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Behavioral/Cognitive

Phase Alignment of Low-Frequency Neural Activity to the
Amplitude Envelope of Speech Reflects Evoked Responses to
Acoustic Edges, Not Oscillatory Entrainment

Yulia Oganian,"> Katsuaki Kojima,"**>%* Assaf Breska,” Chang Cai,’ Anne Findlay,’ “Edward Chang," and
Srikantan S. Nagarajan®'

"Department of Neurological Surgery, University of California—San Francisco, San Francisco, California 94158, “Center for Integrative Neuroscience,
University Medical Center Tuebingen, Tuebingen 72076, Germany, *Department of Radiology, University of California-San Francisco, San
Francisco, California 94143-0628, *Department of Pediatrics, University of California, San Francisco, Box 0734, 550 16th Street, 5th Floor, San
Francisco, CA 94158, USA, *Neurodevelomental Disorders Prevention Center, Perinatal Institute, Cincinnati Children’s Hospital Medical Center,
Cincinnati, Ohio 45229-3039, 6Departmen’[ of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267,
and "Max-Planck-Institute for biological Cybernetics, Tuebingen 72076, Germany

The amplitude envelope of speech is crucial for accurate comprehension. Considered a key stage in speech processing, the phase of
neural activity in the theta-delta bands (1-10 Hz) tracks the phase of the speech amplitude envelope during listening. However, the
mechanisms underlying this envelope representation have been heavily debated. A dominant model posits that envelope tracking
reflects entrainment of endogenous low-frequency oscillations to the speech envelope. Alternatively, envelope tracking reflects a series
of evoked responses to acoustic landmarks within the envelope. It has proven challenging to distinguish these two mechanisms. To
address this, we recorded MEG while participants (n=12, 6 female) listened to natural speech, and compared the neural phase patterns
to the predictions of two computational models: an oscillatory entrainment model and a model of evoked responses to peaks in the
rate of envelope change. Critically, we also presented speech at slowed rates, where the spectro-temporal predictions of the two models
diverge. Our analyses revealed transient theta phase-locking in regular speech, as predicted by both models. However, for slow speech,
we found transient theta and delta phase-locking, a pattern that was fully compatible with the evoked response model but could not be
explained by the oscillatory entrainment model. Furthermore, encoding of acoustic edge magnitudes was invariant to contextual speech
rate, demonstrating speech rate normalization of acoustic edge representations. Together, our results suggest that neural phase-locking
to the speech envelope is more likely to reflect discrete representation of transient information rather than oscillatory entrainment.

Key words: evoked response; language; MEG; modeling; neural oscillations; speech

(s )

This study probes a highly debated topic in speech perception: the neural mechanisms underlying the cortical representation
of the temporal envelope of speech. It is well established that the slow intensity profile of the speech signal, its envelope, elicits
a robust brain response that “tracks” these envelope fluctuations. The oscillatory entrainment model posits that envelope
tracking reflects phase alignment of endogenous neural oscillations. Here the authors provide evidence for a distinct mecha-
nism. They show that neural speech envelope tracking arises from transient evoked neural responses to rapid increases in the
speech envelope. Explicit computational modeling provides direct and compelling evidence that evoked responses are the pri-
mary mechanism underlying cortical speech envelope representations, with no evidence for oscillatory entrainment. /
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Introduction

Speech comprehension is essential to human communication.
A major computational step in neural processing of speech is
the extraction of its amplitude envelope, the overall intensity
of speech across spectral bands. The speech envelope is domi-
nated by fluctuations in the range of ~1-10Hz, which are
temporally correlated with the syllabic structure of speech,
and the removal of which from speech severely impairs intelligibility
(Drullman et al., 1994a,b). Many studies have shown a consistent
relationship between the phase of band-limited low-frequency neu-
ral activity measured in MEG/EEG over auditory cortical areas and
the phase of the amplitude envelope of speech, a phenomenon
widely known as envelope tracking (Ahissar et al., 2001; Luo and
Poeppel, 2007). The strength of envelope tracking is correlated with
speech intelligibility, suggesting that it could constitute an essential
stage in speech comprehension (Abrams et al., 2008; Peelle et al.,
2013). However, the neural computations underlying speech enve-
lope tracking are controversial (Zoefel et al., 2018b; Obleser and
Kayser, 2019; Gwilliams, 2020).

A dominant theory of speech envelope tracking posits that it
reflects the entrainment (i.e., phase alignment) of endogenous
neural oscillations to envelope fluctuations. According to this,
phase correction is driven by discrete acoustic landmarks in the
speech signal and occurs primarily for oscillators in the theta-
delta range (1-10 Hz), matching the syllabic rate of the speech
signal (Giraud and Poeppel, 2012; Ding et al, 2016; Zoefel,
2018). Functionally, oscillatory entrainment is thought to benefit
speech processing via the self-sustaining property of oscillating
dynamical systems, resulting in automatically driven temporal
prediction of upcoming information (Haegens and Zion Golumbic,
2018; Helfrich et al., 2019; Hovsepyan et al., 2020).

However, recent work has demonstrated that phase alignment
of low-frequency neural activity can be the outcome of transient
neural responses rather than oscillatory dynamics (Capilla et al.,
2011; Breska and Deouell, 2017). This becomes pertinent in the
case of speech, as it has been suggested that the speech envelope
is encoded in evoked responses to the same acoustic landmarks
that supposedly drive the entrainment process. Recent electro-
physiology recordings suggest that these events are peaks in the
rate of amplitude envelope change, marking the perceived onset
of vowels. To date, it remains unclear which of these processes
drive phase adjustments in speech envelope tracking. The two
competing models have drastically disparate functional and
mechanistic implications (Ruhnau et al., 2020; Zoefel et al., 2020;
Bree et al,, 2021; Doelling and Assaneo, 2021).

To address this, we combined a model-based computational
approach with neurophysiological (MEG) recordings of neural
responses in an ecologically valid context, using natural continu-
ous speech. We implemented an oscillatory entrainment model
and an evoked responses model, quantified the spectral content
and temporal dynamics of neural activity predicted by each
model in response to speech, identified diverging model predic-
tions, and tested them against MEG data.

Our modeling approach had two critical features. First, we ana-
lyzed phase patterns as event-locked to acoustic landmarks. This
allowed us to have an extremely high number of events (2106
within-participant), and to probe phase alignment in a time-resolved
manner. Particularly, it enabled us to quantify reverberation follow-
ing a phase reset, a hallmark of oscillatory processes. Second, we
additionally presented continuous speech at, equally intelligible,
one-third of its original rate. In natural speech, the speech rate, and
hence the expected frequency of an entrained oscillator, overlaps
with the spectral content of evoked responses. Moreover, the
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duration of an evoked response is longer than the time between
phase resetting events, where oscillatory reverberation is expected to
occur. We hypothesized that slowing speech would solve both.

