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ABSTRACT

A protection model is presented for a multi-user dataflow

computing system which is incorporated into its functional

high-level language. The model is based on tags attached as

'seals' to values exchanged among processes to prevent

leaking of information. A tag attached to a value, as a

'seal' does not prevent that value from being propagated to

any place within the system; rather, it guarantees that the

value cannot leave the system unless a matching tag is

presented. Any function applied to sealed values will

produce results that carry the union of all seals carried by

the argument values. Thus, it is also guaranteed that no

information derived from a sealed value will be able to

leave the system unless it is explicitly unsealed.

The functioning of the system is demonstrated by giving

solutions to well known protection problems, for example

from the area of proprietary services, such as the

'Selective Confinement Problem' and the 'Trojan Horse

Problem.'
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Introduction Objectives

In recent years the need for better and less restrictive

protection mechanisms has emerged. A variety of advanced

protection systems have been proposed but the drawback most

common in Such systems is their complexity in both use and

understanding. In addition, many well known protection

problems still have no satisfactory solution in these

systems. The goal of this paper is to present a protection

mechanism that is easily understood by the (user)

programmer, yet powerful enough to allow the solution of a

large variety of protection problems. This mechanism is

defined by a very small set of primitive operations that may

be incorporated as part of a functional high—level language.

Thus the implementation and enforcement, of protection

policies do not require that the user leave the domain of

the language in which his programs are written.

In the sequel, we give a description and a possible

implementation of the proposed mechanism in the context of a

dataflow system. We will demonstrate that despite the

conceptual simplicity of the system we are able to give

satisfactory solutions to well known protection problems,

for example from the area of proprietary services, such as

the 'Selective Confinement Problem' /Lam73, DeGr74/ and the

'Trbjan Horse Problem' /Sch72/.



Page 4

2. An Intuitive Description ijf. the Model

We consider a computing system to be a collection of

independent processes, each of which is in possession of a

number of objects, where an object may be any piece of data.

We will use the terms 'object' and 'value* as synonyms since

in dataflow any object is treated as a value. Processes

communicate by sending messages where a message is a copy of

some value; that is, no sharing of objects among processes

is allowed.*

All processes are enclosed within a single 'sphere'

representing the boundary ^ the system. The users of the

system are standing outside the sphere and may communicate

with its interior only via special windows in the sphere's

wall called informati on disclosure interfaces (IDIs) . Data

may enter and leave the system only via an IDI.

3. A Functional view Protection

Our model is concerned with controlling information

dissemination. We provide machanisms to allow any value to

be protected by attaching to it a unique tag referred to as

a .aeaJL. A seal will prevent that value (and any information

derived from it) from leaving the system (the sphere).

Seals may be used in only well defined ways which prevent

*In dataflow these requirements are always satisfied. Some
operating systems also provide an equivalent view of inter
process communication, in which case the results of this
paper are.applicable.
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user processes from forging or otherwise compromising the

seals of other processes as will be discussed in Section

4.3.

Conceptually, any number of seals may be attached to a value

V (possibly by different proceges). A function f performed

on the value v produces a new value v' as a result. We

require that v' inherit all seals carried by the value v.

In case more than one input value is required by the

function, the resulting value v' must inherit the union of

all seals carried by the input values. This may be

expressed as follows:

v'<- f(vl, v2, ..., vn)

seals(v') <- seals(vl) U seals(v2) U ... U seals(vn)

where vl,v2, ..., vn are the input values to f and seals(vi)

is the set of seals carried by the value vi.

Thus ^ stage Ot the comoutati on protects on

^ value X may ke. expressed as. the set of seals seal (vV

computed ilia union if. all seal s^ia carried ky: the

input values.

The purpose of attaching seals to a value is to prevent

leaking of information contained in that value. As stated

above, any data may leave the system only via one of the

windows (IDIs) in the sphere. At the point of output the
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protection of a value is examined. Only values which have

an .empty set of seals will be allowed to pass the IDI and

reach the "outside world". Since no function applied to a

sealed value v can produce a result which is less protected

than V itself, it is guaranteed that no leaking of

information derived from v can take place, regardless of the

functions used.

The basic philosophy of our approach may then be summarized

as follows;

A piece oL data potentially may: propagate to. any place

within the systenii When protected with 3. seal it is.

guaranteed that this data and any information derived

it. will not ha able to leave the system unless the

seal is. removed.

Since our approach departs significantly from those taken in

other systems where data is prevented from propagating

unless certain access or capability conditions are met, the

following discussion is intended to further explain our

point of view.

