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Abstract: Equine maternal recognition of pregnancy (MRP) is a process whose signal remains
unknown. During MRP the conceptus and endometrium communicate to attenuate prostaglandin
F2α (PGF) secretion, sparing the corpus luteum and maintaining progesterone production.
Recognition of a mobile conceptus by the endometrium is critical by days 14–16 post-ovulation
(PO), when endometrium produces PGF, initiating luteolysis. The objective of this study was to
evaluate endometrial gene expression changes based upon pregnancy status via RNA sequencing.
This experiment utilized a cross-over design with each mare serving as both a pregnant and non-mated
control on days nine, 11, and 13 PO (n = 3/status/day). Mares were randomly assigned to collection
day and pregnancy confirmed by terminal uterine lavage at the time of endometrial biopsy. Total RNA
was isolated and libraries prepared using Illumina TruSeq RNA sample preparation kit. Reads were
mapped and annotated using HISAT2 and Stringtie. Expression values were evaluated with DESEQ2
(P ≤ 0.05 indicated significance). On day nine, 11, and 13 there were 1435, 1435 and 916 significant
transcripts, respectively. Multiple genes with splice variants had different expression patterns within
the same day. These are the first data to evaluate the endometrial transcriptome during MRP on days
nine, 11, and 13.

Keywords: equine; transcriptome; pregnancy; maternal recognition of pregnancy

1. Introduction

Maternal recognition of pregnancy (MRP) in the horse is a complex process that involves
communication between the conceptus and maternal endometrium. The equine conceptus does
not attach to the endometrium until approximately day 35 post-ovulation (PO), so communication
is occurring without attachment to prevent the endometrium from secreting prostaglandin F2α

(PGF2α), which causes luteal regression of the corpus luteum, ultimately eliminating the source
of progesterone [1,2].
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In both pregnant and non-pregnant mares, the hormonal profile stays the same until day 14 PO [3].
In the non-pregnant mare, oxytocin is released from both the posterior pituitary gland and endometrium.
Oxytocin binds to endometrial receptors, which causes release of more oxytocin and subsequently,
PGF2α [4]. In pregnant mares, fertilization occurs in the oviduct, but the embryo does not enter the
uterus until day six. At this time the embryo is surrounded by the zona pellucida. Following hatching,
at approximately day seven, the embryo remains covered by an acellular, glycoprotein capsule [5].
This glycoprotein capsule remains intact until roughly day 16 when breakdown begins to occur [6].
Upon entering the uterus, the embryo is highly mobile, resulting from uterine contractions, reaching
peak mobility between days 11–14 [5,7]. This mobility is necessary to delay secretion of PGF2α [7–9].
By day 16 this mobility ceases and the embryo becomes fixed in a single location, but does not attach
or invade [7]. Maternal recognition of pregnancy occurs between days 11–14 and is categorized as
anti-luteolytic [7,10,11].

The signals for MRP in other species, such as Interferon tau and estradiol, have been tested
in the horse, but do not have an impact on equine luteal function [12,13]. Unique to the horse,
prostaglandin E2 is secreted by the conceptus in order for it to enter the uterus, but when infused into
the uterus of non-pregnant mares, there is no effect [13]. Other experiments have infused coconut or
peanut oil on day 10 of non-pregnant mares’ cycle and luteostasis was achieved [14]. This indicates
that a component in the oil impacts the luteolytic pathway, but subsequent studies have failed to
illicit the same response [15]. Research on MRP has evaluated transcriptional differences in the
endometrium during and after MRP utilizing a microarray [16,17]. This research suggested that there
were transcriptional differences occurring by day 14, but previous research has failed to robustly reveal
candidates involved in MRP [16].

Equine maternal recognition of pregnancy is a multifaceted process that is still not well understood.
All that is known is that the embryo must come into contact with over two-thirds of the endometrium
to illicit the anti-luteolytic signal [8]. The objective of this study was to evaluate the endometrial
transcriptome changes based upon pregnancy status before and during MRP.

