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On the Optimality of Treating Interference as Noise

for K user Parallel Gaussian Interference Networks

Hua Sun and Syed A. Jafar

Center for Pervasive Communications and Computing (CPCC)

University of California Irvine, Irvine, CA 92697

Email: {huas2, syed}@uci.edu

Abstract

It has been shown recently by Geng et al. that in a K user Gaussian interference network, if
for each user the desired signal strength is no less than the sum of the strengths of the strongest
interference from this user and the strongest interference to this user (all signal strengths mea-
sured in dB scale), then power control and treating interference as noise (TIN) is sufficient to
achieve the entire generalized degrees of freedom (GDoF) region. Motivated by the intuition
that the deterministic model of Avestimehr et al. (ADT deterministic model) is particularly
suited for exploring the optimality of TIN, the results of Geng et al. are first re-visited under
the ADT deterministic model, and are shown to directly translate between the Gaussian and
deterministic settings. Next, we focus on the extension of these results to parallel interference
networks, from a sum-capacity/sum-GDoF perspective. To this end, we interpret the explicit
characterization of the sum-capacity/sum-GDoF of a TIN optimal network (without parallel
channels) as a minimum weighted matching problem in combinatorial optimization, and obtain
a simple characterization in terms of a partition of the interference network into vertex-disjoint
cycles. Aided by insights from the cyclic partition, the sum-capacity optimality of TIN for K
user parallel interference networks is characterized for the ADT deterministic model, leading
ultimately to corresponding GDoF results for the Gaussian setting. In both cases, subject to a
mild invertibility condition the optimality of TIN is shown to extend to parallel networks in a
separable fashion.
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1 Introduction

Treating interference as noise (TIN) is a strategy that is universally applied in wireless networks
to deal with interference from users that are far away. Interestingly, it is also known to be capacity
optimal when the interference is sufficiently weak [1, 2, 3, 4, 5]. Most relevant to this work is the
recent result by Geng et al. in [5], where a broadly applicable condition is identified and shown to
be sufficient (also conjectured to be necessary in almost all cases) for TIN to achieve the generalized
degrees of freedom (GDoF) region. The GDoF optimality of TIN then serves as a stepping stone
to a further tightening of the result, so that whenever Geng et al.’s condition holds, TIN is shown
to achieve the entire capacity region within a constant gap.

Geng et al.’s result highlights the advantage of the GDoF metric for obtaining finer insights
into the capacity of wireless networks, relative to the more widely studied degrees of freedom
(DoF) metric. While DoF studies have contributed a number of fundamental insights, the DoF
metric is limited in that it treats all non-zero channels as essentially equally strong (capable of
carrying exactly 1 DoF). Thus, insights into schemes such as TIN, which rely very much on certain
signals being much weaker than others, cannot be obtained directly from DoF studies. The GDoF
perspective is crucial for such insights, and serves as the logical next step after DoF in the pursuit
of capacity through progressively refined approximations. The advantage of the GDoF metric is
amply evident in the study of the 2 user interference network by Etkin et al. in [1], where the
DoF metric only provides a trivial answer, whereas the GDoF metric identifies all of the important
operational regimes, leading ultimately to a characterization of the entire capacity region within a
1 bit gap.

The richness of the GDoF metric naturally comes at the cost of reduced tractability, especially
since even the simpler DoF metric is far from fully understood for wireless networks. As such
GDoF characterizations are few and far in between [1, 6, 7, 8, 9, 10]. This motivates simpler
alternatives such as the ADT deterministic model of [11, 12, 13]. The ADT deterministic model
captures much of the essence of the GDoF framework — the diversity of signal strengths — but is
less useful when the finer details such as the channel phase or the distinction between rational and
irrational realizations become critical. Unfortunately, since these finer details are important for
wireless interference networks with 3 or more users (even from a DoF perspective) [14, 15, 16, 17],
the ADT deterministic model has found limited use in such settings.

The main idea motivating this work is that while the ADT deterministic model may not be
suitable for studying the more fragile regimes, it could still be well suited for studying those robust
regimes where the finer aspects of channel realizations are not relevant. Given this insight, and
since the regime where TIN is optimal is arguably the most robust regime, it follows that the
ADT deterministic model should suffice to identify this regime in the GDoF sense and to study its
properties. As initial verification of this insight, we begin by exploring the TIN optimality result
of Geng et al. in the ADT framework. Indeed, the optimality conditions and the GDoF region are
not only easily mapped to the ADT deterministic model, but also become more transparent in the
deterministic setting. Encouraged by this insight, we proceed to the main contribution of this work
— exploring the optimality of TIN for K user parallel Gaussian interference networks.

Optimality of TIN for parallel Gaussian interference networks is an intriguing question for the
following reasons. On the one hand, with the exception of the MAC-Z-BC network (which contains
the multiple access channel, Z-channel and broadcast channel as special cases), it is known that
all parallel Gaussian networks are in general inseparable [18, 19, 20]. The benefits of joint coding
across parallel channels can be quite substantial and extend all the way from higher DoF [18] to
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simple achievable schemes and near-optimal rates at finite SNR [21, 22]. On the other hand, for
the 2 user interference network, extensions to parallel channels have been made from an exact
sum-capacity perspective in [23] and from a GDoF perspective in [10]1. In both cases, the results
support separability of TIN optimal sub-channels. However, the insights from the 2 user setting do
not directly extend to the K user interference network. For example, the GDoF region for the TIN
optimal 2 user interference network is easily seen to be polymatroidal, whereas the GDoF region of
TIN optimal K user interference networks, with K ≥ 3, is no longer polymatroidal. The distinction
is particularly significant for parallel channels. The GDoF region of 2 user TIN optimal parallel
interference networks is simply the direct sum of the corresponding sum-rate bounds for all the
sub-channels and is achieved by separate TIN on each sub-channel. This is in general not the case
with 3 or more users (a simple example is provided in Section 5.4). Given the significant challenges
in going beyond 2 users, it is most intriguing if the separability of parallel Gaussian interference
networks will hold in the regime where TIN is sum-GDoF optimal. In other words, if each of the
sub-channels of a K user interference network satisfies the TIN optimality condition of Geng et al.,
then will TIN continue to be sum-GDoF optimal for the parallel channel setting?

The focus on sum-GDoF motivates us to first seek a more explicit characterization. To this
end, we show that the sum-GDoF characterization for a K user interference network is essentially a
minimum weighted matching problem in combinatorial optimization. Consequently, the sum-GDoF
are characterized in terms of a partition of the interference network into disjoint cycles. Aided by
the insights from the cyclic partition approach, we explore the sum-capacity optimality of TIN
for K user parallel deterministic interference networks under the ADT deterministic model. A
separable extension of the optimality of TIN to parallel interference networks is obtained subject
to a mild invertibility condition. The result is then translated into the GDoF framework for parallel
Gaussian interference networks. In terms of answering the main question, the implication is that
if each of the sub-channels satisfies the TIN optimality condition of Geng et al., then subject to a
mild invertibility condition, a separate TIN scheme for each sub-channel continues to be sum-GDoF
optimal for the overall K user parallel Gaussian interference networks.

2 System Model, Definitions, and Notation

2.1 Gaussian Interference Network Model

Consider the K user real Gaussian interference network, with M parallel sub-channels, described
as

Yk(t) =

K∑
i=1

H̃kiX̃i(t) + Zk(t), ∀k ∈ [K] , {1, 2, . . . ,K}, (1)

where over the t-th channel use,

Yk(t) =
[
Y

[1]
k (t), Y

[2]
k (t), . . . , Y

[M ]
k (t)

]T
(2)

X̃i(t) =
[
X̃

[1]
i (t), X̃

[2]
i (t), . . . , X̃

[M ]
i (t)

]T
(3)

1Parallel interference networks may be seen as a special case of MIMO interference networks.
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are the vectors containing the received signals observed at Receiver k and the transmitted symbols
from Transmitter i, respectively, and

H̃ki =


h̃

[1]
ki 0 . . . 0

0 h̃
[2]
ki . . . 0

...
...

. . .
...

0 0 · · · h̃
[M ]
ki

 (4)

is a diagonal channel matrix comprised of the channel coefficients from Transmitter i to Receiver
k. The superscript within the square parentheses represents the sub-channel index, m ∈ [M ] ,
{1, 2, . . . ,M}. All channel coefficients are fixed across channel uses. Perfect channel knowledge is
available at all transmitters and receivers. The AWGN vector at Receiver k over the t-th channel
use,

Zk(t) =
[
Z

[1]
k (t), Z

[2]
k (t), . . . , Z

[M ]
k (t)

]T
(5)

has zero mean and covariance matrix IM , where IM represents the M ×M identity matrix. Noise
processes are i.i.d over time. All symbols are real.

At Transmitter i, an independent message Wi uniformly distributed over the message index set
{1, 2, . . . , d2nRie} is mapped to the transmitted codeword [X̃i(1), X̃i(2), . . . , X̃i(n)] (abbreviated as
X̃n
i ) over n channel uses, and is subject to the average power constraint,

1

n

n∑
t=1

M∑
m=1

E
∣∣∣X̃ [m]

i (t)
∣∣∣2 ≤ Pi (6)

where the expectation is over the messages.
At Receiver k, the received signal [Yk(1),Yk(2), . . . ,Yk(n)] (abbreviated as Yn

k ) is used to

produce the estimate Ŵk of the message Wk. The probability of error for Receiver k is given by
the probability that Ŵk is not equal to Wk. A rate tuple (R1, R2, . . . , RK) is said to be achievable
if we have an encoding and decoding mapping such that the probability of error for each receiver
approaches zero as n approaches infinity. The capacity region C is the closure of the set of all
achievable rate tuples. The sum-capacity is defined as CΣ = maxC

∑K
k=1Rk.

2.2 GDoF Framework

Following [5], we now translate the channel model (1) into an equivalent normalized form to facilitate

GDoF studies. For such a purpose, we define X̃
[m]
i (t) =

√
PiX

[m]
i (t). Then over the t-th channel

use, the received signal for Receiver k across the m-th sub-channel is described by

Y
[m]
k (t) =

K∑
i=1

h̃
[m]
ki

√
PiX

[m]
i (t) + Z

[m]
k (t). (7)

Further, we take P > 1 as a nominal power value, and define

α
[m]
ki ,

 log

(∣∣∣h̃[m]
ki

∣∣∣2 Pi)
logP


+

.2 (8)

2As noted in [5], avoiding negative α’s, will not influence the GDoF results.
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The channel model (7) becomes

Y
[m]
k (t) =

K∑
i=1

sign(h̃
[m]
ki )

√
Pα

[m]
ki X

[m]
i (t) + Z

[m]
k (t) (9)

=
K∑
i=1

h
[m]
ki X

[m]
i (t) + Z

[m]
k (t) (10)

where h
[m]
ki , sign(h̃

[m]
ki )

√
Pα

[m]
ki is the effective channel coefficient and X

[m]
i (t) is the equivalent

channel input whose power is absorbed into the channel,

1

n

n∑
t=1

M∑
m=1

E
∣∣∣X [m]

i (t)
∣∣∣2 ≤ 1. (11)

As in [5], we call α
[m]
ki the channel strength level. The equivalent model (10) will be used in the

rest of this paper.
We define the GDoF region as

D ,

{
(d1, d2, . . . , dK) : di = lim

P→∞

Ri
1
2 logP

,∀i ∈ {1, 2, . . . ,K}, (R1, R2, . . . , RK) ∈ C

}
. (12)

The sum-GDoF value is defined as DΣ = maxD
∑K

k=1 dk.

