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ABSTRACT OF THE DISSERTATION

Optimal Hedging Under Time-Scaled Fractional Ornstein-Uhlenbeck Volatility

By

Guangchu Yan

Doctor of Philosophy in Mathematics
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Professor Knut Sølna, Chair

In recent years, there has been growing interest in modeling volatility as a stochastic process

driven by a non-Markovian process, due to empirical evidence showing that the autocorre-

lation function of volatility decays as a power function. This paper investigates the use of a

time-scaled fractional Ornstein-Uhlenbeck process to model volatility and applies this model

to derive an optimal delta hedging strategy. By incorporating non-Markovian processes into

our model, we aim to provide insights into the behavior of volatility in financial markets and

explore potential benefits for option pricing and risk management strategies.
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Chapter 1

Introduction

In this chapter, we review previous work on option pricing. The Black-Scholes model, in-

troduced in the 1970s, is a major breakthrough in the field, but its major weakness is the

assumption of constant volatility. The local volatility model, which assumes the volatility

is a deterministic function of time and underlying asset price, and the stochastic volatility

model, which assumes the volatility is a stochastic process, are two major approaches to re-

vising the Black-Scholes model. The multiscale stochastic volatility model, introduced in [8]

and [9], assumes the volatility is driven by two diffusion processes, one fast-varying and one

slow-varying. The authors used perturbation methods to find an asymptotic pricing formula

to revise the Black-Scholes model. However, such perturbation pricing results are based on

the Markov property of diffusion processes, which may need certain relaxation according

to some evidence in the market. This brings the idea of using fractional Brownian motion

or fractional Ornstein-Uhlenbeck process to drive the volatility, which will be introduced in

section 1.3.
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1.1 Black-Scholes Model

The Black-Scholes model is a seminal contribution to the theory and practice of option

pricing. This model posits a semi-martingale framework for the stock price Xt, which is

driven by a standard Brownian motion Wt with constant volatility σ:

dXt = rXtdt+ σXtdWt (1.1)

Under a pricing measure P∗ obtained via the Girsanov theorem, the option price at time t

with payoff function h(x) can be expressed as a discounted conditional expectation, given

by

P (t,Xt) = e−r(T−t)E∗[h(XT )|Ft] (1.2)

The Feynman-Kac formula is used to solve the partial differential equation subject to the

boundary condition that P (T, x) = h(x):

∂P

∂t
+

1

2
σ2x2

∂2P

∂x2
+ rx

∂P

∂x
− rP = 0 (1.3)

We note that the use of the Feymann-Kac formula requires the Markov property of such Xt

as a diffusion process. This PDE can be solved by Fourier Transform and the solution for

h(x) = max(x−K, 0), where K is the strike price of the option, is the Black-Scholes formula

for call option:

C(Xt, t) = XtN(d1)−Ke−r(T−t)N(d2) (1.4)

where N(d) is the CDF of the standard normal distribution, r is the risk-free interest rate,

T − t is the time to maturity, and d1 and d2 are defined as:

d1 =
log(x/K) + (r + σ2/2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t (1.5)

2



1.2 Multiscale Stochastic Volatility Model

The multiscale stochastic volatility model, as introduced in [8] and [9], uses asymptotic

analysis with two time scales ϵ and δ, which are referred to as the fast scale and slow scale,

respectively. The model defines the underlying stock price Xt and employs two diffusion

processes Yt and Zt to drive the volatility.

dXt = µ(Yt, Zt)dt+ f(Yt, Zt)XtdW
(0)
t (1.6)

dYt =
1

ϵ
α(Yt)dt+

1√
ϵ
β(Yt)dW

(1)
t (1.7)

dZt = δc(Zt)dt+
√
δg(Zt)dW

(2)
t (1.8)

where the volatility f(y, z) is a positive function, smooth in z and such that f 2(·, z) is

integrable with respect to the invariant distribution of Y . When ϵ is small, Yt represents a

fast-fluctuating volatility process. Such ϵ corresponds to the short mean-reversion time scale

of process Yt. When δ is small, Zt represents a slow-fluctuating volatility process. Such δ

corresponds to the long time scale 1/δ of process Zt. Under the risk-neutral pricing measure

P∗, the price evolution Xt is determined using the multi-scale Girsanov theorem:

dXt = rXtdt+ f(Yt, Zt)XtdW
(0)
t (1.9)

dYt =

(
1

ϵ
α(Yt)−

1√
ϵ
β(Yt)Λ1(Yt, Zt)

)
dt+

1√
ϵ
β(Yt)dW

(1)∗
t (1.10)

dZt =
(
δc(Zt)−

√
δg(Zt)Λ2(Yt, Zt)

)
dt+

√
δg(Zt)dW

(2)∗
t (1.11)

3



where the P∗-standard Brownian motions
(
W

(0)∗
t ,W

(1)∗
t ,W

(2)∗
t

)
are correlated as follows:

d < W (0)∗,W (1)∗ >t = ρ1dt (1.12)

d < W (0)∗,W (2)∗ >t = ρ2dt (1.13)

d < W (1)∗,W (2)∗ >t = ρ12dt (1.14)

where |ρ1| < 1, |ρ2| < 1, |ρ12| < 1, and 1 + 2ρ1ρ2ρ12 − ρ21 − ρ22 − ρ212 > 0, in order to

ensure positive definiteness of the covariance matrix of the three Brownian motions. By

Ito’s Lemma, we deduce that:

Xt = X0exp

{∫ t

0

(
r − 1

2
f 2(Ys, Zs)

)
ds+

∫ t

0

f(Ys, Zs)dW
(0)∗
s

}
(1.15)

By first-order perturbation expansion, the main result of [8] and [9] is the following: the

option price P (t,Xt, Yt, Zt) depends on variables (r, f, α, β, c, g,Λ1,Λ2) can be approximated

by

P̃ ϵ,δ = PBS + (T − t)

[
V δ
0 (z)

∂

∂σ
+ V δ

1 (z)D1

(
∂

∂σ

)
+ V ϵ

2 (z)D2 + V ϵ
3 (z)D1D2

]
PBS (1.16)

where T is the maturity time for European option, PBS is the Black-Scholes model price

(1.4), Dk = xk ∂k

∂xk and V δ
0 (z),V

δ
1 (z), V

ϵ
2 (z) are groups of market parameters.

1.3 Fractional Brownian Motion and Fractional Ornstein-

Uhlenbeck Process

Recent empirical evidence suggests that the auto-correlation function of volatility does not

decay exponentially as expected in Markov processes, but rather follows a power decay. To

4



address this, we introduce two non-Markov processes in this section: fractional Brownian

motion and fractional Ornstein-Uhlenbeck process.

1.3.1 Fractional Brownian Motion

Definition 1.1. A fractional Brownian motion (fBM) is a zero mean Gaussian process BH
t

for H ∈ (0, 1), called the Hurst exponent, and σH a constant with covariance property:

E
[
BH

t B
H
s

]
=
σ2
H

2
(|t2H |+ |s|2H − |t− s|2H)

where

σ2
H =

1

Γ(2H + 1) sin(πH)

It has an integral representation:

BH
t =

1

Γ(H + 1/2)

∫
R
(t− s)

H−1/2
+ − (−s)H−1/2

+ dWs

where Wt is a standard Brownian motion.

Fractional Brownian motion has the following properties

• BH
0 = 0 and E[BH

t ] = 0 for all t ≥ 0

• BH has homogeneous increments, i.e. BH
t+s −BH

s has the same law of BH
t for s, t ≥ 0

• BH is a Gaussian process and E[(BH
t )2] = t2H , t ≥ 0 for all H.

• BH has continuous trajectories.

Note that the fractional Brownian motion is not a martingale, not a Markov process, nor a

stationary process. Note also that when H = 1/2, it is standard Brownian motion. By using

5



Figure 1.1: This picture shows a sample path of short-range dependent fractional Brownian
motion.

the fractional Brownian motion, the roughness or the smoothness is described mathematically

as short-range and long-range dependence:

Definition 1.2 (Long-range dependence). A stationary process Xt exhibits long-range de-

pendence if the autocovariance functions ρ(s) := cov(Xt, Xt+s) satisfy:

lim
s−→∞

ρ(s)

cs−α
= 1

for some constant c and α ∈ (0, 1).

Definition 1.3 (Short-range dependence). A stationary process Xt exhibits short-range de-

pendence if the autocovariance functions ρ(s) := cov(Xt, Xt+s) satisfy:

lim
s−→∞

ρ(s)

cs−α
= 0

for any constant c and α ∈ (0, 1).

For fractional Brownian motion BH
t , the smoothness or roughness of its paths can be char-

acterized by the Hurst exponent H:

• When H > 1
2
, the fractional Brownian motion exhibits long-range dependence, and its

6



Figure 1.2: This picture shows a sample path of long-range dependent fractional Brownian
motion.

paths look smoother than those of standard Brownian motion. We also call such long-

range dependent process long-memory.

• When H < 1
2
, the fractional Brownian motion exhibits short-range dependence, and its

paths look rougher than those of standard Brownian motion. We also call such short-

range dependent process rough.

Note that standard Brownian motion corresponds to H = 1
2
. Moreover, a function f :

[0, T ] −→ R is said to be Hölder continuous with exponent 0 < γ ≤ 1 if there exists a constant

K such that:

|f(t)− f(s)| ≤ K|t− s|γ

We here note that for H ∈ (0, 1) the fractional Brownian motion BH
t admits a version whose

sample paths are almost surely Hölder continuous of order strictly less than H.

The roughness of market volatility has been a topic of discussion for many years, and empir-

ical studies have shown that the implied volatility’s correlation function decays as a power

function in offset. This has led to the modeling of volatility based on either long-range

or short-range dependence. Several studies have found evidence of long-memory behavior

in market volatility. For instance, in [1], the authors found that the dependencies of the

7



implied volatility can be best described as a long-memory stochastic process, which is also

accurate to the generalized long-run risk models. In [4], the authors modeled the price of the

stock using a geometric Brownian motion driven by a fractional Ornstein Uhlenbeck process

with H > 1/2, which corresponds to the long-range dependent case. Moreover, in [5], they

computed the option price based on market data and found a match, particularly when the

market is unstable. Other studies such as [3], [6], and [21] have also provided empirical

evidence and discussed long-range dependence in market volatility.

However, there is also evidence to suggest that market volatility can be rough. For instance,

[17] showed numerically that stochastic volatility often exhibits rough behavior, with a Hurst

coefficient very close to 0 at any reasonable time scale. Similarly, [10] found an asymptotic

expansion result for short-dated at-the-money volatility that contradicts non-rough volatility

models, and argues that non-rough volatility can lead to arbitrage opportunities. Further

discussion of rough volatility can be found in [11].

1.3.2 Fractional Ornstein-Uhlenbeck Process

We first introduce the standard Ornstein-Uhlenbeck process. The standard Ornstein-Uhlenbeck

process can be defined as the following integral form:

Zt =

∫ t

−∞
e−a(t−s)dWt (1.17)

for Wt a standard Brownian motion. Naturally, we define the fractional type of Ornstein-

Uhlenbeck Process as the following integral form:

ZH
t =

∫ t

−∞
e−a(t−s)dWH

t (1.18)

8



for WH
t a fractional Brownian motion. It is a zero-mean, stationary Gaussian process with

variance

σ2
ou = E[(ZH

t )2] =
1

2
a−2HΓ(2H + 1)σ2

H (1.19)

and covariance

E[ZH
t Z

H
t+s] = σ2

ou

2 sin(πH)

π

∫ ∞

0

cos(asx)
x1−2H

1 + x2
dx (1.20)

Here, stationarity refers to strong stationarity. We observe that the process has a zero mean

and the autocovariance is independent of time, and the second moment is finite for all times,

which means that this is a stationary process in the weak sense. As the process is Gaussian,

it is also strictly stationary. Instead of using the non-stationary and non-martingale integral

form in equation (1.18), we use the following Volterra-type integral form for the fractional

Ornstein-Uhlenbeck process:

ZH
t =

∫ t

−∞
K(t− s)dWs (1.21)

where

K(t) =
1

Γ(H + 1/2)

[
tH−1/2 − a

∫ t

0

(t− s)H−1/2e−asds

]
(1.22)

For H ∈ (0, 1/2) the fOU process possesses short-range correlation properties:

E[ZH
t Z

H
t+s] = σ2

ou

(
1− 1

Γ(2H + 1)
(as)2H + o((as)2H)

)
, as≪ 1 (1.23)

For H ∈ (1/2, 1) the fOU process possesses long-range correlation properties:

E[ZH
t Z

H
t+s] = σ2

ou

(
1

Γ(2H − 1)
(as)2H−2 + o((as)2H−2)

)
, as≫ 1 (1.24)

And the kernel K has the following important properties.

• K is non-negative, and K ∈ L2(0,∞). But K ∈ L1(0,∞), only if H ∈ (0, 1/2)

9



• For small times t≪ 1:

K(t) =
1

Γ(H + 1/2)

(
tH−1/2 +O(tH+1/2)

)
(1.25)

• For large times t≫ 1:

K(t) =
1

Γ(H − 1/2)

(
tH−3/2 +O(tH−5/2)

)
(1.26)

10



Chapter 2

Option Pricing by Fractional

Stochastic Volatility

This section presents three corrected price formulas. For a more detailed summary, see [15].

Specifically, [12] proposes a pricing formula based on slow-varying volatility for H ∈ (0, 1).

The second paper, [13], assumes a fast-varying volatility withH ∈ (0, 1/2), while [14] assumes

H ∈ (1/2, 1) as a complement.