2. Materials and Methods

2.1. Care and Management of Mares

Animal use was approved by the Colorado State University Institutional Animal Care and Use
Committee. Mares (n = 9) were housed in group pens at Colorado State University Bud and Jo Adams
Equine Reproduction Laboratory (Fort Collins, CO, USA). The mares were maintained on a dry lot and
fed grass-alfalfa hay mix with free choice mineral and salt supplement. Mares were used in a paired,
cross-over design in which each mare had a pregnant and non-pregnant (non-mated) cycle. Mares were
monitored via transrectal palpation and ultrasonography to track follicular development every other
day. To obtain samples from a pregnant mare, when a follicle reached 35 mm in diameter, or greater,
the mare was inseminated with at least 500 × 106 progressively motile sperm from stallions with
proven fertility. Mares were monitored via transrectal ultrasonography every day and inseminated
every other day until ovulation (day zero). For the non-mated cycle, the same procedure was followed
with the exception of the insemination.

Mares were randomly assigned to collection day nine, 11, or 13 post-ovulation (PO) for both
their pregnant (P+) and non-mated (NP) cycles. On the mares’ assigned day, each was evaluated via
transrectal ultrasonography to confirm pregnancy status by visualization of an embryonic vesicle
and terminal uterine lavage was completed. Endometrial samples were obtained non-surgically via a
trans-cervical biopsy punch [18]. After embryo and/or biopsy collection, the mare received a luteolytic
dose of PGF2α (Estrumate, Merck Animal Health, Madison, NJ, USA, 250 mcg per dose). For the
non-pregnant (non-mated) control cycle, the subsequent estrous cycle was utilized. After endometrial
samples were obtained, each sample was rinsed in DPBS/Modified 1X (Hyclone Laboratories, Logan,
UT, USA) and stored at −80 ◦C immediately.
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2.2. RNA Isolation and Quantification

After collection, total RNA was isolated from all samples using TRI Reagent (Molecular Research
Center, Cincinnati, OH, USA) for lysis and extraction and the RNeasy Mini Kit (Qiagen, Valencia, CA,
USA) for purification. About 30 mg of frozen tissue was homogenized in TRI Reagent and incubated
at room temperature for 10 min. Chloroform was added to the homogenate, vortexed, and incubated
at room temperature for 8 min. The sample was centrifuged at 16,100× g for 15 min, which separated
the sample into three distinct phases (RNA, DNA, and protein). The top aqueous RNA phase was
transferred to a new 1.7 mL tube for isolation. RNA was isolated using the Qiagen RNeasy Mini Kit
according to the manufacturer’s recommendations. All samples were treated with an RNase-Free
DNase kit (Qiagen, Valencia, CA, USA) to remove DNA contamination. RNA purity and quantification
were assessed using the NanoDrop Spectrophotometer ND-1000 (Thermo Scientific, Wilmington, DE,
USA). Samples were used for analysis only if they had 260/280 and 260/230 values above 1.7 for RNA
sequencing library preparation and PCR validation.

2.3. RNA Sequencing

RNA-sequencing (cDNA) libraries were prepared using the Illumina TruSeq Sample Preparation
Kit v2 (Illumina, San Diego, CA, USA) and 1 µg of total RNA from each sample following the
manufacturer’s protocol. Briefly, adapters were ligated and samples were then reverse transcribed to
form cDNA. Each sample was amplified with a specific barcoded PCR primer for sample identification
purposes. Prepared libraries were sent to the University of California-Davis for quality control
assessment and then to the University of California-Berkeley for sequencing. Single-end reads of 100
base-pairs were generated for each sample on an Illumina HiSeq 2000 (Illumina, San Diego, CA, USA).
Sequences are available in the NCBI sequence read archive under BioProject PRJNA545717.

2.4. Bioinformatic Analysis

Bioinformatic analysis was performed on the Galaxy web platform [19] and used the public server
at usegalaxy.org. Sequence quality was assessed by FastQC and results were aggregated and evaluated
using MultiQC [20,21]. Trimmomatic was utilized to remove adapter sequence and low quality
sequence [22]. Bases were removed if their quality score was below a threshold of 25. Reads were
aligned to EquCab3.0 (NCBI accession GCF_002863825.1) using HISAT2 [23,24]. Stringtie was used
for transcript assembly and quantification of both annotated and unannotated transcripts. Samples
were analyzed individually and the results merged together and combined with the EquCab3 gene
annotation (https://www.ncbi.nlm.nih.gov/genome/?term=txid9796[orgn]) to create a final transcript
annotation file, which was then used for quantification of each sample [25]. Transcript read counts were
analyzed within each day comparing samples from pregnant mares to non-pregnant mares utilizing
DESeq2 within R [26]. To be considered for analysis, reads were present in at least two out of the
three replicates in at least one of the two groups (P+ or NP). Data were normalized internally using
DESeq2’s median of ratios method. The Benjamini Hochberg false discovery rate adjustment was used.
Significance was assessed at p ≤ 0.05.