This manipulation also allowed us to address the neural mech-
anisms of speech rate normalization, listeners’ ability to adjust per-
ceptual processes to differences in speech rate. It has previously
been proposed that speech rate normalization relies on shifts in
the frequency of the phase-locked oscillator toward the speech rate
(Nourski et al., 2009; Pefkou et al., 2017; Kosem et al., 2018). Here
we examined this hypothesis in naturalistic speech.

Materials and Methods

Participants

Twelve healthy, right-handed volunteers (6 females; age range 22-44 years,
median 25years) participated in the study. All participants were native
speakers of English. All participants provided informed written consent and
received monetary compensation for their participation. The study was
approved by the University of California, San Francisco Committee on
Human Research.

Speech stimulus

Participants listened to two stories (one male, one female speaker) from
the Boston University Radio Speech Corpus (for full stimulus tran-
scripts, see Extended Data Table 1-1) (Ostendorf et al., 1995), each once
at regular speech rate and once slowed to one-third speech rate. Overall,
the stimuli contained 26 paragraphs (each containing 1-4 sentences) of
10-60 s duration, with silent periods of 500-1100 ms inserted between para-
graphs to allow measuring onset responses in the MEG without distortion
from preceding speech. Boundaries between paragraphs corresponded to
breaks between phrases, such that silences were perceived as natural. Speech
stimuli were slowed using the Pitch Synchronous Overlap and Add algo-
rithm, as implemented in the software Praat (Boersma and Weenik, 2019),
which slows down the temporal structure of the speech signal while keeping
its spectral structure constant (Moulines and Charpentier, 1990). Overall,
the regular speech stimulus was 6.5 min long and the slowed stimulus was
19.5min long. An example excerpt of the stimulus at slow and regular
speech rate is provided in Extended Data 1 and 2.

Procedure and stimulus presentation
All stimuli were presented binaurally at a comfortable ambient loudness
(~70dB) through MEG-compatible headphones using custom-written
MATLAB R2012b scripts (The MathWorks, https://www.mathworks.
com). Speech stimuli were sampled at 16 kHz. Participants were asked to
listen to the stimuli attentively and to keep their eyes closed throughout.
Participants listened to the radio stories once at regular and once at
slowed rate in separate but interleaved blocks, such that each participant
heard one story first at regular speech rate and the other at slowed speech
rate. Comprehension was assessed with 3 or 4 multiple choice comprehen-
sion questions posed after each story (for list of comprehension questions,
see Extended Data Table 1-2). For each participant, a different randomly
selected subset of questions was used for each block. Percentage correct was
compared between regular and slow blocks using a two-sided paired ¢ test.

Neural data acquisition and preprocessing

MEG recordings were obtained with a 275-axial gradiometers whole-
head MEG system (CTF) at a sampling rate of 1200 Hz. Three fiducial
coils were placed on the nasion and left and right pre-auricular points to
triangulate the position of the head relative to the MEG sensor array.
The position of the patient’s head in the device relative to the MEG sen-
sors was determined using indicator coils before and after each record-
ing interval to verify an adequate sampling of the entire field. The
fiducial markers were later coregistered onto a structural MRI scan to
generate head shape (Teichmann et al,, 2013).

Data analysis and modeling

All analyses were conducted in MATLAB R2019a-MATLAB R2021b
(The MathWorks, https://www.mathworks.com) using custom-written
scripts and the FieldTrip toolbox (Oostenveld et al., 2011).
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Figure 1. Task design and envelope tracking in neural data. A, The acoustic waveform of an example utterance (“Tarantino says...”), with syllable boundaries, amplitude envelope, and first

temporal derivative of the envelope superimposed on it. The same utterance is shown at a regular rate (left) and slowed (right) speech rate. Arrows indicate candidate temporal landmark that
might induce phase-locking. Black represents local peaks in the envelope, peakEnv. Purple represents acoustic edges, defined as local peaks in the first temporal derivative (rate of change) of
the envelope, peakRate. For transcripts of the entire speech stimulus, see Extended Data Table 1-1. For example stimulus excerpts at two different speech rates, see Extended Data 1 and
Extended Data 2. B, Frequency of occurrence for peakRate/peakEnv events. Dashed vertical lines indicate the average frequency of peakRate events in slow (blue, 1.9 Hz) and regular speech
(green, 5.7 Hz). C, Single-subject (black) and group-average (red) comprehension performance. For a list of all comprehension questions, see Extended Data Table 1-2. D, Sensor selection was
based on M100 response to utterance onsets. Top, Group-averaged evoked response across all 20 sensors included in the analysis. Error bars indicate +1 SEM across subjects. Bottom,
Topographic map of a group-averaged M100 response with selected sensors marked in red. E, Group-averaged evoked response aligned to peakRate and peakEnv events. Dotted lines indicate
clusters with p << 0.05 with a cluster-based permutation test against 0. Error bars indicate =1 SEM across subjects. F, CAC between MEG responses and speech envelope (top), and the differ-
ence between slow and regular speech (ACAC, bottom). Data were filtered in semi-logarithmically spaced bands between 0.3 and 10 Hz for this analysis. Dashed vertical lines indicate the aver-

age frequency of peakRate events in each condition, as shown in D. *p << 0.01, post hoc t tests with interaction p << 0.01. Error bars indicate =1 SEM across subjects.

Acoustic feature extraction

We extracted the broad amplitude envelope of speech stimuli by apply-
ing rectification, low-pass filtering at 10Hz, and downsampling to
100 Hz, to the original stimulus waveform (in this order). We then calcu-
lated the derivative of the resulting envelopes as a measure of its rate of
change. Finally, we extracted the sparse time series of local peaks in the
amplitude envelope (peakEnv) and its derivative (peakRate). All features
are depicted in Figure 1A, for an example stimulus excerpt. Overall, the
stimulus set contained 2106 peakRate and 2106 peakEnv events per
speech rate condition.