2.3 ADT Deterministic Interference Network Model

As in the Gaussian case, there are K transmitter-receiver pairs in the ADT deterministic interfer-
ence network model. Each transmitter wants to communicate with its corresponding receiver. The
signal sent from Transmitter i, as observed at Receiver k, over the m-th sub-channel, is scaled up

by a nonnegative integer value n
[m]
ki , blog2 |h

[m]
ki |c = b1

2α
[m]
ki log2 P c.

The channel may be written as

Y
[m]
k = b2n

[m]
k1 X

[m]
1 c ⊕ b2

n
[m]
k2 X

[m]
2 c ⊕ · · · ⊕ b2

n
[m]
kKX

[m]
K c (13)

where addition is performed on each bit (modulo two). The time index is omitted for compactness.
We assume the real-valued channel input is positive and has peak power constraint 1, then it can
be written in base 2 as

X
[m]
i = 0.X

[m]
i,(1)X

[m]
i,(2)X

[m]
i,(3) . . . . (14)

The capacity region and the associated notions are defined similar to those in the Gaussian setting.
The following directed graph representation will be useful to efficiently present the results in

this work.
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2.4 Weighted Directed Graph Representation

The directed graph representation of the K user interference network consists of K vertices,
V1, V2, · · · , VK , one for each user. Since the vertices correspond directly to users, we will also
refer to them as users. For all (i, j) ∈ [K]× [K], there is a directed edge eij from user j to user i,
with weight w(eij) defined as follows:

w(eij) =

{
αij if i 6= j,
0 if i = j

(15)

The directed graph for K = 3 is illustrated in Fig. 1. The directed graph is similarly defined for

V1

V2V3

e22
e33

e12

e13

e31

e32

e23

e11

e21

Figure 1: The directed graph representation of a 3 user interference network.

the ADT deterministic model, with all αij values replaced by nij values.
We are particularly interested in the notion of cycles on this directed graph. We define a cycle,

π, as a cyclically ordered subset of users, without repetitions. The set of all cycles is denoted as
[Π]. The cardinality of a cycle, denoted as |π| is the number of users that it involves.

|π| =
∑
Vk∈π

1, ∀π ∈ [Π] (16)

A cycle with only one user is a trivial cycle. Two cycles πp, πq, are said to be disjoint if they contain
no common user, denoted as πp ∩ πq = φ.

Introducing a slight abuse of notation in the interest of conciseness, the same cycle, π, can also
be equivalently represented as a set of edges representing a closed path where no user is visited
more than once. The weight of a cycle, denoted as w(π), is the sum of the weights of all the edges
traversed in completing the cycle.

w(π) =
∑
eij∈π

w(eij), ∀π ∈ [Π] (17)

Note that the weight of a trivial cycle is zero. Intuitively, the weight of a cycle is the accumulation
of the strengths of interference terms encountered in the cycle.
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As an example, consider the 3 user interference network, for which we have a total of 8 possible
cycles, so that

[Π] = {{1}, {2}, {3}, {1, 2}, {2, 1}, {1, 3}, {3, 1}, {2, 3}, {3, 2}, {1, 2, 3}, {3, 2, 1}} (18)

= {{e11}, {e22}, {e33}, {e12, e21}, {e13, e31}, {e23, e32}, {e12, e23, e31}, {e32, e21, e13}} (19)

w({1, 2, 3}) = α12 + α23 + α31 (20)

= w({e12, e23, e31}) (21)

Cyclic Partition: A subset of the set of all cycles, Π ⊂ [Π], is said to be a cyclic partition if

πp ∩ πq = φ, ∀πp, πq ∈ Π (22)∑
π∈Π

|π| = K (23)

In other words, a cyclic partition is a disjoint cyclic cover of the K users.
Cyclic Partition Bound: For any cyclic partition Π, define the corresponding cyclic partition

bound, DΠ
Σ , as

K∑
k=1

dk ≤
K∑
k=1

αkk − w(Π) (24)

where

w(Π) =
∑
π∈Π

w(π) (25)

is the net weight of the cyclic partition, representing the total interference encountered in this
partition.

Since there are many cyclic partitions, each of which gives rise to a cyclic partition bound, let
us denote the tightest of these bounds as the best cyclic partition bound, DΠ∗

Σ . In the deterministic
setting, a cyclic partition bound is denoted by CΠ

Σ and the best cyclic partition bound is denoted by
CΠ∗

Σ . A cyclic partition that produces the best cyclic partition bound is labeled an optimal cyclic
partition, and denoted by Π∗.

For example, when K = 6, one possible cyclic partition is Π = {{1, 3, 5}, {4, 2}, {6}} which
decomposes the users into three cycles, such that each user is represented in exactly one cycle. The
corresponding cyclic partition bound is

6∑
k=1

dk ≤
6∑

k=1

αkk − (α13 + α35 + α51)− (α42 + α24)− (0) (26)

Participating Edge: Edge eij is a participating edge for the cyclic partition Π if i 6= j and
eij ∈ π for some π ∈ Π.

Cyclic Predecessor: Under cyclic partition Π, the cyclic predecessor for user k is user Π(k),
if eΠ(k)k is a participating edge for Π. Note that if user k belongs to a trivial cycle in Π then
Π(k) = φ.

Finally, RK+ is the set of all K-tuples over non-negative real numbers.
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3 Optimality of TIN through the ADT Deterministic Model

We first review Geng et al.’s result3 on the optimality of TIN for the K user interference network
with one sub-channel, i.e., M = 1. The sub-channel index superscript is omitted in this section for
compactness.

Theorem 1 (Theorem 1 in [5]) In a K user interference network, where the channel strength level
from Transmitter i to Receiver j is equal to αji, ∀i, j ∈ [K], if the following condition is satisfied

αii ≥ max
j:j 6=i
{αji}+ max

k:k 6=i
{αik}, ∀i, j, k ∈ [K], (27)

then power control and treating interference as noise achieve the entire GDoF region. Moreover,
the GDoF region is given by

DTIN =

(d1, d2, · · · , dK) ∈ RK+ :
∑
Vk∈π

dk ≤
∑
Vk∈π

αkk − w(π), ∀π ∈ [Π]

 (28)

Remark: Henceforth, we refer to (27) as the TIN optimality condition for Gaussian networks.
If a network (sub-channel) satisfies the TIN optimality condition (27), the network (sub-channel)
will be referred to as a TIN optimal network (sub-channel).

Note that each of the bounds defining the GDoF region represents the sum-GDoF of a cyclic
interference sub-network contained in the K user fully connected interference network. A cyclic
sub-network is comprised of a cyclically ordered subset of users where each user causes interference
only to the preceding user and suffers interference only from the following user in the cycle. As
shown by Zhou et al. [24] and translated into the GDoF setting by Geng et al. in [5], the sum-
GDoF of a cyclic interference sub-network is simply the sum of all desired link strengths minus the
sum of all cross link strengths. For example, the cycle 2 → 4 → 1 → 3 → 2 corresponds to a 4
user cyclic interference sub-network with 4 desired and 4 interfering links, and its sum-GDoF are
characterized by the outer bound d2 + d4 + d1 + d3 ≤ α22 +α44 +α11 +α33−α24−α41−α13−α32.
Note that because a subset of users of cardinality L has (L − 1)! distinct cycles, there are a total
of (L − 1)! sum-GDoF bounds for each cardinality-L subset of users, out of which all but the
tightest bound are redundant. Moreover, excluding the empty set and the singletons, there are
2K −K − 1 subsets of users that give rise to cycle bounds, some of which may again be redundant.
Nevertheless, when considered together, the cycle bounds describe the precise GDoF region of the
fully connected network whenever condition (27) is satisfied. This remarkable aspect of Geng et
al.’s result greatly simplifies the proof of the outer bound of the GDoF region, because only cyclic
interference networks need to be considered.

Following similar arguments as Geng et al., it is not difficult to obtain a corresponding TIN
optimality result for the ADT deterministic model.

Theorem 2 In a K user ADT deterministic interference network, where the channel strength level
from Transmitter i to Receiver j is equal to nji, ∀i, j ∈ [K], if the following condition is satisfied

nii ≥ max
j:j 6=i
{nji}+ max

k:k 6=i
{nik}, ∀i, j, k ∈ [K], (29)

3Complex channel model is considered in [5], but the results therein are easily extended to real channel setting.
Here we state the result for real channel model.
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...

...

...

...

Tx 1 Rx 1

Tx K
Rx K

Cause
interference

Su¸er no

interference

Cause no

interference

Su¸er
interference

n1i

maxj 6=i nji

maxk 6=i nik

nii

niK

ni1

nKi

Tx i Rx i

Figure 2: The TIN optimality condition for a K user fully connected ADT deterministic interference
network. Signal levels that cause interference do not suffer interference, and those that suffer interference
cause no interference. Note that each user i has nii−maxj:j 6=i{nji}−maxk:k 6=i{nik} signal levels that neither
cause interference, nor suffer interference. To avoid cluttering the figure, not all channels are shown.

then power control and treating interference as noise can achieve the whole capacity region. More-
over, the capacity region is given by

CTIN =

(R1, R2, · · · , RK) ∈ RK+ :
∑
Vk∈π

Rk ≤
∑
Vk∈π

nkk − w(π), ∀π ∈ [Π]

 (30)

Remark: Following a similar convention as the Gaussian case, we refer to (29) as the TIN
optimality condition for the ADT deterministic model. A network (sub-channel) is called TIN
optimal if the TIN optimality condition (29) is satisfied over the network (sub-channel).

Note the translation from Theorem 1 for the Gaussian case to Theorem 2 for the ADT deter-
ministic model is remarkably direct. The capacity region of the TIN optimal ADT deterministic
interference network is exactly the scaled version of the GDoF region of the corresponding TIN
optimal Gaussian interference network. The ADT deterministic model also reveals an interesting
interpretation of the TIN optimality condition (29), and by association (27). As highlighted in
Figure 2, the TIN optimality condition is equivalent to the following statements.

• Signal levels that suffer interference at their desired receiver, do not cause interference to
others.

• Signal levels that cause interference to others, do not suffer interference at their desired
receiver.

While we omit the proof details for Theorem 2 because they parallel those for Theorem 1
presented by Geng et al. in [5], we will briefly present a simple alternative proof for the cycle
bounds due to their central importance to this work.
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...

...

...

nilil

Tx il

Tx il`1

Tx il+1 Rx il+1

Rx il

Rx il`1

nil`1il

nilil+1

Tx i
1

Rx i
1

Rx iLTx iL

Figure 3: A cyclic ADT deterministic interference network that satisfies (29).

Consider the cyclic interference sub-network comprised of cyclically ordered user indices π =
{i0, i1, . . . , iL}, obtained by eliminating all remaining links, users and messages. To each receiver il,
let us give all messages except Wil ,Wil+1

, i.e., {W1,W2, . . . ,WK}/{Wil ,Wil+1
}, denoted as W c

il,il+1
,

through a genie. From Fano’s inequality, we have

n(Ril − ε) ≤ I(Wil ;Y
n
il
|W c

il,il+1
)

= H(Y n
il
|W c

il,il+1
)−H(Y n

il
|W c

il,il+1
,Wil)

= H(b2nililXn
il
c ⊕ b2nilil+1Xn

il+1
c)−H(b2nilil+1Xn

il+1
c)

(a)
= H(b2nil−1ilXn

il
c) +H(b2nililXn

il
c ⊕ b2nilil+1Xn

il+1
c|b2nil−1ilXn

il
c)−H(b2nilil+1Xn

il+1
c)

(b)

≤ n(nilil − nil−1il) +H(b2nil−1ilXn
il
c)−H(b2nilil+1Xn

il+1
c)

where (a) follows from the assumption nilil ≥ nil−1il + nilil+1
such that the interfering-causing

bits b2nil−1ilXn
il
c suffer no interference at the desired receiver il and (b) is due to the fact that

the entropy of a variable is no more than the number of bits therein. See Figure 3 for a pictorial
illustration. Adding the above inequalities for l ∈ {1, 2, . . . , L}, we find that the entropy terms
cancel out leaving us with

L∑
l=1

n(Ril − ε) ≤
L∑
l=1

n(nilil − nil−1il) = n

L∑
l=1

nilil − nw(π)

from which we arrive at the desired bound by normalizing by n on both sides of the inequality and
letting n approach infinity .

