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prefrontal cortex occurs in a subtype of
cortical UP state during slow-wave sleep
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Interaction between hippocampal sharp-wave ripples (SWRs) and UP states,
possibly by coordinated reactivation of memory traces, is conjectured to
play an important role in memory consolidation. Recently, it was reported
that SWRs were differentiated into multiple subtypes. However, whether
cortical UP states can also be classified into subtypes is not known. Here,
we analysed neural ensemble activity from the medial prefrontal cortex from
rats trained to run a spatial sequence-memory task. Application of the
hiddenMarkovmodel (HMM)with three states to epochs of UP–DOWNoscil-
lations identifiedDOWNstates and two subtypes of UP state (UP-1 andUP-2).
The twoUP subtypeswere distinguished by differences in duration, with UP-1
having a longer duration than UP-2, as well as differences in the speed of
population vector (PV) decorrelation, with UP-1 decorrelating more slowly
than UP-2. Reactivation of recent memory sequences predominantly occurred
in UP-2. Short-duration reactivating UP states were dominated by UP-2
whereas long-duration ones exhibit transitions from UP-1 to UP-2. Thus,
recent memory reactivation, if it occurred within long-duration UP states,
typically was preceded by a period of slow PV evolution not related to
recent experience, and which we speculate may be related to previously
encoded information. If that is the case, then the transition from UP-1 to UP-
2 subtypesmay help gradual integration of recent experiencewith pre-existing
cortical memories by interleaving the two in the same UP state.

This article is part of the Theo Murphy meeting issue ‘Memory
reactivation: replaying events past, present and future’.
1. Introduction
According to standard consolidation theory, coordinated reactivation of recent
memory traces in the hippocampus [1] and cortex [2,3] is part of the mechanism
by which memories of recent experiences are consolidated into partially
abstracted, long-term memory. The first supporting evidence for such coordi-
nation came from multi-electrode recordings from freely behaving rats that
showed simultaneous reactivation of patterns corresponding to the same experi-
ence in the cortex and hippocampus during slow-wave sleep (SWS) [2,4]. In
another multisite neuronal recording study, pyramidal cells in the deep layers
of medial prefrontal cortex (mPFC), where most of the hippocampal fibres
make contact, responded phasically to sharp-wave ripples (SWRs), but not
during spindles [5]. These findings suggest that there is a window of information
transfer between the hippocampus and the neocortex during SWS. Furthermore, a
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Table 1. Neuron count in each dataset and the firing rates, durations and the exponential time constants τ for UP-1 and UP-2. Number of neurons recorded in
mPFC in each dataset is shown in the column ‘neurons’. Firing rate and duration are shown in their respective columns for UP-1 and UP-2 separately (mean ±
s.e.m.). The exponential time constant, τ (ms), from the state vector decorrelation exponential fit for UP-1 and UP-2, is shown under the columns ‘UP-1 decay
constant (ms)’ and ‘UP-2 decay constant (ms)’.

dataset neurons
UP-1 firing
rate (Hz)

UP-2 firing
rate (Hz)

UP-1
duration (s)

UP-2
duration (s)

UP-1 decay
constant (ms)

UP-2 decay
constant (ms)

1 (rat 1) 72 2.21 ± 0.023 2.85 ± 0.047 0.63 ± 0.020 0.40 ± 0.014 218 50

2 (rat 1) 119 1.99 ± 0.021 2.41 ± 0.033 0.78 ± 0.029 0.41 ± 0.018 107 40

3 (rat 1) 122 1.91 ± 0.017 2.43 ± 0.027 0.68 ± 0.024 0.43 ± 0.017 141 108

4 (rat 1) 120 1.29 ± 0.011 1.54 ± 0.021 0.99 ± 0.040 0.55 ± 0.022 113 91

5 (rat 2) 74 2.16 ± 0.023 2.59 ± 0.024 0.82 ± 0.024 0.55 ± 0.020 141 105

6 (rat 2) 78 2.64 ± 0.015 2.64 ± 0.026 0.70 ± 0.017 0.56 ± 0.016 148 97

7 (rat 2) 69 2.23 ± 0.013 2.55 ± 0.023 0.93 ± 0.025 0.53 ± 0.018 114 100

8 (rat 3) 55 3.28 ± 0.020 3.66 ± 0.029 0.56 ± 0.011 0.47 ± 0.011 126 73

9 (rat 3) 62 2.97 ± 0.019 3.11 ± 0.025 0.56 ± 0.011 0.51 ± 0.013 222 101

10 (rat 3) 57 3.00 ± 0.023 3.41 ± 0.027 0.59 ± 0.014 0.55 ± 0.015 204 114
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recent electrophysiological study of rat auditory cortex (AC)
and hippocampus found closed-loop activity between AC
and hippocampus during SWS; activity in AC preceded and
predicted the subsequent hippocampal activity, while
hippocampal patterns predicted subsequent AC activity [6].