Evoked response and oscillatory entrainment models for interevent phase
coherence (IEPC) simulation

We implemented two computational models that predict neural activity
in response to continuous speech: one based on oscillatory entrainment
and another based on evoked responses. We then submitted their output
to the same phase analysis as for MEG data. We assumed that both proc-
esses were driven by peakRate events, based on our analysis of responses
to acoustic landmarks and previous work (Oganian and Chang, 2019).
As input, each model received a time series that contained peakRate val-
ues, scaled within speech rate between 0.5 and 1, at times of peakRate
events, and zeros otherwise. We scaled to this range as our analyses
revealed that neural phase alignment to speech is normalized within
each speech rate, and that its magnitude for the bottom quantile is
~50% of the top quantile (see Results; Fig. 5). To capture the variable la-
tency of the neural response to nontransient sensory events, such as
acoustic landmarks, we added random temporal jitter (Gaussian distri-
bution, SD =10 and 30ms in regular and slow speech, respectively) to
the time stamp of each peakRate event. Subsequent phase analyses were
conducted using the original, nonjittered time stamps. To account for
the nonuniform spectral impact of the 1/f noise that is typical to neu-
rophysiological measurement, we added noise with this spectral

content to the predicted neural response output by each model, with
a signal-to-noise ratio of 1/10. To create the noise, we filtered
Gaussian white noise to the 1/f shape with the MATLAB function
firls.m. The temporal and amplitude jitter parameters were fitted to
maximize the similarity between the predicted and observed spectro-
temporal patterns of phase alignment. Importantly, to not favor one
model, this was done across both models and speech rates. To ensure
that results would not be biased by the introduction of simulated ran-
dom noise, we repeated the randomization procedure 2560 times for
each model and each speech rate (64 iterations of temporal noise x
40 iterations of amplitude noise), calculated the phase analyses
(below) on the predicted neural signal from each randomization, and
then averaged across randomizations.

For the oscillator model, peakRate events induce phase corrections of
a fixed-frequency oscillator whose frequency is centered on the speech
rate (5.7 and 1.9Hz for regular and slow speech, respectively), as is
assumed by oscillatory entrainment models and confirmed in previous
work (Large and Snyder, 2009; Breska and Deouell, 2017). Following
Large and Snyder (2009), this process was modeled using a coupled os-
cillator dynamical system as follows:

d—0:2wF—c~@~

I sinf

d
d—::r(l—rz)-i-c-s(t)-cosB
The system produces periodic limit cycle behavior at a radius of r=1
(attractor point) and a frequency F in the absence of input (s(#) =0) and
follows phase correction toward an angle of & = 0 when presented with
input (s(t) > 0). The magnitude of phase correction depends on the
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Spectral and temporal signatures of IEPC in oscillatory entrainment and evoked response models. A, Schematic illustrations of the predicted neural response to the utterance in

Figure 14 using three different models. Top, Speech signal. Middle, Oscillatory entrainment model. Bottom, Evoked response model. B, IEPC patterns predicted by oscillatory entrainment model
for reqular and slow speech with a focus on spectral precision. Dashed lines indicate the frequency of peakRate events in each condition. C, Same as in B, but for evoked response model. D,
Temporal dynamics of IEPC in the delta frequency range predicted by oscillatory entrainment model, based on peakRate events that are at least 1000 ms apart from following events (n =113

events) in the Slow speech condition. E, Same as in D, but for the evoked response model.

strength of the input, the current angle, and the coupling parameter c. At
low values of ¢, no oscillator was able to entrain to speech, whereas at high
values, entrainment spread across all oscillator frequencies. Crucially, as
predicted, at intermediate values, only the oscillator with the correct

frequency was entraining to our speech stimulus (see Fig. 2B). We thus
focused on an oscillator model with intermediate entrainment strength
and oscillator frequency corresponding to the speech rate in each task
condition for further analyses. Specifically, the value of ¢ was set such that



Oganian et al. e Evoked Responses Underlie Speech Envelope Tracking

the maximal phase correction possible (when s(f)=1 and 6 = g or — z)

would be 70% of the maximal phase shift. We reconstructed the predicted
response as follows: PredResp; = cos0; - t;.

peakRate events trigger a prototypical evoked response with its am-
plitude proportional to the strength of the input. For the evoked
response model, this process was modeled using a linear convolution of
the time series of peakRate events with the waveform of an evoked
response to peakRate events. The latter was estimated directly from the
MEG data, using a time-delayed linear encoding model (Temporal
Receptive Field) (Holdgraf et al., 2017; Oganian and Chang, 2019), with
a time window of —150 to 450 ms relative to peakRate events. While we
found no effect of speech slowing on the shape of the neural response to
peakRate events in our previous intracranial work (Oganian and Chang,
2019), we assumed that neural responses recorded with MEG will be
additionally shaped by other speech features that occur in temporal
proximity to peakRate events (e.g., vowel onsets), although our dataset
did not allow us to explicitly model such additional features. Rather, we
estimated the evoked response separately within each speech rate. We
used the Temporal Receptive Field approach instead of simple averaging
because of the high rate of peakRate events (average interval ~170 ms),
which would have distorted the averaging-based estimate because of
overlap between evoked responses.

MEG data preprocessing

Offline data preprocessing included (in this order) artifact rejection with
dual signal subspace projection and downsampling to 400 Hz. Dual sig-
nal subspace projection is an MEG interference rejection algorithm
based on spatial and temporal subspace definition (Sekihara et al., 2016).
Its performance has been recently validated using clinical data (Cai et al.,
2019). In all subsequent analyses of segmented data, segments contain-
ing single sensor data >1.5 pT and visually identified artifacts (including
muscle, eye blink, and motion) were flagged as bad events and removed
from further processing (0.2% of segments).

Sensor selection

To focus analyses on responses originating in temporal auditory areas,
we selected sensors based on the magnitude of the group-averaged M100
response to the onset of utterances (independent of responses to acoustic
features within the utterance, which were the focus of subsequent analy-
ses). For this purpose, we segmented the broadband signal around utter-
ance onsets (—200 to 500 ms), averaged these epochs across utterances
and participants, applied baseline correction (—200ms to 0 ms relative
to utterance onset), and extracted the M100 amplitude as the average ac-
tivity between 60 and 100 ms after utterance onset. We then selected the
10 sensors with maximal M100 responses from each hemisphere. All
subsequent analyses were conducted on these 20 sensors.

Event-related analysis and sensor selection

For broadband-evoked response analysis, we first extracted the broad-
band signal by bandpass filtering the data between 1 and 40 Hz (second-
order Butterworth filter).

To identify which landmark in the speech envelope drives evoked
responses, we analyzed evoked responses to peakRate and peakEnv
events. We reasoned that, with alignment to an incorrect landmark,
evoked responses would have reduced magnitude because of smearing,
and latency that is shifted away from the acoustic event. For this pur-
pose, we segmented the broadband signal around acoustic landmark
events (—100 to 300 ms), averaged these epochs across events within
each participant separately for peakRate and peakEnv events, and
applied baseline correction (—100ms to 0 ms relative to event onset).
Based on our previous work (Oganian and Chang, 2019), we hypothe-
sized that peakRate events would be the driving acoustic landmark. We
compared evoked responses to peakRate and peakEnv using time point
by time point t tests.