For a generalized model that encompasses both slow and fast-varying volatility cases, the

pricing is described by the following stochastic differential equation

dXt = σtXtdW
∗
t (2.1)

σt = F (Zt) (2.2)

where W ∗
t is a process driven by two independent and standard Brownian motions.

W ∗
t = ρWt +

√
1− ρ2Bt (2.3)

11



F is assumed to be 1-1, smooth, positive valued with F (0) = 0 and F ′(0) = 1. In option

pricing on slow-varying volatility, we define

Zt = Zδ
t =

∫ t

−∞
Kδ(t− s)dWs, Kδ(t) = δ1/2K(δt) (2.4)

We assume F is a smooth, one-to-one, positive-valued function with positive valued derivative

such that F (0) = 0 and F ′(0) = 1. In the fast-varying case, we define:

Zt = Zϵ
t =

∫ t

−∞
Kϵ(t− s)dWs, Kϵ(t) =

1√
ϵ
K(t/ϵ) (2.5)

2.1 Fast Varying Volatility Pricing H < 1/2

This is the case when we accepts the volatility is a function of fast-varying rough fOU process

defined by (2.5). We note in advance that the following correction term has ϵ with fixed

power 1
2
. The following proposition is the main result of paper [13]:

Proposition 2.1. We have

E[h(XT )|Ft] =Mt = Qt(Xt) + o(
√
ϵ) (2.6)

where

Qϵ
t(x) = Q

(0)
t (x) + ϵ1/2Q

(1)
t (x) (2.7)

Q
(0)
t (x) is deterministic and given by the Black–Scholes formula with constant volatility σ̄

LBS(σ̄)Q
(0)
t (x) = 0, Q

(0)
T (x) = h(x) (2.8)

with

σ̄2 = ⟨F 2⟩ =
∫
R
F (σouz)

2p(z)dz (2.9)

12



p(z) is the standard normal distribution pdf. Q
(1)
t (x) is deterministic

Q
(1)
t (x) = (T − t)D̄

(
x∂x(x

2∂2x)Q
(0)
t (x)

)
(2.10)

with coefficient

D̄ = σou

∫ ∞

0

[∫∫
R2

F (σou)(FF
′)(σouz

′)pCZ(s)(z, z
′)dzdz′

]
K(s)ds (2.11)

pCZ(s)(z, z
′) is the pdf of the bi-variate normal distribution with mean zero and covariance

matrix

1 C

C 1

 and CZ(s) is defined as the following:

CZ(s) =
2 sin(πH)

π

∫ ∞

0

cos(sx)
x1−2H

1 + x2
dx (2.12)

2.2 Fast Varying Volatility Pricing H > 1/2

This is the case when we accepts (2.5) and H > 1/2. The following proposition is the main

result of paper [14]:

Proposition 2.2. We have

E[h(XT )|Ft] =Mt = Qt(Xt) + o(ϵ1−H) (2.13)

where

Qϵ
t(x) = Q

(0)
t (x) + (x2∂2x)Q

(0)
t (x)ϕϵ

t + ϵ1−H σ̃ρQ
(1)
t (x) (2.14)

Q
(0)
t (x) is deterministic and given by the Black–Scholes formula with constant volatility σ̄

LBS(σ̄)Q
(0)
t (x) = 0, Q

(0)
T (x) = h(x) (2.15)
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with

σ̄2 = ⟨F 2⟩ =
∫
R
F (σouz)

2p(z)dz, σ̃ = ⟨F ⟩ =
∫
R
F (σouz)p(z)dz (2.16)

p(z) is the standard normal distribution pdf. The random component ϕϵ
t is given by

ϕϵ
t = E

[
1

2

∫ T

t

(σϵ
s)

2 − σ̄2ds
∣∣Ft

]
(2.17)

And Q
(1)
t (x) is deterministic

Q
(1)
t (x) =

(
x∂x(x

2∂2xQ
(0)
t (x))

)
Dt (2.18)

where

Dt = D̄(T − t)H+1/2, D̄ =
⟨FF ′⟩

Γ(H + 3/2)
=

1

Γ(H + 3/2)
σou

∫
R
FF ′(σouz)p(z)dz (2.19)

We also note that θt =
⟨FF ′⟩

Γ(H+1/2)
(T − t)H−1/2, and such variable is introduced in [14]

2.3 Slow Varying Volatility Pricing

In [12], there are two pricing propositions based on slightly different volatility definitions.

Proposition 3.1 has a leading time scale of order 1, while Proposition 6.1 includes a leading

order correction of δH , resulting in improved pricing. The stochastic volatility of Proposition

6.1 is also more consistent with fast-varying volatility. We now introduce the following

proposition:

Proposition 2.3. When δ is small, let σ0 = F (Zδ
0), p0 = F ′(Zδ

0), then

E[h(XT )|Ft] =Mt = Qt(Xt) +O(δ2H) (2.20)
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where

Qt(x) = Q
(0)
t (x) + σ0p0ϕ

δ
t (x

2∂2x)Q
(0)
t (x) + δHρp0Q

(1)
t (x) (2.21)

Q
(0)
t (x) is deterministic and given by the Black–Scholes formula with constant volatility σ0

LBS(σ0)Q
(0)
t (x) = 0, Q

(0)
T (x) = h(x) (2.22)

ϕt is a random term depends on time t,

ϕδ
t = E

[∫ T

t

Zδ
s − Zδ

0ds
∣∣Ft

]
(2.23)

And Q
(1)
t (x) is deterministic

Q
(1)
t (x) = σ2

0x∂x(x
2∂2x)Q

(0)
t (x)Dt,T , Dt,T =

(T − t)H+3/2

Γ(H + 5/2)
(2.24)

We also note that θt,T = (T − t)H+1/2/Γ(H + 3/2), and such variable will be introduced in

the proof in Appendix.

The proof of the above proposition is omitted by the authors. However, a thorough proof is

provided in Appendix B. It is important to note that in the case of slow-varying volatility,

Dt,T defines Q
(1)
t (x), which is dependent on time and the Hurst exponent.

There are four major differences among these three pricing formulas,

• In the case of fast-varying volatility, we can obtain perturbation results by expanding

with respect to the root mean square of the volatility process, which is averaged with

respect to the invariant distribution. On the other hand, for the slow-varying volatility

case, we can expand with respect to the initial volatility at time 0, denoted by σ0.

• In both proposition 1 and proposition 3, the corrected pricing depends on the random

15



terms ϕδ
t or ϕ

ϵ
t, while the whole asymptotic pricing is deterministic in proposition 2. For

market data calibration purpose, the existence of such random term requires updating

as time changes. For fast-varying rough volatility, as the coefficient of Q
(1)
t does not

depend on t, such timely-vary update is not necessary.

• In proposition 2, the coefficient D̄ does not depend on Hurst exponent while in the

remaining cases, their analogous coefficients do depend on it. Such power difference is

thoroughly discussed in section 6 [13].

• The leading order correction term in proposition 2 has a fixed
√
ϵ order, while in

the other two cases, the leading order is strictly less than 1/2 and it depends on

Hurst exponent. We argue that the convergence property of kernel function leads such

compromise in proposition 2 and further discussion can be found in [13] section 6.
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Chapter 3

Optimal Delta Hedging

3.1 Introduction to Delta Hedging

Consider two portfolios: portfolio P (t,Xt) which is the one call option and portfolio Vt =

δtXt + bt, where δtXt denotes the amount of the underlyings and bt is the amount deposit in

the bank. The replication of these two portfolio gives

P (t,Xt) = δtXt + bt (3.1)

Then we define the total hedging cost from 0 to t:

Et = P0 +

∫ t

0

(dPt − δtdXt) = P (t,Xt)−
∫ t

0

δtdXt (3.2)

The above term we choose such that δt is called Delta in finance Greeks. Besides, such

continuous δt we choose to hedge is called a dynamic (DA) hedging strategy. Note that, in the

stochastic volatility modeling, the cost is not zero, since suppose the function Q(0)(t,Xt, σ) is

17



the solution to the corresponding Black-Scholes PDE, and Zs is the volatility process, then

dEt = dPt − atdXt =

(
∂t +

1

2
σ2(Zs)(x

2∂2x)

)
Q

(0)
t (Xt)dt+ ∂xQ

(0)
t (Xt)dXt − δtdXt (3.3)

=
1

2

(
σ2(Zs)− σ2

) (
x2∂2x

)
Q(0)

s (Xs)dt (3.4)

This is non-zero when σ(Zs) ̸= σ. We remark that this cost is related to Vega: option price

derivative with respect to volatility σ: ∂σQ
(0)
t (x). The identity (T − t)σ(x2∂2x)Q

(0)
t (x) =

∂σQ
(0)
t (x) gives

dEt =
1

2

(
σ2(Zs)− σ2

) ∂σQ(0)
t (x)

σ(T − t)
dt (3.5)

In this paper, we aim to find the optimal delta hedging strategy that minimizes the variance

of Et.

The history of minimum variance hedging dates back to 1991, when [7] used a stochastic

model with two diffusion stochastic differential equations to find the optimal strategy using

the orthogonal projection method. However, this setting lacked stochastic volatility. In a

follow-up paper [23], a similar approach was used to find a general contingent claim, and the

hedging error was measured discretely in [18], where a non-Markovian model was employed,

and the weak convergence approach was used to find the asymptotic distribution of the cost

function. Hedging error control can also be viewed as an optimization problem related to

the Hamilton-Jacobian-Bell equation, with the related PDE obtained in [19] for some special

cases. Multiple assets delta hedging strategies are discussed in [22], known as the Delta-

Sigma hedging, while the recent work in [2] analyzes the same hedging error for asset prices

driven by n-dimensional Brownian motions and includes simulation results.

In this paper, we first compare the following two delta hedging strategies that were introduced

in [16]:
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• Hull-White Scheme (HW):

δHW
t = ∂xQ(t, x;σ

∗), PHW
t = Q(t, x;σ∗) (3.6)

Q(t, x;σ) is the perturbation result for some fixed historical volatility σ∗ that varies

in different situations. In fast-varying volatility case, we choose σ∗ = σ̄, the effective

volatility and in slow-varying volatility case, we choose σ∗ = σ0, the initial volatility.

HW scheme uses corrected pricing to model PHW (t,Xt) and take the partial derivative

to each component of the corrected pricing.

• Black-Scholes Scheme (BS):

δBS
t = ∂xQ

(0)(t, x;σ)|σ=σ(t,x), PBS
t = Q(t, x;σ) (3.7)

with the implied volatility σ(t, x) solving

Q(t, x;σ) = Q(0)(t, x;σ(t, x)) (3.8)

The Black-Scholes strategy uses the corrected price as HW scheme. Instead, the delta

uses the implied volatility computed by using the corrected price. We denote that the

main result in [16] is that when H < 1/2, for fast varying volatility model, the optimal

strategy among all delta hedging strategies is the BS scheme.

Based on our computation of the BS scheme, we have found that in order to achieve the

minimum variance of the hedging cost, it is sometimes necessary to add a correction term

to the BS scheme delta, depending on the assumptions made about the volatility. This

corrected version is referred to as the Corrected Black-Scholes scheme (C):

• For fast-varying volatility where H ranging on (1/2, 1), the Corrected BS scheme is
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defined as the following:

δC(t, x) = δBS(t, x) +
ϵ1−H σ̃ρ

σ̄2

H − 1/2

H + 1/2
(x∂2x)Q

(0)
t (Xt)θt (3.9)

for Q
(0)
t (x), σ̄, σ̃ and θt defined in Proposition 2.2.

• For slow-varying volatility where H ranging on (0, 1), the Corrected BS scheme is

defined as the following:

δC(t, x) = δBS(t, x) + δHρp0
H + 1/2

H + 3/2
(x∂2x)Q

(0)
t (Xt)θt,T (3.10)

for Q
(0)
t (x), θt,T and p0 defined in Proposition 2.3.

The main results in this chapter are the followings:

• For the slow-varying volatility model, we find that

V ar[EBS
t |F0] ≤ V ar[EHW

t |F0] (3.11)

and the degree to which the BS scheme outperforms the HW scheme depends on the

Hurst exponent H and the correlation ρ. The optimal strategy among all is a corrected

BS scheme (5), which we demonstrate through numerical illustration in Section 7.

• For the fast-varying long-memory volatility model, we also find that

V ar[EBS
t |F0] ≤ V ar[EHW

t |F0] (3.12)

and the degree to which the BS scheme outperforms the HW scheme depends on not

only the Hurst exponent H and the correlation ρ, but also the ratio between σ̄ and

σ̃. The optimal strategy among all is also a corrected Black-Scholes scheme, which we
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again confirm through numerical illustration in Section 7.

Our main finding in this paper is different from that of [16], where the optimal scheme is the

Black-Scholes scheme without any correction, but it coincides when H = 1/2 in equation

(6). This is because the power of the time-to-maturity adjustment term Q
(1)
t (x) in the fast-

varying rough pricing formula does not depend on the Hurst exponent. For a more detailed

comparison of the pricing formulas, see [15].

3.2 Fast-varying Volatility Hedging H < 1/2

In this section, we summarize the main results of [16] where the authors addressed the prob-

lem of optimal hedging in the presence of fast-varying rough fractional Ornstein-Uhlenbeck

volatility. They showed that the BS scheme (3.7)-(3.8) has the minimal variance conditioned

on the filtration F0 among all possible DA schemes . They also provided asymptotic com-

putations of HW and BS schemes. The major results of their paper are listed below for

completion of this subject. We omit their proofs.