Differentially expresses genes were evaluated within Ingenuity Pathway Analysis (IPA)
to biological processes being targeted (QIAGEN Inc., Hilden, Germany), https://www.
qiagenbioinformatics.com/products/ingenuity-pathway-analysis). Threshold values from DESeq2
were set at p ≤ 0.05 and fold change ≥ 1.5 in order to be utilized for IPA.

Table S1 contains the results of the analysis when reads were present in all three of the replicates
in at least one of the two groups (P+ or NP).

https://www.ncbi.nlm.nih.gov/genome/?term=txid9796[orgn]
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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3. Results

3.1. Sequencing Results

Quality filtering and removal of adapter sequence and low-quality sequence resulted in an average
read length of 89 base pairs for all samples. Samples generated on average 33,810,516 reads (ranging
from 29,450,126 to 39,054,008). Mapping efficiency to build three of the equine genome (EquCab3)
was 94%.

3.2. Transcript Assembly and Analysis

Available sequence generated from the endometrial samples from pregnant and non-pregnant
mares at days nine, 11, and 13 identified 86,113, 82,449, and 81,787 transcripts, respectively. On day
nine, there were a total of 1435 transcripts that differed (p ≤ 0.05) in abundance between endometrial
samples from pregnant or non-pregnant mares, but 682 were unannotated. Of all significant transcripts,
693 were more abundant in samples from pregnant mares and 743 were more abundant in samples
from non-pregnant mares (Figure 1). Seven hundred and fifty-three of the identified transcripts were
previously annotated. Of these, 357 were more abundant in samples from pregnant mares and 396
were more abundant in samples from non-pregnant mares (Figure 2).
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Figure 1. Transcript expression within each day from samples of endometrium from pregnant and
non-pregnant mares. This figure demonstrates the breakdown of how many transcripts (p ≤ 0.05)
were higher in abundance in samples from pregnant mares (P+) versus the numbers in samples from
non-pregnant mares (NP).
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Figure 2. Breakdown of transcript abundance patterns for annotated and unannotated transcripts
in equine endometrium from pregnant and non-pregnant mares. This figure illustrates out of all
significant transcripts (p ≤ 0.05) identified each day, the number that were annotated or unannotated
and in which pregnancy status (pregnant = P+, non-pregnant = NP) they were in higher abundance.
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On day 11, there were 1435 transcripts (639 genes; p ≤ 0.05) identified in endometrial samples.
Of these transcripts, 845 were more highly abundant in samples from pregnant mares and 590 were
more abundant in samples from non-pregnant mares (Figure 1). Of the 1435 transcripts, 678 were
unannotated. On day 13, there were a total of 421 genes and 916 transcripts identified (p ≤ 0.05). Within
these transcripts, 446 were unannotated. Of all of the significant transcripts identified, 400 were more
highly abundant in samples from pregnant mares and 516 were more highly abundant in samples
from non-pregnant mares. Figure 2 shows the breakdown of abundance between the annotated and
unannotated significant transcripts. Table 1 displays the number of differentially expressed genes and
transcripts identified on each day.

Table 1. Significant genes and transcripts within days nine, 11, and 13 of equine endometrium from
pregnant and non-pregnant mares. This table breaks down the number of significant (p ≤ 0.05) genes
and transcripts identified within each day. It also states out of all the transcripts identified how many
were previously unannotated.