Time-frequency (TF) decomposition

Identical TF analyses were performed on the continuous MEG data and
on the continuous simulated signal from the Evoked Response and
Oscillatory Entrainment models. To evaluate the instantaneous phase of
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the signal at individual frequency bands (logarithmically spaced between
0.67 and 9Hz, 0.1 octave steps), we applied noncausal bandpass
Butterworth filters around each frequency of interest, performed the
Hilbert transform, and obtained the amplitude and phase as the absolute
value and phase angle, respectively, of the Hilbert signal. Filter order was
chosen to achieve maximal 3 dB of passband ripple and at least 24 dB of
stopband attenuation. We conducted this TF analysis with a narrow fil-
ter width (0.1 octave of the frequency of interest) for analyses of spec-
tral patterns to increase frequency resolution, and again with a wider
filter (0.5 octave) for analyses of temporal dynamics to increase tempo-
ral resolution.

Cerebro-acoustic phase coherence (CAC)

To assess CAC between the speech envelope and MEG responses, the
speech envelope was processed using the same procedure that was
applied to the MEG responses: downsampling and TF analysis using the
wide filter settings. Phase-locking between the speech envelope and
MEG response was calculated across the entire duration of every utter-
ance within each frequency band, using the CAC as follows:

1
CAC(¢) =7

Zexp(i* (ph(¢.1) — phs(e, 1))

where ¢ is the center frequency of a frequency band, T is the number of
time samples in an utterance, ph is the phase of the neural signal, and
phs is the phase of the speech envelope in band ¢ at time t. To equate
the number of time points entering the analysis for slow and regular
speech, slow speech utterances were split into three equal parts before
CAC calculation, and resultant CAC values were averaged. CAC was
averaged across sensors for each hemisphere.

A priori, we hypothesized that CAC would differ between condi-
tions in the frequency bands corresponding to the average frequency of
peakRate events in each rate condition (regular: 5.7 Hz; slow: 1.9 Hz,
see Fig. 1B). We tested this hypothesis using a three-way repeated-
measures ANOVA with factors frequency band (high/low), factor
speech rate (slow/regular), and hemisphere (left/right). To test for fur-
ther differences in each frequency band, we assessed the effect of
speech rate and hemisphere onto CAC using a two-way repeated-meas-
ures ANOVA with factor speech rate (slow/regular) and hemisphere
(left/right). Significance in this analysis was Bonferroni-corrected for
multiple comparisons across bands.

IEPC

Both IEPC analyses were conducted on the actual MEG data and the
neural responses predicted by the evoked response and oscillatory
entrainment models. To assess neural phase-locking around peakRate
events, we segmented the continuous phase data around peakRate events
(see below), and obtained a time-resolved IEPC (Lachaux et al., 1999).
For each time point, IEPC was calculated using the following formula:

IEPC(@,t) = — | Y exp(i * phi( @, 1))

k=1

z| =

where N is the number of events, ph is the phase of the neural signal in
trial k, for the frequency band ¢ and time point t. IEPC were first calcu-
lated within each of the selected sensors, then averaged across sensors.
Spectral patterns of IEPC. To assess the spectral distribution of
phase-locking following peakRate events with increased frequency re-
solution, we segmented the phase data outputted by the narrow filter
TF analysis around peakRate events (—500 to 500 ms) and calculated
the IEPC. To prevent distortion of the estimated phase by subsequent
peakRate events, we only used ones that were not followed by another
peakRate event within the 0-500 ms window (1 =813 within each par-
ticipant). To identify whether in this time window and frequency range
there was a significant increase in IEPC in the MEG data, the resulting
time X frequency IEPC was compared with the pre-event baseline
using 2D cluster-based permutation f tests (Maris and Oostenveld,
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2007) with 3000 permutations, a peak f threshold of p <0.01, and a
cluster threshold of p < 0.01. Baseline IEPC was calculated as the aver-
age IEPC between —400and —100 ms relative to event onset in each
frequency band.

To compare between model predictions and data, IEPC spectral pro-
files were calculated, separately for each speech rate condition, by aver-
aging IEPC TF images following peakRate event onset across a time
window that conforms to one cycle of an oscillator whose frequency
matches the speech rate (i.e., 0-170 ms at regular speech rate and 0-500 ms
at slowed speech rate).

Temporal extent of IEPC. To assess the temporal extent of IEPC
between peakRate events, we focused on the slowed speech condition,
where phase-locking originating from the evoked response and from pu-
tative oscillatory entrainment occupy distinct spectral bands. We seg-
mented the phase data outputted by the broad filter TF analysis around
peakRate events (—500 to 1000 ms) with a temporal interval of more
than two oscillatory cycles for half an octave around the frequency
of peakRate events (1.9 Hz): that is, at least 1040 ms to the next
peakRate (n =114 peakRate events per participant). As this analy-
sis was focused on the temporal dynamics of IEPC, we examined
IEPC dynamics as a function of time, averaged across single fre-
quency bands in this range. For the MEG data, this time course
was tested against a theoretical chance level, defined as the
expected IEPC value for randomly sampling a matched number of
angles from a uniform von Mises distribution.

Effect of peakRate magnitude on IEPC

In each rate condition, peakRate events were split into five quantiles, and
IEPC was separately calculated within each quantile. Then, we extracted
the average IEPC in the theta band (4-8 Hz) across all the time points for
one cycle of the given frequency band after the event. IEPC in each
quantile was compared using two-way ANOVA with factors quantile
and speech rate (regular speech, slow speech).

Effect sizes and power

With over 1000 events (trials) per participant, our dataset is well pow-
ered beyond what is typically discussed in psycholinguistic studies,
where the number of trials is mostly limited by stimulus selection (e.g.,
Brysbaert, 2019). For all comparisons, we report post hoc power analyses
with effect sizes (dz) and beta power, calculated with the software
G*power (Faul et al., 2009).

Data and code availability

All custom-written analysis code will be publicly available on publication
on github (https://github.com/ChangLabUcsf/MEG-SlowSpeech). Data
will be made available on request from the corresponding authors.

Results
Speech envelope tracking for regular and slow speech as seen
in MEG
We recorded MEG while participants (n = 12) listened to contin-
uous speech containing 2106 instances of each envelope land-
mark, at the original rate (Regular speech condition 6.5min
duration), and once slowed to one-third of the original speech
rate (Slow speech condition, 19.5min duration, Fig. 1A). With
this high number of events per condition, we were able to see
clear and robust effects based on data from 12 participants
(Stefanics et al, 2010) (for details on power calculation, see
Materials and Methods). Stimuli were split into 26 utterances of
10-69 s duration (30-210 s in Slow speech condition), with addi-
tional silence periods inserted between them. This allowed us to
estimate an auditory evoked response to speech onset from the
data, without altering the original temporal dynamics of the
stimulus within sentences.

