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SUMMARY
TheUCLAATLASCommunity Health Initiative (ATLAS) has an initial target to recruit 150,000 participants from
across the UCLA Health system with the goal of creating a genomic database to accelerate precision med-
icine efforts in California. This initiative includes a biobank embedded within the UCLA Health system that
comprises de-identified genomic data linked to electronic health records (EHRs). The first freeze of data
from September 2020 contains 27,987 genotyped samples imputed to 7.9 million SNPs across the genome
and is linked with de-identified versions of the EHRs from UCLA Health. Here, we describe a centralized re-
pository of the genotype data and provide tools and pipelines to perform genome- and phenome-wide asso-
ciation studies across a wide range of EHR-derived phenotypes and genetic ancestry groups. We demon-
strate the utility of this resource through the analysis of 7 well-studied traits and recapitulate many
previous genetic and phenotypic associations.
INTRODUCTION

The UCLA ATLAS Community Health Initiative (ATLAS), named

for its location ‘‘at LA,’’ aims to recruit 150,000 participants

from across the UCLA Health system, with the goal of creating

California’s largest genomic resource for translational and preci-

sion medicine research. Each biosample is linked with the

patient’s electronic health record (EHR) from UCLA Health via

the UCLAData Discovery Repository (DDR), a database contain-

ing de-identified versions of EHRs. Participants are recruited

from 18 UCLA Health medical centers, laboratories, and clinics

located throughout the greater Los Angeles area. Participants

watch a short video outlining the goals of the initiative and docu-

ment their choice of whether they wish to consent to participa-

tion.1,2 Biological samples are collected during routine clinical

labwork performed at any UCLAHealth laboratory and then gen-

otyped using a customized Illumina Global Screening Array

(GSA)3 (see STAR Methods).
C
This is an open access article under the CC BY-N
Both biological samples and EHR information are de-identified

to protect patient privacy. As of September 2021, the initiative

has enrolled 90,400 participants through the consent process

and successfully genotyped 39,300 samples. Comprehensive

details on the biobanking and consenting processes are

described in prior work.1,2 In this work, we describe quality

control pipelines for genotype curation and phenotype extrac-

tion from the medical records for the purpose of large-scale ge-

notype and phenotype scans. To establish the genotyping

quality control (QC) pipelines, we present the first freeze of the

data containing genotypes and phenotypes collected and

processed up to September 2020, resulting in a total of

N = 27,987 samples.

UCLA Health study population
The UCLA Health system includes 2 hospitals and a total of 210

primary and specialty outpatient locations located primarily in

the greater Los Angeles area. In total, the UCLA Health system
ell Genomics 3, 100243, January 11, 2023 ª 2022 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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serves approximately 5% of Los Angeles County population. An

electronic form of health records was implemented throughout

the UCLA Health system in 2013, where a variety of clinical infor-

mation is recorded, such as laboratory tests, medications and

prescriptions, diagnoses, and hospital admissions. A version of

this information has been de-identified and approved for

research purposes. The de-identification process removes

some clinical data including names, family relationships,

geographic information, and exact dates, as well as exact ages

for those at the extremes of age (>90 years old).

The average age of participants, defined as a participant’s age

recorded in the EHR as of September 2021, is 55.6 (SD: 17.2)

years with an average medical record length of 11.6 (SD: 8.5)

years. We use phecodes, a coding system that maps diagnosis

codes (i.e., ICD-9 and ICD-10 codes) to more clinically meaning-

ful phenotypes4 to construct phenotypes from the EHR. The

median number of unique phecodes per participant is 68,

whereas the mean is 85.2 (SD: 65). This skewed mean is consis-

tent with the presence of individuals with many more healthcare

interactions than the average person in the general population, a

pattern that has been well described in the literature.5

Participants’ self-identified race and ethnicity (SIRE) informa-

tion is also recorded within the DDR, where participants select

a single option for their race and a single separate option for their

ethnicity from multiple-choice lists. The majority of patients in

ATLAS self-identify as White race (61.4%) and Non-Hispanic/

Latino ethnicity (75.4%), although a substantial proportion

of individuals report being of an Asian race (9.67%) or of

Hispanic/Latino, Spanish, or Mexican ethnicity (14.1%). A full

list of the provided race/ethnicity fields within the DDR and a

summary of the ATLAS demographic information can be found

in Table 1.

We regret that the term ‘‘White/Caucasian’’ is a presetmultiple-

choice option under the race field within themedical records. The

scientific and medical communities have since denounced this

specific terminology due to its erroneous origins and historically

racist implications,6–8 but it is still built into the language of many

documents and surveys, such as those within EHR systems. In

presentingour analyses,weomit the inclusionof the term ‘‘Cauca-

sian’’ when describing race and list the specific ‘‘White/Cauca-

sian’’ field only as ‘‘White.’’ Furthermore, we strongly discourage

the connection of the term ‘‘Caucasian’’ with the discussion of

race, a social construct separate from biology, and emphasize

that the term does not have any biological implications.

Genotype generation and QC
The ATLAS initiative continuously recruits new participants, and

batches of genotype samples are being processed on a rolling

basis in monthly installments of approximately 1,000 samples

per batch. Genotyping was performed at the UCLA Neurosci-

ence Genomics Core using a custom genotyping array

constructed from the GSA with the multi-disease drop-in panel3

under the GRCh37 assembly. An additional set of ‘‘pathogenic’’

and ‘‘likely pathogenic’’ variants selected from ClinVar9 were

additionally added to the chip design. The first freeze of geno-

type data presented in this work combines samples from 15

separate batches yielding a total of 697,023 SNPs and 27,987

individuals. Principal-component analysis (PCA)10 was used to
2 Cell Genomics 3, 100243, January 11, 2023
visualize the variation across batches and did not show any

evidence of batch effects (Figure S1).