Genes Transcripts Unannotated Transcripts

Day 9 634 1435 682
Day 11 639 1435 678
Day 13 421 916 446

Many of the transcripts identified were not previously annotated in the equine genome. Of the
differentially expressed transcripts, 682 (47.5%) identified on day nine, 678 (47.2%) identified on day
11, and 446 (48.7%) identified on day 13 were not previously annotated. Figure 2 shows the breakdown
of abundance between the annotated and unannotated significant transcripts. Table 2 contains the top
20 significant transcripts for each day and Supplemental Tables S2–S4 describe all significant transcripts
from days nine to 13, respectively.
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Table 2. Top 20 transcripts ranked by significance for each day in equine endometrium among samples from pregnant and non-pregnant mares.

Day 9 Day 11 Day 13

All Annotated All Annotated All Annotated

Transcript p-Value Transcript p-Value Transcript p-Value Transcript p-Value Transcript p-Value Transcript p-Value

ZFHX3 4.00 × 10−76 ZFHX3 4.00 × 10−76 ACTN4 6.03 × 10−55 ACTN4 6.03 × 10−55 MSTRG.15333.5 3.09 × 10−36 ACOX1 7.14 × 10−24

ERBB2 2.49 × 10−56 ERBB2 2.49 × 10−56 MSTRG.3211.2 6.90 × 10−45 AGRN 2.46 × 10−40 ACOX1 7.14 × 10−24 SORBS3 3.23 × 10−17

NF1 2.49 × 10−56 NF1 2.49 × 10−56 MSTRG.6009.2 8.48 × 10−42 C16H3orf67 1.43 × 10−33 SORBS3 3.23 × 10−17 SERPINB9 2.70 × 10−15

MSTRG.27804.1 9.13 × 10−53 MKLN1 3.03 × 10−39 AGRN 2.46 × 10−40 BTF3L4 5.84 × 10−30 MSTRG.22183.4 6.65 × 10−17 MTMR2 7.01 × 10−15

MSTRG.15604.11 1.57 × 10−50 LACTB 1.84 × 10−37 MSTRG.1680.8 6.10 × 10−35 PITPNA 6.19 × 10−27 MSTRG.17471.3 6.54 × 10−16 DOCK1 1.32 × 10−14

MKLN1 3.03 × 10−39 EGR1 8.44 × 10−27 MSTRG.26234.10 2.27 × 10−34 BICRAL 2.66 × 10−23 MSTRG.28537.13 1.28 × 10−15 FAM20B 7.12 × 10−14

MSTRG.13994.1 1.56 × 10−38 AKAP11 2.57 × 10−24 C16H3orf67 1.43 × 10−33 STX3 3.11 × 10−20 MSTRG.20351.7 1.64 × 10−15 TTC28 1.59 × 10−13

LACTB 1.84 × 10−37 AKAP11 1.40 × 10−23 BTF3L4 5.84 × 10−30 PATZ1 2.69 × 10−19 SERPINB9 2.70 × 10−15 HIP1 1.77 × 10−13

MSTRG.19114.13 6.66 × 10−32 COMMD4 3.12 × 10−23 PITPNA 6.19 × 10−27 ZNF605 4.10 × 10−19 MSTRG.14125.20 7.01 × 10−15 USP42 1.03 × 10−12

MSTRG.13516.12 2.06 × 10−30 NXT2 5.60 × 10−23 MSTRG.5600.1 1.31 × 10−26 FAM104A 1.44 × 10−18 MTMR2 7.01 × 10−15 UNK 1.18 × 10−12

EGR1 8.44 × 10−27 R3HDM2 8.69 × 10−22 BICRAL 2.66 × 10−23 TNPO1 2.22 × 10−17 DOCK1 1.32 × 10−14 TLDC1 1.84 × 10−11

MSTRG.14475.5 4.73 × 10−26 NCBP1 5.71 × 10−20 MSTRG.25435.2 9.22 × 10−21 MME 8.32 × 10−17 MSTRG.5354.16 2.93 × 10−14 ZBTB37 2.32 × 10−11

MSTRG.10550.2 2.08 × 10−25 C1H1orf198 5.81 × 10−20 STX3 3.11 × 10−20 TMED8 3.81 × 10−16 MSTRG.15333.7 6.54 × 10−14 C7H11orf54 4.06 × 10−11

AKAP11 2.57 × 10−24 NHS 6.50 × 10−20 MSTRG.2169.2 3.76 × 10−20 RABGAP1 7.47 × 10−16 FAM20B 7.12 × 10−14 KDM7A 9.32 × 10−11