In a first step, we characterized the temporal dynamics of
acoustic landmark events in our speech stimulus, focusing on
peaks in the rate of envelope change (peakRate, n=2106 per
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condition, Fig. 1A) and on peaks in the envelope (peakEnv,
n=2106 per condition, black in Fig. 1A). In the regular speech
condition, the average frequency of landmarks (similar for
peakRate and peakEnv) was 5.7Hz (SD =2.9 Hz, Fig. 1B), as is
typical in natural speech (Ding et al.,, 2016). In the slow speech
condition, the average frequency of landmarks was 1.9Hz
(SD =1 Hz, similar for peakRate and peakEnv), shifting the peak
of the envelope power spectrum to the 6 band. Slowing did not
impair participants’ comprehension, as probed by multiple
choice comprehension questions after each story (3 or 4 ques-
tions per story, chance level per question: 50%; accuracy in regu-
lar speech: mean=283%, SD=13%; accuracy in slow speech:
mean =90%, SD =9.5%; t(11) = —1.85, p=0.09; Fig. 1C).

Acoustic edges drive MEG-evoked responses

We first asked which landmark in the speech envelope
drives evoked responses and phase-locking to the envelope
in regular speech. To focus our analyses on sensors that
capture auditory sensory processing, we selected 10 sensors
with the largest M100 response to speech onsets after silence
periods from each hemisphere for all further analyses (Fig.
1D). The M100 response showed the typical dipole pattern in
each hemisphere (Chait et al., 2004). First, we examined the
characteristics of evoked responses (bandpass filtered 1-40 Hz
and averaged in the time domain) locked to peakRate and
peakEnv landmark events. While peakEnv closely follows on
peakRate in regular speech, the interval between them varies.
Thus, aligning to the incorrect landmark should lead to (1) a
reduced magnitude of the averaged evoked neural signal
because of smearing, and (2) shifts in response onset times away
from the acoustic event. We found transient evoked responses
with both alignments (Fig. 1E). Crucially, the evoked response was
of larger magnitude when aligned to peakRate than to peakEnv
(peak magnitude: f7)=5.9, p < 0.001). Moreover, this response
started after peakRate events, but before peakEnv events (response
latency relative to the event for peakEnv: —12.5ms; peakRate:
50 ms, determined as the first significant time point in a cluster-
based permutation test against 0). Together, these analyses indi-
cated that peakRate events, that is, acoustic edges, rather than
peakEnv events, that is, envelope peaks, triggered the evoked
response in MEG, in line with previous results (Gross et al., 2013;
Doelling et al., 2014; Brodbeck et al., 2018; Oganian and Chang,
2019).

CAC between speech envelope and MEG

To confirm that cortical speech envelope tracking was present in
our data (Peelle and Davis, 2012), we calculated the CAC
between neural responses and the speech envelope in frequency
bands <10 Hz. CAC is typically increased at the frequency corre-
sponding to the speech rate (Pefkou et al., 2017), which in our
data corresponds to the frequency of peakRate in each rate con-
dition (regular: 5.7 Hz, slow: 1.9Hz). Indeed, speech rate had
opposite effects on CAC in these two frequency bands (repeated-
measures ANOVA, interaction F ;;y=31.20, p <0.001, 7;2 =
0.30, Fig. 1F). At 5.7Hz, CAC was higher for regular speech
(ta1)=5.6,p <0.001, 772 = 0.42), while at 1.9 Hz it was higher for
slow speech (t(11)=3.4, p=0.006, n2 = 0.29). Moreover, CAC
was overall higher at lower frequencies (F(; 11)=16.44, p < 0.001,
nz =0.39), as is typical for this measure (Cohen, 2014). No other
frequency band showed a significant effect of speech rate on
CAC (all Bonferroni-corrected p > 0.05). Overall, this result rep-
licates previous findings of cortical speech envelope tracking in
frequency bands corresponding to the speech rate of the
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stimulus. However, as this measure is calculated across the entire
stimulus time course, it cannot capture local temporal dynamics
in the neural phase, driven by phase resets at acoustic edges. To
evaluate local temporal and spectral patterns of neural phase-
locking following peakRate events, we calculated IEPC across
peakRate events in the speech stimulus. In contrast to prior
studies of CAC, which quantified phase consistency across
time, IEPC is calculated across single-event occurrences
(i.e., single trials) for each time point. IEPC thus enables
tracking of the temporal dynamics of phase-locking (Gross
etal., 2013).

Oscillator and evoked response models predict distinct
patterns of phase alignment to slowed natural speech

To obtain a quantitative estimate of neural phase patterns
predicted by oscillatory entrainment and evoked response
mechanisms, we implemented computational models of neu-
ral envelope tracking as predicted by both processes (for a
full description of both models, see Materials and Methods).
The input to both models was the acoustic stimulus reduced
to peakRate events: a continuous time series downsampled to
match the MEG sampling frequency and containing non-
zero values corresponding to peakRate magnitudes at times
of peakRate events, and 0 otherwise. The oscillator model
was implemented as a coupled oscillator dynamical system
with a nondecaying amplitude attractor point, that followed
phase resetting whenever the input was different from 0 (at
peakRate events), at a magnitude determined by an entrain-
ment parameter (Breska and Deouell, 2017). A preliminary
analysis verified that indeed an oscillator whose endogenous
frequency corresponds to the average rate of the speech stim-
ulus would be best suited to entrain to the speech stimulus.
The evoked response model was designed as a linear convo-
lution of the peakRate event time series with a stereotypical
evoked response, which was extracted from the actual MEG
data using a time-lagged linear encoding model (rather than
simulated to have an ideal shape) (Holdgraf et al., 2017;
Oganian and Chang, 2019). To both models, we added 1/f
shaped noise, as is observed in neurophysiological data, and
a temporal jitter around peakRate event occurrence to each
model (for a full description of both models, see Materials and
Methods). Both models output a predicted neural response time
series (Fig. 2A), from which we extracted predicted spectral and
temporal patterns of IEPC in the theta-delta frequency ranges
following peakRate events for each condition (Fig. 2B).