We next describe the QC pipeline used to filter out low-quality

SNPs and samples while also considering the diverse ancestral

backgrounds represented in ATLAS. In this work, we aim to

focus on describing only the common genetic variation and leave

a further in-depth analysis of rare variation in ATLAS to future

work as sample sizes continue to grow. First, we excluded

poor-quality SNPs with >5% missingness as well as monomor-

phic SNPs and strand-ambiguous SNPs, defined as those with

A/T or C/G alleles. Samples with >5% missingness were also

removed. We estimated kinship coefficients using KING 2.2.211

and found 38 duplicate samples, 357 parent-offspring, 128

first-degree, and 166 second-degree relatives. This level of relat-

edness is not surprising sincemembers of a family tend to attend

the same health center. For the sets of duplicate samples, we

removed the sample with the higher missing rate. A summary

of the QC pipeline and the number of filtered SNPs and

individuals is outlined in Figure 1. Following sample- and

variant-level QC,M= 673,130 genotyped SNPs remained across

N = 27,946 individuals (N = 27,291 unrelated individuals).

After genotyping QC, we inferred biological sex using the

‘‘–sex-check’’ function with default thresholds implemented in

PLINK 1.9,12 which estimates the X chromosome homozygosity

or F statistic (female: F < 0.20, male: F > 0.80). We find that

45.5% of genotypes yielded a male call and 53.9% a female

call, while 0.6% of samples were estimated to be unknown

(Table 1). For the group of individuals with unknown inferred

sex, the mean F statistic was 0.27 (SD: 0.10). The sex of these

individuals likely could not be inferred because the F statistics

were slightly over the threshold. Next, using self-identified infor-

mation from the EHRs, we find that 45.1% of individuals self-

identify as male and 54.9% self-identify as female (Table 1).

Within the EHRs, this specific field is labeled as ‘‘sex’’ and has

a list of pre-determinedmultiple-choice fields where participants

select one of the following options: ‘‘male,’’ ‘‘female,’’ ‘‘other,’’

‘‘unknown,’’ ‘‘*unspecified,’’ and ‘‘X.’’ The mean F statistics for

individuals who self-identified as male and female were 0.96

(SD: 0.06) and 0.06 (SD: 0.09), respectively. There were not

any individuals in the current data who self-identified as one of

the other listed options. We also observe that 0.04% of individ-

uals whowere inferred to be biologically male do not self-identify

as male as reported from the EHRs. This comparison is a

common heuristic used to determine sample mismatch.

However, this small deviation does not appear to reflect a

systematic sample mismatch and instead could describe trans-

gender and gender-non-conforming13 individuals. We retain

these samples with appropriate documentation and encourage

researchers utilizing the ATLAS data to perform further sex-

based filtering based on their specific analysis criteria.

The final step of genotyping QC involves genotype imputation

to the TOPMedFreeze5 reference panel, a multi-ancestry data-

set assembled from over 50,000 ancestrally diverse genomes,14

using the Michigan Imputation Server.15 Overall, approximately

300 million SNPs and insertions or deletions (indels) were used

as the backbone for genotype imputation. The imputation

process yielded a total of 230 million imputed SNPs from the

ATLAS data. We found that SNPs with a lower minor allele



Table 1. Summary of UCLA ATLAS demographics

ATLAS ASTHMA COPD GOUT HF IPF STROKE VTE

Sample size 27,946 4,702 2,927 1,342 2,212 1,139 1,402 2,543

Age (years) 55.6

(17.2)

55.8

(17.5)

67.1

(14.1)

66.3

(13.8)

66.3

(15.8)

65.2

(13.6)

66.5

(15)

60.6

(16.3)

Self-reported sex (%) male 45.1 37.8 52.3 77.2 59.4 46.3 52.1 53.3

female 54.9 62.2 47.7 22.8 40.6 53.7 48 46.7

other, unknown,

*unspecified, X

0 0 0 0 0 0 0 0

Inferred biological

sex (%)

male 45.5 37.7 51.7 76.2 58.4 46 51.8 52.2

female 53.9 60.7 46.5 22.1 39.7 51.6 46.3 45.3

unknown 0.6 0.5 0.3 0.5 0.5 0.6 0.9 0.6

Self-reported race (%) White 61.4 64.6 64.2 55.5 59 61.6 59.9 61.5

Black, African American 4.8 6.3 6.5 8.5 8.3 7 7.2 8

Asian, Asian Indian, Chinese, Filipino,

Indonesian, Japanese, Korean,

Pakistani, Thai, Pakistani, Taiwanese,

Vietnamese, Asian-Other

9.7 7.7 7.7 11.8 7.6 8.6 8.2 6.5

American Indian, Alaska Native 0.3 0.4 0.3 0.3 0.3 0.6 0.6 0.3

Native Hawaiian, Guamian or Chamorro,

Samoan, Other Pacific Islander

0.3 0.5 0.2 0.5 0.5 0.6 0.4 0.4

other race 12.9 10.9 9.8 10.5 13.8 12.7 12.2 14.6

unknown, declined to specify 10.6 2.3 1.1 1.4 0.8 0.9 1.6 0.9

Self-reported

ethnicity (%)

Non-Hispanic/Latino 75.4 76.7 77.7 76.7 72.6 75.5 73.9 72.3

Hispanic/Latino, Cuban,

Hispanic/Spanish origin,

Mexican, Mexican American,

Chicano/a, Puerto Rican

14.1 13.7 10.7 10.3 17.1 15.6 14.7 18.9

unknown, declined to specify 10.5 2.3 1.2 1.5 0.6 0.8 1.6 1

Inferred genetic

ancestry (%)

European continental ancestry 64.5 63.4 67.4 59.6 57.7 61 60.4 57.7

African continental ancestry 4.8 6.5 6.7 8.5 8.1 7.1 7.4 8.2

admixed American continental ancestry 17.8 17.5 13.9 14.1 20.6 19 19.3 23

East Asian continental ancestry 8.9 7.1 7.7 12.4 7.4 8.1 7.8 6.1

South Asian continental ancestry 1.5 1.5 0.8 1.1 1.4 1.6 1.1 1

admixed or other ancestry 2.7 4.1 3.6 4.5 4.9 3.2 4.1 4

Medical record length

(years)