MSTRG.10469.4 2.57 × 10−24 PHF20 2.45 × 10−19 PATZ1 2.69 × 10−19 PLA2G2C 1.33 × 10−15 MSTRG.17032.9 9.35 × 10−14 ATRX 9.32 × 10−11

AKAP11 1.40 × 10−23 C13H7orf26 7.43 × 10−19 ZNF605 4.10 × 10−19 LOC100064842 2.16 × 10−15 TTC28 1.59 × 10−13 LARS 2.45 × 10−10

MSTRG.19003.10 1.67 × 10−23 RPSA 1.26 × 10−18 FAM104A 1.44 × 10−18 DCAF6 2.73 × 10−15 HIP1 1.77 × 10−13 PHRF1 3.70 × 10−10

COMMD4 3.12 × 10−23 PIGM 1.60 × 10−18 MSTRG.25230.44 4.50 × 10−18 FBXO31 3.97 × 10−15 MSTRG.26578.1 6.78 × 10−13 ATP11C 7.35 × 10−10

MSTRG.19003.12 4.22 × 10−23 TEP1 3.64 × 10−18 MSTRG.22573.1 7.13 × 10−18 MYO1C 7.40 × 10−15 USP42 1.03 × 10−12 SLC25A25 1.18 × 10−9

MSTRG.13065.7 5.14 × 10−23 SSH2 1.22 × 10−17 MSTRG.25564.2 1.99 × 10−17 NCOA2 1.25 × 10−14 MSTRG.3924.5 1.18 × 10−12 CCDC181 1.23 × 10−9

This table shows the top 20 most significantly differentially expressed transcripts within each day. The table includes two groups. The first containing all transcripts for that day and the
second containing only annotated transcripts. A transcript in bold indicates that it was more highly abundant in samples from pregnant mares.
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3.3. Day 9

The most highly abundant non-ribosomal, gene in day nine endometrial samples from pregnant
mares was Early Growth Response 1 (EGR1) and from endometrial samples from non-pregnant mares
it was an unannotated transcript (MSTRG.8258.4) followed by annotated transcript (non-ribosomal),
Homocysteine Inducible ER Protein with Ubiquitin Like Domain 1 (HERPUD1). Interestingly,
the annotated transcript with the largest fold change (Log2 fold change = 13.77, more abundant
in samples from pregnant mares) between samples from pregnant compared to non-pregnant mares
was Hook Microtubule Tethering Protein 1 (HOOK1). Table 3 contains the top 10 annotated transcripts
with the largest fold change between groups.

Table 3. Top 10 annotated transcript fold changes for days nine, 11, and 13 in equine endometrium.

Day 9 Day 11 Day 13

Transcript Log2 FC p-Value Transcript Log2 FC p-Value Transcript Log2 FC p-Value

HOOK1 13.8 2.76 × 10−2 MBOAT2 13.6 2.93 × 10−2 ACOX1 −14.1 7.14 × 10−24

GOLGB1 −13.8 2.79 × 10−2 NF1 -13.5 3.26 × 10−2 MBOAT2 13.9 3.42 × 10−2

AKAP11 13.1 1.40 × 10−23 PTPN4 13.5 4.45 × 10−5 YWHAZ 13.3 4.71 × 10−2

USF3 −12.5 9.02 × 10−10 PRKAA2 -13.3 3.72 × 10−2 ZBTB37 12.2 2.32 × 10−11

PFKFB3 11.7 2.22 × 10−10 PHC3 13.0 4.64 × 10−2 TTC28 −11.9 1.59 × 10−13

PIGM 11.7 1.60 × 10−18 TRANK1 13.0 4.68 × 10−2 MTMR2 11.9 7.01 × 10−15

SSH2 11.6 1.22 × 10−17 NFAT5 12.6 9.18 × 10−10 ULK2 −11.8 7.92 × 10−4

FUK 11.5 7.51 × 10−15 STX3 12.5 3.11 × 10−20 MSI2 −11.7 1.41 × 10−5

TTBK2 11.5 2.00 × 10−3 TLL1 12.4 3.35 × 10−13 KANK2 11.6 1.38 × 10−6

PPP6R2 11.1 7.51 × 10−15 TMEM181 12.1 1.57 × 10−9 NACC2 11.3 3.92 × 10−3

This table demonstrates the top ten annotated transcripts for each day ranked based upon the fold change (FC).
A positive fold change indicates higher abundance in samples from pregnant mares and a negative fold change
indicates higher abundance in samples from non-pregnant mares.