Remark: Henceforth, since we are only interested in networks that satisfy the TIN optimality
conditions, (29) in the deterministic setting and (27) in the Gaussian setting, we will assume
throughout that these conditions are satisfied.
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4 Sum-Capacity (Sum-GDoF)

We now switch our attention from capacity region to sum-capacity in the deterministic case, and
from GDoF region to sum-GDoF in the Gaussian case. To avoid repetition, we will focus the
discussion in this section to the Gaussian setting, i.e., GDoF region, sum-GDoF, channel strengths
αij , etc., but all arguments made in this section also apply to the deterministic setting, with capacity
region, sum-capacity, channel strengths nij .

Since we already have the GDoF region characterization in Theorem 1, the sum-GDoF char-
acterization may appear trivial. However, there are certain interesting aspects of this problem
that we will highlight in this section, which will be especially useful when we move on to parallel
interference networks in subsequent sections.

Consider, for example, the GDoF region of the TIN optimal 3 user interference network, which
is the set of tuples (d1, d2, d3) ∈ R3

+, defined by the following constraints.

d1 ≤ α11 − w({1}) = α11 (31)

d2 ≤ α22 − w({2}) = α22 (32)

d3 ≤ α33 − w({3}) = α33 (33)

d1 + d2 ≤ α11 + α22 − w({1, 2}) = α11 + α22 − α12 − α21 (34)

d2 + d3 ≤ α22 + α33 − w({2, 3}) = α22 + α33 − α23 − α32 (35)

d3 + d1 ≤ α33 + α11 − w({3, 1}) = α11 + α33 − α31 − α13 (36)

d1 + d2 + d3 ≤ α11 + α22 + α33 − w({1, 2, 3}) = α11 + α22 + α33 − α12 − α23 − α31 (37)

d1 + d2 + d3 ≤ α11 + α22 + α33 − w({3, 2, 1}) = α11 + α22 + α33 − α21 − α32 − α13 (38)

The last two bounds are already sum-GDoF bounds. However, remarkably, neither of these may
be tight. This is because, unlike similar forms that are commonly encountered e.g., the capacity
region of the multiple access channel, this region is not polymatroidal. It is easy to see that a
direct sum of (31) and (36), for example, could provide a tighter sum-GDoF bound. Incidentally,
this would be a cyclic partition bound for the cyclic partition Π = {{1}, {2, 3}}. But, how about
something a bit more involved, such as 1/2 times the sum of (34), (35), (36), which would also
produce a sum-rate bound (but not a cyclic partition bound)? Let us consider this bound.

(34) + (35) + (36)

2
⇒ d1 + d2 + d3 ≤

3∑
k=1

αkk −
w({1, 2}) + w({2, 3}) + w({3, 1})

2
(39)

Interestingly, this is the same bound as 1/2 times the sum of (37) and (38). Therefore, it can
never be tighter than the tightest of (37) and (38). Therefore, even though the GDoF region is
not polymatroidal, the special structure of the cycle bounds imparts some special properties. This
is what we will explore in this section. In fact, these examples are representative of our general
result. We will show that for a TIN optimal K user interference network, the sum-GDoF value is
always given by a cyclic partition bound. This is the main result of this section, and we state it in
the following theorem.

Theorem 3 For TIN optimal Gaussian interference networks

DΣ = DΠ∗
Σ (40)

where DΠ∗
Σ is the best cyclic partition bound.
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Proof: The sum-GDoF value is expressed by the linear program

(LP1) DΣ = max d1 + d2 + · · ·+ dK (41)

such that
∑
Vk∈π

dk ≤
∑
Vk∈π

αkk − w(π), ∀π ∈ [Π] (42)

dk ≥ 0, ∀k ∈ [K] (43)

In Section 6.1 we show that the non-negativity constraint (43) can be eliminated from LP1

without affecting its value. This allows us to express the sum-GDoF in terms of the dual LP as
follows.

(LP2) DΣ = min
∑
π∈Π

λπ

∑
Vk∈π

αkk − w(π)

 (44)

such that
∑
π∈Π

λπ1(Vk ∈ π) = 1, ∀k ∈ [K] (45)

λπ ≥ 0, ∀π ∈ [Π] (46)

where 1(·) is the indicator function that returns the values 1 or 0 when the argument to the function
is true or false, respectively.
Equivalently,

(LP3) DΣ =
K∑
k=1

αkk −max
∑
π∈Π

λπw(π) (47)

such that
∑
π∈Π

λπ1(Vk ∈ π) = 1, ∀k ∈ [K] (48)

λπ ≥ 0, ∀π ∈ [Π] (49)

Let us also define the integer constrained version of this LP.

(IP4) DΠ∗
Σ =

K∑
k=1

αkk −max
∑
π∈Π

λπw(π) (50)

such that
∑
π∈Π

λπ1(Vk ∈ π) = 1, ∀k ∈ [K] (51)

λπ ∈ {0, 1}, ∀π ∈ [Π] (52)

Note that the integer program IP4 is simply the best cyclic partition bound DΠ∗
Σ .

Since imposing an integer constraint cannot make the max term larger, it is already clear that
DΠ∗

Σ ≥ DΣ. To prove the other direction, let us reformulate LP3 by changing the perspective from
cycles to edges. Instead of the multipliers λπ that are associated with cycles, we will use multipliers
tij that are associated with edges. Define

tij =
∑
π∈Π

λπ1(eij ∈ π), ∀(i, j) ∈ [K]× [K] (53)

We now translate the constraints (48) on cycles to edges. A cycle incident on vertex k must
have exactly one incoming and one outgoing edge. (48) says that the net contribution from λπ for

12



all cycles associated with any particular vertex is 1. Clearly, then the net contribution for all edges
leaving a transmitter (vertex), or all edges entering a receiver (vertex), must be unity.

K∑
j=1

tij = 1, ∀i ∈ [K] (54)

K∑
i=1

tij = 1, ∀j ∈ [K] (55)

and the objective value is equivalently re-written as∑
π∈Π

λπw(π) =
∑
π∈Π

λπ
∑
eij∈π

w(eij) (56)

=
∑
π∈Π

λπ
∑

(i,j)∈[K]×[K]

w(eij)1(eij ∈ π) (57)

=
∑

(i,j)∈[K]×[K]

w(eij)
∑
π∈Π

λπ1(eij ∈ π) (58)

=
∑

(i,j)∈[K]×[K]

tijw(eij) (59)

Substituting into LP3, this gives us the new LP

(LP5) DΣ ≥
K∑
k=1

αkk + min
∑

(i,j)∈[K]×[K]

cijtij (60)

such that

K∑
j=1

tij = 1, ∀i ∈ [K] (61)

K∑
i=1

tij = 1, ∀j ∈ [K] (62)

tij ≥ 0, ∀(i, j) ∈ [K]× [K] (63)

where we defined cij = −w(eij), and the ≥ sign appears because we dropped the constraint (53).
In this standard form, this LP is recognizable as the minimum weight perfect matching problem,
and its solution is known to be integral, i.e., the optimizing tij must take values in {0, 1} (See [25]
and Theorem 5 of [26]).

However, note that any integral solution to LP5 gives us a valid cyclic partition bound, DΠ
Σ .

Therefore we have,

DΣ ≥ DΠ
Σ (64)

≥ DΠ∗
Σ (65)

because a cyclic partition bound cannot be smaller than the optimal cyclic partition bound. Since
we have already shown that DΣ ≤ DΠ∗

Σ , we must have DΠ∗
Σ = DΣ.

Finally, since the same proof also works for the deterministic setting, let us conclude this section
by stating the deterministic counterpart of Theorem 3 as the following corollary.
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Corollary 1 For TIN optimal ADT deterministic interference networks

CΣ = CΠ∗
Σ (66)

where CΠ∗
Σ is the best cyclic partition bound.

5 Optimality of TIN for Parallel Interference Networks

As we move from the single sub-channel case to multiple parallel sub-channels, the outer bound
proof becomes significantly more challenging. Whereas formerly it was sufficient to only consider
each cyclic sub-network obtained by eliminating all other users, messages and links, this is no longer
possible for parallel interference networks. For example, a different cycle may be active in each
sub-channel, however one cannot eliminate a different set of links for each sub-channel. As an outer
bounding argument, eliminating a link is justified by including a genie that takes all the messages
originating at the transmitter of that link, and provides them to the receiver of that link, so that the
receiver can reconstruct and subtract the transmitted symbols from its received signal. However,
in a parallel channels setting, the message information provided by the genie allows a receiver to
reconstruct and subtract the transmitted symbols from a transmitter on all sub-channels. Thus, if
a link from Transmitter i to Receiver j is removed for one sub-channel, it must be removed for all
sub-channels. This makes it impossible to reduce a fully connected parallel interference network
directly into different cyclic sub-networks over each sub-channel. As such, for parallel interference
networks, the reduction to cyclic networks is in general no longer an option, and the entire network
must be directly considered for the outer bound. Given this added source of difficulty, the relative
simplicity of the ADT deterministic model is tremendously useful. Thus, we start to explore parallel
interference networks with the ADT deterministic model.

5.1 ADT Deterministic Model

While we deal with multiple parallel sub-channels in this section, recall that we assume throughout
that each sub-channel satisfies condition (29). In other words, by itself, each sub-channel is TIN
optimal. What we wish to explore is whether collectively such parallel channels remain separable
and therefore TIN optimal. Let us start with a few relevant definitions.

For the definitions that have been introduced for the single sub-channel case, we will add a
superscript to indicate the sub-channel index, for example cyclic partition Π[m], cyclic predecessor
Π[m](k), and cyclic partition bound CΠ[m]

Σ . Note that many cyclic partitions are possible for each
sub-channel, and a different cyclic partition may be used for each sub-channel.

Participating Input and Output Levels (X
[m]
i,u , Y

[m]
k,u ): For the m-th sub-channel, we define

participating input levels

X
[m]
i,u , 0.X

[m]
i,(1), . . . , X

[m]

i,

(
n

[m]

Π[m](i)i

)
to be the bits that are sent from Transmitter i and observed at its predecessor Receiver Π[m](i).

The received signal levels resulting from all interfering X
[m]
i,u are defined as the participating output

levels

Y
[m]
k,u ,

K∑
i=1,i 6=k

2n
[m]
ki X

[m]
i,u
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where the summation is bit-wise modulo two. We can also write Xi,u in a vector form as

X
[m]
i,u = [X

[m]
i,(1), . . . , X

[m]

i,

(
n

[m]

Π[m](i)i

)].

Similar vector notation is used for Y
[m]
k,u when the vector form is clearer.

Invertibility: The m-th sub-channel is said to be invertible if the mapping from X
[m]
u ,

(X
[m]
1,u , . . . , X

[m]
K,u) to Y

[m]
u , (Y

[m]
1,u , . . . , Y

[m]
K,u) is invertible for an optimal cyclic partition Π[m]∗.