3.2.1 HW Scheme (HW)

In this case, for (3.2), we take

PHW
t = Qt(Xt) = Q

(0)
t (x) + ϵ1/2ρQ

(1)
t (x) (3.13)

δHW (t,Xt) = ∂xQ(t, x)
∣∣
x=Xt

= ∂x

(
Q

(0)
t (x) + ϵ1/2ρQ

(1)
t (x)

) ∣∣
x=Xt

(3.14)
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All terms above, we refer to Proposition 2.1. Then we take the financing cost of the portfolio:

EHW
t = PHW

t −
∫ t

0

δHW (s,Xs)dXs (3.15)

The following proposition shows the asymptotic results of its mean and variance conditioning

on F0.

Proposition 3.1. The mean extra hedging cost beyond the corrected price is zero:

lim
ϵ−→0

E
[(
ϵ−1/2E[EHW

t − EHW
0 |F0]

)2]1/2
= 0 (3.16)

with EHW
0 = P (0, X0). The variance of the cost fluctuations satisfies

lim
ϵ−→0

E
[∣∣ϵ−1V ar[EHW

t − EHW
0 |F0]− V(3)

t (X0)
∣∣] = 0 (3.17)

where

V(3)
t (x0) = Γ̄2

∫
R
dzp(z)

∫ t

0

ds
(
(x2∂2x)Q

(0)
s

(
x0e

σ̄
√
sz−σ̄2s/2

))
(3.18)

Here p(z) is the pdf of the standard normal distribution, Γ̄ is the parameter

Γ̄2 = 2σ2
Z

∫ ∞

0

∫ ∞

s

[∫∫
R2

FF ′(σZz)FF
′(σZz

′)pCK(s,s′)(z, z
′)dzdz′

]
K(s)K(s′)ds′ds (3.19)

and pC is the pdf of the bivariate normal distribution with covariance matrix defined in

Proposition 2.1 and

CK(s, s′) =
∫ ∞

0

K(s+ v)K(s′ + v)dv (3.20)
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3.2.2 BS Scheme (BS)

In this case, the rough fast-varying volatility BS scheme is defined as the following.

δBS(t, x) = ∂xQ
(0)(t, x;σ)|σ=σ(t,x) (3.21)

with implied volatility σ(t, x) solving

Q(t, x) = Q(0)(t, x;σ(t, x)) (3.22)

The implied volatility σ(t, x) is such that

Q(0)(t, x;σ(t, x)) = Q(t, x) = Q
(0)
t (x) + ϵ1/2ρQ

(1)
t (x) (3.23)

Then we take the financing cost of the portfolio:

EBS
t = PBS

t −
∫ t

0

δBS(s,Xs)dXs (3.24)

The following proposition shows the asymptotic results of its mean and variance conditioning

on F0.

Proposition 3.2. The mean extra hedging cost beyond the corrected price is zero:

lim
ϵ−→0

E
[(
ϵ−1/2E[EBS

t − EBS
0 |F0]

)2]1/2
= 0 (3.25)

with EBS
0 = P (0, X0). The variance of the cost fluctuations satisfies

lim
ϵ−→0

E
[∣∣ϵ−1V ar[EBS

t − EBS
0 |F0]− Ṽ(1)

t (X0)− 2Ṽ(2)
t (X0)− Ṽ(3)

t (X0)
∣∣] = 0 (3.26)
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where

Ṽ(1)
t (x0) = ρ2D̄2σ̄2

∫
R
dzp(z)

∫ t

0

ds
(
H̃s(x0e

σ̄
√
sz−σ̄2s/2)

)2
, (3.27)

Ṽ(2)
t (x0) = ρ2D̄2

∫
R
dzp(z)

∫ t

0

dsH̃s(x0e
σ̄
√
sz−σ̄2s/2)

(
(x2∂2x)Q

(0)
s (x0e

σ̄
√
sz−σ̄2s/2)

)
, (3.28)

Ṽ(3)
t (x0) = Γ̄2

∫
R
dzp(z)

∫ t

0

ds
(
(x2∂2x)Q

(0)
s

(
x0e

σ̄
√
sz−σ̄2s/2

))2
(3.29)

where Γ̄ is defined by (3.19) and H̃s is defined by:

H̃(x) =
1

D̄

(
(x∂x)−

(
x∂x∂σQ

(0)(s, x; σ̄)

∂σQ(0)(s, x; σ̄)

))
Q(1)(s, x; σ̄) (3.30)

3.2.3 Optimal Delta Hedging on Rough Fast-varying Volatility

Mode

The following proposition proves that the the BS scheme is the optimal hedging strategy

among all possible DA hedging scheme.

Proposition 3.3. For any smooth and bounded at = A(t,Xt), as the delta hedging strategy

indicating the number of underlyings to hedge, the following cost function:

E∗
t = P (t,Xt)−

∫ t

0

asdXs (3.31)

has minimum variance with leading order ϵ1/2:

E∗
0 = P (0, X0), V ar[EBS

t |F0] ≤ V ar[E∗
t |F0] (3.32)

for any t ∈ [0, T ]

It is worth noting that in this section, the pricing formula (3.13) and the asymptotic variance
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terms (3.27)-(3.29) are independent of the Hurst exponent H, despite the assumption of

short-range dependent volatility. However, in the cases of fast-fluctuating long-memory and

slow-varying volatility, the Hurst exponent plays a significant role. The next two sections

will highlight the importance of the Hurst exponent in these cases.

3.3 Fast-varying Volatility Hedging H > 1/2

In this section, we analyze the delta hedging problem for European options under a long-

memory fast-varying volatility model. We derive the asymptotic variances for the HW,

BS, and corrected BS delta-hedging schemes. Our main result is to prove that for all delta-

hedging schemes under fast-varying long-memory volatility, all cost processes are martingales

and the corrected BS scheme achieves the minimum variance.

3.3.1 HW Scheme (HW)

In this case, for (3.2), we take,

PHW
t = Qt(Xt) = Q

(0)
t (x) + (x2∂2x)Q

(0)
t (x)ϕϵ

t + ϵ1−H σ̃ρQ
(1)
t (x) (3.33)

δHW (t,Xt) = ∂xQ(t, x)
∣∣
x=Xt

= ∂x

(
Q

(0)
t (x) + (x2∂2x)Q

(0)
t (x)ϕϵ

t + ϵ1−H σ̃ρQ
(1)
t (x)

) ∣∣
x=Xt

(3.34)

then we define that

EHW
t = PHW

t −
∫ t

0

δHW (s,Xs)dXs (3.35)

In other words, we use the historical volatility σ̄ and the corrected formula. The following

proposition shows the asymptotic results of its mean and variance conditioning on F0.
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Proposition 3.4. The cost of the HW hedging strategy satisfies:

lim
ϵ−→0

ϵH−1E
[(
E[EHW

t − EHW
0 |F0]

)2]1/2
= 0 (3.36)

where EHW
0 = P (0, X0). The asymptotic variance of the cost fluctuations satisfies:

lim
ϵ−→0

E
[∣∣∣V ar[ϵH−1(EHW

t − EHW
0 )|F0]− V(3)

t

∣∣∣] = 0 (3.37)

where

V(3)
t =

⟨FF ′⟩2

Γ(H + 1/2)2

∫
R

∫ t

0

(
(x2∂2x)Q

(0)
s (x0e

σ0
√
sz−σ0s/2)

)2
(T − t)2H−1dsp(z)dz (3.38)

where p(z) is the pdf of standard normal distribution. We note that such V(3)
t is an analogy

to the variance approximation of the HW scheme in [16]. The major difference is that the

power of time-to-maturity depends on the Hurst exponent here. For a numerical illustration,

we refer the Figure C.1

Proof. By (43) in [14], we know that, up to leading order:

d[Q
(0)
t (x) + (x2∂2x)Q

(0)
t (x)ϕϵ

t+ϵ
1−H σ̃ρQ

(1)
t (x)] (3.39)

=dR
(1)
t + dR

(2)
t + dR

(3)
t + dN

(0)
t + σ0p0dN

(1)
t + ϵ1−H σ̃ρdN

(2)
t

(3.40)

where dR
(j)
t are higher order terms and the martingale terms are defined as the following:

dN
(0)
t = (x∂x)Q

(0)
t (Xt)σ

ϵ
tdW

∗
t (3.41)

dN
(1)
t = (x2∂2x)Q

(0)
t (Xt)dψ

ϵ
t + (x∂x(x

2∂2x))Q
(0)
t (Xt)σ

ϵ
tϕ

ϵ
tdW

∗
t (3.42)

dN
(2)
t = (x∂x)Q

(1)
t (Xt)σ

ϵ
tdW

∗
t (3.43)
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By Lemma A.6, we get:

dV HW
t − aHW

s dXs = (x2∂2x)Q
(0)
t (Xt)dψ

ϵ
t (3.44)

By defining:

N̂ ϵ
t =

∫ t

0

(x2∂2x)Q
(0)
s (Xs)dψ

ϵ
s (3.45)

we get,

EHW
t = EHW

0 + N̂ ϵ
t (3.46)

Thus, by Lemma B.2 and Lemma B.5 in [14], and Lemma A.11 in [16] we have the following

leading order computation

ϵ−2(1−H)V ar[N̂t|F0] = ϵ−2(1−H)V ar

[∫ t

0

(x2∂2x)Q
(0)
s (Xs)dψ

ϵ
s|F0

]
(3.47)

= ϵ−2(1−H)E
[∫ t

0

(
(x2∂2x)Q

(0)
s (Xs)

)2
(θϵt)

2 ds|F0

]
(3.48)

= ϵ−2(1−H)E
[∫ t

0

(
(x2∂2x)Q

(0)
s (Xs)

)2 (
ϵ1−Hθt + θ̃ϵt

)2
ds|F0

]
(3.49)

= E
[∫ t

0

(
(x2∂2x)Q

(0)
s (Xs)

)2
(θt)

2 ds

]
(3.50)

where θt is defined in Proposition 2.2. Then by Lemma A.3, we get up to leading order,

E
[∫ t

0

(
(x2∂2x)Q

(0)
s (Xs)

)2
(θt)

2 ds

]
=

⟨FF ′⟩2

Γ(H + 1/2)2

∫
R

∫ t

0

(
(x2∂2x)Q

(0)
s (x0e

σ0
√
sz−σ0s/2)

)2
(T−t)2H−1dsp(z)dz

(3.51)
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3.3.2 BS Scheme (BS)

The long-memory fast-varying volatility BS scheme is defined as the following,

δBS(t, x) = ∂xQ
(0)(t, x;σ)|σ=σ(t,x) (3.52)

with implied volatility σ(t, x) solving

Q(t, x) = Q(0)(t, x;σ(t, x)) (3.53)

The implied volatility σ(t, x) is such that

Q(0)(t, x;σ(t, x)) = Q(t, x) = Q
(0)
t (x) + (x2∂2x)Q

(0)
t (x)ϕϵ

t + ϵ1−H σ̃ρQ
(1)
t (x) (3.54)

Then we have the following computation of its variance

EBS
t = PBS

t −
∫ t

0

δBS(s,Xs)dXs (3.55)

The following proposition shows the asymptotic results of its mean and variance conditioning

on F0.

Proposition 3.5. The cost of the BS hedging strategy satisfies:

lim
ϵ−→0

ϵH−1E
[(
E[EBS

t − EBS
0 |F0]

)2]1/2
= 0 (3.56)

where EHW
0 = P (0, X0). The asymptotic variance of the cost fluctuations satisfies:

lim
ϵ−→0

E
[∣∣∣∣V ar[ϵH−1(EBS

t − EBS
0 )|F0]−

(
1− ρ̄2

2H

(H + 1/2)2

)
V(3)
t

∣∣∣∣] = 0 (3.57)
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where ρ̄ = ρ σ̃
σ̄
. It further implies that with leading order:

V ar[EBS
t |F0] ≤ V ar[EHW

t |F0] (3.58)

Proof. Consider the asymptotic expansion of Q(0)(t, x;σ(t, x)):

Q(0)(t, x;σ(t, x)) = Q(0)(t, x;σ0) +
(
∂σQ

(0)(t, x;σ)
)
|σ=σ0(σ(t, x)− σ0) +O(δ2H) (3.59)

We know σ(t, x)− σ0 from:

σ0p0ϕ
δ
t (x

2∂2x)Q
(0)
t (x, σ0) + δHρp0Q

(1)
t (x, σ0) =

(
∂σQ

(0)(t, x;σ)
)
|σ=σ0(σ(t, x)− σ0) +O(δ2H)

(3.60)

which implies that

σ(t, x)− σ0 =
(x2∂2x)Q

(0)
t (x)ϕϵ

t + ϵ1−H σ̃ρQ
(1)
t (x)

(∂σQ(0)(t, x;σ)) |σ=σ0

+O(δ2H) (3.61)

Then with leading order

δBS(t, x) = ∂x
(
Q(0)(t, x;σ0) + ∂σQ

(0)(t, x;σ0)(σ − σ0)
) ∣∣∣

σ=σ(t,x)
(3.62)

= ∂xQ
(0)(t, x;σ0) +

∂2xσQ
(0)(t, x;σ0)

∂σQ(0)(t, x;σ0)

(
σ0p0ϕ

δ
t (x

2∂2x)Q
(0)
t (x, σ0) + δHρp0Q

(1)
t (x, σ0)

)
(3.63)
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By (43) in [14], we get

dEBS
t =dPBS(t,Xt)− δBS(s,Xs)dXs (3.64)