In most existing systems known to the author no distinction

is made between the (human) user and the process running

under his command. Implicit in such systems is the notion

that the information accessible to a user's process is
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automatically available to that user. Consequently, the

secrecy of information must be. considered compromised as

soon as it reaches an unauthorized user's process. We argue

that this condition is unnecessarily restrictive. Imagine a

sealed box containing secret information. If this box

cannot be opened by a 'spy' no disclosure of information

will take place even if the spy is actually in possession of

the box. Similarly, in a computing facility it is not

really the process that must be prevented from illegally

accessing sensitive information, but rather the user running

that process.

A process which posseses secret informati on but which

±5. unable. JlQ reveal that informati on consti tntPH no

danger with respect te protection.

To further illustrate the basic philosophy of our approach

we would like to contrast our system with a capability based

system such as HYDRA /CoJe75/. In HYDRA'a process can make

use of an object (e.g. read and output a file) if the

process is in possession of a capability for that object. A

capability consists of a pointer to the object and a set of

rights (e.g. a read right) which determines those

operations the holder of the capability may perform on the

object.

In order for a process to make use of ah object (e.g. a
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file) in our system, the process must necessarily be in

possession of that object itself, and in case this object is

carrying a set of seals the process must also be in

possession of all the seals included in the set. Only then

is the process able to unseal and thus disclose the object

outside the sphere.

4. Implementation OL the Model in n Dataflow System

Even though our model is independent of any particular

language or machine architecture it was especially developed

for functional systems such as dataflow /ArGoPlTB, Den73/.

We will attempt to justify our- approach by giving solutions

to several well known protection problems in Section 5.

4.1 Pasio Dataflow Principles

A primary motivation for studying dataflow is the advent of

LSI technology which makes feasible the construction of a

general-purpose computer comprising hundreds, perhaps

thousands, of asynchronously operating processors /GoTh79/.

The semantics of a dataflow program are such that it is

implicitly partitioned into small tasks called act-i vi fi ps

that may be executed asynchronously by independent

processors. In this way many procesors may cooperate in

completing the overall' computation. In the dataflow system

developed at the University of California, Irvine, programs
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are written only in the high level language Id (for Xrvine

dataflow).An Id program is compiled into a corresponding

program in the base language -- a directed graph consisting

of actors" (operators) interconnected by lines that transport

values on tokens. For example, Fig. 1 is an expression in

Id and Fig. .2 is its compiled form. The execution of every

actor is completely data-driven which means that execution

is carried out when and only when all operands needed by

that actor have arrived. The resulting output values are

then sent to other actors which expect those values as

inputs. Thus the multiply actor in Fig. 2 will produce the

result x*c and send it on a token to the plus actor after

having received both the operand x produced by the subtract

actor and the operand c (an input to the program).

In addition to the asynchronous, data-driven, style of

execution, dataflow is conceptually memoryless. All values

are carried by tokens exchanged between actors. Thus all

calculations are on values rather than on the contents of

addressable memory cells. This implies that no sharing of

data is possible since every actor gets a separate copy of

each input value. The absence of memory implies also that

it is not meaningful to talk about 'accessing' data. All

information must be supplied to actors and collections of

actors (e.g. expressions, procedures, programs) explicitly

in the form of arguments. These arguments propagate through

the graph constituting the program and the final resulting
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values are returned to the caller of the program. This

principle is crucial to the protection system described

here: No program can ever gain access to (e.g. steal or

destroy) any information which is not explicitly passed to

it by the caller as an argument. The possibility of a

program gaining access to data private to the caller of the

program is referred to as the Trojan Horse problem, and in

our system it is immediately solved by the fundamental

principles of dataflow. This is discussed in further detail

in Section 5.1.

4.2 Dataflow Processes

Dataflow managers were introduced into Id /ArGoP178/ to

provide the non-determinism necessary for managing resources

such as airline reservation databases, etc.. An instance of

a manager is a dataflow program (graph) enclosed between an

gntry and an exit actor (Fig. 3). The entry actor receives

^11 arguments (e.g. argl, arg2) sent to that manager,

possibly from different users, and forms a stream of tokens

directed into the managers body. The body of a manager may

be any dataflow expression with a stream, argument and a

stream result. In Fig. 3 we have presumed the body to be a

loop which recomputes an 'internal state' on each iteration

which occurs essentially upon the arrival of each token in

the input stream. By making the 'internal state' on each

iteration a function of its previous value and the value of
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the token just obtained from the input stream, the effect of

an internal memory is 'artificially' achieved. In this

manner the output of a manager may be made to depend on the

history of previous inputs. The stream of result tokens

(e.g. resl, res2) is then sent to the exit actor which

returns the individual tokens comprising the output stream

to the corresponding callers.