To identify distinct predictions of the two models, we focused
on two aspects of the overall predicted pattern of IEPC. First, we
quantified the spectral shape of predicted responses, by examin-
ing the average IEPC pattern in the first oscillatory cycle after
peakRate events. We found that, in regular speech, both the
evoked response model and the oscillatory model predicted a
transient increase in theta IEPC following peakRate events (Fig.
2B,C, left). However, their predictions for the slow speech condi-
tion diverged significantly (Fig. 2B,C, middle). The oscillator
model predicted a single peak in IEPC around the oscillator fre-
quency in IEPC (Fig. 2B, right). In contrast, the evoked response
model predicted two IEPC peaks, at ~5.7 and ~1.9 Hz, reflective
of the shape of the evoked response (the higher frequency peak)
and its frequency of occurrence (i.e., the frequency of peakRate
events, the lower frequency peak), respectively (Fig. 2C, right).
We verified this by manually morphing the shape of the evoked
response and the frequency of evoked responses, which shifted
the location of the upper and lower IEPC peaks, respectively.
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Second, we examined the temporal extent of IEPC predicted
by each model. A key feature of an oscillatory entrainment
mechanism, which is central to the cognitive functions ascribed
to oscillatory models, is that the endogenous oscillator will con-
tinue to reverberate after phase reset beyond the duration of a
single oscillatory cycle, resulting in increased phase alignment
for a prolonged time window (Haegens and Zion Golumbic,
2018; Helfrich et al., 2019; Meyer et al.,, 2020). In our data, this
should be expressed as an increase in IEPC extending beyond a
single oscillatory cycle after peakRate events. In contrast, if
phase-locking is the result of evoked responses to peakRate
events, the increase in IEPC should be limited to the duration of
an evoked response. To quantify this, we focused our analysis on
the first two cycles after peakRate events. To prevent interference
from subsequent phase resetting events, we only included
peakRate events that were not followed by another peakRate
event in this interval (n=114). Importantly, such events were
distributed throughout the speech stimulus and not limited to
sentence or phrase ends. As in regular speech rate, the duration
of the evoked response (~350 ms, Fig. 1E) extends across two
putative cycles at the speech rate frequency (~350ms at 5.7 Hz),
which would not allow to dissociate the two models; we focused
this analysis on the slow speech condition. We then examined
the time course of IEPC in a range of frequencies surrounding
1.9 Hz, the frequency of the putative oscillator that best entrains
to the slow speech rate. As expected, we found divergent predic-
tions: the oscillator model predicts that IEPC remains increased
for multiple oscillatory cycles (Fig. 2D). In contrast, the evoked
response model predicts that the increase in IEPC is temporally
limited to the duration of a single evoked response (Fig. 2E).
Together, this model comparison identified two divergent pre-
dictions for IEPC patterns in slow speech: the spectral distribu-
tion of IEPC and its temporal extent. Next, we performed these
identical analyses on our neural data and compared the patterns
in the data with the models’ predictions.

Spectral pattern of delta-theta phase-locking to acoustic
edges is best described by the evoked response model

We next turned to testing the two divergent predictions of the
two models against MEG data, starting with predictions for spec-
tral distribution. Based on the models’ predictions (Figs. 2, 3A),
we first took a hypothesis-based approach, testing whether aver-
age IEPC values in predefined TF ROIs increased: within a single
oscillatory cycle after peakRate event in the theta (4-8 Hz) and
delta (1-3 Hz) ranges (Fig. 3B). In regular speech, we found sig-
nificant IEPC increase (from theoretical baseline based on von
Mises distribution) in the theta band (t;;)=6.9, p<<0.001,
d=2.1), but not the delta band (p > 0.5), consistent with both
models (Fig. 34). We then turned to the slow speech condition,
where the predictions of the two models diverge. We found two
spectral peaks in IEPC to peakRate events in slow speech, with a
significant increase from baseline in the theta band (¢,;)=8.5,
p<<0.001, d=3.1) and in the delta band (¢;;)=5.2, p<<0.001,
d=1.9). This pattern is in line with the predictions of the evoked
response model but not of the oscillator entrainment model (Fig.
3A), as the latter cannot explain the increased theta IEPC. To ver-
ify that these findings did not reflect the specific predefined TF
ROIs, we complemented the ROI analysis with a data-driven 2D
cluster-based permutation test. This analysis found one cluster in
the theta band in the regular speech condition and a large cluster
encompassing both theta and delta bands in the slowed speech
condition (p < 0.001; Fig. 3C, white borders).
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Finally, we directly compared how the predictions of both
models fit with the spectral IEPC pattern in the data (see Fig.
3D for spectral patterns and Fig. 3E for model comparisons).
As expected, the difference between models was not significant
in the regular speech condition (oscillatory model: mean r=
0.86, evoked response model mean r=0.81, ¢;;)=1.9, p=0.06).
Crucially, in the slowed speech condition, the evoked response
model captured the IEPC dynamics significantly better than the
oscillatory model (model comparison #(;;) = 3.8, p =0.002), with
a large effect size (d=1.1, post hoc B =0.93). This was because,
while both models captured the delta-band peak in IEPC, only
the evoked response model captured the IEPC dynamics in
higher frequencies (oscillatory model: mean r=0.46, evoked
response model mean r=0.7). Overall, the results of this analy-
sis favor the evoked response model over the oscillatory model.

Temporal extent of delta phase-locking is limited to a single
cycle after peakRate events

We then examined the temporal extent of increased IEPC follow-
ing peakRate events in the slowed speech condition. The oscilla-
tor model predicted that neural IEPC would remain elevated for
at least oscillatory cycle, whereas the evoked response model pre-
dicted a transient increase in IEPC and return to baseline within
500 ms after the phase reset (Fig. 4A). We calculated IEPC for
the MEG data on the same peakRate events as for the model sim-
ulations (duration of at least two cycles to subsequent peakRate
events), which allowed us to test for continuous entrainment
without interference by a subsequent event. We found that IEPC
was elevated above baseline for a single cycle following peakRate

events, but returned to baseline immediately after (Fig. 4B, clus-
ter-based permutation test against theoretical baseline based on
von Mises distribution). Notably, this pattern, including the la-
tency of peak IEPC, closely followed the predictions of the
evoked response model. Indeed, direct test of the fit of the mod-
els’ predictions to the MEG data revealed strong significant cor-
relation with the evoked response model (mean r=0.59), but not
with the oscillator model (mean r = —0.18). This was also
reflected in a large significant effect in the direct comparison
between models (f(;;)=3.11, p =0.009, effect size d = 0.9, post hoc
power B8 =0.8).

Finally, we explicitly tested in a hierarchical multiple regres-
sion model (data ~ OSC model + ER model) whether the oscil-
latory model would explain variance in the data beyond the
variance explained by the evoked response model. Second-level
analyses on betas across participants showed a significant effect
for the ER model (t;;)=3.34, p=0.003), but no significant addi-
tion to the explained variance by the oscillatory entrainment
model (¢;1) = —0.8, p=0.2). This is in line with the negative cor-
relation between data and the oscillatory model, which is because
of the reduction in IEPC in the MEG data in the second oscilla-
tory cycle, whereas IEPC remains high in the oscillatory model.