=dN
(0)
t + dN

(1)
t + ϵ1−H σ̃ρdN

(2)
t − δBS(s,Xs)dXs (3.65)

=dN
(1)
t + ϵ1−H σ̃ρdN

(2)
t − ∂2xσQ

(0)(t, x;σ0)

∂σQ(0)(t, x;σ0)

((
x2∂2x

)
Q

(0)
t (Xt)ϕ

ϵ
t + ϵ1−H σ̃ρQ

(1)
t (Xt)

)
Xtσ

ϵ
tdW

∗
t

(3.66)

where

dN
(1)
t = (x2∂2x)Q

(0)
t (Xt)dψ

ϵ
t + (x∂x(x

2∂2x))Q
(0)
t (Xt)σ

ϵ
tϕ

ϵ
tdW

∗
t (3.67)

dN
(2)
t = (x∂x)Q

(1)
t (Xt)σ

ϵ
tdW

∗
t (3.68)

By Lemma A.6,

dEBS
t =dPBS(t,Xt)− δBS(s,Xs)dXs (3.69)

=(x2∂2x)Q
(0)
t (Xt)dψ

ϵ
t −

ϵ1−H σ̃ρ

σ̄2(H + 1/2)
(x2∂2x)Q

(0)
t (Xt)θtσ

ϵ
tdW

∗
t (3.70)

Then by Lemma A.8, we know that

V ar
[
EBS

t |F0

]
= V ar

[
EHW

t |F0

] [
1− ρ2

σ̃2

σ̄2

(
2H

(H + 1/2)2

)]
(3.71)

And it further implies that,

V ar
[
EBS

t |F0

]
≤ V ar

[
EHW

t |F0

]
(3.72)
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3.3.3 Corrected Black-Scholes (C)

Now we consider a corrected BS scheme that is the candidate to be the optimal hedging

strategy. We choose the portfolio to be the corrected price:

Q(t, x) = Q
(0)
t (x) + (x2∂2x)Q

(0)
t (x)ϕϵ

t + ϵ1−H σ̃ρQ
(1)
t (x) (3.73)

And the delta of this scheme is BS delta plus a corrected term:

δC(t, x) = δBS(t, x) +
ϵ1−H σ̃ρ

σ̄2

H − 1/2

H + 1/2
(x∂2x)Q

(0)
t (Xt)θt (3.74)

Then we define:

EC
t = PC

t −
∫ t

0

δC(s,Xs)dXs (3.75)

and the following proposition shows the asymptotic results of its mean and variance condi-

tioning on F0.

Proposition 3.6. The cost of the Corrected BS hedging strategy satisfies:

lim
ϵ−→0

ϵH−1E
[(
E[EC

t − EC
0 |F0]

)2]1/2
= 0 (3.76)

where EC
0 = P (0, X0). The asymptotic variance of the cost fluctuations satisfies:

lim
ϵ−→0

E
[∣∣∣V ar[ϵH−1(EC

t − EC
0 )|F0]− (1− ρ̄2)V(3)

t

∣∣∣] = 0 (3.77)

where ρ̄ = ρ σ̃
σ̄
. It further implies that with leading order:

V ar[EC
t |F0] ≤ V ar[EHW

t |F0] (3.78)

31



Proof. For similar computation as BS scheme, we get:

dEC
t =dP (t,Xt)− δC(s,Xs)dXs (3.79)

=dEBS
t − (δC(s,Xs)− δBS(s,Xs))dXs (3.80)

=dEBS
t − ϵ1−H σ̃ρ

σ̄2

H − 1/2

H + 1/2
(x2∂2x)Q

(0)
t (Xt)θtσ

ϵ
tdW

∗
t (3.81)

which implies that with leading order

EC
t = EC

0 + σ0p0

∫ t

0

(x2∂2x)Q
(0)
s (Xs)dψ

δ
s −

ϵ1−H σ̃ρ

σ̄2
(x2∂2x)Q

(0)
t (Xt)θtσ

ϵ
tdW

∗
t (3.82)

Let ρ̄ = ρ σ̃
σ̄
, with a similar computation in Lemma A.8, we get,

V ar
[
EC

t |F0

]
= V ar

[
EHW

t |F0

] [
1− 2ρ̄2 + ρ̄2

]
= V ar

[
EHW

t |F0

] [
1− ρ̄2

]
(3.83)

3.3.4 Optimal Delta Hedging on Fast-varying Long-memory Volatil-

ity Model

In the following proposition, we show that under variance with filtration F0 this measure,

the corrected BS scheme is the optimal one among all:

Proposition 3.7. For any smooth and bounded at = A(t,Xt), as the delta hedging strategy

indicating the number of underlyings to hedge, the following cost function:

E∗
t = P (t,Xt)−

∫ t

0

asdXs (3.84)
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has minimum variance with leading order ϵ1−H :

E∗
0 = P (0, X0), V ar[EC

t |F0] ≤ V ar[E∗
t |F0] (3.85)

for any t ∈ [0, T ]

Proof. Now for the optimal part: We start from

E∗
t = Q(t,Xt)−

∫ t

0

δHW (s,Xs)dXs+

∫ t

0

(δHW (s,Xs)−as)dXs = EHW
t +

∫ t

0

(δHW (s,Xs)−as)dXs

(3.86)

For leading order approximation, we consider

as ∈ A(t, x) = ∂xQ
(0)
t (x) + ϵ1−HA1(t, x) (3.87)

Then by (??),

E∗
t = EHW

0 + N̂t + ϵ1−H

∫ t

0

Â(s, x)σϵ
sdW

∗
s (3.88)

Thus, if we define ϵ1−H
∫ t

0
Â(s, x)σϵ

sdW
∗
s = Nt and

V ar[E∗
t |F0] = V ar[N̂t +Nt|F0] (3.89)

Then by Lemma B.2, Lemma B.5, Lemma B.6 in [14], with leading order computation

E[N̂tNt|F0] = E
[∫ t

0

(x2∂2x)Q
(0)
s (Xs)ϵ

1−HÂ(s, x)σϵ
sρϵ

1−Hθsds|F0

]
(3.90)

= ϵ2−2Hρσ̃E
[∫ t

0

(x2∂2x)Q
(0)
s (Xs)θsÂ(s, x)ds|F0

]
(3.91)

= ϵ2−2Hρσ̃E
[∫ t

0

(x2∂2x)Q
(0)
s (Xs)θsÂ(s, x)ds|F0

]
(3.92)
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E[N̂2
t |F0] = E

[(∫ t

0

(x2∂2x)Q
(0)
s (Xs)dψ

ϵ
s

)2

|F0

]
(3.93)

= ϵ2−2HE
[∫ t

0

(
(x2∂2x)Q

(0)
s (Xs)

)2
θ2sds|F0

]
(3.94)

E[N2
t |F0] = E

[(
ϵ1−H

∫ t

0

Â(s, x)σϵ
sdW

∗
s

)2

|F0

]
(3.95)

= ϵ2−2HE
[∫ t

0

(
Â(s, x)

)2
(σϵ

s)
2 ds|F0

]
(3.96)

= ϵ2−2H σ̄2E
[∫ t

0

(
Â(s, x)

)2
ds|F0

]
(3.97)

Then,

ρ̌t = Corr(Nt, N̂t|F0) =
E[N̂tNt|F0]√

E[N̂2
t |F0]E[N2

t |F0]
(3.98)

And, for

ρ̌t ≤ |ρ| σ̃
σ̄
= ρ̄, α̌t =

√
V ar[N2

t |F0]

V ar[N̂2
t |F0]

(3.99)

we can achieve the following inequalities

V ar[E∗
t |F0] = V ar[N̂2

t |F0](1+2ρ̌tα̌t+α̌
2
t ) ≥ V ar[N̂2

t |F0](1−2ρ̄α̌t+α̌
2
t ) ≥ V ar[N̂2

t |F0](1−ρ̄2)

(3.100)

and such minimum is achieve by Corrected BS scheme according to (3.71)

3.4 Slow-varying Volatility Delta Hedging

This section analyzes the delta hedging problem for European options under a slow-varying

volatility model for all H ∈ (0, 1). Asymptotic variances for the HW, BS, and corrected

BS delta-hedging schemes are derived, and the main result is that the corrected BS scheme

achieves the minimum variance for all delta-hedging schemes under slow-varying volatility.
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3.4.1 HW Scheme (HW)

In this case, for (3.2) we take,

PHW
t = Qt(Xt) = Q

(0)
t (Xt) + σ0p0ϕ

δ
t (x

2∂2x)Q
(0)
t (Xt) + δHρp0Q

(1)
t (Xt) (3.101)

δHW (t,Xt) = ∂xQ(t, x)
∣∣
x=Xt

= ∂x

(
Q

(0)
t (x) + σ0p0ϕ

δ
t (x

2∂2x)Q
(0)
t (x) + δHρp0Q

(1)
t (x)

) ∣∣
x=Xt

(3.102)

then we define that

EHW
t = PHW

t −
∫ t

0

δHW (s,Xs)dXs (3.103)

The following proposition shows the asymptotic results of its mean and variance conditioning

on F0

Proposition 3.8. The cost of the HW hedging strategy satisfies:

lim
δ−→0

δ−HE
[(
E[EHW

t − EHW
0 |F0]

)2]1/2
= 0 (3.104)

where EHW
0 = P (0, X0). The asymptotic variance of the cost fluctuations satisfies:

lim
δ−→0

E
[∣∣∣V ar[δ−H(EHW

t − EHW
0 )|F0]− V(3)

t

∣∣∣] = 0 (3.105)

where

V(3)
t =

σ2
0p

2
0

Γ(H + 3/2)2

∫
R

∫ t

0

(
(x2∂2x)Q

(0)
s (x0e

σ0
√
sz−σ0s/2)

)2
(T − t)2H+1dsp(z)dz (3.106)

where p(z) is the pdf of standard normal distribution. We note that such V(3)
t is an analogy

to the variance approximation of the HW scheme in [16]. The major difference is that the

power of time-to-maturity depends on the Hurst exponent here. For a numerical illustration,

we refer the Figure C.2.
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Proof. By the (3.101), we know that:

dPHW
t = dQt(Xt) = dQ

(0)
t (Xt) + dσ0p0ϕ

δ
t (x

2∂2x)Q
(0)
t (Xt) + dδHρp0Q

(1)
t (Xt) (3.107)

By the proof in Appendix B,

d[Q
(0)
t (Xt)+σ0p0(x

2∂2x)Q
(0)
t (Xt)ϕ

δ
t + δHρp0Q

(1)
t (Xt)] (3.108)

=dR
(1)
t + dR

(2)
t + dR

(3)
t + dR

(4)
t + dR

(5)
t + dN

(0)
t + σ0p0dN

(1)
t + δHρp0dN

(2)
t

(3.109)

where dR
(j)
t are higher order terms and the martingale terms are defined as the following:

dN
(0)
t = (x∂x)Q

(0)
t (Xt)σ

δ
t dW

∗
t (3.110)

σ0p0dN
(1)
t = σ0p0(x

2∂2x)Q
(0)
t (Xt)dψ

δ
t + σ0p0(x∂x(x

2∂2x))Q
(0)
t (Xt)σ

δ
tϕ

δ
tdW

∗
t (3.111)

dN
(2)
t = (x∂x)Q

(1)
t (Xt)σ

δ
t dW

∗
t (3.112)

We then notice that by Lemma A.6, we have:

dEHW
t = dPHW

t − δHW
s dXs = σ0p0(x

2∂2x)Q
(0)
t (Xt)dψ

δ
t (3.113)

We further denote that

N̂t = σ0p0

∫ t

0

(x2∂2x)Q
(0)
s (Xs)dψ

δ
s (3.114)

which implies

EHW
t = EHW

0 + N̂t (3.115)

As we know ψδ
s is a martingale in Lemma A.1, we can conclude that the first asymptotic

result is true. Now, it suffices to find δ−2HV ar[N̂t|F0]. By Lemma A.1 and Lemma A.3, we
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have the following leading order computation:

δ−2HV ar[N̂t|F0] = δ−2HV ar

[∫ t

0

σ0p0(x
2∂2x)Q

(0)
s (Xs)dψ

δ
s |F0

]
(3.116)

= E
[∫ t

0

(
σ0p0(x

2∂2x)Q
(0)
s (Xs)

)2
(θs,T )

2ds|F0

]
(3.117)

= σ2
0p

2
0

∫
R

∫ t

0

(
(x2∂2x)Q

(0)
s (x0e

σ0
√
sz−σ2

0s/2)
)2
p(z)(θs,T )

2dsdz (3.118)

=
σ2
0p

2
0

Γ(H + 3/2)2

∫
R

∫ t

0

(
(x2∂2x)Q

(0)
s (x0e

σ0
√
sz−σ2

0s/2)
)2

(T − s)2H+1dsp(z)dz

(3.119)

3.4.2 BS Scheme (BS)

We define the BS scheme delta on slow-varying volatility as the following:

δBS(t, x) = ∂xQ
(0)(t, x;σ)|σ=σ(t,x) (3.120)

with implied volatility σ(t, x) solving

PBS
t = Q(t, x) = Q(0)(t, x;σ(t, x)) (3.121)

The implied volatility σ(t, x) is such that

Q(0)(t, x;σ(t, x)) = Q(t, x) = Q
(0)
t (x, σ0) + σ0p0ϕ

δ
t (x

2∂2x)Q
(0)
t (x, σ0) + δHρp0Q

(1)
t (x, σ0)