Mathematically, we require

H(X[m]
u |Y[m]

u ) = 0. (67)

The significance of these definitions will become clear with the statement of the result, illus-
trative examples, and finally from the details of the proof. Perhaps the most intriguing is the
invertibility property. At this point it suffices to say that it is a “mild” property and is easily
testable for a given problem instance. The mildness of this property will be explicitly addressed in
Section 5.3. With these definitions, we are now ready to state the main result of this section in the
following theorem.

Theorem 4 In a K user ADT deterministic interference network with M sub-channels, if each
sub-channel is individually TIN optimal and invertible, then even collectively for all the sub-channels
of the parallel interference network, the sum-capacity is achieved by a separate TIN solution over
each sub-channel.

The proof of Theorem 4 is deferred to Section 6.3. At this point it is important to understand
the statement of the theorem and its limitations through illustrative examples.

X
[1]

2;(2)

X
[1]

2;(1)

X
[1]

3;(1)

X
[1]

2;(2)

X
[1]

3;(1)

X
[2]

2;(1)

X
[2]

3;(1)

X
[2]

3;(2)

X
[2]

3;(2)

X
[2]

2;(1)

X
[3]

2;(1)

X
[3]

3;(1)

X
[3]

3;(2)

X
[3]

3;(1)

X
[3]

3;(2)

X
[3]

2;(1)

m = 1 m = 2 m = 3

X
[1]

2;(1)
˘ X [1]

3;(1)
X
[2]

2;(1)
˘ X [2]

3;(1)

Figure 4: A 3 user ADT deterministic interference network with 3 sub-channels, where each sub-channel is
TIN optimal. Under the optimal cyclic partitions Π[1]∗ = {{1, 2, 3}},Π[2]∗ = {{3, 2, 1}},Π[3]∗ = {{1}, {2, 3}},
the participating input and output levels, X

[m]
i,u , Y

[m]
i,u , i,m ∈ {1, 2, 3} are labeled and the mapping from

(X
[m]
1,u , X

[m]
2,u , X

[m]
3,u ) to (Y

[m]
1,u , Y

[m]
2,u , Y

[m]
3,u ) is easily verified to be invertible for each sub-channel.
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Example 1 Consider the K = 3 user ADT deterministic interference network with M = 3 parallel
sub-channels, shown in Figure 4. It is readily verified that each sub-channel by itself is TIN optimal.

For example, consider user 2 in sub-channel 1. The desired signal strength for this user is n
[1]
22 = 3,

the strongest interference caused by this user is n
[1]
12 = 2 and the strongest interference suffered by

this user is n
[1]
23 = 1. Thus, the desired signal strength is no less than the sum of the signal strengths

of the strongest interference caused and the strongest interference received by this user. The same is
true for each of the 3 users in each of the 3 parallel sub-channels. Therefore, according to Theorem
2, TIN is optimal for each sub-channel by itself. For the 3 sub-channels, consider the optimal cyclic
partitions

Π[1]∗ = {{1, 2, 3}},Π[2]∗ = {{3, 2, 1}},Π[3]∗ = {{1}, {2, 3}}.

The weights of the participating edges are

w(Π[1]∗) = w({e[1]
12 , e

[1]
23 , e

[1]
31}) = n

[1]
12 + n

[1]
23 + n

[1]
31 = 3 (68)

w(Π[2]∗) = w({e[2]
32 , e

[2]
21 , e

[2]
13}) = n

[2]
32 + n

[2]
21 + n

[2]
13 = 3 (69)

w(Π[3]∗) = w({e[3]
11 , e

[3]
23 , e

[3]
32}) = 0 + n

[3]
23 + n

[3]
32 = 3 (70)

Then according to Corollary 1, the sum-capacity values for each sub-channel by itself are given by

C[m]
Σ =

3∑
i=1

n
[m]
ii − w(Π[m]∗) = 9− 3 = 6, m = 1, 2, 3.

What we wish to know is if TIN continues to be the sum-capacity optimal scheme for all 3 sub-
channels collectively.

Let us check for invertibility for each sub-channel. According to the definitions, the participat-

ing inputs for sub-channel 1 are X
[1]
1,u = [X

[1]
1,(1), . . . , X

[1]

1,(n
[1]
31 )

] = φ,X
[1]
2,u = [X

[1]
2,(1), . . . , X

[1]

2,(n
[1]
12 )

] =

[X
[1]
2,(1), X

[1]
2,(2)], X

[1]
3,u = [X

[1]
3,(1), . . . , X

[1]

3,(n
[1]
23 )

] = [X
[1]
3,(1)] and the participating outputs for sub-channel

1 are Y
[1]

1,u = [X
[1]
2,(1)⊕X

[1]
3,(1), X

[1]
2,(2)], Y

[1]
2,u = [X

[1]
3,(1)] and Y

[1]
3,u = φ. It is now trivial to verify that from

(Y
[1]

1,u, Y
[1]

2,u, Y
[1]

3,u), we can recover (X
[1]
1,u, X

[1]
2,u, X

[1]
3,u). Therefore, sub-channel 1 is invertible. Simi-

larly, the participating inputs and outputs for sub-channels 2 and 3 are shown in Figure 4 and it is
easily verified that sub-channels 2 and 3 are invertible as well. Therefore, since all the conditions
of Theorem 4 are satisfied, we conclude that separate TIN is optimal for this parallel interference
network, and therefore, the sum-capacity of the 3 sub-channels collectively, is the sum of their in-
dividual sum-capacities. In other words, the sum-capacity is 6 + 6 + 6 = 18 and is achieved by
separate TIN on each sub-channel.

To also expose the limitation of Theorem 4, the next example illustrates a relatively rare situ-
ation where invertibility is not satisfied, and so Theorem 4 cannot be applied.

Example 2 Consider the 3 user ADT deterministic interference network with 3 sub-channels, as
shown in Figure 5, with the optimal cyclic partitions Π[1]∗ = {{1, 2, 3}},Π[2]∗ = {{3, 2, 1}} and
Π[3]∗ = {{1, 2, 3}} for the first, second and third sub-channel, respectively. It is easy to verify that
all 3 sub-channels are TIN optimal individually. However, with the participating inputs and outputs

X
[m]
i,u , Y

[m]
i,u shown in the figure, it is also easy to see while the first two sub-channels are invertible,

the third sub-channel is not.
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Figure 5: A 3 user ADT deterministic interference network with 3 sub-channels, where each sub-channel is
TIN optimal. For the optimal cyclic partitions Π[1]∗ = {{1, 2, 3}},Π[2]∗ = {{3, 2, 1}} and Π[3]∗ = {{1, 2, 3}},
participating inputs and outputs X

[m]
i,u , Y

[m]
i,u , i,m ∈ {1, 2, 3} are labeled. In this case, the mapping from

(X
[3]
1,u, X

[3]
2,u, X

[3]
3,u) to (Y

[3]
1,u, Y

[3]
2,u, Y

[3]
3,u) is not invertible.

Note that when the network only has one sub-channel, i.e., M = 1, we can delete all the
interfering links except the participating interference links (ones in Π[1]) without violating the
outer bound argument, so that the invertibility becomes trivially true. Thus, Theorem 4 recovers
the outer bound result of Theorem 2.

There are many interesting classes of networks where invertibility is shown to hold easily. For
example, when K = 3, then invertibility is fully characterized in Section 5.3. Another interesting
class is the class of cyclic interference networks where each sub-channel contains only one cycle (dif-
ferent sub-channels may have different cycles). These and other interesting cases will be discussed
in Section 5.3.

5.2 GDoF

We now explore the extension to the Gaussian setting and show that the insights from the de-
terministic framework go through. We obtain the corresponding result on the sum-GDoF opti-
mality of TIN for parallel Gaussian interference networks subject to similar invertibility property.

X
[m]
i,u , Y

[m]
k,u are defined similar to the deterministic case. Participating input bit levels X

[m]
i,u are

made up of the bit levels below the decimal point, sent from Transmitter i and heard by Receiver

Π[m](i), i.e., X
[m]
i,u = sign(X

[m]
i ) × 0.X

[m]
i,(1), . . . , X

[m]

i,

(
n

[m]

Π[m](i)i

), where n
[m]
ki = b1

2α
[m]
ki log2 P c. Partic-

ipating output levels Y
[m]
k,u are the resulting interference from X

[m]
i,u plus additive Gaussian noise,

i.e., Y
[m]
k,u =

∑K
i=1,i 6=k h

[m]
ki X

[m]
i,u + Z

[m]
k .

The invertibility property is a bit more delicate to translate, because of the presence of noise,
average power constraints, and the focus on GDoF rather than exact capacity. Given a cyclic
partition, for the invertibility property in the Gaussian case, it suffices to require the mapping

from X
[m]
u , (X

[m]
1,u , . . . , X

[m]
K,u) to Y

[m]
u , (Y

[m]
1,u , . . . , Y

[m]
K,u) to be invertible within bounded noise

distortion. Mathematically we express the counterpart of (67) as

(Invertibility Property): H(X[m]
u |Y[m]

u ) = o(log(P )) (71)
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As before, the m-th sub-channel is said to be invertible if there exists an optimal cyclic partition
Π[m]∗ under which invertibility is satisfied.

We have the following theorem.

Theorem 5 In a K user parallel Gaussian interference network with M sub-channels, if each sub-
channel is individually both TIN optimal and invertible, then the sum-GDoF value of the parallel
Gaussian interference network is achieved by separate TIN over each sub-channel.

The proof of Theorem 5 appears in Section 6.4.

5.3 Mildness of Invertibility Condition

The intuition behind the mildness of the invertibility condition is analogous to the commonly
encountered issue of invertibility of channel matrices in wireless networks, i.e., the property is
satisfied everywhere except over an algebraic variety of lower dimension than the parameter space,
and therefore is increasingly likely to be true when the parameter space is a large field. In particular,
we expect invertibility to hold in the Gaussian setting almost surely. In the deterministic setting
also, because the signal levels nij are defined as quantized versions of αij log(P ), with αij drawn
from a continuum of real values, as the quality of the quantization improves (with increasing P ),
the invertibility is increasingly likely to hold.

To strengthen this intuition, we take a closer look at the invertibility condition in this section.
We will go into details mainly for the deterministic setting. For the Gaussian setting, while the
insights from deterministic setting are expected to go through via the usual machinery of translating
between deterministic and Gaussian settings, as used in a number of works [12, 13, 11, 27, 7, 28],
an in-depth analysis appears to be extremely cumbersome with little by way of new insights. Hence
we will restrict the discussion in the Gaussian setting primarily to just an intuitive level.

5.3.1 ADT Deterministic Model

3 users Let us start with the ADT deterministic model for K = 3, with arbitrary M , where we
explicitly characterize the invertibility condition.

Lemma 1 For the m-th sub-channel of a 3 user ADT deterministic interference network, if n
[m]
12 +

n
[m]
23 + n

[m]
31 6= n

[m]
21 + n

[m]
32 + n

[m]
13 , then sub-channel m is invertible under any cyclic partition.

Proof: Consider the bi-partite graph comprised of the participating input and output levels as
the two sets of vertices and the cross links between them as the edges. According to Theorem 7,
if this graph is acyclic then invertibility must hold. Therefore, we only need to show that when

n
[m]
12 + n

[m]
23 + n

[m]
31 6= n

[m]
21 + n

[m]
32 + n

[m]
13 , the bipartite graph is acyclic. Let us suppose the opposite,

i.e., the graph has a cycle. Since only cross links are considered, for the 3 user case, the cycle must
must traverse all 3 users. The 6 edges along the way correspond to 6 interfering links with strength

n
[m]
ji . The bit sent from Transmitter i to Receiver j is shifted n

[m]
ji places. Therefore as we traverse

the 6 edges, the net shift factor encountered is n
[m]
12 + n

[m]
23 + n

[m]
31 − n

[m]
21 − n

[m]
32 − n

[m]
13 , which must

equal zero for the cyclical path to return to its origin. But this contradicts the assumption that

n
[m]
12 + n

[m]
23 + n

[m]
31 6= n

[m]
21 + n

[m]
32 + n

[m]
13 . This completes the proof by contradiction.