In the past couple of decades, hippocampal memory reacti-
vation has been studied extensively. First a selective increase in
the firing rate of rat place cells that hadbeen allowed to be active
in their place field was found during subsequent sleep [7]. This
finding showed that the elevated activity of a single neuron can
be maintained during subsequent sleep. From Hebb’s cell
assembly perspective (neurons that fire together wire together)
[8], it is also crucial to ask whether cell-pair correlations that
were established during waking are maintained during sub-
sequent sleep. Wilson & McNaughton [1] showed that
increased correlationsduring taskweremaintainedduringsub-
sequent SWS. Further studies showed that these correlations
were more pronounced during SWRs and that they decayed
to a statistically undetectable level in about 30 min, at least in
hippocampus [9–11] (but also see a recent report [12]). It was
also found that sequence-memory replay was temporally com-
pressed [13,14] and that, during SWRs in quiet wakefulness,
hippocampal sequences are sometimes replayed in reverse
order [15]. Thus, SWRs are the prime neural states inwhich hip-
pocampal memory reactivation occurs. Recently, simultaneous
electrophysiological and imaging recording of rhesusmonkeys
revealed that SWRswere differentiated into four subtypes [16].
These subtypes triggered different brain-wide dynamical
events, suggesting that they may serve different memory func-
tions or, indeed, correspond to different memories.

Compared to hippocampal reactivation, less is known about
corticalmemory reactivation.Our previous analyses of neuronal
ensemblesof the ratmPFCshowedthatmemory-tracesequences
were reactivated about five to seven times faster than the
sequence speedobservedduringbehaviourand that reactivation
was concentrated inUP states [17]. Despite efforts in characteriz-
ingUP states [18,19], it is not clearwhether theyare composed of
multiple subtypes, similar to the findings for the hippocampus
[16]. If they exist, it is important to understand how the UP
subtypes are related to cortical memory reactivation.
To answer these questions, we analysed previously
recorded multi-neuronal spiking activity in the mPFC from
three rats that were trained to run a sequential task on a circular
arena [17]. Briefly, the rats ran to a specific series of locations
around the perimeter of a 1.3 m circular platformwith electrical
brain stimulation targeting the medial forebrain bundle (MFB)
as a reward. Sequences, consisting of six or eight locations,
were repeated throughout the course of a 50–60 min running
session, alternating in blocks of three cued and three non-
cued sequences throughout the task session. Rats ran the
sequence task continuously during two task blocks (task 1
and task 2) each day. Neural activity was recorded for the
entire recording session starting from a first rest period (rest 1)
preceding the first task block and in two post-task sleep periods
following each task block (rest 2 and rest 3). Each rest session
was approximately 30–60 min in duration. In short, a daily
recording session consisted of ‘rest 1’ – ‘task 1’ – ‘rest 2’ –
‘task 2’ – ‘rest 3’ configuration. Rats were implanted with
microdrives containing 12 independently manipulatable four-
conductor electrodes (tetrodes) [20], allowing simultaneous
recording of 55–122 neurons within the mPFC. In this study,
we analysed 10 datasets (four datasets from rat 1, three datasets
from rat 2 and three datasets from rat 3) that exhibit strong reac-
tivation of ‘task 2’ neural activity during themotionless periods
in ‘rest 3’ (table 1).