(3.122)

and similarly we define:

EBS
t = PBS

t −
∫ t

0

δBS(s,Xs)dXs (3.123)
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The following proposition shows the asymptotic results of its mean and variance conditioning

on F0:

Proposition 3.9. The cost of the BS hedging strategy satisfies:

lim
δ−→0

δ−HE
[(
E[EBS

t − EBS
0 |F0]

)2]1/2
= 0 (3.124)

where EBS
0 = P (0, X0). The asymptotic variance of the cost fluctuations satisfies:

lim
δ−→0

E
[∣∣∣∣V ar[δ−H(EBS

t − EBS
0 )|F0]−

(
1− ρ2

2H + 2

(H + 3/2)2

)
V(3)
t

∣∣∣∣] = 0 (3.125)

which further implies that with leading order:

V ar[EBS
t |F0] ≤ V ar[EHW

t |F0] (3.126)

Proof. Consider the asymptotic expansion of Q(0)(t, x;σ(t, x)):

Q(0)(t, x;σ(t, x)) = Q(0)(t, x;σ0) +
(
∂σQ

(0)(t, x;σ)
)
|σ=σ0(σ(t, x)− σ0) +O(δ2H) (3.127)

We know σ(t, x)− σ0 from:

σ0p0ϕ
δ
t (x

2∂2xQ
(0)
t (x, σ0)) + δHρp0Q

(1)
t (x, σ0) =

(
∂σQ

(0)(t, x;σ)
)
|σ=σ0(σ(t, x)− σ0) +O(δ2H)

(3.128)

Then it implies that

σ(t, x)− σ0 =
σ0p0ϕ

δ
t (x

2∂2x)Q
(0)
t (x, σ0) + δHρp0Q

(1)
t (x, σ0)

(∂σQ(0)(t, x;σ)) |σ=σ0

+O(δ2H) (3.129)
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Then with leading order computation

δBS(t, x) = ∂x
(
Q(0)(t, x;σ0) + ∂σQ

(0)(t, x;σ0)(σ − σ0)
) ∣∣∣

σ=σ(t,x)
(3.130)

= ∂xQ
(0)(t, x;σ0) +

∂2xσQ
(0)(t, x;σ0)

∂σQ(0)(t, x;σ0)

(
σ0p0ϕ

δ
t (x

2∂2x)Q
(0)
t (x, σ0) + δHρp0Q

(1)
t (x, σ0)

)
(3.131)

which implies with leading order

δBS(t, x)dXs (3.132)

= (x∂x)Q
(0)(t, x;σ0)σ

δ
t dW

∗
t +

∂2xσQ
(0)

∂σQ(0)

(
σ0p0xϕ

δ
t (x

2∂2x)Q
(0)
t (x, σ0) + δHρp0xQ

(1)
t (x, σ0)

)
σδ
t dW

∗
t

(3.133)

where we used a shortened notation ∂2
xσQ

(0)

∂σQ(0) . By Lemma A.6, we have

dEBS
t =dPBS(t,Xt)− δBS(s,Xs)dXs (3.134)

=dEHW (t,Xt) + δHρp0dN
(2)
t − ∂2xσQ

(0)

∂σQ(0)

(
δHρp0xQ

(1)
t (x, σ0)

) ∣∣∣
x=Xt

σδ
t dW

∗
t (3.135)

=σ0p0(x
2∂2x)Q

(0)
t (Xt)dψ

δ
t + δHρp0dN

(2)
t − ∂2xσQ

(0)

∂σQ(0)

(
δHρp0xQ

(1)
t (x, σ0)

) ∣∣∣
x=Xt

σδ
t dW

∗
t

(3.136)

Then by Lemma A.7 the leading order computation gives,

dEBS
t =dPBS(t,Xt)− δBS(s,Xs)dXs (3.137)

=σ0p0(x
2∂2x)Q

(0)
t (Xt)dψ

δ
t + δHρp0dN

(2)
t − ∂2xσQ

(0)

∂σQ(0)

(
δHρp0xQ

(1)
t (x, σ0)

) ∣∣∣
x=Xt

σδ
t dW

∗
t

(3.138)

=σ0p0(x
2∂2x)Q

(0)
t (Xt)dψ

δ
t − δHρp0σ

2
0

(x2∂2x)Q
(0)
t (Xt)

σ2
0(T − t)

Dt,Tσ
δ
t dW

∗
t (3.139)

=σ0p0(x
2∂2x)Q

(0)
t (Xt)dψ

δ
t −

δHρp0
H + 3/2

(x2∂2x)Q
(0)
t (Xt)θt,Tσ

δ
t dW

∗
t (3.140)
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which implies:

EBS
t = σ0p0

∫ t

0

(x2∂2x)Q
(0)
s (Xs)dψ

δ
s −

δHρp0
H + 3/2

∫ t

0

(x2∂2x)Q
(0)
s (Xs)θs,Tσ

δ
sdW

∗
s (3.141)

Above shows that EBS
t is a martingale and hereby the first asymptotic result holds. By

Lemma A.7, we can conclude, up to a leading order:

V ar
[
EBS

t |F0

]
= V ar

[
EHW

t |F0

] [
1− ρ2

(
2H + 2

(H + 3/2)2

)]
(3.142)

which further denotes that

V ar
[
EBS

t |F0

]
≤ V ar

[
EHW

t |F0

]
(3.143)

3.4.3 Corrected Black-Scholes (C)

Now we consider a corrected BS scheme that is the candidate to be the optimal hedging

strategy under the assumption that the volatility is a function of a slow-varying fractional

Ornstein-Uhlenbeck process. We choose the portfolio to be the corrected price:

PC
t = Q(t, x) = Q

(0)
t (x, σ0) + σ0p0ϕ

δ
t (x

2∂2x)Q
(0)
t (x, σ0) + δHρp0Q

(1)
t (x, σ0) (3.144)

And the delta of this scheme is BS delta plus a corrected term:

δC(t, x) = δBS(t, x) + δHρp0
H + 1/2

H + 3/2
(x∂2x)Q

(0)
t (Xt)θt,T (3.145)
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Then we define:

EC
t = PC

t −
∫ t

0

δC(s,Xs)dXs (3.146)

and the following proposition shows the asymptotic results of its mean and variance condi-

tioning on F0.

Proposition 3.10.

lim
δ−→0

δ−HE
[(
E[EC

t − EC
0 |F0]

)2]1/2
= 0 (3.147)

where EC
0 = P (0, X0). The asymptotic variance of the cost fluctuations satisfies:

lim
δ−→0

E
[∣∣∣V ar[δ−H(EC

t − EC
0 )|F0]− (1− ρ2)V(3)

t

∣∣∣] = 0 (3.148)

which further implies that with leading order:

V ar[EC
t |F0] ≤ V ar[EHW

t |F0] (3.149)

Proof. For similar computation as BS scheme, we get:

dEC
t =dP (t,Xt)− δC(s,Xs)dXs (3.150)

=dEBS
t − (δC(s,Xs)− δBS(s,Xs))dXs (3.151)

=dEBS
t − δHρp0

H + 1/2

H + 3/2
(x∂2x)Q

(0)
t (Xt)θt,TdXs (3.152)

=dEBS
t − δHρp0

H + 1/2

H + 3/2
(x2∂2x)Q

(0)
t (Xt)θt,Tσ

δ
t dW

∗
t (3.153)

By BS scheme result, we have

dEBS
t = σ0p0(x

2∂2x)Q
(0)
t (Xt)dψ

δ
t −

δHρp0
H + 3/2

(x2∂2x)Q
(0)
t (Xt)θt,Tσ

δ
t dW

∗
t (3.154)
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which implies that with leading order

EC
t = EC

0 + σ0p0

∫ t

0

(x2∂2x)Q
(0)
s (Xs)dψ

δ
s − δHρp0

∫ t

0

(x2∂2x)Q
(0)
s (Xs)θs,Tσ

δ
sdW

∗
s (3.155)

We observe that EC
t is a martingale and with a similar computation in Lemma A.7 we get

V ar
[
EC

t |F0

]
= V ar

[
EHW

t |F0

] [
1− 2ρ2 + ρ2

]
= V ar

[
EHW

t |F0

] [
1− ρ2

]
(3.156)

3.4.4 Optimal Delta Hedging on Slow-varying Volatility Model

Now for the optimal part, in the following proposition, we show that under the measure:

variance with filtration F0, the corrected BS scheme is the optimal one among all possible

DA schemes:

Proposition 3.11. For any smooth and bounded at = A(t,Xt), as the delta hedging strategy

indicating the number of underlyings to hedge, the following cost function:

E∗
t = P (t,Xt)−

∫ t

0

asdXs (3.157)

has minimum variance with leading order δH :

E∗
0 = P (0, X0), V ar[EC

t |F0] ≤ V ar[E∗
t |F0] (3.158)

for any t ∈ [0, T ]
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Proof. For

E∗
t = Q(t,Xt)−

∫ t

0

δHW (s,Xs)dXs+

∫ t

0

(δHW (s,Xs)−as)dXs = EHW
t +

∫ t

0

(δHW (s,Xs)−as)dXs

(3.159)

we first consider

as ∈ A(t, x) = ∂xQ
(0)
t (x) + δHA1(t, x) (3.160)

Then for some Â(s, x)

E∗
t = EHW

0 + N̂t + δH
∫ t

0

Â(s, x)σδ
sdW

∗
s (3.161)

Thus, if we define δH
∫ t

0
Â(s, x)σδ

sdW
∗
s = Nt

V ar[E∗
t |F0] = V ar[N̂t +Nt|F0] (3.162)

Then, with leading order computation:

E[N̂tNt|F0] = E
[∫ t

0

σ0p0(x
2∂2x)Q

(0)
s (Xs)δ

Hθs,T δ
HÂ(s, x)σδ

sρds|F0

]
(3.163)

= δ2Hσ0p0ρE
[∫ t

0

(x2∂2x)Q
(0)
s (Xs)θs,T Â(s, x)σδ

sds|F0

]
(3.164)

E[N̂2
t |F0] = E

[(∫ t

0

σ0p0(x
2∂2x)Q

(0)
s (Xs)dψ

δ
s

)2

|F0

]
(3.165)

= δ2Hσ2
0p

2
0E
[∫ t

0

(
(x2∂2x)Q

(0)
s (Xs)

)2
θ2s,Tds|F0

]
(3.166)

E[N2
t |F0] = E

[(
δH
∫ t

0

Â(s, x)σδ
sdW

∗
s

)2

|F0

]
(3.167)

= δ2HE
[∫ t

0

(
Â(s, x)σδ

s

)2
ds|F0

]
(3.168)

Then,

ρ̌t = Corr(Nt, N̂t|F0) =
E[N̂tNt|F0]√

E[N̂2
t |F0]E[N2

t |F0]
(3.169)
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And we can see that |ρ̌t| ≤ |ρ|. If we let

α̌t =

√
V ar[N2

t |F0]

V ar[N̂2
t |F0]

(3.170)

V ar[E∗
t |F0] = V ar[N̂2

t |F0](1+2ρα̌t+α̌
2
t ) ≥ V ar[N̂2

t |F0](1−2|ρ|α̌t+α̌
2
t ) ≥ V ar[N̂2

t |F0](1−|ρ|2)

(3.171)

And in Proposition 6, we proved such minimum is V ar[EC
t |F0]
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Chapter 4

Numerical Illustration

In this section, we assess the effectiveness of various hedging strategies through simulations of

underlying price paths. We analyze the performance of these strategies separately for slow-

varying volatility and fast-varying long-memory volatility. Unlike the hedging simulation and

analysis in [16], both the slow-varying and fast-varying models feature a middle term with a

random component ϕt. Since ϕt has an expected value of zero, we evaluate the performance

of each scheme by taking the expected value of this term.

4.1 Fast-varying Long-memory Volatility Simulation

In this section, we evaluate different hedging strategies under the assumption of fast-varying

long-memory volatility. We use the asymptotic formula (2.14) and assume a middle term of

zero. Specifically, we analyze the performance of the HW, BS, and Corrected BS schemes.

It is important to note that for all three strategies, we define D = σ̃⟨FF ′⟩/σ̄2:
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• HW Scheme: By Black-Scholes Greeks computation:

δHW (t, x) = ∂xQ(t, x) =
(
∂xQ

(0)
t (x) + ϵ1−H σ̃ρ∂xQ

(1)
t (x)

)
= ∂xQ

(0)
t (x) + ϵ1−HρD (T − t)H

Γ(H + 3/2)

(d22 − 1)(x2∂2x)Q
(0)
t (x)

x
√
T − t

= ∂xQ
(0)
t (x) +

ϵ1−HρDK√
2πΓ(H + 3/2)

e−d22

x
√
T − t

[
(d22 − 1)(T − t)H−1/2

]

• BS Scheme:

δBS(t, x) = ∂xQ
(0)(t, x) +

∂2xσQ
(0)(t, x)

∂σQ(0)(t, x)

(
ϵ1−H σ̃ρQ

(1)
t (x)

)
= ∂xQ

(0)
t (x) + ϵ1−HρD (T − t)H

Γ(H + 3/2)

d22(x
2∂2x)Q

(0)
t (x)

x
√
T − t

= ∂xQ
(0)
t (x) +

ϵ1−HρDK√
2πΓ(H + 3/2)

e−d22

x
√
T − t

[
d22(T − t)H−1/2

]

• Corrected BS Scheme:

δC(t, x) = δBS(t, x) +
ϵ1−H σ̃ρ

σ̄2

H − 1/2

H + 1/2
(x∂2x)Q

(0)
t (Xt)θt

= ∂xQ
(0)
t (x) + ϵ1−HρD (T − t)H

Γ(H + 3/2)

(d22 +H − 1/2)(x2∂2x)Q
(0)
t (x)

x
√
T − t

= ∂xQ
(0)
t (x) +

ϵ1−HρDK√
2πΓ(H + 3/2)

e−d22

x
√
T − t

[
(d22 +H +

1

2
)(T − t)H−1/2

]

As in Section 6.1, we tune the parameter D2 while keeping other variables fixed. We can

then summarize the three hedging deltas as follows:

δA(t, x) = ∂xQ
(0)
t (x) +D1

e−d22

x
√
T − t

gA(H, d2, T − t), A = HW,BS,C (4.1)

where

D1 =
ϵ1−HρDK√
2πΓ(H + 3/2)

, d2 =
log(x/K)− 1

2
σ2(T − t)

σ
√
T − t

(4.2)
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and

gHW = (d22 − 1)(T − t)H−1/2, gBS = d22(T − t)H−1/2, gC = (d22 +H − 1

2
)(T − t)H−1/2

(4.3)

Note that in the case of long-memory volatility, the Hurst exponentH is in the range (1/2, 1).