In order to be able to call a particular manager, the user

must be in possession of a reference m to the instance of

the manager. In Id a call to the manager m is denoted as:

resl <- use(m,argl)

The value m refers to the desired manager instance and is

supplied together with the argument value argl to the

primitive actor use. This primitive sends the value argl to

the entry of the manager instance and receives the value

resl returned from the manager's exit as the result of its

processing argument argl. (Similarly for the other use of m

in Fig. 3).

We define a process to be an instance of a manager. The

only way for processes to communicate is by explicitly

calling one another through the use primitive. Thus

information is always passed explicitly in the form of

arguments and results; information is never passed by

granting 'access' to information, (e.g. a portion of

memory) as is the case in conventional systems.
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Although the above description is in. terms of dataflow, it

of course holds for any system which communicates only

through copied messages. Thus the system described here

might be used on a conventional system at the level of

processes, where tokens are the messages in an inter-process

communication facility.

4.3 Implementation Protection Mechanisms

All processes in the system capable of holding and

exchanging information are implemented as dataflow managers.

The information to be exchanged may be of any type, e.g.

integers, reals, strings, structured values, procedure

definitions, etc. The following extensions are introduced

in order to implement the protection mechanisms described

earlier.

a) A special facility called the seal generator is the

only facility capable of creating values of type seal.

The fact that seals are of a distinct data type is used

to eliminate the possibility of (accidentally or

intentionally) forging a seal: once created a seal may

never be modified, nor may a new value of type seal be

produced other than by the seal generator.

b) Every value v carries with it a (possibly empty) set

of seals. We denote this as v{sl,s2,..,,sn}.
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c) Two primitive operations are defined for attaching

seals to and detaching seals from values:

1) v' <- ££al(v,s)

The value v' is a copy of v, and in addition the

seal s is included in the set of seals of v' .

2) v',f <- unsealfVfS^

In case the seal s is an element of the set of

seals carried by v then the value v' is a copy of

V with the seal s removed and the value f (serving

as a flag) is set to true. In case s is not

carried by v as a seal then v' is an exact copy of

V and f has the value false. Thus the value of f

indicates whether the seal s was carried by v.

d) A primitive operation test-seal(v) is defined on any

value V. This primitive may be used by the programmer

to detect whether a value is protected by at least one

seal. If this is the case the boolean value true is

returned, otherwise the value false is returned.

e) The result of any function f in the system, other

than unsealf must carry the set union of all seals

carried by the individual values involved in the

computation. An example of a primitive function f is

shown in Fig. 4 where the set of seals {sl,s2,s3}
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carried by the result z is the union of the sets

{sl,s2} and {sl,s3} carried by the inputs x and y,

respectively.

f) As described in Section 1, communication between a

user standing outside the system sphere and the

processes inside is possible only via an information

disclosure interface (IDI). Each IDI is a special

process which is validated by the administrator of the

system (i.e. it is trusted). A system properly

configured would ensure that any piece of data sent to

a user terminal must move via an IDI. Each IDI employs

the primitive test-seal defined above to, test the

received data. If that data is unsealed the IDI passes

it through the window to the outside. If a seal is

detected the data is destroyed and an error message is

returned to the process attempting to use the IDI.

Thus no sealed value is able to escape from the system.

It is important to realize that the IDIs must be

physically, interposed between any sending process

inside the sphere and a receiving terminal outside the

sphere. IClilia the IDia define the boundary qL the

system - ilie sphere.

In the sequel we will demonstrate the use of the

protection system as defined in a) through f) by

applying it to problems associated with providing

proprietary services.
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5. Application OL iiie. Protection System

5.1 Prcpcietary services

Most users of a computer system have the need or desire to

build on the work of others by utilizing programs and

systems provided by other programmers. We will refer to

such programs as proprietary services. We argue that using

a proprietary service may also be viewed (and implemented)

as interprocess communication: if the user and the service

are two separate processes then the user is sending a

package of information (e.g. the arguments) to the service

which produces a new package of information (the results)

that is then sent back to the user. Thus the user of a

service is considered as both the sender and the receiver of

an information package which is being passed through and

modified by an intermediate process - the service. .Several

important protection problems must be solved in order to

satisfy the needs of the lessors (owners, providers) and the

lessees (users) of such services. The lessee's major

concerns are the following:

a) The service must not be able to steal or destroy

information which the lessee did not explicitly supply

to the service. Each such service is employed by

sending it the necessary arguments via the use

primitive described in section 4.2. Since this is the
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only way a process can receive information it is

guaranteed that a service cannot obtain or destroy

information belonging to the lessee or some other

process unless that information was explicitly supplied

as an argument. Thus the fundamental principles of

dataflow solve this problem, referred to as the Trojan

Horse Problem,

b) The service must not be able to disclose sensitive

information suplied to it by the lessee, but it should

be allowed to disclose,non-sensitive information, for

example, for the purposes of billing. The following

section (5.2) presents a solution to this problem,

usually referred to as the Selective Confinement

Problem.