Transcripts (p ≤ 0.05) were analyzed with IPA to determine the canonical pathways they have
been associated with experimentally. Only annotated transcripts were used for this analysis. Some
of the top biological pathways that were stimulated due to the presence of an embryo (P+) in
our dataset on day nine were AMPK (AMP-activated protein kinase) signaling (z-score = 2.1),
androgen signaling (z-score = 2.0) and GnRH signaling (z-score = 1.6). Some of the top biological
pathways that were inhibited in our dataset on day nine included Aryl hydrocarbon receptor signaling
(z-score =−1.3), neuroinflammation signaling (z-score =−1.1), and neuregulin signaling (z-score =−1.0).
Other biological pathways of interest that were inhibited included ILK (integrin-linked kinase) signaling
and actin cytoskeleton signaling. The biological processes with z-score associations are in Figure 3 and
all associated biological processes are in Table S2.
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Figure 3. Top biological processes and z-scores on day nine in endometrial samples from pregnant and
non-pregnant mares. These are the biological processes associated with the genes of higher abundance
in the given pregnancy status on day nine. The z-score indicates the association strength with activating
(green bars) or inhibiting (red bars) a pathway due to the sample being obtained from a pregnant mare.

3.4. Day 11

In samples from pregnant mares, the most abundant transcript was ATPase Na+/K+ Transporting
Subunit Alpha 1 (ATP1A1) and the most abundant transcript in samples from non-pregnant mares
was Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1). The largest fold change (Log2 fold
change = 27.5) difference between groups was unannotated transcript MSTRG.25465.6, more abundant
in samples from pregnant mares. The largest fold change of an annotated transcript (Log2 fold
change = 13.6) was Membrane Bound O-Acyltransferase Domain Containing 2 (MBOAT2), also more
abundant in samples from pregnant mares. Interestingly, of the top ten transcripts with the largest fold
change, only one was an annotated transcript, and only one was higher in abundance in samples from
non-pregnant mares (unannotated transcript MSTRG.6103.11). The top ten fold changes of annotated
transcripts are presented in Table 3.

The biological pathways associated with all annotated transcripts (p ≤ 0.05) were evaluated.
In total, transcripts on day 11 were associated with 395 biological processes, but only 82 were associated
with z-scores indicating association with stimulating or inhibiting that biological process based upon
pregnancy status (P+ or NP; Table S3). Figure 4 highlights some of those biological pathways. Some of
the biological processes that were stimulated on day 11 due to pregnancy status (P+). These include
protein kinase C theta (PKCθ) signaling in T lymphocytes, extracellular-signal-regulated kinase 5
(ERK5) signaling, and integrin signaling.

The top biological pathway that was inhibited in this dataset on day 11 due to pregnancy status
was peroxisome proliferator-activated receptor (PPAR) signaling (z-score = −2.2). Other biological
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processes that were inhibited included endocannabinoid neuronal synapse pathway, Wnt/β-catenin
signaling, GnRH signaling, and TGF-β signaling. Some of the top biological pathways of interest are
in Figure 4.
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Figure 4. Top biological processes and z-scores on day 11 in endometrial samples from pregnant and
non-pregnant mares. These are the biological processes associated with the genes of higher abundance
in the given pregnancy status on day 11. The z-score indicates the association strength with activating
(green bars) or inhibiting (red bars) a pathway due to the sample being obtained from a pregnant mare.