So, it is important to note that gHW < gBS < gC . When H = 1/2, the corrected BS scheme

is identical to the BS scheme, which is consistent with the result in [16] for H = 1/2.

4.2 Slow-varying Volatility Simulation

In this section, we consider hedging strategies under the assumption of slow-varying volatility.

We assume that the middle term is zero. We evaluate the performance of the HW, BS, and

Corrected BS schemes accordingly.

• HW Scheme:

δHW (t, x) = ∂xQ(t, x) =
(
∂xQ

(0)
t (x) + δHρp0∂xQ

(1)
t (x)

)
= ∂xQ

(0)
t (x) + δHρp0

(T − t)H+1

Γ(H + 5/2)

(d22 − 1)(x2∂2x)Q
(0)
t (x)

x
√
T − t

= ∂xQ
(0)
t (x) +

ρδHp0K√
2πσ0Γ(H + 5/2)

e−d22

x
√
T − t

[
(d22 − 1)(T − t)H+1/2

]

• BS Scheme:

δBS(t, x) = ∂xQ
(0)(t, x) +

∂2xσQ
(0)(t, x)

∂σQ(0)(t, x)

(
δHρp0Q

(1)
t (x)

)
= ∂xQ

(0)
t (x) + δHρp0

(T − t)H+1

Γ(H + 5/2)

d22(x
2∂2x)Q

(0)
t (x)

x
√
T − t

= ∂xQ
(0)
t (x) +

ρδHp0K√
2πσ0Γ(H + 5/2)

e−d22

x
√
T − t

[
d22(T − t)H+1/2

]
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• Corrected BS Scheme:

δC(t, x) = δBS(t, x) + δHρp0
H + 1/2

H + 3/2
(x∂2x)Q

(0)
t (Xt)θt,T

= ∂xQ
(0)
t (x) + δHρp0

(T − t)H+1

Γ(H + 5/2)

(
(d22 +H + 1

2
)(x2∂2x)Q

(0)
t (x)

x
√
T − t

)

= ∂xQ
(0)
t (x) +

ρδHp0K√
2πσ0Γ(H + 5/2)

e−d22

x
√
T − t

[
(d22 +H +

1

2
)(T − t)H+1/2

]

In our numerical simulation and optimization, we only consider the optimization on the

variable D2 defined below. Thus, we can summarize three hedging deltas as the following:

δB(t, x) = ∂xQ
(0)
t (x) +D2

e−d22

x
√
T − t

gB(H, d2, T − t), B = HW,BS,C (4.4)

where

D2 =
ρδHp0K√

2πσ0Γ(H + 5/2)
, d2 =

log(x/K)− 1
2
σ2(T − t)

σ
√
T − t

(4.5)

and

gHW = (d22 − 1)(T − t)H+1/2, gBS = d22(T − t)H+1/2, gC = (d22 +H +
1

2
)(T − t)H+1/2

(4.6)

Note that for any moneyness in our simulation case, gHW < gBS < gC .

4.3 Numerical Method Interpretation

In this section, our goal is to compare the cost of hedging with the volatility fluctuation by

computing the expression:

ET = h(XT )−
∫ T

0

δ(t,Xt)dXt (4.7)
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We use the relative measure:

CC(T,XT ) =
Std[ET ]

Q(0)(X0, σ)
(4.8)

where σ = σ0 for the slow-varying case, and σ = σ̄ for the fast-varying case. We simulate one

path of the fOU process using the kernel introduced in [15]. Based on the resulting volatility

path, we use the ExpfOU process from Section 7 of [16]:

F (z) = σ̄ exp

(
wz

σZ
− w2

)
(4.9)

Here, w > 0 is the fluctuation parameter that measures the typical amplitude of the relative

fluctuations of the volatility. We then use a step-by-step simulation to obtain independent

price trajectories Xt and determine the optimal constant D1 or D2 respectively, that mini-

mizes the cost over moneyness.

All Figures 4.1-4.4, we use parameters σ = 0.5, ρ = −0.5 and scale w = 0.4.

Figure 4.1 illustrates the fast-varying standard Ornstein-Uhlenbeck process with ϵ = 0.05,

where the volatility process is neither short-range dependent nor long-range dependent. As

a result, the roughness has no effect on differentiating the two curves, (BS) and (C). This

observation is in line with our theoretical result that when H = 1/2, the two schemes are

essentially the same, and the matching curve lies below the (HW) scheme curve. Specifically,

the variance of EBS
t and EC

t conditioned on F0 are given by:

V ar
[
EBS

t |F0

]
= V ar

[
EHW

t |F0

] [
1− ρ̄2

(
2H

(H + 1/2)2

)]
(4.10)

V ar
[
EC

t |F0

]
= V ar

[
EHW

t |F0

] [
1− ρ̄2

]
(4.11)

It is worth noting that this is a similar result to Figure 9.1 in [16].
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In Figure 4.2, it can be seen that, as the Hurst exponent is close to 1, there is a trend that

the long-memory property pulls the (BS) scheme out ant from the function 2H
(H+1/2)2

is a

decreasing function ranging from 8
9
to 1 for H ∈ (1/2, 1). Figure 3 shows their difference

when H is close to 1.

In Figure 4.3, we can see that for slow-varying volatility rough case, the corrected Black-

Scholes scheme is indeed the optimal one. We can also observe the same optimality in Figure

4.4. We hereby lists the relationship of the conditional variance of three schemes:

V ar
[
EBS

t |F0

]
= V ar

[
EHW

t |F0

] [
1− ρ2

(
2H + 2

(H + 3/2)2

)]
(4.12)

V ar
[
EC

t |F0

]
= V ar

[
EHW

t |F0

] [
1− ρ2

]
(4.13)

We further note that function 2H+2
(H+3/2)2

is also a decreasing function on (0, 1) ranging from

0.64 to 8/9. We argue that we cannot really see such trends comparing Figure 4.3 and Figure

4.4 because we assumes D1 is independent to moneyness and this assumption would slightly

change the picture.

Figure 4.1: This picture shows the relative error standard deviation when H = 0.5, ϵ=0.05.
In this case, the BS scheme is the same as the corrected BS scheme, and this picture coincides
with Figure 9.1 in [16]
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Figure 4.2: This picture shows the relative error standard deviation when H = 0.9, ϵ=0.05.
In this case, the corrected BS scheme is the optimal one and slightly better than the BS
scheme

Figure 4.3: This picture shows the relative error standard deviation when H = 0.1, δ=0.05.
We observe that the corrected BS scheme is the optimal one of all.
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Figure 4.4: This picture shows the relative error standard deviation when H = 0.5, δ=0.05.
In this case, the corrected BS scheme is the optimal one.

4.4 The Corrected Black-Scholes Scheme and Leverage

Effect

In this section, we discuss the connection of our work to other empirical studies. In previous

sections, we demonstrated the optimality of the corrected Black-Scholes scheme through

simulated volatility and price paths. While this only serves as evidence of the correctness of

our theory, it emphasizes the significance of our findings. The corrected Black-Scholes delta

is the Black-Scholes delta with an added correction term, which is expressed as follows:

δC(t, x) = δBS(t, x) + ρCH
t,T (x∂

2
x)Q

(0)
t (x) (4.14)

which can be also written as

δC(t, x) = δBS(t, x) + ρC̃H
t,T

∂σQ
(0)
t (x)

x
√
T − t

(4.15)
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The value of CH
t,T or adjusted C̃H

t,T is a positive constant that depends on the Hurst exponent,

time to maturity, and other constants that vary in different cases. From (4.14) we can see that

the constant ρ determines the corrected Black-Scholes scheme, it shows that the existence

of the leverage effect leads to a correction to the BS scheme.

The leverage effect is typically negative due to the relationship between stock prices and

implied volatility. As stock prices rise, investors may perceive the stock to be less risky,

leading to lower implied volatility, while falling stock prices may lead to higher implied

volatility as investors perceive the stock to be riskier. This correlation between stock prices

and implied volatility results in a negative correlation between the two variables, leading

to the negative leverage effect. In [20], the authors estimated call options with varying

moneyness and time to maturity and found that empirically, δMV −δBS is negative. Assuming

δC − δBS is also negative, and with the constant C̃H
t,T being a positive constant, we obtain

ρ < 0. Our corrected BS scheme bridges the gap between these empirical findings.

4.5 Conclusion and Future Research Directions

This thesis concludes the delta hedging problem for the timely-scaled fractional Ornstein-

Uhlenbeck process volatility in three cases: slow-fluctuating for H ∈ (0, 1), fast-varying for

H < 1/2, and fast-varying for H > 1/2. Our main contribution is demonstrating that

in all cases, the corrected Black-Scholes (BS) scheme achieves minimal variance and is the

optimal delta-hedging strategy. Notably, the corrected BS scheme coincides with the BS

scheme in the special case of fast-varying rough volatility, which was previously solved in

[16]. We validate our results using simulated volatility and underlying price paths. We

provide empirical evidence of the existence of a correction term to the BS delta, even though

we did not conduct experiments with real market data.
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There are several avenues for future research. Firstly, we could explore a more comprehensive

pricing formula by assuming the volatility is driven by two correlated paths, one fast and

one slow. We can set up a multi-scale volatility model similar to (1.6)-(1.8) as the following:

dXt = σϵ,δ
t XtdW

(0)
t (4.16)

σϵ,δ
t = F (Y ϵ

t , Z
δ
t ) (4.17)

F is assumed to be 1-1, smooth, positive valued with F (0, 0) = 0 and Fy(0, 0) = 1 and

Fz(0, 0) = 1. And

Y ϵ
t =

∫ t

−∞
Kϵ(t− s)dW (1)

s , Kϵ(t) =
1√
ϵ
K(t/ϵ) (4.18)

Zδ
t =

∫ t

−∞
Kδ(t− s)dW (2)

s , Kδ(t) = δ1/2K(δt) (4.19)

where

d < W (0),W (1) >s = ρ1ds (4.20)

d < W (0),W (2) >s = ρ2ds (4.21)

d < W (1),W (2) >s = ρ12ds (4.22)

Once the multi-scale volatility pricing is determined, the optimality problem of delta hedging

should be very interesting and once solved, it would make a final conclusion to this topic.

We can further investigate the empirical relevance of the corrected term in the Black-Scholes

delta and develop a method for market calibration. It is important to note that our for-

mulas, regardless of whether the volatility is fast-varying or slow-varying, rely on accurate

calibration of historical volatility, either σ0 or σ̄. In practice, however, obtaining historical

volatility is difficult, while implied volatility is more readily available. Moreover, while we
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asymptotically expand the implied volatility in the Black-Scholes scheme computation, the

Hull-White scheme is not an effective strategy to implement in practice. Therefore, it is of

interest to determine how to calibrate the corrected BS scheme based on the Black-Scholes

scheme. In [20], the authors found that the difference between the minimum variance delta

and BS delta is approximately a quadratic function of δBS:

δMV = δBS +
∂σQ

(0)
t (x)

∣∣
σ=σ(t,x)

x
√
T − t

(a+ bδBS + cδ2BS) (4.23)

where ∂σQ
(0)
t (x)

∣∣
σ=σ(t,x)

is Vega based on implied volatility. To explore this further, we can

investigate how to interpret ∂σQ
(0)
t (x) using Black-Scholes delta and Vega. Further research

can be conducted to test the performance of our approach using empirical data.
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Appendix A

Lemma A.1. For slow-varying volatility pricing, we have the following leading order ap-

proximation, for H ∈ (0, 1)

θδt,T = δH
1

Γ(H + 3/2)
(T − t)H+1/2+O(δ2H), Dδ

t,T = δH
(T − t)H+3/2

Γ(H + 5/2)
+O(δ2H) (A.1)

Proof. We here compute d < ψδ,W >t= θδt,Tdt = δHθt,Tdt. We recall the definitions;

ψδ
t = E

[∫ T

0

Zδ
s − Zδ

0ds
∣∣Ft

]
, Zδ

t =

∫ t

−∞
Kδ(t− s)dWs

Consider

ψδ
t = E

[∫ T

0

Zδ
s − Zδ

0ds
∣∣Ft

]
=

∫ t

0

Zδ
sds+

∫ T

t

E
[
Zδ

s

∣∣Ft

]
ds− TZδ

0 (A.2)