Combining the result of Lemma 1 with the result of Theorem 4, we have the explicit result for
the 3 user parallel ADT deterministic interference network.
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Theorem 6 For the 3 user parallel ADT deterministic interference network where each sub-channel
is individually TIN optimal, if each sub-channel also satisfies

n
[m]
12 + n

[m]
23 + n

[m]
31 6= n

[m]
21 + n

[m]
32 + n

[m]
13 ,∀m ∈ [M ] (72)

then the sum-capacity of the 3 user parallel ADT deterministic interference network is achieved by
a separate TIN solution over each sub-channel.

Acyclic Bipartite Graph of Cross Channels between Participating Levels (Includes
Cyclic Interference Networks) The following theorem presents a general result which was
also used in the proof of invertibility for the 3 user case.

Theorem 7 For each sub-channel of a K user parallel ADT deterministic interference network,
view the cross links between the participating input and output levels as the edges of an undirected
bipartite graph. If this bipartite graph is acyclic, then the sub-channel is invertible. If each sub-
channel individually is TIN optimal, then separate TIN over each sub-channel achieves the sum-
capacity of the K user parallel ADT deterministic interference network.

Proof: Since the optimality of separate TIN is already established subject to invertibility, all
that remains is to show that invertibility holds. We will prove that in the absence of cycles in the
bi-partite graph described above, one can always start from any participating input bit level as
the root and build a tree with participating output bit levels as leaves such that we can proceed
to the end of the tree (leaves) and start inverting sequentially from participating output levels to
recover all participating input levels along the tree. The construction is as follows. Start at any
participating input bit level as the root. When we leave the input bit level for an output bit level,
always choose a participating edge. Note that for each input bit level, there is only one participating
edge. Also, there is only one participating edge for each output bit level. After reaching the output
bit level, if it is connected nowhere else then this is the leaf and we are done. If it is connected
to other input bit levels, the edges must all be non-participating edges as the only participating
edge has been used to arrive at the output bit. Again, for each input level reached, choose the only
participating edge to reach the next output bit level. Because the graph has no cycles, the process
must end eventually. We cannot end at an input level, because every input bit level must have a
participating edge going out. Therefore we must end at output bit levels (leaves). Then we can
traverse this tree back and find the original input bit level and all input bits along the way.

To illustrate the inverting process, an example would be most useful. Consider a sub-channel of
a 4 user ADT deterministic interference network, whose acyclic bipartite graph is shown in Figure
6. The sub-channel is TIN optimal. Consider the optimal cyclic partition Π∗ = {{1, 2, 3, 4}} with
participating edges {e12, e23, e34, e41}. Let us show that it is invertible. Start from input bit X2,(1)

and create the tree as shown in Figure 6. Inverting from the leaves would recover all input levels.
We mention that although Theorem 7 establishes that the acyclic condition is sufficient for

a sub-channel to be invertible, it is not necessary. Such examples are not uncommon, e.g., one
appears in Figure 7 in this paper.

Next we consider another interesting subclass of the general K user ADT deterministic inter-
ference network, i.e., the cyclic interference networks where each sub-channel contains only one
cycle (different sub-channels may have different cycles). As the bi-partite graph is trivially acyclic,
invertibility holds. Combined with Theorem 4, we settle the optimality of separate TIN for cyclic
interference networks. The result is stated in the following corollary.
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Figure 6: (a) The acyclic bipartite graph of a sub-channel that satisfies the TIN optimality condition and
the tree created to invert the input bit levels. Note that the graph is undirected, direction sign is added
to highlight the order of how the tree is created. (b) A more tree-centric view. Note that as the graph is
bipartite, the levels alternate between input and output. As participating edge is used to go from input to
output, there is only one edge from an input node to an output node. The participating output level is the
modulo sum of all its connected input nodes. The leaves are output bits and are only connected to one input
node from above. As such, an iterative inverting from bottom to top is feasible.

Corollary 2 For a K user parallel ADT deterministic interference network where each sub-channel
is individually TIN optimal, if each sub-channel is also a cyclic interference network, then the sum-
capacity of the K user parallel ADT deterministic interference network is achieved by a separate
TIN solution over each sub-channel.

Remark: Note that a cyclic interference network has an acyclic bi-partite graph as defined in
Theorem 7. This is because in a cyclic network each receiver receives interference from only one
transmitter, so that each output level can only be connected to one input level in the bi-partite
graph.

Networks with Dominant Partitions Our study of invertibility can be naturally extended
to the following situation. For sub-channel m, consider an optimal cyclic partition Π[m]∗. If the
interference caused by each Transmitter k ∈ [K] to its cyclic predecessor Π[m]∗(k) is strictly the

strongest, i.e., n
[m]

Π[m]∗(k)k
> n

[m]
jk ,∀j /∈ {k,Π

[m]∗(k)}, we say that Π[m]∗ is a dominant cyclic partition

and sub-channel m satisfies the dominant interference condition. The following theorem considers
the networks where each sub-channel satisfies the dominant interference condition.

Theorem 8 For a K user parallel ADT deterministic interference network where the TIN opti-
mality condition is satisfied in each sub-channel, if each sub-channel also satisfies

n
[m]

Π[m]∗(k)k
> n

[m]
jk , ∀j, k ∈ [K], j /∈ {k,Π[m]∗(k)},m ∈ [M ] (73)
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then the sum-capacity of the K user parallel ADT deterministic interference network is achieved
by a separate TIN solution over each sub-channel.

Proof: We only need to prove that when each sub-channel satisfies the dominant interference
condition (73), invertibility is implied. Although in this case, the bipartite graph may contain
cycles, we are still able to construct trees in a way that no cycle would be encountered, such that
inverting from the output bit leaves can recover all input levels. Similar to the construction given
in Theorem 7, for any input bit level, we leave it through a participating edge and for any output
bit level, we leave it through a non-participating edge. When this rule is used in transversing the
graph, no cycle can be created. To see this we assume the opposite. If a cycle exists when we
build the tree, then each input bit node is connected to a participating edge for leaving and a
non-participating edge for coming back. As this is a cycle, the net scaling factor encountered must
be 0, which means the sum of the strengths of all leaving edges must equal that of all coming edges.
This is a contradiction as from the dominant cyclic partition condition, for each input bit node, the
strength of the leaving edge is strictly larger than that of the coming edge. So we are guaranteed
to end up with a desired tree. Repeating this process would complete the proof.

We illustrate the process with an example. Consider a sub-channel of a 4 user ADT deterministic
interference network, shown in Figure 7. The sub-channel is TIN optimal, as for each user, signal
levels that cause interference do not suffer interference, and those that suffer interference cause
no interference. Consider the optimal cyclic partition Π∗ = {{1, 2, 3, 4}} with participating edges
{e12, e23, e34, e41}. It is easy to verify that the participating link from each transmitter is the
strongest. For example, for Transmitter 2, n12 = 3 > max(n32, n42) = max(2, 1) = 2. Thus
the sub-channel also satisfies the dominant interference condition. Then we prove it is invertible.
Toward this end, consider the input bit X2,(3). Choose the participating edge to connect to the
cyclic predecessor Receiver 2. As Receiver 2 is not an end yet, we will pass through all of its non-
participating edges to come to input nodes (see Figure 7). After arriving at Transmitters 3 and 4,
again, follow the participating edges to cyclic predecessor Receiver 2 and 3, respectively. Receiver
2 is the end and from Receiver 3, we go to Transmitter 2 along the non-participating edge. Finally,
pass through the participating edge to Receiver 1 and the end comes. It is easy to see we can invert
sequentially from the output end nodes all the way to recover the desired input bit X2,(3) and the
input bits along. All the other input bits can be recovered following similar procedures.

5.3.2 Gaussian Setting

We now proceed to the Gaussian setting. Starting with the 3 user case, we provide an intuitive
discussion on why invertibility holds here almost surely.

3 users If the optimal cyclic partition Π∗ has two cycles, we assume Π∗ = {{1}, {2, 3}}, without
loss of generality. Then X1,u = φ, Y2,u = h23X3,u+n2, Y3,u = h32X2,u+n3. The participating inputs
are trivially invertible from the outputs within bounded variance noise distortion here, simply by
normalizing by the channel realization.

If Π∗ is a single cycle with all 3 users, we assume Π∗ = {{1, 2, 3}}. Then X1,u = sign(X1) ×
0.X1,(1) . . . X1,(n31), X2,u = sign(X2)×0.X2,(1) . . . X2,(n12), X3,u = sign(X3)×0.X3,(1) . . . X3,(n23). We

define ∆ , n12 +n23 +n31−n21−n32−n13, which is larger than 0 almost surely for appropriately
large P . Instead of finding a single bit as in the ADT deterministic model, we consider a chunk with
∆ bits, e.g., X2,[1] = [X2,(1) . . . X2,(min(∆,n12))]. Operating in units of ∆ bits, the invertibility process
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Figure 7: (a) A sub-channel that satisfies the TIN optimality condition and dominant interference condition
(73) for the dominant cyclic partition Π∗ = {{1, 2, 3, 4}}. A cycle is highlighted in red. (b) The cyclic bipartite
graph and the tree created to invert X2,(3). Note that the graph is undirected, direction sign is added to
highlight the order of how the tree is created.

parallels the ADT deterministic model. The effect of additive noise terms becomes vanishingly small
at the higher signal levels (thus limited to only an o(logP ) impact, see [29] for this argument), the
carry overs across chunks are vanishingly small relative to the size of the chunks, and their number
also does not scale with P because the number of chunks remains constant. Thus, the Gaussian
setting parallels the deterministic setting within o(logP ). Note that as the condition for non-
invertibility in the ADT deterministic model is approached, i.e., as α12 +α23 +α31−α21−α32−α13

approaches zero, the size of the chunks becomes smaller, and the overhead of carry over bits increases
proportionately. However, except when it is exactly zero (the setting with infinite overhead), the
overhead does not scale with P , thus the GDoF, almost surely, continue to mimic the deterministic
setting.

Networks with Dominant Partitions

Theorem 9 For a K user parallel Gaussian interference network where the TIN optimality con-
dition is satisfied in each sub-channel, if each sub-channel also satisfies

α
[m]

Π[m]∗(k)k
> α

[m]
jk , ∀j, k ∈ [K], j /∈ {k,Π[m]∗(k)},m ∈ [M ] (74)

then the sum-GDoF value of the K user parallel Gaussian interference network is achieved by a
separate TIN solution over each sub-channel.

Proof: Instead of an appeal to the ADT deterministic model, which could still be made, it
is worthwhile in this section to consider a more direct proof. So let us see why the invertibility
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property is almost surely true, i.e., H(X
[m]
u |Y[m]

u ) = o(logP ). We focus on one sub-channel, and
the sub-channel index is omitted. We have

− I(Xu; Yu) = H(Xu|Yu)−H(Xu) (75)

= h(Yu|Xu)︸ ︷︷ ︸
o(logP )

−h(Yu) (76)

⇐⇒ H(Xu|Yu) = H(Xu)− h(Yu) + o(logP ) (77)

Thus, for invertibility, it suffices to prove H(Xu)− h(Yu) = o(logP ).
We prove that when (74) holds for sub-channel m, the invertibility property is implied. Towards

this end, we define Vi,u = hΠ[m]∗(i)iXi,u + ZΠ[m]∗(i), Vu = (V1,u, . . . , VK,u) and prove

H(Xu)− h(Vu) = o(logP ) (78)

h(Vu)− h(Yu) = o(logP ). (79)

Let us prove them one by one. First, consider (78). It can be proved by noticing that |hΠ[m]∗(i)i| =√
P
α

Π[m]∗(i)i such that in Vu, all bits in Xu are received above the noise floor. The derivations are
similar to those in [12, 29], thus we omit it.