Using the hidden Markov model (HMM) [21], we asked
whether the UP state could be separated into subtypes. We
also asked whether the subtypes of UP state were correlated
withmemory reactivation dynamics. To understand the current
results, it is important to bear in mind that, in the datasets in
question, the animals had run hundreds of laps on a stereo-
typed spatial sequence, and that the degree of replay and the
high degree of temporal compression are likely to be at least
partly related to this repeated stereotyped behaviour.
2. Results
Our previous study showed that neuronal ensemble activity
during waking could be modelled by the HMM as a sequence
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Figure 1. Detection of DOWN, UP-1 and UP-2 states using HMM. (a) An example of population firing rate during post-task rest using a 20 ms bin size. Grey patches
depict motionless periods. (b) A binary vector was created from bins where the population firing rate equaled zero and convolved with three Gaussian kernels with
standard deviations of 1.5, 2 and 3 s, normalized and then averaged together to get the density of down states. The average distribution of values from these 3
Gaussian kernels is shown on the left. A threshold was chosen based on the position of a valley in this distribution. The threshold was used to find epochs of
potential UP–DOWN oscillations (blue bars). (c) Results of the HMM. Sequence of states shown in blue and a raster plot depicting the neuron firings for one epoch.
(d ) Proportion of the occurrences of each subtype (mean ± s.e.m.). (e) Total time spent within each subtype (mean ± s.e.m.) ( f ) UP-1 and UP-2 composition within
UP states. The percentages of UP states containing UP-1 only, UP-2 only, a transition from UP-1 to UP-2, a transition from UP-2 to UP-1 and UP states containing
multiple transitions were quantified and averaged over datasets (mean ± s.e.m.). (***p< 0.001).
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of firing rate states with fast and coherent transitions [22].
Here, we extended the HMM approach to spontaneous
neuronal activity during sleep.

(a) Three-state Hidden Markov model detected DOWN
states and two subtypes of UP states

First, we calculated the time series of population firing rate of all
recorded neurons, called multi-unit activity (MUA) (figure 1a).
The bin size was set to 20 ms so that it was small enough to
detect a single DOWN state and was also robust to fluctuation
of population activity in the millisecond time scale owing to the
relatively small number of recorded neurons. Next, to estimate
the smoothed density of DOWNstates, we convolvedGaussian
kernelswith the timepointswhere theMUAvalue reaches zero.
To obtain a robust result, we used three different kernels with
standard deviations of 1.5, 2.0 and 3.0 s and averaged the den-
sities (figure 1b; electronic supplementary material, figure S1).
Detection of UP–DOWN oscillation periods was based on the
distribution of the DOWN state density where the threshold
was chosen at the position of a valley in this distribution
(figure 1b, left). Periods that exceed the threshold during
motionless periods (figure 1a, grey background) were con-
sidered periods of UP–DOWN oscillations (figure 1b, blue
horizontal bars). In this study, the detected periods of UP–
DOWN oscillations are called UP–DOWN epochs, and a total
of 154 epochs were identified in 10 datasets.

For each detectedUP–DOWNepoch,we applied theHMM
with three states.We aimed at detecting not only the transitions
between UP and DOWN states but also possible subtypes of
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UP state. Briefly, at every 1-ms bin, the ID of neurons that fired
in that bin was detected. If multiple neurons fired, the neuron
ID was selected randomly. If no neuron fired, that bin was set
as 0. For the 10 datasets analysed in this study, the average per-
centage of bins with coincident firing was 1.68%. This is
approximately 2.5 times higher than the percentage of coinci-
dent firing in our previous study (0.65%) [22]. The difference
may depend on several factors such as that the number of sim-
ultaneously recorded neurons in the local brain area was
different (the median of 5 in [22] and 73 in this study) and
that animals used were different (monkey in [22] and rat in
this study). Regardless of the difference, 1.68% is small and is
unlikely to affect the overall results. The unidimensional
sequence of these neuron IDs was given to the HMM. For
each dataset, the HMM was trained using all detected UP–
DOWNepochs in rest 3. Once it was trained, themost probable
sequence of hidden states for each epoch was generated using
the trained HMM. The HMM identified three states, one with
low-firing activity and twowith high-firing activity (figure 1c).
We call the low activity state a DOWN state and both the high
activity states UP states. The two subtypes in UP state is called
UP-1 and UP-2 states. Definition of UP-1 and UP-2 is given in
the next section. To assess how well DOWN and UP states are
separated, we compared the firing rate distributions of DOWN
and UP states in each epoch and ran the two-sample Wilcoxon
rank-sum test. We found that the firing rate distributions were
significantly different ( p<0.05) in 152 out of 154 epochs. The
remaining two epochs were too short to run the test. These
results showed that the HMM with three states identified
DOWN and UP states successfully. We also found that UP-1
occurred significantly more frequently than UP-2 (71.0 ±
1.37% versus 29.0 ± 1.37% (mean± s.e.m.) Lilliefors test for nor-
mality: p ¼ 0:5 for both UP-1 and UP-2, paired t-test:
p ¼ 1:2� 10�7, figure 1d ) and that the total duration of UP-1
was significantly longer than UP-2 (720.3± 88.9 s (78.1%±
1.24%) versus 201.5 ± 28.2 s (21.9%±1.24%) (mean± s.e.m.),
Lilliefors test for normality: p . 0:4 for both UP-1 and UP-2,
paired t-test: p ¼ 4:1� 10�5, figure 1e).