11.6

(8.5)

13.12

(8.5)

13.4

(8.4)

14.34

(8.3)

13.2

(8.4)

12.6

(8.1)

13.3

(8.7)

12.6

(8.3)

Number of unique ICD

codes

86.7

(66.4)

114.78

(76.5)

149.4

(83.2)

139.7

(84.1)

164.7

(85.4)

158.5

(81.2)

148.1

(86.4)

154.2

(87.4)

Number of phenotypes

(phecodes)

mean (SD) 85.2

(65)

114.75

(76.5)

149.44

(83.2)

139.7

(84.1)

164.67

(85.4)

158.5

(81.2)

148.1

(86.4)

154.2

(87.4)

median 68 97 138 123 157 151 138 141

We provide summary statistics describing the UCLA ATLAS population computed from data available in the electronic health records and genotype

data. Results are computed over all N = 27,946 individuals from ATLAS as well as separately within each trait.
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frequency (MAF) tended to have lower imputation quality (r2)

scores. This demonstrates that rare SNPs were more difficult

to accurately impute within ATLAS (Figure 2A), which is consis-

tent with prior findings.16–18 Due to this observation, SNPs with

imputation r2 <0.90 or MAF <1% were pruned from the data,

leaving a total of 7.9 million well-imputed SNPs across 27,946 in-

dividuals for follow-up analyses (Figure 1).
Inferring genetic ancestry
The ATLAS data present a unique resource to study genomic

medicine across an ancestrally diverse set of individuals

within a single medical system. Genetic ancestry information

is necessary for numerous types of genetic and epidemiolog-

ical studies, such as genome-wide association studies and

polygenic risk score estimation.19 Although the EHR contains
Cell Genomics 3, 100243, January 11, 2023 3



Individuals

Removed high missing rate
(N=3; 0.01%)

Removed duplicate individuals
(N=38; 0.14%)

27,987 Individuals

27,984

27,946

SNPs

Removed related individuals up to 2nd

degree 
(N=655; 2.4%)

Unrelated individuals: 27,291

Removed unmapped SNPs
(6,871; 1.0%)

697,023 SNPs

Removed high missing rate SNPs
(9,326; 1.4%)

Removed monomorphic SNPs
(17,186; 2.5%)

Imputed SNPs using TOPMed 
Freeze 5 (M= 230 million)

690,152

680,826

663,640

Final SNPs: 7,973,837

230,030,597

r 2 > 0.90 and MAF>1% (across all 
ancestries)

(M= 222,056,760; 96.5%)

Figure 1. Summary of genotype quality control pipeline

We outline the quality control pipeline for the genotype samples and list the number of excluded samples (left) and SNPs (right) at each step.
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self-identified demographic information such as race and

ethnicity, these concepts are distinct from genetic ancestry,

which describes the biological history of one’s genome with

little to no relation to cultural aspects of identity.20,21 Previous

studies have shown that self-identified race/ethnicity and

genetic ancestry are correlated22,23; however, populations

constructed from these two concepts are not analogous and

capture distinct information. A more thorough discussion of

the role of ancestry within the ATLAS data can be found in

previous work.24

Instead, we use PCA to identify population structure in

ATLAS solely from genetic information as means to correct

for genetic stratification in large-scale genotype and phenotype

association studies. PCA produces a visual summary of the

observed genetic variation, which can then be used to describe

population structure across samples. We performed PCA on a

merged dataset consisting of individuals from ATLAS merged

with individuals from the 1000 Genomes Project reference

panel25 (see STAR Methods). This reference panel consists of

genotypes from individuals of known European, African,

admixed American, East Asian, and South Asian descent. After

projecting the PCs into two-dimensional space, we use the

labeled samples from 1000 Genomes to define cluster bound-

aries for individuals in ATLAS corresponding to each continen-

tal ancestry group (Figures 2B and S2). Cluster thresholds were

visually determined by comparing the overlap of the 1000

Genomes reference panel samples with ATLAS samples in

PC space. The first two PCs capture the variation between Eu-

ropean, African, and East Asian ancestries (Figure S3). PCs 2

and 3 can approximately delineate individuals with admixed

American ancestry (Figure S4), whereas PCs 4 and 5 can clus-

ter individuals with South Asian ancestry (Figure S5). Individuals

who fell into multiple ancestry groups or could not be classified

into any of the defined ancestry groups were labeled as

‘‘admixed or other ancestry.’’

We found that 64.5% (N = 18,023) of individuals were in-

ferred to be of European ancestry; 4.8% (N = 1,340) of African
4 Cell Genomics 3, 100243, January 11, 2023
ancestry; 17.8% (N = 4,930) of admixed American ancestry;

8.9% (N = 2,495) of East Asian ancestry; and 1.5%

(N = 402) of South Asian ancestry; and 2.7% (N = 756) were

characterized as ‘‘admixed or other ancestry’’ (Table 1). As

expected, the inferred ancestry clusters were largely concor-

dant with the SIRE information provided in the EHR: 90.5%

of individuals within the European ancestry group self-identi-

fied as White; 92.1% of the African ancestry group self-iden-

tified as Black or African American; 90.4% of the East Asian

ancestry group self-identified as an Asian race; and 77.6%

of the admixed American ancestry group self-identified as

either Hispanic or Latino, Puerto Rican, Mexican, or Cuban

ethnicity (Table S1). We also observed that most individuals

who self-identified as African American race tended to fall

along the cline between the African and European ancestry

clusters, demonstrating that genetic ancestry, in particular

for admixed populations, often lies on a continuum rather

than within discrete categorizations. These analyses demon-

strate how the pairing between self-identified information

and inferred genetic ancestry is not one to one, further

emphasizing the important distinction between these two

concepts.