3.5. Day 13

The most abundant transcript in samples from pregnant mares was an unannotated transcript
(MSTRG.25465.3; expression value = 27,140 counts). This resulted in a Log2 fold change of 30.0 between
samples from pregnant mares compared to non-pregnant mares. The most abundant transcript in
samples from non-pregnant mares was Fos Proto-Oncogene, AP-1 Transcription Factor Subunit (FOS).
The largest fold change was unannotated transcript MSTRG.25465.3. The largest fold change in
annotated transcripts was Acyl-CoA Oxidase 1 (ACOX1; Log2 fold change = −14.1), more abundant in
samples from non-pregnant mares. Interestingly, the second largest old change in annotated transcripts
on day 13 was the same as on day 11, MBOAT2 (Log2 fold change = 13.9), more abundant in samples
from pregnant mares. Table 3 contains the top ten fold changes for annotated transcripts.

Interestingly, on day 13 only seven biological pathways were stimulated based upon pregnancy
status in our dataset. These biological pathways included thrombin signaling, signaling by Rho
family GTPases, GnRH signaling, and actin cytoskeleton signaling. In contrast, the most heavily
inhibited biological process from our dataset on day 13 was p53 signaling (z-score = −2.0). Other
inhibited biological processes of interest included RhoGDI signaling, ILK signaling, integrin signaling,
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and (in contrast to day 11) PPAR signaling. Figure 5 contains other biological pathways identified with
these transcripts and the full list can be found in Supplemental Table S4.
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Figure 5. Top biological processes and z-scores on day 13 in endometrial samples from pregnant and
non-pregnant mares. These are the biological processes associated with the genes of higher abundance
in the given pregnancy status on day 13. The z-score indicates the association strength with activating
(green bars) or inhibiting (red bars) a pathway due to the sample being obtained from a pregnant mare.

3.6. Significant Transcripts on Days 9, 11 and 13

Interestingly there were only two transcripts that were significant on all three days (p ≤ 0.05).
One transcript was unannotated, MSTRG.27075.4. It was more abundant across all three days in
samples from pregnant mares (Log2 fold change = 4.2, 3.0 and 3.7, respectively). The other transcript
was gene Gametogenetin Binding Protein 2 (GGNBP2). This gene was actually more abundant in
samples from pregnant mares on days nine and 11 (Log2 fold change = 2.8 and 2.7, respectively) and
more abundant in samples from non-pregnant mares on day 13 (Log2 fold change = −2.3).

4. Discussion

These are the first data reported that evaluated the transcriptome in equine endometrium across
the duration of maternal recognition of pregnancy (MRP). This study utilized days nine, 11, and 13 in
order to evaluate the transcriptome before, during and after MRP. What is also unique about this
study is that it not only evaluated the genes, but also the transcripts (splice variants) within those
genes. In addition to identifying known genes, we also identified a population of unannotated
genes/transcripts.

An interesting phenomenon noted during this analysis was the change in expression status
between variants of a gene. Multiple genes had many transcripts that were significant within a day,
but sometimes the transcripts would vary in whether they were more highly expressed in samples
from pregnant mares or non-pregnant mares. An example was USP36 on day nine, ubiquitin specific
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peptidase 36. Transcript 1 was more abundant in samples from pregnant mares whereas transcript
2 was more abundant in samples from non-pregnant mares. This occurrence of transcripts of the
same gene having opposing expression patterns happened with many genes throughout the results
suggesting that alternative splicing could be occurring in the endometrium during this time frame.
Alternative splicing is the combination of different splice sites joining together to form the gene [27].
Others have shown that unbalanced splice variants can result in tumors within tissues [28]. Introns are
removed by a protein known as a spliceosome [29]. Spliceosomes are an assembly of five small nuclear
ribonucleoproteins (snRNP). These snRNP are referred to as U1, U2, U4, U5, and U6 small nuclear
RNA (snRNA) [29]. More research is needed to understand the significance of this alternative splicing
and determine if snRNA are present in the endometrium, resulting in alternative splicing.

Another observation from this study was the large number of genes/transcripts that were present
in only samples from pregnant or non-pregnant mares. During this time frame, pregnant and
non-pregnant mares have the same hormonal profile [3]. Therefore, this gene expression in one sample
versus the other has to occur due to the presence of an embryo, indicating an active role in maternal
recognition of pregnancy. Further research of these genes is required to understand the significance of
the genes being exclusively expressed in one sample.