Next, we prove (79). Let us rewrite Vu and Yu in the matrix form

Vu = GXu + Z̄,Yu = FXu + Z (80)

where

G = diag(hΠ[m]∗(1)1, hΠ[m]∗(2)2, . . . , hΠ[m]∗(K)K) (81)

F = [hji]K×K − diag(h11, . . . , hKK) (82)

and Z̄ = (ZΠ[m]∗(1), . . . , ZΠ[m]∗(K)) is a permutation of Z = (Z1, . . . , ZK). G and F are invertible
almost surely and

FG−1 =

[
hji

hΠ[m]∗(i)i

]
K×K

− diag

(
h11

hΠ[m]∗(1)1

, . . . ,
hKK

hΠ[m]∗(K)K

)
(83)

Define σ as the smallest singular value of FG−1, and introduce β , min(σ, 1). Let us also define
Z′ ∼ N (0,FG−1(FG−1)T − βI) and Z′ is independent of Z. The positive semidefinite property of
the covariance matrix is easily established from the definition of β. We now have

h(Vu)− h(Yu)

= h(GXu + Z̄)− h(FXu + Z) (84)

≤ h(GXu + Z̄)− h(FXu + βZ) (85)

= h(GXu + Z̄)− I(FXu + βZ; FXu)− h(βZ) (86)

≤ h(GXu + Z̄)− I(FXu + βZ + Z′; FXu)− h(βZ) (87)

= h(GXu + Z̄)− h(FXu + βZ + Z′)︸ ︷︷ ︸
=h(FG−1(GXu+Z̄))

+h(βZ + Z′)− h(βZ) (88)

= h(GXu + Z̄)− h(GXu + Z̄)− log
∣∣FG−1

∣∣ (89)
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+
1

2
log(2πe)K

∣∣FG−1(FG−1)T − β2I + β2I
∣∣− 1

2
log(2πe)K |β2I| (90)

= − log
∣∣F(G)−1

∣∣+
1

2
log |FG−1||(FG−1)T | − 1

2
log(β2) (91)

= −1

2
log(β2) (92)

where (85) follows from the fact that β ≤ 1. In (87), we use the data processing inequality as
FXu → FXu + βZ→ FXu + βZ + Z′ forms a Markov chain.

It only remains to show that β is o(logP ). As β = min(σ, 1), it suffices to show σ = o(logP ).
By definition, σ = minx ||FG−1x||, where x ∈ RK×1 is a unit vector. Let us prove the claim by
contradiction. Choose a small positive ε such that ε2 < 1

2K3 . Suppose σ decays too fast with respect
to P , then choose P sufficiently large such that

σ = min
||x||=1

||FG−1x|| ≤ ε (93)

|hji|
|hΠ[m]∗(i)i|

=

√
P
αji−αΠ[m]∗(i)i ≤ ε,∀j /∈ {i,Π[m]∗(i)}. (94)

Suppose the minimizing unit vector that corresponds to σ is x∗ = [x1, . . . , xK ]T . Then the j-th
entry of the K × 1 vector FG−1x∗ (denoted as yj) is

yj =
K∑

i=1,i 6=j

hji
hΠ[m]∗(i)i

xi =
K∑

i=1,i 6=j,Π[m]∗(i)6=j

hji
hΠ[m]∗(i)i

xi + xio (95)

where Π[m]∗(io) = j and its absolute value

|yj | ≥ |xio | −
K∑

i=1,i 6=j,Π[m]∗(i)6=j

∣∣∣∣∣ hji
hΠ[m]∗(i)i

xi

∣∣∣∣∣ (96)

≥ |xio | − (K − 2)ε (97)

where (97) follows from (94) and |xi| ≤ 1 as x∗ is a unit vector. Also,

1 =

K∑
io=1

|xio |2 ≤
K∑
j=1

(
|yj |+ (K − 2)ε

)2
(98)

≤
K∑
j=1

2
(
|yj |2 + (K − 2)2ε2

)
(99)

≤ 2ε2 + 2K(K − 2)2ε2 ≤ 2K3ε2 (100)

where we use (97) to get (98) and (93) is used in (100) such that
∑K

j=1 |yj |2 ≤ ε2. We get the

desired contradiction as ε2 < 1
2K3 by assumption.

The above proof relies heavily on the fact that σ = o(logP ), which is only true when the
dominant interference condition is satisfied. In general, we can not use this direct matrix inver-
sion method to prove the invertibility for the Gaussian case. Proofs along the lines of the ADT
deterministic model seem more generally applicable.
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5.4 GDoF Region for Parallel Networks

The GDoF region of a TIN optimal K user interference network, as stated in Theorem 1, is
comprised only of sum-GDoF bounds for all subsets of users. For parallel TIN optimal interference
networks, our results characterize the tight sum-GDoF bounds of any subset of users. So it is
natural to wonder if the set of all tight sum-GDoF bounds for all subsets of users characterizes the
entire GDoF region, and therefore settles the optimality of TIN for the entire GDoF region in the
parallel setting. In this section, we show through a counter-example that this is not the case. The
following theorem states the result.

Theorem 10 For the parallel K > 2 user Gaussian interference network with m > 1 sub-channels,
each of which is individually TIN optimal and invertible, the region described by the tightest sum-
GDoF bounds of all subsets of users, is in general not the same as the region achievable by separate
TIN over each sub-channel.

Remark: Note that if either K = 2 or m = 1, then the two regions are the same. When K > 2
and m > 1, even though the regions are not the same, the sum-GDoF values are indeed the same,
as we have shown in Theorem 5. Theorem 10 also applies to the ADT deterministic model. This
is readily seen because the counter-example presented below extends to the deterministic setting by

choosing integer values n
[m]
ij = 10α

[m]
ij , ∀i, j ∈ {1, 2, 3},m ∈ {1, 2}, ε = 1.

m = 1 m = 2

1
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Figure 8: A K = 3 user Gaussian interference network with 2 sub-channels. The channel strength level
is indicated for each link. Each sub-channel satisfies the TIN optimal condition and dominant interference
condition.

Proof: Consider a K = 3 user Gaussian interference network with M = 2 sub-channels, as
shown in Figure 8. It is easily seen that both sub-channels satisfy the TIN optimality condition
and the dominant interference condition, for all subsets of users. Therefore, Theorem 9 establishes
that the sum-GDoF value of all subsets of users in this parallel Gaussian interference network is
achieved by separate TIN over each sub-channel. Incidentally, the sum-GDoF value for all 3 users
is 3, achieved by the GDoF tuple (d1, d2, d3) = (1, 1, 1) where every user gets 0.5 GDoF over each
sub-channel by transmitting at full power and each receiver treats interference as noise.

We now view each TIN optimal sub-channel by itself. The GDoF region of the first sub-channel

by itself is the set of tuples (d
[1]
1 , d

[1]
2 , d

[1]
3 ) ∈ R3

+ defined by the following constraints.

d
[1]
i ≤ 1, ∀i ∈ {1, 2, 3} (101)
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d
[1]
i + d

[1]
j ≤ 1.5, ∀i, j ∈ {1, 2, 3}, i 6= j (102)

d
[1]
1 + d

[1]
2 + d

[1]
3 ≤ 1.5 (103)

Similarly, the individual GDoF region for the second sub-channel is

d
[2]
i ≤ 1, ∀i ∈ {1, 2, 3} (104)

d
[2]
i + d

[2]
j ≤ 1 + ε, ∀i, j ∈ {1, 2, 3}, i 6= j (105)

d
[2]
1 + d

[2]
2 + d

[2]
3 ≤ 1.5 (106)

Considering all sub-channels together, the sum-GDoF bounds for the parallel interference net-
work (each of which is tight by itself, as proved in Theorem 5) are the following.

di ≤ 1 + 1 = 2, ∀i ∈ {1, 2, 3} (107)

di + dj ≤ 1.5 + 1 + ε = 2.5 + ε, ∀i, j ∈ {1, 2, 3}, i 6= j (108)

d1 + d2 + d3 ≤ 1.5 + 1.5 = 3 (109)

Now, consider the GDoF tuple (d1, d2, d3) = (2, 0.5, 0.5) which is inside the region described by
(107)-(109). We prove this tuple is not achievable by separate TIN. In other words, we show that

there does not exist a valid (d
[1]
1 , d

[1]
2 , d

[1]
3 ) and a valid (d

[2]
1 , d

[2]
2 , d

[2]
3 ), such that (d

[1]
1 + d

[2]
1 , d

[1]
2 +

d
[2]
2 , d

[1]
3 + d

[2]
3 ) = (2, 0.5, 0.5). This is shown as follows.

In order to have d
[1]
1 + d

[2]
1 = 2, we must have d

[1]
1 = d

[2]
1 = 1. Given d

[2]
1 = 1, from (105), we

must have d
[2]
2 ≤ ε and d

[2]
3 ≤ ε. Since d

[2]
2 ≤ ε, then, in order to have d

[1]
2 + d

[2]
2 = 0.5, we must have

d
[1]
2 ≥ 0.5− ε. Since d

[1]
1 = 1, d

[1]
2 ≥ 0.5− ε and d

[1]
1 + d

[1]
2 + d

[1]
3 ≤ 1.5, we must have d

[1]
3 ≤ ε. Now,

since d
[1]
3 ≤ ε and d

[2]
3 ≤ ε, we must have d

[1]
3 +d

[2]
3 ≤ 2ε. And since ε > 0 can be arbitrarily small, it

contradicts the requirement that d
[1]
3 + d

[2]
3 = 0.5, thus completing the proof by counter-example.

To summarize, for parallel interference networks (deterministic and Gaussian), where each sub-
channel is individually TIN optimal and invertible, either the separate TIN achievable region is
not tight or we need more than sum-rate bounds. In light of this observation, the optimality of
separate TIN for sum-GDoF is especially remarkable.

6 Proofs

6.1 Redundancy of non-negativity constraints in LP1

Before we prove the redundancy of non-negativity constraints in LP1, let us first highlight the
non-trivial nature of the problem. Consider the following LP , which seems similar to LP1.

maxR1 +R2 +R3 such that R1 +R2 ≤ 10, R1 +R3 ≤ 10, R2 +R3 ≤ 30, (R1, R2, R3) ∈ R3
+

It is easy to see that the max value is 20 achieved with (R1, R2, R3) = (0, 10, 10). However, if we
ignore the non-negativity constraint (R1, R2, R3) ∈ R3

+, then we can achieve a sum value of 25 with
(R1, R2, R3) = (−5, 15, 15). Thus, in this LP , which looks similar to LP1, one cannot ignore the
non-negativity constraints. So let us see why this can be done in LP1.

Returning to sum-GDoF characterization in LP1, we already assumed that the TIN optimality
condition (27) is satisfied by the network, but let us now further assume that it is satisfied with
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strict inequality. We note that there is no loss of generality here, because the case with equality
immediately follows from a continuity argument. Strict inequality in the TIN optimality condition
means the following is true.

αii > max
j:j 6=i
{αji}+ max

k:k 6=i
{αik}, ∀i, j, k ∈ [K] (110)

We need the following lemmas.

Lemma 2 Given that (110) is satisfied, the sum-GDoF must be achieved by a GDoF tuple (d1, d2, · · · , dK)
with dk > 0,∀k ∈ [K].