For 0 ≤ t ≤ s

E
[
Zδ

s

∣∣Ft

]
= E

[∫ s

−∞
Kδ(s− u)dWu

∣∣Ft

]
= E

[∫ t

−∞
Kδ(s− u)dWu

∣∣Ft

]
+ E

[∫ s

t

Kδ(s− u)dWu

∣∣Ft

]
=

∫ t

−∞
Kδ(s− u)dWu
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Then

ψδ
t =

∫ t

0

Zδ
sds+

∫ T

t

E
[
Zδ

s

∣∣Ft

]
ds− TZδ

0

=

∫ t

0

∫ s

−∞
Kδ(s− u)dWuds+

∫ T

t

∫ t

−∞
Kδ(s− u)dWuds− TZδ

0

=

∫ t

0

∫ s

−∞
Kδ(s− u)dWuds+

∫ T

t

∫ s

−∞
Kδ(s− u)dWuds+

∫ T

t

∫ t

s

Kδ(s− u)dWuds− TZδ
0

=

∫ T

0

∫ s

−∞
Kδ(s− u)dWuds+

∫ t

0

∫ T

u

Kδ(s− u)dsdWu − TZδ
0

which implies that

d < ψδ,W >t= θδt,Tdt =

(∫ T

t

Kδ(s− t)ds

)
dt =

(∫ T−t

0

Kδ(s)ds

)
dt (A.3)

d < ψδ >t=

(∫ T−t

0

Kδ(s)ds

)2

dt (A.4)

Since for small times at≪ 1

K(t) =
1

Γ(H + 1/2)

(
tH−1/2 +O

(
tH+1/2

))
(A.5)

it implies that

θδt,T =

∫ T−t

0

Kδ(s)ds

= δ1/2
∫ T−t

0

K(δs)ds

= δ1/2
1

Γ(H + 1/2)

∫ T−t

0

δH−1/2sH−1/2 +O
(
δH+1/2sH+1/2

)
ds

= δH
1

Γ(H + 3/2)
(T − t)H+1/2 +O(δ2H)

= δHθt,T +O(δ2H)

if we define that θt,T = 1
Γ(H+3/2)

(T − t)H+1/2. Then Dδ
t,T = δH (T−t)H+3/2

Γ(H+5/2)
+ O(δ2H) follows
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from the fact that ∂Dδ
t,T/∂t = −θδt,T . And we pick the leading order Dt,T = (T−t)H+3/2

Γ(H+5/2)

Lemma A.2. For j = 1, ..., 5

lim
δ−→0

δ−HE[|R(j)
T −R

(j)
t |2]1/2 = 0 (A.6)

where

dR
(1)
t =

(
σ0g

δ
t +

1

2

(
σδ
t − σ0

)2)
(x2∂2xQ

(0)
t )(Xt)dt (A.7)

dR
(2)
t = σ0p0

[
σ0
(
σδ
t − σ0

)
+

1

2
(σδ

t − σ0)
2

]
(x2∂2x(x

2∂2x))Q
(0)
t (Xt)ϕ

δ
tdt (A.8)

dR
(3)
t = σ0p0ρ(x∂x(x

2∂2x))Q
(0)
t (Xt)

(
σδ
t − σ0

)
θδt,Tdt (A.9)

dR
(4)
t = ρσ2

0p0(x∂x(x
2∂2x))Q

(0)
t (Xt)O(δ2H)dt (A.10)

dR
(5)
T = δHρp0

[
σ0
(
(σδ

t − σ0
)
+

1

2

(
σδ
t − σ0

)2]
(x2∂2xQ

(1)
t )(Xt)dt (A.11)

Proof. Consider

gδs = σδ
s − σ0 − F ′(Zδ

0)(Z
δ
s − Zδ

0) =⇒ |gδs | ≤
1

2
∥F ′′∥∞(Zδ

t − Zδ
0)

2 = O(δ2H) (A.12)

and

|σδ
s − σ0| = |σδ

s − σ0| ≤ ∥F ′∥∞(Zδ
s − Zδ

0) +O(δ2H) (A.13)

In addition that the deterministic function Q
(0)
t (x) satisfies:

∣∣∂kxQ(0)
t (x)

∣∣ ≤ C

(
1 +

1

(T − t)(k−1)/2

)

and the proof is similar to the proof of [12] Proposition 3.1.

Lemma A.3. Let f(t, x) be smooth bounded and with bounded derivatives. Let Xt and X̃t
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be defined as the followings:

dXt = σδ
tXtdW

∗
t , dX̃t = σ0X̃tdW

∗
t

Then

lim
δ−→0

E
[∣∣E[f(t,Xt)− f(t, X̃t)|F0]

∣∣2]1/2 = 0 (A.14)

Proof. Suppose f(t, x) = h(x) and T = t and we know that Q
(0)
0 (X0) = E[h(X̃t)|F0], we

know that:

E
[∣∣E[h(Xt)|F0]− E[h(X̃t)|F0]

∣∣2]1/2
≤E

[∣∣E[h(Xt)|F0]−Q
(0)
0 (X0)− σ0p0ϕ

δ
0(x

2∂2x)Q
(0)
0 (X0)− δHρp0Q

(1)
0 (X0)

∣∣2]1/2
+ E

[∣∣σ0p0ϕδ
0(x

2∂2x)Q
(0)
0 (X0) + δHρp0Q

(1)
0 (X0)

∣∣2]1/2
Take limit for both sides, we get the desired result.

Lemma A.4. The solution to

LBS(σ0)Q
(1)
t (x) = −σ2

0(x∂x(x
2∂2x))Q

(0)
t (x)θt,T , Q

(1)
T (x) = 0 (A.15)

is

Q
(1)
t (Xt) = −σ2

0

(
x∂x(x

2∂2x)
)
Q

(0)
t (Xt)Dt,T , Dt,T =

(T − t)H+3/2

Γ(H + 5/2)
(A.16)

Proof. Suppose we define

Q
(1)
t (Xt) = −σ2

0

(
x∂x(x

2∂2x)
)
Q

(0)
t (Xt)Dt,T

59



for some deterministic term Dt,T .

LBS(σ0)Q
(1)
t (x) = LBS(σ0)

[
σ2
0

(
x∂x(x

2∂2x)
)
Q

(0)
t (Xt)Dt,T

]
= σ2

0

(
x∂x(x

2∂2x)
)
LBS(σ0)Q

(0)
t (Xt)×Dt,T + σ2

0

(
x∂x(x

2∂2x)
)
Q

(0)
t (Xt)×

∂

∂t
Dt,T

= σ2
0

(
x∂x(x

2∂2x)
)
Q

(0)
t (Xt)×

∂Dt,T

∂t

Then we can conclude that

θt,T = (T − t)H+1/2 H + 3/2

Γ(H + 5/2)
=⇒ Dt,T =

(T − t)H+3/2

Γ(H + 5/2)
(A.17)

Lemma A.5. For t ∈ (0, T ), define:

ηδt = δH
∫ t

0

σδ
s − σ0ds (A.18)

then we have

lim sup
δ−→0

δ−H sup
t∈[0,T ]

E
[(
ηδt
)2]1/2

= 0 (A.19)

Proof.

E
[(
ηδt
)2]

= δ2HE

[(∫ t

0

σδ
s − σ0ds

)2
]

≤ δ2HE
[∫ t

0

(
σδ
s − σ0

)2
ds

]
≤ δ2HC∥F ′∥∞E

[∫ t

0

(
Zδ

s − Z0

)2
ds

]
≤ δ2HC∥F ′∥∞E

[∫ t

0

σ2
H(δs)

2H +O(δ2H)ds

]
≤ C̃∥F ′∥∞δ2H +O(δ2H)
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Lemma A.6. By Greeks formulas, we have the following two identities:

∂2xσQ
(0)
t (x)

∂σQ
(0)
t (x)

x(x2∂2x)Q
(0)
t (x) = (x∂x(x

2∂2x))Q
(0)
t (x) (A.20)

(x∂x)(x∂x)(x
2∂2x)Q

(0)
t (x) =

∂2xσQ
(0)
t (x)

∂σQ
(0)
t (x)

xQ
(1)
t (x)− (x2∂2x)Q

(0)
t (x)

σ2(T − t)
(A.21)

Proof. By option Greeks: For

d1 =
log(x/K) + 1

2
σ2(T − t)

σ
√
T − t

, d2 =
log(x/K)− 1

2
σ2(T − t)

σ
√
T − t

(A.22)

We have

(x∂x(x
2∂2x))Q

(0)
t (x) = 2(x2∂2x)Q

(0)
t (x) + (x3∂3x)Q

(0)
t (x)

= 2(x2∂2x)Q
(0)
t (x) + x3

[
−∂

2
xQ

(0)
t (x)

x

(
d1

σ
√
T − t

+ 1

)]

= 2(x2∂2x)Q
(0)
t (x)− (x2∂2x)Q

(0)
t (x)

(
d1

σ
√
T − t

+ 1

)
=

[
1− d1

σ
√
T − t

]
(x2∂2x)Q

(0)
t (x)

= x
∂2xσQ

(0)
t (x)

∂σQ
(0)
t (x)

(x2∂2xQ
(0)
t (x))

In fact,

x
∂2xσQ

(0)
t (x)

∂σQ
(0)
t (x)

(x2∂2xQ
(0)
t (x)) = x

∂2xσQ
(0)
t (x)

σ(T − t)
(A.23)

For the second identity:

∂2xσQ
(0)
t (x)

∂σQ
(0)
t (x)

x(x∂x)(x
2∂2x)Q

(0)
t (x) =

∂2xσQ
(0)(x)

∂σQ
(0)
t (x)

x2
∂2xσQ

(0)
t (x)

σ(T − t)
=
d22∂σQ

(0)
t (x)

σ3(T − t)2
(A.24)
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(x∂x)(x∂x)(x
2∂2x)Q

(0)
t (x) = (x∂x)

(
x
∂2xσQ

(0)
t (x)

σ(T − t)

)

=
x

σ(T − t)
∂2xσQ

(0)
t (x) +

x2

σ(T − t)
∂3x2σQ

(0)
t (x)

=
d22∂σQ

(0)
t (x)

σ3(T − t)2
− ∂σQ

(0)
t (x)

σ3(T − t)2

=
d22∂σQ

(0)
t (x)

σ3(T − t)2
− (x2∂2x)Q

(0)
t (x)

σ2(T − t)

=
(d22 − 1)(x2∂2x)Q

(0)
t (x)

σ2(T − t)

Then we conclude:

(x∂x)(x∂x)(x
2∂2x)Q

(0)
t (x) =

∂2xσQ
(0)
t (x)

∂σQ
(0)
t (x)

xQ
(1)
t (x)− (x2∂2x)Q

(0)
t (x)

σ2(T − t)
(A.25)

Lemma A.7. For any t ∈ [0, T ],

EBS
t = σ0p0

∫ t

0

(x2∂2x)Q
(0)
s (Xs)dψ

δ
s −

δHρp0
H + 3/2

∫ t

0

(x2∂2x)Q
(0)
s (Xs)θs,Tσ

δ
sdW

∗
s (A.26)

Then with leading order we know that

V ar
[
EBS

t |F0

]
= V ar

[
EHW

t |F0

] [
1− ρ2

(
2H + 2

(H + 3/2)2

)]
(A.27)

Proof. Consider computing V ar
[
EBS

t |F0

]
and recall that

V ar
[
EHW

t |F0

]
= V ar

[
σ0p0

∫ t

0

(x2∂2x)Q
(0)
s (Xs)dψ

δ
s |F0

]
(A.28)

62



By Lemma A.1:

V ar

[
σ0p0

∫ t

0

(x2∂2x)Q
(0)
s (Xs)dψ

δ
s |F0

]
= δ2Hσ2

0p
2
0E
[∫ t

0

(
(x2∂2x)Q

(0)
s (Xs)

)2
(θt,T )

2 ds|F0

]
(A.29)

On the other hand, we can compute the following leading order term by Lemma A.5:

V ar

[
δHρp0
H + 3/2

∫ t

0

(x2∂2x)Q
(0)
s (Xs)θs,Tσ

δ
sdW

∗
s |F0

]
=

δ2Hρ2p20
H + 3/2

E
[∫ t

0

(x2∂2x)Q
(0)
s (Xs)θs,Tσ

δ
sdW

∗
s |F0

]
=
δ2Hρ2σ2

0p
2
0

H + 3/2
E
[∫ t

0

(
(x2∂2x)Q

(0)
s (Xs)

)2
(θt,T )

2 ds|F0

]

Same, by Lemma A.5 we can compute the following covariance

E
[(
σ0p0

∫ t

0

(x2∂2x)Q
(0)
s (Xs)dψ

δ
s

)(
δHρp0
H + 3/2

∫ t

0

(x2∂2x)Q
(0)
s (Xs)θs,Tσ

δ
sdW

∗
s

)
|F0

]
=
δHρσ2

0p
2
0

H + 3/2
E
[∫ t

0

(
(x2∂2x)Q

(0)
s (Xs)

)2
(θt,T )

2 ds|F0

]

Thus,

V ar
[
EBS

t |F0

]
= V ar

[
EHW

t |F0

] [
1− 2ρ2

1

H + 3/2
+ ρ2

1

(H + 3/2)2

]
= V ar

[
EHW

t |F0

] [
1− ρ2

(
2(H + 3/2)

(H + 3/2)2
− 1

(H + 3/2)2

)]
= V ar

[
EHW

t |F0

] [
1− ρ2

(
2H + 2

(H + 3/2)2

)]