A biological pathway that was targeted by many transcripts, on multiple days, was integrin
signaling. Subsequently, it was also a pathway of great interest in regard to maternal recognition of
pregnancy. Integrin linked kinase (ILK) signaling was also heavily impacted by transcripts within our
study. Previous reports suggested that focal adhesions are present in equine endometrium during the
time of maternal recognition of pregnancy and serum samples from pregnant and non-pregnant mares
contain exosomes that are transporting microRNA (miRNA) targeting focal adhesions [30,31]. Focal
adhesions are integrin receptors on the plasma membrane that sense and transduce mechanical forces
from the extracellular matrix to a biochemical signal within the cell [32,33]. The two main kinases
responsible for these biochemical signals within the cell are focal adhesion kinase (FAK) and integrin
linked kinase (ILK) [33,34].

In this study, integrin signaling was inhibited on days nine and 13 and enhanced on day 11.
The reason for this variability is due to the genes contributing to the biological process on the specified
days. On day nine one of the key contributors to inhibition of integrin signaling is RHOH. This gene is
required to maintain integrins, specifically integrin LFA-1 [35]. In our dataset, RHOH is not present
in samples from pregnant mares. Without this protein present, focal adhesions may not be able to
be maintained, ultimately decreasing integrin signaling. On day 11, integrin signaling is stimulated
due to pregnancy status (P+). Multiple genes are more abundant in samples from pregnant mares,
contributing to increased integrin signaling. Two of these genes are GRB2 associated binding protein 1
(GRB1) and Rho guanine nucleotide exchange factor 7 (ARHGEF7). These two genes are associated
with organization and formation of focal adhesions [36,37]. Integrin Beta 6 (ITGB6) is an integrin
located in the cellular membrane that is associated with focal adhesions. Previously, it has been
identified at the interface between the porcine conceptus and trophoblast [38]. ABL proto-oncogene 1,
non-receptor tyrosine kinase (ABL1) is triggered by activation of integrins such as ITGB6 [39]. Other
integrins that may activate ABL1 that are present in our dataset in higher abundance in samples from
pregnant mares in Integrin Alpha 10 (ITGA10). Previous studies in our lab have also noted a higher
abundance of ITGA10 in endometrial samples from pregnant mares [30]. A gene was identified that
also interacts directly with FAK, phosphatidylinositol-4,5-biphosphate 3-kinase catalytic subunit delta
(PIK3CD) [40,41]. Most of these genes were determined to be more abundantly expressed (p ≤ 0.05)
in samples from pregnant mares on day 11. On day 13 the main gene responsible for this pathway
enrichment was RAPGEF, rap guanine nucleotide exchange factor 1. This gene is more closely related to
actin dynamics within the cell and adheres to focal adhesions versus signaling from focal adhesions [42].
This could be the reason for the decrease in integrin signaling.

Although not significant in this study between groups, another interesting observation was the
identification of CATSPERD, CATSPERG, and CATSPERB, all subunits of CATSPER that are required
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to form a functional ion channel, within the endometrium [43]. Previously, CATSPER, a sperm calcium
transporter, was thought to be unique to the sperm [44]. To our knowledge, this is the first report to
CATSPER outside of sperm, and more specifically within the endometrium.

5. Conclusions

This is the first study evaluating equine endometrium before, during, and after maternal recognition
of pregnancy utilizing RNA sequencing. A large number of genes/transcripts were identified that
were unique to pregnancy status and day, including many novel transcripts with unknown functions.
Interestingly, alternative splicing was identified, yet the importance of these needs to be determined.
Further research is needed to determine the role of the genes identified in this study in order to
elucidate the signaling that is occurring during maternal recognition of pregnancy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/10/749/s1,
Table S1: All significant transcripts for analysis performed when reads were present in all three replicates in
one of the two groups (P+ or NP) on days 9, 11 and 13, Table S2: All significant transcripts (P ≤ 0.05; annotated
and unannotated transcripts) and biological pathways (for annotated transcripts) in equine endometrium from
pregnant and non-pregnant mares on day 9 post-ovulation., Table S3: All significant transcripts (P≤ 0.05; annotated
and unannotated transcripts) and biological pathways (for annotated transcripts) in equine endometrium from
pregnant and non-pregnant mares on day 11 post-ovulation. Table S4: All significant transcripts (P ≤ 0.05;
annotated and unannotated transcripts) and biological pathways (for annotated transcripts.
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