Proof: Suppose that the sum-GDoF are achieved with a GDoF tuple where di = 0. Replacing
nij with αij in Fig. 2, it is evident that user i has αii − maxj:j 6=i{αji} − maxk:k 6=i{αik} signal
levels that neither cause interference, nor suffer interference. Thus, user i can be assigned di =
αii−maxj:j 6=i{αji}−maxk:k 6=i{αik} > 0 GDoF without hurting any other user, thus improving the
sum-GDoF value. Since the sum-GDoF value cannot be improved, we have a contradiction that
completes the proof. �

Lemma 3 Consider a region

D = RK+ ∩ Du (111)

where Du ⊂ RK is closed and convex. If max(d1,d2,··· ,dK)∈D
∑K

k=1 dk
4
= S <∞ is achieved by a tuple

(d1, d2, · · · , dK) with dk > 0,∀k ∈ [K], then

max
(d1,d2,··· ,dK)∈D

K∑
k=1

dk = max
(d1,d2,··· ,dK)∈Du

K∑
k=1

dk (112)

Proof: To set up a proof by contradiction, suppose, on the contrary, that while the max sum
value in D is S, which is achieved by the tuple d ∈ D with dk > 0,∀k ∈ [K], there exists a
tuple du ∈ Du that achieves the sum value Su such that S < Su < ∞. Define v = du − d and
Sv =

∑K
k=1 vk. Clearly, Sv = Su − S > 0. Consider the tuple dε = d + εv, with ε ∈ [0, 1], chosen

such that dε ∈ RK+ . This is possible because all elements of d are strictly positive. Since Du is
convex, and we have both d ∈ Du and du ∈ Du, therefore we must have a convex combination of
the two, dε ∈ Du. Since we also have dε ∈ RK+ , it follows that dε ∈ D. But this is a contradiction,
because the sum-value achieved by dε is Sε = S + εSv > S, when S was assumed to be the max
value in D. �

By choosing D as the constraint space for LP1, and Du as the same region without the non-
negativity constraint on the di, Lemma 2 and Lemma 3 imply that if (110) is satisfied, then there
is no loss of generality in dropping the non-negativity constraints in LP1.

Finally in the case where the TIN optimality condition is satisfied possibly with equalities, a
simple continuity argument can be applied as follows. Let us increase all αii by a small positive
amount ε. The resulting network is still TIN optimal, but now it satisfies the TIN optimality
condition with a strict inequality. Since each of the bounds is perturbed by at most Kε, the sum-
GDoF for the new network cannot exceed that of the original by more than Kε. Note that for
the new network, because of Lemma 2 and Lemma 3 one can drop the non-negativity constraints
with no loss of generality. Thus, in the limit ε → 0+, the sum-GDoF of the old network and the
new network converge to the same value, as do the two linear programs, with and without the
non-negativity constraints. Thus, even when the users satisfy only the TIN optimality condition
(27) there is no loss of generality in dropping the non-negativity constraints.
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6.2 Outer Bound Proof of Example 1

Before going to the outer bound proof for Theorem 4, we provide a proof specifically for Example
1 first, in order to illustrate the main insights in a simpler setting. For clarity of exposition, we
redraw the network in Figure 9. We want to prove the sum-capacity of this 3 user parallel ADT
deterministic interference network is bounded above by 18.

X
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X
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1;(1)

Figure 9: The same 3 user parallel ADT deterministic interference network network as Example 1. All the

interfering input bits are labeled. Those that do not belong to X
[m]
i,u are made solid.

For Receiver 1, from Fano’s inequality, we have

n(R1 − ε) ≤ I(W1;Y
[1]n

1 , Y
[2]n

1 , Y
[3]n

1 ) (113)

= H(Y
[1]n

1 , Y
[2]n

1 , Y
[3]n

1 )−H(Y
[1]n

1 , Y
[2]n

1 , Y
[3]n

1 |W1) (114)

≤ 9n−H(X
[1]n

2,(1) ⊕X
[1]n

3,(1), X
[1]n

2,(2) ⊕X
[1]n

3,(2), X
[2]n

2,(1) ⊕X
[2]n

3,(1), X
[2]n

2,(2) ⊕X
[2]n

3,(2)) (115)

where (115) follows from the fact that each bit can only carry at most 1 bit of information.
For Receiver 2, we provide the bits that are sent from Transmitter 2 and cause interference at

undesired receivers, i.e., the bits labeled in Figure 9, as side information from a genie. Then we
have

n(R2 − ε)
≤ I(W2;Y

[1]n

2 , Y
[2]n

2 , Y
[3]n

2 , X
[1]n

2,(1), X
[1]n

2,(2), X
[2]n

2,(1), X
[2]n

2,(2), X
[3]n

2,(1)) (116)

= H(Y
[1]n

2 , Y
[2]n

2 , Y
[3]n

2 , X
[1]n

2,(1), X
[1]n

2,(2), X
[2]n

2,(1), X
[2]n

2,(2), X
[3]n

2,(1))

− H(Y
[1]n

2 , Y
[2]n

2 , Y
[3]n

2 , X
[1]n

2,(1), X
[1]n

2,(2), X
[2]n

2,(1), X
[2]n

2,(2), X
[3]n

2,(1)|W2) (117)

= H(X
[2]n

2,(2)) +H(X
[1]n

2,(1), X
[1]n

2,(2), X
[2]n

2,(1), X
[3]n

2,(1)|X
[2]n

2,(2))

+ H(Y
[1]n

2 , Y
[2]n

2 , Y
[3]n

2 |X [1]n

2,(1), X
[1]n

2,(2), X
[2]n

2,(1), X
[2]n

2,(2), X
[3]n

2,(1))︸ ︷︷ ︸
≤4n

−H(X
[1]n

3,(1), X
[3]n

3,(1), X
[3]n

3,(2) ⊕X
[3]n

1,(1)) (118)
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≤ 5n+H(X
[1]n

2,(1), X
[1]n

2,(2), X
[2]n

2,(1), X
[3]n

2,(1)|X
[2]n

2,(2))−H(X
[1]n

3,(1), X
[3]n

3,(1), X
[3]n

3,(2) ⊕X
[3]n

1,(1)) (119)

where in (119), the positive term is exactly X2,u with conditioning on other interfering bit (solid
node in Figure 9), and the negative term is the interference. Similarly, for Receiver 3, we have

n(R3 − ε) ≤ 4n+H(X
[1]n

3,(1), X
[2]n

3,(1), X
[2]n

3,(2), X
[3]n

3,(1), X
[3]n

3,(2)|X
[1]n

3,(2))︸ ︷︷ ︸
=H(Xn

3,u|X
[1]n

3,(2)
)

−H(X
[2]n

2,(1), X
[3]n

2,(1))︸ ︷︷ ︸
Interference

. (120)

Adding (115), (119) and (120), we have

n(R1 +R2 +R3 − ε) ≤ 18n+H(Xn
2,u|X

[2]n

2,(2)) +H(Xn
3,u|X

[1]n

3,(2))

− H(X
[1]n

2,(1) ⊕X
[1]n

3,(1), X
[1]n

2,(2) ⊕X
[1]n

3,(2), X
[2]n

2,(1) ⊕X
[2]n

3,(1), X
[2]n

2,(2) ⊕X
[2]n

3,(2))

− H(X
[1]n

3,(1), X
[3]n

3,(1), X
[3]n

3,(2) ⊕X
[3]n

1,(1))−H(X
[2]n

2,(1), X
[3]n

2,(1)) (121)

≤ 18n+H(Xn
2,u,X

n
3,u|X

[3]n

1,(1), X
[2]n

2,(2), X
[1]n

3,(2))

− H(X
[1]n

2,(1) ⊕X
[1]n

3,(1), X
[1]n

2,(2), X
[2]n

2,(1) ⊕X
[2]n

3,(1), X
[2]n

3,(2), . . .

X
[1]n

3,(1), X
[3]n

3,(1), X
[3]n

3,(2), X
[2]n

2,(1), X
[3]n

2,(1)|X
[3]n

1,(1), X
[2]n

2,(2), X
[1]n

3,(2)) (122)

= 18n+H(Xn
1,u,X

n
2,u,X

n
3,u|X

[3]n

1,(1), X
[2]n

2,(2), X
[1]n

3,(2))

− H(Yn
1,u,Y

n
2,u,Y

n
3,u|X

[3]n

1,(1), X
[2]n

2,(2), X
[1]n

3,(2)) (123)

= 18n (124)

where in (122), the second term follows from the independence of Xi and in the third term, we add

conditioning on X
[3]
1,(1), X

[2]
2,(2), X

[1]
3,(2), which cannot increase entropy. The negative term in (122) is

now the interfering signals resulting from Xi,u, i.e., Yi,u. In the last step, we use the invertibility
property, already verified for Example 1. Normalizing by n and applying the limit n → ∞, we
arrive at the desired outer bound.

6.3 Proof of Theorem 4

Corollary 1 provides the achievable rate
∑M

m=1

[∑K
i=1 n

[m]
ii − w(Π[m]∗)

]
by separate TIN over each

sub-channel. We only need to prove that it is an outer bound, under the assumption that each sub-
channel is invertible. Consider the optimal cyclic partition for each sub-channel. Then by definition,

w(Π[m]∗) =
∑K

i=1 nΠ[m]∗(i)i. We define i
[m]
max , argmaxj 6=i n

[m]
ji to be the user that receives the most

interference from Transmitter i in sub-channel m. Writing the binary expansion of the channel
input,

X
[m]
i =

n
[m]
ii∑
b=1

X
[m]
i,(b)2

−b (125)

=

n
[m]

Π[m]∗(i)i∑
b=1

X
[m]
i,(b)2

−b

︸ ︷︷ ︸
,X[m]

i,u

+

n
[m]

i
[m]
maxi∑

b=n
[m]

Π[m]∗(i)i
+1

X
[m]
i,(b)2

−b

︸ ︷︷ ︸
,X[m]

i,v

+

n
[m]
ii∑

b=n
[m]

i
[m]
maxi

+1

X
[m]
i,(b)2

−b

︸ ︷︷ ︸
,X[m]

i,q

(126)

29



X
[m]
i;v

X
[m]
i;q

X
[m]
i;u

X
[m]
i;u

X
[m]
i;v

n
[m]

ii ` n
[m]

i
[m]
max

i

...

...

...

...

maxk 6=in
[m]

ik

n
[m]

i
[m]
max

i

maxj 6=in
[m]

ji

(= n
[m]

i
[m]
max

i
)

n
[m]
ii

...

...

...

...
Tx 1 Rx 1

Tx i
[m]
max

Rx i
[m]
max

Rx iTx i

Tx K
Rx K

Tx ˝

[m]˜
(i) Rx ˝

[m]˜
(i)

n
[m]

˝[m]˜(i)i

n
[m]

˝[m]˜(i)i

n
[m]

i
[m]
max

i
` n[m]

˝

[m]˜
(i)i

Figure 10: The signal levels of Transmitter i and Receiver i. As n
[m]
ii ≥ maxj 6=i n

[m]
ji + maxk 6=i n

[m]
ik , the

signal levels that cause interference (X
[m]
i,u , X

[m]
i,v ) suffer no interference at the desired receiver.