EHR-based phenotyping through the phecode system
In this work, we utilized phenotypes derived from the EHR in

the form of phecodes, a mapping of ICD codes to a collapsed

set of more clinically descriptive groupings.4 Phecodes allow

for systematic phenotyping across a large number of individ-

uals for numerous clinical phenotypes and provide a level of

consistency when collaborating across multiple institutions.

Additionally, phecode mapping provides a list of control exclu-

sion phecodes which typically excludes phecodes that are very

similar to the case phecode but represent a distinct disorder.

Using both ICD-9 and ICD-10 codes, we constructed 1,866

unique phecodes using a previously defined ICD-phecode

mapping (Phecode Map 1.2),26 resulting in a binary phenotype

where a patient is a case if the specific phecode occurs at least



Figure 2. Genotyped and imputed data from ATLAS are of high quality

(A) The 230 million imputed SNPs stratified by minor allele frequency. SNPs are binned by the estimated imputation r2 scores, and then we report the percentage

of remaining SNPs after applying the r2 threshold.

(B) The projected genetic PCs 1 and 2 of unrelated individuals in ATLAS (N = 27,291) in gray. Samples from 1000 Genomes are shaded by continental genetic

ancestry: European (EUR), African (AFR), admixed American (AMR), East Asian (EAS), and South Asian (SAS).

(C) The QQ plots from the GWAS of gout across the AFR, AMR, EAS, and EUR continental ancestry groups within ATLAS.
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once within their medical record. Controls are defined as

individuals without the occurrence of the case phecode.

An additional, stricter definition of controls also restricts individ-

uals with the occurrence of any phecode from the case phec-

ode’s control exclusion list. This stricter definition was used

in subsequent genome-wide association study (GWAS)

analyses.

Out of all individuals in ATLAS (N = 27,946), over 99% of in-

dividuals had at least one phecode and 30.8% had over 100

distinct phecodes. Individuals without any phecodes could be

those who may have gotten laboratory tests through UCLA

Health but sought follow-up care at a different institution. The

distribution of phecodes varies across different demographic

groups in ATLAS. Older patients tended to have more pheco-

des, individuals ages 18 and under had an average of 57.38

(SD: 49.80) unique phecodes, and individuals over the age of

64 had an average of 109.98 (SD: 70.34) unique phecodes.

We limited subsequent genetic analyses to phecodes with

>100 cases in ATLAS, resulting in a total of 1,330 phecodes

used for downstream association analyses.

To further demonstrate the potential of the phecodes in

conjunction with genetic data, we focused on a set of 7

well-studied traits to illustrate the capability of EHR-linked

biobanks: asthma, chronic obstructive pulmonary disease

(COPD), gout, heart failure (HF), idiopathic pulmonary fibrosis

(IPF), cerebral artery occlusion with cerebral infarction

(stroke), and venous thromboembolism (VTE). A full list of cor-

responding phecodes and ICD codes describing these 7 traits

is listed in Table S2. As shown in Figure 3, the prevalence of

certain phecodes varies across sex, age, and genetic

ancestry. For example, gout is observed at a much higher fre-

quency in males compared with females (76.4% cases) and

tends to be diagnosed in individuals over the age of 64

(59.8% cases). We also observe a high proportion of HF cases

within the African ancestry group (freqAll = 0.044, freqAFR =

0.079; p = 2.4 3 10�6) and cases of gout within the East

Asian ancestry group (freqAll = 0.048, freqEAS = 0.066; p =

8.0 3 10�4) compared with the prevalence across all individ-

uals in ATLAS.
RESULTS

GWASs across 7 EHR-derived phenotypes and 4
ancestry groups
To demonstrate the utility of ancestrally diverse genetic data

linked with EHR-based phenotypes, we performed GWASs for

7 well-studied traits within each of the 4 largest continental ge-

netic ancestry groups in ATLAS, generating a total of 28 analyses

(Data S1). Analyses within the South Asian ancestry group were

excluded because of the current low sample sizes. We per-

formed association testing using SAIGE,27 a generalized

mixed-model approach that accounts for unbalanced case-con-

trol ratios as well as sample relatedness. Given that many dis-

ease phenotypes suffer from case-control imbalance, such as

gout (Ncase = 810, Ncontrol = 15,831) and IPF (Ncase = 700,

Ncontrol: 15,941) within the European ancestry group, SAIGE is

an advantageous inference method for association testing in

ATLAS. Self-identified sex (as reported in the EHRs) and current

age (as of September 2021), as well as age*age and age*sex

interaction terms, were used as covariates. Within each genetic

ancestry group, we re-performed PCA and utilized the top 10

PCs as additional covariates as a way to further account for

fine-scale population structure. Overall, GWAS associations

were well calibrated and did not exhibit strong evidence of test

statistic inflation as shown in Figure 2C (average across all 28 an-

alyses: lGC = 0.98, SD(lGC) = 0.01). We found 26 genome-wide

significant SNPs (p < 5 3 10�8) within the European ancestry

group (gout, HF, VTE), 1 within the African ancestry group

(asthma), and 8 within the admixed American ancestry group

(gout, stroke), for a total of 35 significant SNPs across all ana-

lyses (Figure 4A; Table S3).

As an example emphasizing the potential of this dataset as a

resource for expanding the genetic understanding of diverse an-

cestries, we highlight an association for gout on chromosome 1

found exclusively within the admixed American (AMR) group

(rs1571498). This specific association has not been identified in

any previous gout association studies.We replicated this associ-

ation within the AMRgroup in a subsequent version of the ATLAS

data with an increased sample size (NAMR = 6,073 individuals).24
Cell Genomics 3, 100243, January 11, 2023 5
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Figure 3. Distribution of phenotypes across different demographic groups in ATLAS

We show the distribution of 7 traits across (A) sex, (B) age groups, and (C) inferred genetic ancestry. See Table S2 for the full phenotype descriptions. Sex in-

formation is derived from the EHRs.
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A phenome-wide association study (PheWAS) within ATLAS at

this SNP reveals associations with the ‘‘gout’’ and ‘‘gout and

other crystal arthropathies’’ phenotypes exclusively within the

AMR population as well, providing evidence of potential differ-

ences in genetic architecture between populations for gout risk.