On the other hand, the lessor's major concerns are the

following:

a) The lessee must not be able to destroy or steal

(copy) parts of the service. This includes not only

the code itself but also any intermediate results that

could be misused to deduce information about the

principles and methods employed by the service.

b) -Permission to use the service must not provide a way

for the lessee to steal or destroy informaton which is
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not part of the service.

In Id, in. order to employ a service only a reference to the

manager (which is the implementation of that service) need

be given to the lessee. The only operation defined on such

a reference is the use primitive that communicates the

necessary arguments and results between the lessee and the

service as was described in Section 4.2. These points imply

the solution to the above two problems a) and b).

5.2 The Selective Confinement Problem

The essence of the problem is to guarantee that a borrowed

program, e.g. a service routine, will not disclose any

sensitive information passed to it by a caller for

processing.

Assume, for example, that the lessor provides a proprietary

service called Tax which calculates the income tax for any

lessee that supplies to it the necessary information, such

as salary, deductions, address, etc.. In order to employ

the service the following call must be performed

res <- use(Tax. data)

where 'Tax' is the reference to the service process, 'data'

represents the collection of values supplied by the lessee,

and 'res' is the income tax calculated by 'Tax' based on

'data'. Since the lessee of the service may not trust the
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Tax program, he wishes to prevent certain sensitive

information (e.g. the salary) from being disclosed to other

users, including the lessor of the service. On the other

hand, the service, in additon to computing the income tax,

needs to calculate a bill for the services rendered and to

give a copy of the bill to the lessor.

In order to solve the problem the lessee is asked to

partition the data sent to the service into two parts - one

part contains sensitive information, such as the salary,

while the other part contains information not needing

protection from disclosure, e.g. the lessee's name and

address, which is required by the Tax system for the purpose

of billing. In calling the service the lessee may protect

the sensitive part of the data by attaching to it a seal

known only to the lessee. The non-sensitive part is left

unprotected. The call then has the form

sd' <- .s£^(sd,s) ;

res <- use(Tax,<sd',fd>);

where sd is the sensitive datapart, sd' is a copy of sd with

the seal s attached to it, and fd is the non-sensitive

(free) data part. (The angle brackets indicate a list of

arguments). The flow of information is shown in Fig. 5.

The service computes the result and returns it to the lessee

as the. value res. For example, a computation within the

service process might be

r <- compute_tax(sd',fd)
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where the value r will inherit the seal s from sd'. If r is

the value returned (possibly at some later point) to the

lessee as res (by the use primitive shown above) , he is able

to detach the seal s from res by

res' <- unsealfresfS)

and output the unsealed value res' - 'the income tax. On the

other hand the bill may be computed by the service using

only the non-sensitive data, as in

bill <- compute_bill(td)

If this is the case the value bill will be unsealed, and if

sent to the lessor for subsequent billing of the lessee it

may be used freely, that is, it may be output. The value r

(res) and any other values possibly derived from sd' are

sealed with the seal s. Hence, even if sent to the lessor

by the service, these values cannot be utilized since no

information disclosure interface will permit these values to

leave the system. Note that we do not prevent the service

from propagating any of the sensitive data to other

processes. This permits the service to employ yet other

services on its own behalf.

6. Conclusions

This paper presented a protection mechanism which is simple

to understand and to use, yet powerful enough to allow the

solution of a large variety of, protection problems. The

entire mechanism presented here is based on attaching and
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detaching unforgable seals to values and is controlled by

the programmer through only a few primitives. Despite its

simplicity we have been able to give solutions to problems

which cannot be solved easily in most other advanced

protection systems, e.g. the Selective Confinement

Problem.*

The price paid for the capabilities of the system is

overhead in Computation: for every primitive operation some

computation producing a new set of seals might be necessary.

However, since the computation of the new set of seals is

independent of the computation of the actual value, a

processing unit can be designed to perform both tasks in

parallel. Thus little degradation of the actual

computational performance need be introduced due to the

protection mechanism. With decreasing cost of hardware the

cost of the additional processors or processor components

would appear minimal. This argument holds especially in the

case of a dataflow machine which consists of a large number

of inexpensive processors available through LSI technology.

*Further application examples may be found in /Bic78/ where
we present solutions to problems such as the "Prison Mail
System" /AmHo77/, "Sneaky Signaling" /Lam73/, /Rot74/, and
problems related to file systems.
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