This analysis thus illustrates the transient nature of neural
phase-locking to peakRate events, which is more consistent with
an evoked response mechanism of speech envelope tracking,
rather than with an oscillatory entrainment model. Collectively,
our findings disagree with an oscillatory entrainment account,
which postulates an oscillatory phase reset after an event, fol-
lowed by continuous oscillatory reverberation. A more
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parsimonious account of our results is that the low-fre-
quency phase-locking to the speech envelope in MEG is driven
by evoked responses to peaks in the envelope rate of change
(peakRate). Furthermore, our analysis shows that IEPC to
peakRate events reflects the superposition of two different
sources: (1) local responses to individual peakRate events and (2)
the rate of occurrence of responses to peakRate events. Our analy-
ses also demonstrate that the shift in IEPC frequency bands with
changes in speech rate may be the product of a TF decomposition
of a series of evoked responses, rather than a shift in the frequency
of an entrained oscillator. This finding is a powerful illustration of
the importance of explicit computational modeling of alter-
native neural mechanisms.

In the past, it has been suggested that evoked responses are
reduced at slower speech rate, where peakRate magnitudes are
smaller, limiting the usability of the evoked response model. In a
final analysis, we thus tested whether IEPC to peakRate is nor-
malized to account for changes in speech envelope dynamics
induced by changes in speech rate.

Speech rate normalization of peakRate IEPC

The perceptual ability to adapt to variation in the speech signal
resulting from changes in the speech rate (i.e., the number of syl-
lables produced per second) is referred to as speech rate normal-
ization. Changes in speech rate results in acoustic changes in the
speech signal, including slower amplitude increases at acoustic
edges, that is, lower peakRate magnitudes (Fig. 5A,B). We had
previously found that responses to peakRate monotonically scale
with peakRate magnitude, being larger for faster changes in the
speech amplitude (Oganian and Chang, 2019). Efficient envelope
tracking across speech rates would thus require remapping of
neural responses to peakRate magnitude, to account for this
overall reduction. Here, we assessed the effect of speech rate on
the magnitude of theta IEPC to peakRate events. In the slowed
speech, stimuli peakRate magnitudes were one-third of those in
regular speech (Fig. 5C). If no normalization occurs, IEPC mag-
nitudes in slow speech should reflect absolute peakRate values,
resulting in an overall reduction in IEPC (Fig. 5F, dark dots). In
contrast, if theta IEPC to peakRate is invariant to speech rate, it

should reflect peakRate values relative to the contextual speech
rate, resulting in similar IEPC magnitudes in both speech rate
conditions (Fig. 5F, light dots).

An evaluation of IEPC after peakRate events, split by
peakRate magnitude quantiles, showed comparable theta IEPC
in both speech rate conditions (Fig. 5D,E), such that average
theta IEPC was more robust for larger peakRate magnitudes
across both rate conditions (the main effect of peakRate quantile:
b=0.01, SD=0.001, t= 1.4, x> = 55.0, p=10""). Crucially, they
did not differ between regular and slow speech (Interaction
effect: b=0.003, SD=0.005, t=0.6, not significant, Fig. 5G), as
expected in case of speech rate normalization (Fig. 5F, dark
dots). The same pattern was observed for the magnitude of peak
evoked responses (Fig. 5H). Thus, the magnitude of phase reset
induced by peakRate depended on its magnitude relative to the
local speech rate context, allowing for the flexible encoding of
peakRate information at different speech rates.

Evoked low-frequency power following peakRate events
Evoked increase in power is a marker of evoked neural responses
and is used to distinguish between evoked responses and oscilla-
tory activity. In addition to calculating the ERP to peakRate
events, we thus also tested whether band-passed power would
increase after peakRate events. However, we found no significant
effects of peakRate on evoked power in theta or delta bands
(p>0.05, cluster-based permutation test, data not shown). Our
hypothesis that this was because of higher susceptibility of power
measures to noise was confirmed in a simulation of the evoked
response model (see below).

We hypothesized that this lack of increase in power in theta
or delta bands following peakRate events might reflect the high
susceptibility of power increases to noise. To assess the effect of
noise onto power and phase measures, we tested the evoked
response model at noise levels of 1-10 relative to response magni-
tude. We evaluated the effect of noise onto power and IEPC in
the theta band (4-8 Hz) in the window of a single cycle for a
given frequency band after event onset. The effects of noise on
power and IEPC were compared using two-sided paired f tests at
each noise level (n=20 simulated responses), with Bonferroni
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correction for the number of comparisons. As predicted, we
found continuously large effect sizes for IEPC even at high levels
of noise, whereas the effect size for power deteriorated rapidly
with the addition of noise (Fig. 6).

Discussion

We evaluated local temporal dynamics in MEG neural rep-
resentation of the continuous speech envelope against the
predictions of oscillatory entrainment and evoked response
models, derived from explicit computational models of
both processes. In line with previous work, we found that
acoustic edges (peakRate events) drove evoked responses
and phase-locking over auditory cortical areas (Hertrich et
al., 2012; Brodbeck et al., 2018; Oganian and Chang, 2019).
Critically, however, only the evoked response model cap-
tured the spectral and temporal extent of phase-locking to
acoustic edges: a transient local component in the theta
range, reflective of the evoked response, and, spectrally distinct
in slow speech, a separate global component, which captured the
frequency of acoustic edges in the stimulus. An analysis of tem-
porally sparse acoustic events further supported the evoked
response model: phase-locking was transient and limited to the
duration of the evoked response. This contradicts the pattern
predicted by entrainment models, namely, sustained oscillatory
phase-locking at the speech rate (Peelle and Davis, 2012; Helfrich
et al,, 2019). Finally, we found that the magnitude of the evoked
phase reset to acoustic edges reflected the speech-rate-normal-
ized amplitude slope at the acoustic edge, offering novel evidence
for speech rate normalization. Our results establish acoustic
edges as the basis for the representation of the speech envelope
across methodologies and provide additional support against the
representation of envelope peaks in the human speech cortex.
Overall, our findings suggest that neural phase-locking induced
by evoked responses to acoustic edges is the primary source of
speech envelope tracking in the theta-delta band.

Neural phase resetting may be fully explained by the superpo-
sition of evoked responses or additionally also contain the
entrainment of endogenous oscillatory activity. To distinguish
between neural responses reflective of each, we derived the spec-
tral and temporal patterns of phase-locking to acoustic edges using
simulations of both mechanisms. Model predictions diverged in
the slowed speech condition: Spectrally, the evoked response
model predicted two spectral peaks in phase reset, in both theta
and 6 ranges, whereas oscillatory models predicted 6 phase-lock-
ing only. Temporally, the evoked response model predicted only
transient phase-locking at the speech rate, whereas oscillatory
entrainment predicted reverberation: a persisting oscillation for at
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least 2 cycles after phase reset (Helfrich et al., 2019). The precise
temporal extent of IEPC in the oscillator model depends on the
decay parameter. However, the hallmark prediction of oscillatory
models is that phase-locking will continue after phase reset beyond
a single oscillatory cycle, which is the minimal temporal extent
that allows for the model’s proposed functional benefits. It was
thus not necessary to include a decay parameter in our models.