We next compared the associated regions identified in ATLAS

with those reported in previous studies, specifically those listed

in the GWAS Catalog28 and the meta-analyses performed

through the Global Biobank Meta-analysis Initiative (GBMI).29

To construct loci comparable across multiple studies, we

created 1 Mb windows around each genome-wide significant

association and compared the overlap of the specific loci across

studies (see STAR Methods). Using this process, we found a

total of 10 significantly associated regions in ATLAS across the

28 GWAS analyses. Out of these 10 regions, 7 were also

reported both in the GWAS Catalog as well as in the GBMI

meta-analyses (Figures 4B and S6). To avoid biasing our results,

we used the GBMI summary statistics that were computed

across all other contributing biobanks but omitted ATLAS data

from the meta-analysis computation. Finally, when comparing

the separate analyses for the 7 traits across the 4 ancestry

groups in ATLAS, we did not find any significant associations

occurring in multiple populations, though this observation could

be due to the current limited sample sizes.

To further assess the congruence of genetic effects estimated

in ATLAS to those from more mature EHR-linked biobanks with

larger sample sizes, we compared GWAS effect sizes for the 7

traits between ATLAS and BioVU30 across the European

ancestry group. Considering nominally significant SNPs associ-

ated with each trait with p < 1 3 10�6 in either study, we find a

strong, significant positive correlation (Pearson correlation =

0.92, p < 2.2 3 10�16) between effect sizes in BioVU and

ATLAS (Figure 4C). Although association statistics for the

BioVU study were computed using PLINK 2.012 and association

statistics for ATLAS were computed using SAIGE, it is encour-

aging that we observe a positive correlation despite the differ-
6 Cell Genomics 3, 100243, January 11, 2023
ences in association testing methods. As shown in Figure 4C,

we see that the effects in ATLAS are slightly depressed toward

the null, though this may reflect smaller sample sizes in ATLAS

compared with BioVU.

PheWASs
EHR-linked biobanks also offer the opportunity to contextualize

putative associations within the clinical phenome through

PheWASs4 as well as provide a valuable step for validating

phenotype QC. ATLAS has an extensive and diverse set of clin-

ical phenotypes from non-ascertained cohorts, which is critical

for performing unbiased phenome-wide association tests.

We limited our analyses to phecodes with >100 cases within

ATLAS, resulting in a total of 1,330 phecodes describing the clin-

ical phenome at UCLA.

To demonstrate the utility of this diverse set of clinical pheno-

types, we performed a PheWAS at rs6025, a missense variant

within the F5 gene. This top variant was identified from the

ATLAS GWAS of VTE in the European ancestry group and has

been documented in many previous studies.31–33 We performed

an association between rs6025 and 1,330 phecodes and found

phenotypic associations with ‘‘iatrogenic pulmonary embolism

and infarction’’ and ‘‘other venous embolism and thrombosis’’

(Figure S7), which are related phenotypes consistent with the

current understanding of the pathophysiology of VTE and pulmo-

nary embolisms.34 This demonstrates that despite modest sam-

ple sizes across many of the phenotypes, we can recapitulate

findings consistent with expected disease biology, making

PheWAS a valuable tool in investigating the shared genetic archi-

tecture across clinical traits. We also provide a web browser

containing the PheWAS associations from ATLAS as a resource

to the public (https://atlas-phewas.mednet.ucla.edu/).

Biobank contributions
The ancestral diversity represented in ATLAS plays a key role in

cataloging the genetic variation used in precision medicine

https://atlas-phewas.mednet.ucla.edu/


GWAS Catalog
6 (7.3%)

Gout (EUR)

27 (32.8%)

GBMI meta-analysis 
(leave UCLA out)

46 (56.1%)
ATLAS

3 (3.7%)

A

B C

Figure 4. GWASs across 7 traits and 4 continental ancestry groups recapitulate known associations

(A) We provide Manhattan plots from the GWAS of gout across the EUR, AFR, AMR, and EAS continental ancestry groups in ATLAS. The red dotted line denotes

genome-wide significance (p < 5 3 10�8).

(B) We show the overlap of genome-wide significant regions for gout computed from ATLAS within the EUR ancestry group, previous associations listed in the

GWAS Catalog, and associations identified in the GBMI meta-analysis.

(C) A scatterplot of GWAS effect sizes of SNPs associated with each trait in either ATLAS or BioVU at p < 13 10�6. Points are colored by trait. The red line shows

the 45 degree line through the origin, and the blue line shows the estimated trend for these points (Pearson correlation = 0.92).
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efforts. Despite its nascency, ATLAS has already contributed to

many multi-ancestry disease mapping initiatives, such as the

GBMI29 and COVID-19 Host Genetics Initiative35 (data freezes

5 and 7). Although ATLAS constitutes approximately 1% of the

total sample size for the GBMI meta-analysis (N = 27,946 sam-

ples out of approximately 2.6 million total GBMI samples), we

observe a large contribution of samples from diverse ancestral

populations within ATLAS to GBMI. For example, ATLAS con-
tributes larger proportions of the African (AFR; range of propor-

tions across 7 traits: 3%–14%) and AMR ancestry (22%–32%)

samples when compared with the total sample size in GBMI

(Table 2). In addition to GBMI, ATLAS accounted for 73.4% of

the AMR samples utilized in the primary analysis from the

COVID-19 Host Genetics Initiative.35 This enrichment of

AFR and AMR samples from ATLAS can facilitate meta-analytic

disease mapping in these historically underrepresented
Cell Genomics 3, 100243, January 11, 2023 7



Table 2. UCLA ATLAS contributes a substantial proportion of non-European ancestry samples to global meta-analyses