= X
[m]
i,u +X

[m]
i,v +X

[m]
i,q (127)

where X
[m]
i,u , X

[m]
i,v , X

[m]
i,q are the bits that interfere at Receiver Π[m]∗(i), the other bits that interfere

at Receiver i
[m]
max and the remaining input bits, respectively (see Figure 10). We use Xi,u to denote

the stack of X
[m]
i,u for all sub-channels, i.e., Xi,u = [X

[1]
i,u, . . . , X

[M ]
i,u ]. Similar notation is used for Xi,v

with v replacing u.
Give Xi,u,Xi,v as side information from a genie to Receiver i. Then from Fano’s inequality, we

have

n(Ri − ε)
≤ I(Wi; Y

n
i ,X

n
i,u,X

n
i,v) (128)

= H(Yn
i ,X

n
i,u,X

n
i,v)−H(Yn

i ,X
n
i,u,X

n
i,v|Wi) (129)

= H(Xn
i,u|Xn

i,v) +H(Xn
i,v) +H(Yn

i |Xn
i,u,X

n
i,v)−H(Yn

i |Wi) (130)

≤ H(Xn
i,u|Xn

i,v) + n

M∑
m=1

(n
[m]

i
[m]
maxi
− n[m]

Π[m]∗(i)i
) + n

M∑
m=1

(n
[m]
ii − n

[m]

i
[m]
maxi

)−H(Yn
i |Wi) (131)

= H(Xn
i,u|Xn

i,v)−H(Yn
i |Wi) + n

M∑
m=1

(n
[m]
ii − n

[m]

Π[m]∗(i)i
) (132)

where the second term in (131) follows from the fact that the entropy of X
[m]
i,v is smaller than the

number of bits therein and the third term in (131) is due to the property that the signal levels in
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Yi that receive Xi,u,Xi,v do not suffer interference (see Figure 10), because of each sub-channel is
TIN optimal.

Adding (132) for i ∈ {1, . . . ,K}, we have

K∑
i=1

n(Ri − ε) ≤
K∑
i=1

H(Xn
i,u|Xn

i,v)−
K∑
i=1

H(Yn
i |Wi) + n

K∑
i=1

M∑
m=1

(n
[m]
ii − n

[m]

Π[m]∗(i)i
) (133)

≤ H(Xn
1,u, . . . ,X

n
K,u|Xn

1,v, . . . ,X
n
K,v)−

K∑
i=1

H(Yn
i |Wi,X

n
1,v, . . . ,X

n
K,v)

+ n
M∑
m=1

(
K∑
i=1

n
[m]
ii −

K∑
i=1

n
[m]

Π[m]∗(i)i
) (134)

= H(Xn
1,u, . . . ,X

n
K,u|Xn

1,v, . . . ,X
n
K,v)−H(Yn

1,u, . . . ,Y
n
K,u|Xn

1,v, . . . ,X
n
K,v)

+ n
M∑
m=1

[
K∑
i=1

n
[m]
ii − w(Π[m]∗)

]
(135)

= n
M∑
m=1

[
K∑
i=1

n
[m]
ii − w(Π[m]∗)

]
(136)

where (134) follows from the independence of Xi and the fact that conditioning does not increase

entropy. The second term of (135) follows from the definition of Y
[m]
k,u =

∑K
i=1,i 6=k 2n

[m]
ki X

[m]
i,u and the

fact that given the desired message Wk and X
[m]
i,v , X

[m]
i,p , the only thing left in Y

[m]
k is Y

[m]
k,u . (136)

is due to the invertibility assumption. Normalizing (136) by n and applying the limit n → ∞, we
arrive at the desired outer bound.

6.4 Proof of Theorem 5

As separate TIN achieves GDoF
∑M

m=1

[∑K
i=1 α

[m]
ii − w(Π[m]∗)

]
, we prove that this is an outer

bound. The proof is similar to that for the ADT deterministic model with the difference that
the input of the Gaussian network has average power constraint 1. For sub-channel m, consider

the optimal cyclic partition Π[m]∗ with weight w(Π[m]∗) =
∑K

i=1 α
[m]

Π[m]∗(i)i
. Let us define i

[m]
max to

be the user that receives the strongest interference from Transmitter i over sub-channel m, i.e.,

i
[m]
max , argmaxj 6=i α

[m]
ji . Writing the binary expansion of the channel input,

X
[m]
i = sign(X

[m]
i )

∞∑
b=−∞

X
[m]
i,(b)2

−b (137)

= sign(X
[m]
i )

0∑
b=−∞

X
[m]
i,(b)2

−b

︸ ︷︷ ︸
,X[m]

i,p

+ sign(X
[m]
i )

n
[m]

Π[m]∗(i)i∑
b=1

X
[m]
i,(b)2

−b

︸ ︷︷ ︸
,X[m]

i,u
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+ sign(X
[m]
i )

n
[m]

i
[m]
maxi∑

b=n
[m]

Π[m]∗(i)i
+1

X
[m]
i,(b)2

−b

︸ ︷︷ ︸
,X[m]

i,v

+ sign(X
[m]
i )

∞∑
b=n

[m]

i
[m]
maxi

+1

X
[m]
i,(b)2

−b

︸ ︷︷ ︸
,X[m]

i,q

(138)

= X
[m]
i,p +X

[m]
i,u +X

[m]
i,v +X

[m]
i,q (139)

where X
[m]
i,p , X

[m]
i,u , X

[m]
i,v , X

[m]
i,q are the bits that have power more than 1, the bits that interfere

at Receiver Π[m]∗(i), the other interfering bits that appear at Receiver i
[m]
max and the remaining

input bits that may only appear at the desired receiver, respectively. Xi,u is used to denote

[X
[1]
i,u, . . . , X

[M ]
i,u ]. Similar notations are used for Xi,p,Xi,v with p, v replacing u, respectively.

We borrow a lemma from [12] to bound the entropy of Xi,p, the bits that have peak power more
than 1. Intuitively, it means that those bits only have bounded entropy, thus limited influence on
capacity.

Lemma 4 (Lemma 6 in [12]) The following bound on the entropy holds: H(Xn
i,p) ≤ 2nM .

For a proof, we refer the readers to [12].
Giving Xi,u,Xi,v and Xp , (X1,p, . . . ,XK,p) as side information from a genie to Receiver i, we

have

n(Ri − ε)
≤ I(Wi; Y

n
i ,X

n
i,u,X

n
i,v,X

n
p ) (140)

= I(Wi; X
n
p ) + I(Wi; X

n
i,u,X

n
i,v|Xn

p ) + I(Wi; Y
n
i |Xn

i,u,X
n
i,v,X

n
p ) (141)

= H(Xn
p )︸ ︷︷ ︸

≤nO(1)

−H(Xn
p |Wi)︸ ︷︷ ︸
≥0

+H(Xn
i,u,X

n
i,v|Xn

p )−H(Xn
i,u,X

n
i,v|Xn

p ,Wi)︸ ︷︷ ︸
=0

+ h(Yn
i |Xn

i,u,X
n
i,v,X

n
p )− h(Yn

i |Xn
i,u,X

n
i,v,X

n
p ,Wi)︸ ︷︷ ︸

=h(Yn
i |Wi)

(142)

≤ H(Xn
i,u|Xn

i,v,X
n
p ) +H(Xn

i,v|Xn
p ) + h(Yn

i |Xn
i,u,X

n
i,v,X

n
p )− h(Yn

i |Wi) + nO(1) (143)

≤ H(Xn
i,u|Xn

i,v,X
n
p ) + n

M∑
m=1

(n
[m]

i
[m]
maxi
− n[m]

Π[m]∗(i)i
)

+ n
M∑
m=1

1

2
log
[
2πe
(∑
j 6=i

Pα
[m]
ij + Pα

[m]
ii 2

−2n
[m]

i
[m]
maxi

)]
− h(Yn

i |Wi) + nO(1) (144)

≤ H(Xn
i,u|Xn

i,v,X
n
p ) + n

M∑
m=1

[
1

2
(α

[m]

i
[m]
maxi
− α[m]

Π[m]∗(i)i
) logP + 1

]

+ n
M∑
m=1

1

2
log
[
2πe
(
KP

α
[m]
ii −α

[m]

i
[m]
maxi

)]
− h(Yn

i |Wi) + nO(1) (145)

= H(Xn
i,u|Xn

i,v,X
n
p )− h(Yn

i |Wi) + n

M∑
m=1

1

2
(α

[m]
ii − α

[m]

Π[m]∗(i)i
) logP + nO(1) (146)
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where we use Lemma 1 in the first term of (142). The third term in (144) is due to the fact that the
differential entropy of a random variable is maximized by Gaussian distribution given the covariance

constraint, and conditioning on X
[m]
i,p , X

[m]
i,u , X

[m]
i,v , the magnitude of desired input is smaller than

2
−n[m]

i
[m]
maxi (see (138)). All the remaining interfering input has power constraint 1. In (145), we use

n
[m]
ki = b1

2α
[m]
ki log2 P c ⊂ (1

2α
[m]
ki log2 P −1, 1

2α
[m]
ki log2 P ] and the TIN optimality condition such that

α
[m]
ij ≤ α

[m]
ii − α

[m]

i
[m]
maxi

.

Adding (146) for i ∈ {1, . . . ,K}, we have

K∑
i=1

n(Ri − ε)

≤
K∑
i=1

[
H(Xn

i,u|Xn
i,v,X

n
p )− h(Yn

i |Wi)
]

+ n

K∑
i=1

M∑
m=1

1

2
(α

[m]
ii − α

[m]

Π[m]∗(i)i
) logP + nO(1) (147)

≤ H(Xn
u|Xn

v ,X
n
p )−

K∑
i=1

h(Yn
i |Wi,X

n
v ,X

n
p )

+
n

2
logP

M∑
m=1

(
K∑
i=1

α
[m]
ii −

K∑
i=1

α
[m]

Π[m]∗(i)i

)
+ nO(1) (148)

≤ H(Xn
u|Xn

v ,X
n
p )− h(Yn

u |Xn
v ,X

n
p ) +

n

2
logP

M∑
m=1

[
K∑
i=1

α
[m]
ii − w(Π[m]∗)

]
+ nO(1) (149)

≤ n

2
logP

M∑
m=1

[
K∑
i=1

α
[m]
ii − w(Π[m]∗)

]
+ no(logP ) (150)

where in (148), Xu is the collection of Xi,u for all users, i.e., Xu = (X1,u, . . . ,XK,u). Similar

notations are used for Xv and Yu. The second term of (149) is due to the definition that Y
[m]
i,u =∑K

j=1,j 6=i h
[m]
ij X

[m]
j,u + Z

[m]
i and given the desired message Wi and X

[m]
j,v , X

[m]
j,p , the only thing left

in the received signal Y
[m]
i is Y

[m]
i,u . (150) is due to the invertibility assumption and is derived as

follows.

H(Xn
u|Xn

v ,X
n
p )− h(Yn

u |Xn
v ,X

n
p )

= H(Xn
u|Yn

u ,X
n
v ,X

n
p )− h(Yn

u |Xn
u,X

n
v ,X

n
p ) (151)

≤
n∑
t=1

H(Xu(t)|Yu(t),Xv(t),Xp(t)) + no(logP ) (152)

≤
n∑
t=1

H(Xu(t)|Yu(t)) + no(logP ) (153)

≤
n∑
t=1

M∑
m=1

H(X[m]
u (t)|Y[m]

u (t)) + no(logP ) (154)

≤ Mno(logP ) + no(logP ) = no(logP ) (155)

where the last inequality follows from the definition of invertibility as stated in (71).
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Normalizing (150) by 1
2n logP and letting first n and then P approach infinity, we obtain the

matching outer bound and complete the proof.

7 Discussions

In the context of K user parallel Gaussian interference networks when each sub-channel satisfies
the TIN optimal condition of Geng et al., we show that separate TIN over each sub-channel is
optimal under a mild condition from the perspective of sum-GDoF. The main message is that the
simple ADT deterministic model is still very insightful for the optimality of TIN, because TIN is
robust enough to not be sensitive to the details that are not captured by the ADT deterministic
model.
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