Lemma A.8. For any t ∈ [0, T ],

EBS
t =

∫ t

0

(x2∂2xQ
(0)
s )(Xs)dψ

ϵ
s −

ϵ1−H σ̃ρ

σ̄2(H + 1/2)

∫ t

0

(x2∂2x)Q
(0)
s (Xs)θtσ

ϵ
sdW

∗
s (A.30)
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Then with leading order we know that

V ar
[
EBS

t |F0

]
= V ar

[
EHW

t |F0

] [
1− ρ2

σ̃2

σ̄2

(
2H

(H + 1/2)2

)]
(A.31)

Proof. Then the hedging cost is:

EBS
t =

∫ t

0

(x2∂2xQ
(0)
s )(Xs)dψ

ϵ
s −

ϵ1−H σ̃ρ

σ̄2(H + 1/2)

∫ t

0

(x2∂2x)Q
(0)
s (Xs)θtσ

ϵ
sdW

∗
s (A.32)

Then we compute V ar[EBS
t |F0], then with leading order computation by Lemma B.2 in [14]

V ar

[∫ t

0

(x2∂2xQ
(0)
s )(Xs)dψ

ϵ
s|F0

]
= E

[∫ t

0

(
(x2∂2xQ

(0)
s )(Xs)

)2
(θϵt)

2 ds

]
= E

[∫ t

0

(
(x2∂2xQ

(0)
s )(Xs)

)2 (
ϵ1−Hθt + θ̃ϵt

)2
ds

]
= ϵ2−2HE

[∫ t

0

(
(x2∂2xQ

(0)
s )(Xs)θt

)2
ds

]

By Lemma B.4, we have the following leading order computation:

V ar

[
ϵ1−H σ̃ρ

σ̄2(H + 1/2)

∫ t

0

(x2∂2x)Q
(0)
s (Xs)θtσ

ϵ
sdW

∗
s |F0

]
= E

[(
ϵ1−H σ̃ρ

σ̄2(H + 1/2)

∫ t

0

(x2∂2x)Q
(0)
s (Xs)θtσ

ϵ
sdW

∗
s

)2
]

=
ϵ2−2H σ̃2ρ2

σ̄2(H + 1/2)2
E
[∫ t

0

(
(x2∂2x)Q

(0)
s (Xs)θt

)2
ds

]

And by Lemma B.4 in [14], we have the following leading order computation:

E
[(∫ t

0

(x2∂2xQ
(0)
s )(Xs)dψ

ϵ
s

)(
ϵ1−H σ̃ρ

σ̄2(H + 1/2)

∫ t

0

(x2∂2x)Q
(0)
s (Xs)θtσ

ϵ
sdW

∗
s

)
|F0

]
=

ϵ1−H σ̃2ρ

σ̄2(H + 1/2)
E
[(∫ t

0

(x2∂2xQ
(0)
s )(Xs)dψ

ϵ
s

)(∫ t

0

(x2∂2x)Q
(0)
s (Xs)θtdW

∗
s

)
|F0

]
=

ϵ1−H σ̃2ρ2

σ̄2(H + 1/2)
E
[∫ t

0

(
(x2∂2x)Q

(0)
s (Xs)θs

)2
ds

]
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Then,

V ar
[
EBS

t |F0

]
= V ar

[
EHW

t |F0

] [
1− 2ρ2

σ̃2

σ̄2

Γ(H + 1/2)

Γ(H + 3/2)
+ ρ2

σ̃2

σ̄2

Γ(H + 1/2)2

Γ(H + 3/2)2

]
= V ar

[
EHW

t |F0

] [
1− 2ρ2

σ̃2

σ̄2

1

(H + 1/2)
+ ρ2

σ̃2

σ̄2

1

(H + 1/2)2

]
= V ar

[
EHW

t |F0

] [
1− ρ2

σ̃2

σ̄2

(
2(H + 1/2)

(H + 1/2)2
− 1

(H + 1/2)2

)]
= V ar

[
EHW

t |F0

] [
1− ρ2

σ̃2

σ̄2

(
2H

(H + 1/2)2

)]
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Appendix B

In this Appendix B, we prove the Proposition 2.3, where the author omitted the proof in

[12]. We need some asymptotic expansion results for the hedging analysis.

Proposition B.1. When δ is small, let σ0 = F (Zδ
0), p0 = F ′(Zδ

0), then

E[h(XT )|Ft] =Mt = Qt(Xt) +O(δ2H) (B.1)

where

Qt(x) = Q
(0)
t (x) + σ0p0ϕ

δ
t (x

2∂2xQ
(0)
t (x)) + δHρp0Q

(1)
t (x) (B.2)

ϕδ
t = E

[∫ T

t

Zδ
s − Zδ

0ds
∣∣Ft

]
(B.3)

and

Q
(1)
t (x) = σ2

0x∂x(x
2∂2xQ

(0)
t (x))Dt,T , Dt,T =

(T − t)H+3/2

Γ(H + 5/2)
(B.4)

Proof. Consider

dQ
(0)
t (Xt) = ∂tQ

(0)
t (Xt)dt+

1

2
(σδ

t )
2(x2∂2xQ

(0)
t )(Xt)dt+ (x∂xQ

(0)
t )(Xt)σ

δ
t dW

∗
t (B.5)

=
1

2

(
(σδ

t )
2 − σ2

0

)
(x2∂2xQ

(0)
t )(Xt)dt+ (x∂xQ

(0)
t )(Xt)σ

δ
t dW

∗
t (B.6)
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And as we set up σδ
t = F (Zδ

t ), σ0 = F (Zδ
0), p

δ
t = F ′(Zδ

t ), p0 = F ′(Zδ
0)

σδ
t = F (Zδ

t ) = F (Zδ
0) + F ′(Zδ

0)(Z
δ
t − Zδ

0) + σδ
t − σ0 − F ′(Zδ

0)(Z
δ
t − Zδ

0) (B.7)

= σ0 + p0(Z
δ
t − Zδ

0) + σδ
t − σ0 − p0(Z

δ
t − Zδ

0) (B.8)

Define gδt = σδ
t − σ0 − p0(Z

δ
t − Zδ

0) we have

σδ
t = σ0 + p0(Z

δ
t − Zδ

0) + gδt (B.9)

it implies that

(σδ
t )

2 = (σ0 + p0(Z
δ
t − Zδ

0) + gδt )
2 (B.10)

= (σ0)
2 + 2σ0

(
p0(Z

δ
t − Zδ

0) + gδt
)
+ (σδ

t − σ0)
2 (B.11)

If we define that

(x∂xQ
(0)
t )(Xt)σ

δ
t dW

∗
t = dN

(0)
t (B.12)

to simplify the notation. Then

dQ
(0)
t (Xt) =

1

2

[
2σ0

(
p0(Z

δ
t − Zδ

0) + gδt
)
+
(
σδ
t − σ0

)2]
(x2∂2xQ

(0)
t )(Xt)dt+ dN

(0)
t

=σ0
(
p0(Z

δ
t − Zδ

0) + gδt
)
(x2∂2xQ

(0)
t )(Xt)dt+

1

2

(
σδ
t − σ0

)2
(x2∂2xQ

(0)
t )(Xt)dt+ dN

(0)
t

=σ0p0(Z
δ
t − Zδ

0)(x
2∂2xQ

(0)
t )(Xt)dt+

(
σ0g

δ
t +

1

2

(
σδ
t − σ0

)2)
(x2∂2xQ

(0)
t )(Xt)dt+ dN

(0)
t

=σ0p0(Z
δ
t − Zδ

0)(x
2∂2xQ

(0)
t )(Xt)dt+ dR

(1)
t + dN

(0)
t

Here we define

dR
(1)
t =

(
σ0g

δ
t +

1

2

(
σδ
t − σ0

)2)
(x2∂2xQ

(0)
t )(Xt)dt (B.13)
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to simplify the notation. Then we introduce

ϕδ
t = E

[∫ T

t

Zδ
s − Zδ

0ds
∣∣Ft

]
, ψδ

t = E
[∫ T

0

Zδ
s − Zδ

0ds
∣∣Ft

]
(B.14)

where ψδ
t is a martingale. Now

(Zδ
t − Zδ

0)(x
2∂2xQ

(0)
t )(Xt)dt = (x2∂2xQ

(0)
t )(Xt)dψ

δ
t − (x2∂2xQ

(0)
t )(Xt)dϕ

δ
t (B.15)

It implies that

dQ
(0)
t (Xt) =σ0p0(Z

δ
t − Zδ

0)(x
2∂2xQ

(0)
t )(Xt)dt+ dR

(1)
t + dN

(0)
t

=σ0p0(x
2∂2xQ

(0)
t )(Xt)dψ

δ
t − σ0p0(x

2∂2xQ
(0)
t )(Xt)dϕ

δ
t + dR

(1)
t + dN

(0)
t

By Ito’s formula

d[(x2∂2xQ
(0)
t )(Xt)ϕ

δ
t ] =(x2∂2xQ

(0)
t )(Xt)dϕ

δ
t

+ (x∂x(x
2∂2x))Q

(0)
t (Xt)σ

δ
tϕ

δ
tdW

∗
t

+
1

2
(x2∂2x(x

2∂2x))Q
(0)
t (Xt)σ

δ
tϕ

δ
tdt

+ (x2∂
2
x∂t)Q

(0)
t (Xt)ϕ

δ
tdt

+ (x∂x(x
2∂2x))Q

(0)
t (Xt)σ

δ
t d < ϕδ,W ∗ >t

=(x2∂2xQ
(0)
t )(Xt)dϕ

δ
t

+ (x∂x(x
2∂2x))Q

(0)
t (Xt)σ

δ
tϕ

δ
tdW

∗
t

+

[
σ0
(
σδ
t − σ0

)
+

1

2
(σδ

t − σ0)
2

]
(x2∂2x(x

2∂2x))Q
(0)
t (Xt)ϕ

δ
tdt

+ (x∂x(x
2∂2x))Q

(0)
t (Xt)σ

δ
t ρd < ψδ,W >t
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Then

d
[
Q

(0)
t (Xt) + σ0p0(x

2∂2xQ
(0)
t )(Xt)ϕ

δ
t

]
=σ0p0(x

2∂2xQ
(0)
t )(Xt)dψ

δ
t

+ σ0p0(x∂x(x
2∂2x))Q

(0)
t (Xt)σ

δ
tϕ

δ
tdW

∗
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As we define the martingale term:
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(1)
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2∂2xQ
(0)
t )(Xt)dψ

δ
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t (B.16)

d
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To simplify the notation, we furthermore denote that

dR
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to simplify the notation. Thus,

d
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Q
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δ
t

]
=σ0p0(x∂x(x
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t

We first denote this to be d < ψδ,W >t= θδt,Tdt where θ
δ
t,T is deterministic. By Lemma A.1
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we know that θδt,T = δHθt,T +O(δ2H). Then we can rewrite by (5):
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where

dR
(3)
t = σ0p0ρ(x∂x(x

2∂2x))Q
(0)
t (Xt)

(
σδ
t − σ0

)
θδt,Tdt (B.18)

dR
(4)
t = ρσ2

0p0(x∂x(x
2∂2x))Q

(0)
t (Xt)O(δ2H)dt (B.19)

By Ito’s Lemma:
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t (Xt) = LBS(σ0)Q

(1)
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(
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(B.20)

We define that:

LBS(σ0)Q
(1)
t (x) = −σ2

0(x∂x(x
2∂2x))Q

(0)
t (x)θt,T , Q

(1)
T (x) = 0 (B.21)
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and
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(2)
t = (x∂xQ
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t )(Xt)σ
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∗
t (B.22)

Then
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(B.23)

which implies that
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Then the sum is
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And we finally arrive that:

d[Q
(0)
t (Xt)+σ0p0(x

2∂2xQ
(0)
t )(Xt)ϕ

δ
t+δ

Hρp0Q
(1)
t (Xt)] = dN

(0)
t +σ0p0dN

(1)
t +δHρp0dN

(2)
t +

5∑
i=1

dR
(i)
t

(B.24)

where we define:

dR
(5)
T = δHρp0

[
σ0
(
(σδ

t − σ0
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+

1

2

(
g̃δt
)2]

(x2∂2xQ
(1)
t )(Xt)dt (B.25)

Thus, we know that

Mt = E[h(XT )|Ft] = E[NT |Ft] + E[RT |Ft] = Qt(Xt) + E[RT −Rt|Ft] (B.26)
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In appendix Lemma A.2, we prove that

lim
δ−→0

E

[(∫ T

t

d(R(1)
s +R(2)

s +R(3)
s +R(4)

s +R(5)
s )

)2
]1/2

= 0

Then we can conclude the asymptotic formula (B.2)
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Appendix C

Figure C.1: This plot depicts the asymptotic approximation of the HW scheme (3.51) for the
fast-varying long-memory case, as a function of time t and Hurst exponent H. The option
is assumed to be at the money, and σ̄ = 0.2, while all other parameters are set to 1. We
observe that the curves increase as time to maturity approaches, which aligns with market
expectations. It is noteworthy that the roughness of the volatility paths has a diminishing
effect on the approximation.
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Figure C.2: This plot depicts the asymptotic approximation of the HW scheme (3.119) in
the slow-varying volatility case. It shows the function as a plot of time t and Hurst exponent
H, with the option being at the money and σ0 = 0.2, while all other parameters are set to
1. As expected in the market, we observe that the curves increase as the time to maturity
approaches. Additionally, we can see that the curves decrease for H values between (0, 1),
without splitting the case into H < 0.5 or H > 0.5.
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