Trait Abbreviation Ancestry UCLA case GBMI case Enrichment ratio

Asthma asthma EUR 3,051 101,311 1.04

AFR 289 5,051 1.97

AMR 760 4,069 6.42

EAS 308 18,549 0.57

Chronic obstructive pulmonary disease COPD EUR 2,005 51,644 1.14

AFR 187 1,978 2.77

AMR 384 1,503 7.49

EAS 208 19,044 0.32

Gout gout EUR 810 20,702 1.16

AFR 105 1,312 2.38

AMR 179 557 9.55

EAS 155 10,425 0.44

Heart failure HF EUR 1,301 28,795 1.51

AFR 174 1,367 4.26

AMR 423 1,170 12.11

EAS 144 12,665 0.38

Idiopathic pulmonary fibrosis IPF EUR 700 5,229 1

AFR 76 169 3.37

AMR 204 319 4.79

EAS 89 1,210 0.55

Cerebral artery occlusion with cerebral infarction stroke EUR 855 15,842 2.48

AFR 100 1,161 3.96

AMR 248 903 12.64

EAS 105 23,345 0.21

Venous thromboembolism VTE EUR 1,503 15,970 1.11

AFR 195 1,466 1.57

AMR 543 1,037 6.18

EAS 132 193 8.07

We show the case sample sizes across 7 traits for ATLAS and across the entire GBMI study, stratified by genetic ancestry. The last column reports the

ratio of the proportion of ancestry-specific samples in ATLAS compared with the proportion of total samples from the GBMI meta-analyses.
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populations and expand the genetic understanding of diverse

ancestries.

DISCUSSION

The ATLAS biobank provides a valuable resource for the

biomedical community with numerous future opportunities. In

the future, we aim to perform phenotyping composed of EHR

elements in addition to diagnosis codes, such as laboratory

values, medications, and clinical notes. We also plan to incorpo-

rate additional types of genomic information such as exome

sequencing and methylation data. Furthermore, although this

analysis focused on describing only common variants, we plan

to investigate the rare variants in ATLAS as sample sizes

continue to grow. We hope that the inclusion of rare variants in

both GWASs and PheWASs can increase our power to detect

novel associations as well as explore more ancestry-specific ef-

fects. We hope to also leverage the typed ClinVar variants to

examine the role of genetic ancestry in pathogenic and likely

pathogenic variants. Additionally, we plan to create a catalog
8 Cell Genomics 3, 100243, January 11, 2023
of polygenic risk score (PRS) weights for EHR-derived pheno-

types across each genetic ancestry group, creating one of the

largest and most ancestrally diverse PRS resources.

Limitations of the study
Although the UCLA ATLAS Community Health Initiative is still

growing and developing, our presented analyses have inherent

limitations. First, we are greatly limited by the current sample

sizes, which lead to a lack of power in some association studies,

such as those with rare variants. This lack of sample size is most

pronounced in non-European ancestry groups in ATLAS. In

particular, downstream analyses within the South Asian ancestry

group had to be omitted due to a lack of adequate sample size.

At the goal sample size of N = 150,000 individuals (across all of

ATLAS), we hope to uncover novel associations for both com-

mon and rare variants. Second, within the current EHR, we

lack information describing individuals’ socioeconomic status.

This information is imperative in disentangling true genetic

effects versus those induced by the environment. Third, this

study derives phenotypes from ICD-9 and ICD-10 codes, which
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were designed for billing as opposed to representing formal

diagnoses. The creation of phecodes aimed to alleviate many

shortcomings associated with using ICD codes directly but

cannot fully address the impreciseness inherently associated

with billing code assignment. For example, different billing

practices across departments may cause inconsistencies in

phenotyping. In this work, we present broad genetic analyses

across a set of well-studied diseases, but for more in-depth dis-

ease-specific studies, we recommend the construction of more

detailed phenotyping beyond billing codes. Finally, although

ATLAS provides an opportunity to explore ancestral diversity,

our analyses are also limited by the availability and choice of

reference panels used when inferring genetic ancestry. Although

the 1000 Genomes reference panel includes 5 major continental

ancestry groups, there are notable samples absent from many

regions, including the Middle East and indigenous Native Amer-

ican populations. This could inhibit our ability to perform genetic

ancestry inference for these individuals in ATLAS, causing them

to be excluded from some downstream ancestry-stratified ana-

lyses. In future work, we hope to include more reference panel

populations to better characterize the genetic diversity in ATLAS.
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STAR METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Infinium Global Screening Array-24 Kit Infinium Global Screening Array-24 Kit3 https://www.illumina.com/products/

by-type/microarray-kits/infinium-

global-screening.html

Deposited data

UCLA ATLAS PheWeb Johnson et al.24 https://atlas-phewas.mednet.ucla.edu/

1000 Genomes Project (phase 3, hg19) 1000 Genomes Project Consortium et al.25 http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

phase3/

TOPMed (freeze 5) Taliun et al.14 https://imputation.biodatacatalyst.

nhlbi.nih.gov/#!

Phecode Map 1.2 Denny et al.26 https://phewascatalog.org/phecodes

Software and algorithms

Michigan Imputation Server Das et al.15 https://imputationserver.sph.umich.edu/

index.html#!

