Y., Hao, M., Yamamoto, T., 2019. A System of Shared Autonomous Vehicles 

Combined with Park-and-Ride in Residential Areas. Sustainability 11, 3113. 

https://doi.org/10.3390/su11113113 

Zohdy, I.H., Kamalanathsharma, R.K., Rakha, H., 2012. Intersection management for 

autonomous vehicles using iCACC, in: 2012 15th International IEEE Conference on 

Intelligent Transportation Systems. Presented at the 2012 15th International IEEE 

Conference on Intelligent Transportation Systems - (ITSC 2012), IEEE, Anchorage, AK, 

USA, pp. 1109–1114. https://doi.org/10.1109/ITSC.2012.6338827 

 