In our data, both spectral and temporal patterns of phase-
locking favored the evoked response model: two spectral peaks
and temporally transient phase-locking. Notably, both models
generated the low-frequency phase-locking component in the
slow speech condition, corresponding to the frequency of acous-
tic edge events. While previous work interpreted this component
in favor of oscillatory entrainment, our results show that only its
temporal extent distinguishes between the two models (van Bree
et al.,, 2022). Overall, our analyses show that a linear convolution
of evoked responses to discrete acoustic edge events in speech is
sufficient to account for the pattern of neural phase-locking to con-
tinuous speech. This finding has major implications for theories of
speech perception. For instance, instead of oscillatory resonance,
predictive processing of speech could rely on nonoscillatory tempo-
ral prediction mechanisms guided by statistical learning (Sohoglu
and Davis, 2016; Friston et al., 2021).

Speech rate normalization is a central behavioral (Wade and
Holt, 2005; Reinisch, 2016) and neural phenomenon in speech
perception. Shifting of the entrained oscillatory frequency to
match the input speech rate was previously proposed as its neu-
ral mechanism (Alexandrou et al.,, 2018b; Kosem et al., 2018).
Here, however, we find that the shift of neural phase-locking to
lower frequencies with speech slowing is an epiphenomenon of
spectral analysis of a series of evoked responses. Instead, the
magnitude of phase-locking to acoustic edges was normalized
relative to the distribution of peakRate magnitudes at each rate.
Namely, phase-locking was comparable across speech rates, de-
spite flatter acoustic edges in slow speech. This suggests that the
cortical representations of acoustic edges reflect the magnitude
of an edge relative to the contextual speech rate. Such shifting of
the dynamic range for acoustic edge magnitudes constitutes a
flexible mechanism that maximizes the sensitivity to speech tem-
poral dynamics (Diehl et al, 1980; Hirataa and Lambacher,
2004) and might not be limited to speech sounds.

Our approach represents a methodological departure from
previous investigations of speech envelope tracking. Namely,
previous studies focused on CAC, which reflects the consistency
of phase differences between the neural signal and the acoustic
stimulus across time (Peelle et al., 2013). CAC is primarily sensi-
tive to regularities across time, such as the rate of phase resets. In
contrast, we used IEPC, which focuses on assessing temporally
local similarities in neural phase across repeated occurrences of
the same acoustic event (for IEPC to speech onsets, see Gross et
al,, 2013). Our approach revealed that both local phase resets and
their rate of occurrence are reflected in IEPC to acoustic edges.
In regular speech, both components overlapped, whereas slowing
of the speech signal revealed their distinct sources.

Speech rate manipulations are frequently used to study speech
envelope tracking (Ahissar et al., 2001; Ghitza and Greenberg,
2009; Nourski et al., 2009; Pefkou et al.,, 2017). Most previous
studies used compressed speech to study temporal boundaries
on envelope tracking and intelligibility. In contrast, here we used
slowed speech to spread distinct acoustic envelope features
out in time. Notably, our approach required us to slow the
speech signal by a factor of 3, which is rarely encountered in
natural speech, except in clinical populations (e.g., subcortical
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degeneration), where speech can get very slow (Volkmann et
al., 1992). Crucially as our participants adapted to the slow
speech immediately, it is likely that our stimulus relies on the
same perceptual mechanisms that are at play in the regular
speech condition. This is also supported by our intracranial
work, where responses to acoustic edges in slow (up to slowing
factor of 4) and regular speech were qualitatively identical
(Oganian and Chang, 2019). It is essential to reconsider previous
findings under the evoked response framework. For example,
while envelope tracking and intelligibility deteriorate for speech
rates >8 Hz, insertion of brief silence periods in compressed
speech, which returns the effective speech rate to <8Hz,
improves intelligibility (Ghitza and Greenberg, 2009). While this
result is typically interpreted as evidence for oscillatory envelope
tracking in the theta range, within an evoked response frame-
work, it might be reflective of the minimal refractory period of
neural populations that encode acoustic edges in speech.

Natural speech does not have a robust temporal rhythmicity
(Alexandrou et al., 2018a). Our focus on envelope tracking for
natural speech indicates that, in this case, neural signatures of en-
velope tracking are well explained by an evoked response model
without the need for an oscillatory component. These results
seemingly contradict recent findings of predictive entrainment
to music (Doelling et al., 2019). However, our study used natural
speech with considerable variability in interedge intervals, unlike
in rhythmic musical stimuli. Critically, recent neuropsychologi-
cal work dissociated neural mechanisms for prediction based on
rhythmic streams from predictions in nonrhythmic streams
(Breska and Ivry, 2018). This adds an important caveat to the
current debate, suggesting that previous results may perhaps not
extend to natural speech with inherent temporal variability and
reduced rhythmicity. The present study thus calls to reevaluate
the role of oscillatory entrainment in natural speech comprehen-
sion. However, it does not preclude the possibility that the intro-
duction of additional rhythmicity to speech (e.g., in poetry or
song) or occasionally more temporally regular everyday speech,
particularly in longer utterances, recruits additional neural proc-
esses associated with the processing of rhythms.

Such additional processes might support speech comprehen-
sion and could underlie some of the recent findings obtained with
a rhythmic speech stimulus (ten Oever and Sack, 2015; Ding et al.,
2016; Zoefel et al., 2020). On the other hand, while intelligibility
and phase patterns are affected by increased speech rhythmicity or
concurrent rhythmic brain stimulation, such findings indicate that
oscillations may enhance speech processing, but not that they are
necessary for the representation of the significantly less periodic
natural speech. Therefore, caution needs to be exercised when
extending findings from rhythmic stimuli (e.g., Ding et al., 2016;
Zoefel et al., 2018a; Doelling et al., 2019) to natural speech.

Overall, our results show that an evoked response model
accounts for the main neural signatures of speech envelope
tracking in MEG. This neural representation of acoustic edges
informs about speech rate via interevent intervals. Moreover, the
speech rate normalization of these responses renders this mecha-
nism flexibly adaptable to changes in speech rate. Thus, evoked
responses to acoustic edges track the syllabic rate in speech and
provide a flexible framework for temporal analysis and predic-
tion during speech perception.
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