Eagle v2.4 Loh et al.36 https://alkesgroup.broadinstitute.org/Eagle/

minimac4 Fuchsberger et al.37 https://genome.sph.umich.edu/wiki/

Minimac4

FlashPCA 2.0 Abraham et al.38 https://github.com/gabraham/flashpca

PLINK 1.9 Chang et al.12 https://www.cog-genomics.org/plink/

SAIGE v0.44.6.5 Zhou et al.27 https://github.com/weizhouUMICH/SAIGE
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contacts, Ruth Johnson

(ruthjohnson@g.ucla.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Individual-level genotype and electronic health record data utilized in this study cannot be deposited in a public repository

because of privacy regulations. GWAS summary statistics are made available on the UCLA ATLAS PheWeb browser

(https://atlas-phewas.mednet.ucla.edu/).

d This paper does not report original code.
METHOD DETAILS

Study population
The UCLA Health System includes 2 hospitals (520 and 281 inpatient beds) and a total of 210 primary and specialty outpatient

locations located primarily in the greater Los Angeles area. The UCLA Data Discovery Repository (DDR) contains de-identified

patient EHRs collected since March 2, 2013, under the auspices of the UCLA Health Office of Health Informatics Analytics and

the UCLA Institute of Precision Health. The DDR contains longitudinal EHRs for basic patient demographic information (e.g.

self-identified race/ethnicity, age, sex), vital signs (e.g. blood pressure, body temperature), diagnosis codes (ICD-9, ICD-10),

laboratory test orders and results (e.g. LOINC codes), encounters, provider information, medications and prescriptions, and hos-

pital admission information.
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Recruitment and consent
UCLA patients are recruited from 18 UCLA Health medical centers and clinics throughout the greater Los Angeles area where any

patient ages 18 and older is allowed to participate. Patients have the opportunity to watch a video outlining the goal of the initiative

and can choose to complete the Universal Consent on a provided iPad. The universal video consent is also available in the following

languages: Spanish, Farsi, Arabic, Mandarin, and Korean. Previous works describing the pilot cohort study assessing electronic

video consent and its implementation are described in separate works.1,2 Once consent is completed, samples will be extracted

from leftover biological samples (blood, saliva) from a current or future laboratory test or during an IV placement. Patients also

have the opportunity to opt-in to receive actionable results from future genetic testing. Participants can revoke their consent at

any time and their samples will be removed from future research. Patient Recruitment and Sample Collection for Precision Health

Activities at UCLA is an approved study by the UCLA Institutional Review Board (UCLA IRB) IRB#17–001013. This study conforms

with the Declaration of Helsinki.39 Additional details on Universal Consent and participation can be found at (https://www.uclahealth.

org/precision-health/programs/ucla-atlas-community-health-initiative).

Genotype generation and quality control
Genotyping was performed at the UCLANeuroscience Genomics Core using a custom genotyping array constructed from theGlobal

Screening Array with the multi-disease drop-in panel3 under the GRCh37 assembly. Future batches will be genotyped according to

the GRCh38 assembly and previous batches will be lifted over to the more recent assembly. An additional set of ‘‘Pathogenic’’ and

‘‘Likely Pathogenic’’ variants selected from ClinVar,9 such as the key SNPs found in the ACMG 59 genes,40 were also included in the

chip design. Overall, the arraymeasures 700,079 sites for capturing single nucleotide polymorphisms (SNPs) and short insertions and

deletions (indels). Additional details regarding the array design are available on theGlobal Screening Array +Multi Disease SNPUCLA

browser (https://coppolalab.ucla.edu/gclabapps/ungc/home).

Currently, quality control is performed over the entire dataset at approximately the intervals of 25K samples, 50K, 75K, etc. First, we

remove all individuals that have withdrawn their consent. Additionally, samples with >5% missingness are removed. SNPs are

removed based on the following criteria: >5% missingness, monomorphic SNPs, or strand ambiguity (A/T or C/G alleles). Next,

we detect duplicate samples through kinship coefficients estimated from KING 2.2.211 (–duplicate). We use the software default

kinship coefficient threshold for defining duplicates (>0.354). In the case of duplicate samples, the sample with the highest missing

rate is removed.

Biological sex is inferred using the ‘–sex-check’ option implemented in PLINK 1.9. This estimates the X chromosome homozygosity

or F statistic. Calls aremade according to the default F statistic thresholds where F < 0.20 is inferred as Female, F > 0.80 is inferred as

Male, and values in between are reported as unknown. We compare the inferred biological sex with self-identified sex found within

the EHR to assess for systematic sample mismatch. Given that only a small proportion (<<1%) of samples are discordant, this is not

indicative of widespread error and thus we choose not to remove these samples.

Imputation
Imputation was performed using the Michigan Imputation Server (Das et al., 2016). First, SNPs that were not an A, C, G, or T allele

were discarded. Additionally, indels, duplicate SNPs, and alleles that did not match between the reference panel and the target

ATLAS data were removed. Haplotype phasing was performed using Eagle v2.436 and imputation was performed using minimac4.37

Both phasing and imputation was performed using the TOPMedFreeze5 reference panel14 which was the most recent panel at the

time. As updated reference panels become available, imputation procedures will be performed using themost up-to-date panel. This

process produced approximately 230million imputed SNPswithin the ATLAS data.We used the ‘Rsq’metric produced byminimac4,

an empirical estimate of the squared correlation between imputed genotypes and unobserved genotypes, to assess per-SNP impu-

tation quality. We filtered SNPs by Rsq >0.90 and MAF >1%, leaving a total of 7.9 million high-quality SNPs.

Genetic ancestry inference
First, we filtered to only include unrelated (up to 2nd degree) individuals in ATLAS (N = 27,291). Genotypes were filtered by Mendel

error rate, founders, MAF <15%, and Hardy-Weinberg equilibrium test (p value <0.001). Genotypes were then merged with the 1000

Genomes dataset and LD pruning was performed on the merged dataset, leaving a total of 253,022 SNPs for the PCA analysis. The

top 10 PCs were then computed using the FlashPCA 2.038 software with default parameters. We project the PCs into 2-dimensional

space and use the ‘‘Superpopulation’’ labels from the individuals in 1000 Genomes to define cluster boundaries. Cluster thresholds

were visually determined by comparing the overlap of the 1000 Genomes reference panel samples to ATLAS samples in PC space

(Figures S3, S4 and S5). Individuals who fell into multiple ancestry groups or could not be classified into any of the defined ancestry

groups were labeled as ‘Admixed or other ancestry’.

Clinical phenotype data
Phenotypes were derived from the EHR in the form of phecodes(Denny et al., 2013). We utilized the Phecode Map 1.2 to map ICD-9

and ICD-10 codes to a set of 1,866 unique phecodes. For each trait, the phecode map defines a set of phecodes used as exclusion

criteria when labeling controls. Phecodes on the exclusion list are typically phenotypes that are similar to the trait of interest but repre-

sent distinct disorders. We define dichotomous traits for GWAS by labeling an individual as a case if they have a given phecode at
e2 Cell Genomics 3, 100243, January 11, 2023
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least once within their medical record. Controls were defined as any individual without the given phecode and did not have any one of

the phecodes specified on the control exclusion list for that trait. The phecode map used in these analyses can be found at (https://

phewascatalog.org/phecodes).26

Genome-wide association studies
First, we stratified individuals by genetic ancestry groups and then performed an additional level of QC separately within each

ancestry group. We limited analyses to the subset of 27,291 unrelated individuals (>second degree) and performed ancestry infer-

ence (see ‘genetic ancestry inference’), where each individual was assigned to one continental genetic ancestry cluster: European

(N = 18,023), African (N = 1,340), Admixed American (N = 4,930), East Asian (N = 2,495), and South Asian ancestry (N = 402). At this

time, we omitted GWAS analyses within the South Asian ancestry group due to the limited sample size. Individuals who could not be

clustered into a specific genetic ancestry group (N = 756) were also omitted from GWAS analyses.

Within each ancestry group, samples identified as heterozygosity outliers (+/� 3 SDs from themean) were removed, and SNPs that

failed the Hardy-Weinberg equilibrium test (p value < 1 3 10�12) were also removed. Finally, we limited analyses to only SNPs with

MAF >1%within each ancestry group, yielding a total of N = 17,874 individuals andM=6.9million SNPswithin the European ancestry

group, N = 1,337 individuals andM= 6.6million SNPswithin the African group, N = 4,776 andM= 7.2million SNPswithin the Admixed

American group, and N = 2,459 individuals and M = 5.4 million SNPs within the East Asian group. We performed association tests

using the SAIGE software with default settings. We used self-identified sex, current age, and age*age and age*sex interaction terms

as covariates. We recomputed PCs within each ancestry group and used PCs 1–10 as covariates in each respective ancestry anal-

ysis. Genome-wide significance was determined using a p value <5 3 10�8 threshold.

Comparison of GWAS associations with prior work
To construct regions comparable across all of the studies for a given trait, we performed the following procedure. First, we aggre-

gated all SNPs that reached genome-wide significance in at least one of the datasets (i.e. ATLAS, GBMI meta-analyses, GWAS Cat-

alog). We then performed a greedy approach by selecting the most significant SNP and created a 1Mbwindow (500Kb on each side)

around this top SNP. All other genome-wide significant SNPs within this window were removed from the list and this procedure was

performed until all significant SNPs were accounted for within a region. We defined an individual GWAS for a trait as having a signif-

icantly associated region if at least one genome-wide significant SNP fell into one of the constructed regions. Using this process, we

found a total of 10 significantly associated regions in ATLAS across the 28 GWAS analyses.

Phenome-wide association studies
We performed association tests between 650,000 typed SNPs and all phecodes with >100 cases within ATLAS, resulting in 1,330

phecodes. Cases were defined as any individual with the presence of the given phecode. Controls were defined as individuals

without the given phecode; we did not choose to use the control exclusion list when constructing controls for the PheWAS analysis.

Association tests were performed within each genetic ancestry group separately. Age, sex, and ancestry-specific PCs 1–10 were

included as covariates in the model. The association tests were performed using the logistic regression option implemented in

PLINK (‘‘plink –logistic beta’’). We opted to use PLINK over the SAIGE software due to the faster runtime of PLINK given the large

number of association tests. We have provided all PheWAS associations with p value >0.50 on the ATLAS PheWeb browser

(https://atlas-phewas.mednet.ucla.edu/).

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample sizes, self-identified and biological sex, self-identified race/ethnicity, inferred genetic ancestry, and medical record length

characteristics across the entire ATLAS cohort population and for each of the 8 tested phenotypes are available in Table 1. The

list of SNPs meeting genome-wide significance threshold of p value < 5 3 10�8 in each GWAS is available in Table S3.

To compare the estimated GWAS effect sizes between ATLAS and BioVu, we considered only nominal SNPs that passed a

threshold of p value < 1 3 10�6. We determined the overall relationship between the effect sizes through Pearson correlation and

used a threshold of p value < 0.05 to assess significance.

In Table 2, we show the enrichment ratio of ancestry-specific samples in ATLAS compared to GBMI sample sizes. Computing the

ratio for the enrichment of African ancestry samples in ATLAS is computed as the following:

rAFR = ðNATLAS�AFR =NGBMI�AFRÞ = ðNATLAS�ALL =NGBMI�ALLÞ
Here, NATLAS-AFR is the sample size of African ancestry individuals in ATLAS for a given phenotype and NGBMI-AFR is the same value

computed in the GBMI cohort.NATLAS-ALL is the sample size of all ancestries combined in ATLAS for a given phenotype andNGBMI-ALL

is the same value computed in the GBMI cohort. This is then repeated for each ancestry group across all 8 phenotypes.
Cell Genomics 3, 100243, January 11, 2023 e3

https://phewascatalog.org/phecodes
https://phewascatalog.org/phecodes
https://atlas-phewas.mednet.ucla.edu/

	The UCLA ATLAS Community Health Initiative: Promoting precision health research in a diverse biobank
	Introduction
	UCLA Health study population
	Genotype generation and QC
	Inferring genetic ancestry
	EHR-based phenotyping through the phecode system

	Results
	GWASs across 7 EHR-derived phenotypes and 4 ancestry groups
	PheWASs
	Biobank contributions

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Acknowledgments
	References
	STAR Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Study population
	Recruitment and consent
	Genotype generation and quality control
	Imputation
	Genetic ancestry inference
	Clinical phenotype data
	Genome-wide association studies
	Comparison of GWAS associations with prior work
	Phenome-wide association studies

	Quantification and statistical analysis