Figure 1c indicates that a single UP state comprises UP-1 or
UP-2 entirely or exhibits a transition between UP-1 and UP-2.
To investigate the relative frequency of these compositions,
we classified UP states into five composition types: ‘UP-1
only’, ‘UP-2 only’, ‘UP-1 toUP-2 transition’, ‘UP-2 toUP-1 tran-
sition’ and ‘multiple transitions’. The percentage plot of five
types elucidated that a single UP state was dominated by
‘UP-1 only’ (64.8%), followed by ‘UP-2 only’ (15.5%), ‘UP-1
to UP-2’ (13.9%), ‘multiple transitions’ (3.3%) and ‘UP-2 to
UP-1’ (2.5%) (figure 1f ). Interestingly, asymmetry existed for
‘UP-1 only’ and ‘UP-2 only’ UP states; ‘UP-1 only’ was 4.2
times more frequent than ‘UP-2 only’. Similarly, transition
between UP-1 and UP-2 was also asymmetric; ‘UP-1 to UP-2
transition’ was 5.6 times more frequent than ‘UP-2 to UP-1
transition’. Note that 3.3% of ‘multiple transitions’ indicates
that a single UP state was rarely composed of more than 2 sub-
types. Statistical tests confirmed that other than a ‘UP-2 only’
and ‘UP-1 to UP-2 transition’ pair and an ‘UP-2 to UP-1 tran-
sition’ and ‘multiple transitions’ pair, everything was
statistically significant (Lilliefors test for normality: p . 0:2
for all five types, one-way ANOVA: p ¼ 6:0� 10�34, follow-
up multi-comparison test with Tukey-Kramer criterion:
except for ‘UP-2 only’ versus ‘UP-1 to UP-2 transition’:
p ¼ 0:92 and ‘UP-2 to UP-1 transition’ versus ‘multiple tran-
sitions’: p ¼ 0:99, all pairs: p , 10�5). In summary, the three-
state HMM parsed neural activity into three states, one with
low-firing rates (DOWN state) and two with high-firing rates
(UP-1 and UP-2 subtypes). The relative compositions of a
single UP state vary widely; ‘UP-1 only’ and ‘UP-1 to UP-2
transition’ was four to six times more frequent than ‘UP-2
only’ and ‘UP-2 to UP-1 transition’, respectively. The results
suggest that UP states are dominated by UP-1 and that UP-2
tends to follow UP-1 if they occur in the same UP state.

(b) Two subtypes of UP state are characterized by
different rates of population vector decorrelation

To characterize the three detected states (DOWN, UP-1 and
UP-2), we first calculated the mean firing rate of three states.
The histogram of firing rate, defined as total spikes from all
cells divided by state duration, showed that DOWN state
was strongly skewed toward lower firing rates and that the
two UP subtypes have similar firing rates (figure 2a, top left;
three representative examples from 1 day of recording of rat
1, rat 2 and rat 3; blue, orange and yellow bars represent
DOWN state, UP-1 and UP-2, respectively). Individual
values of the mean firing rate for all 10 datasets are available
in table 1. Comparison of the medians of firing rates over
10 datasets confirmed that the firing rate distributionswere sig-
nificantly different between the DOWN state and two UP
subtypes but there was no significant difference between the
subtypes (one way ANOVA test: p ¼ 6:23� 10�11, follow-up
multi-comparison test with Tukey-Kramer criterion: DOWN
versus UP-1: p ¼ 6:34� 10�9, DOWN versus UP-2:
p ¼ 1:12� 10�9, UP-1 versus UP-2: p ¼ 0:259, figure 2a, top
right). Next, we calculated the duration of the DOWN state
and the two UP subtypes. The histogram showed that the
DOWN state had a much shorter duration than the two UP
subtypes (figure 2a, bottom left, three representative examples
as figure 2a, top left). Individual values of the mean duration
for all 10 datasets are available in table 1. Comparison of the
medians of duration over 10 datasets revealed that the
DOWN state was significantly shorter than two UP subtypes
and that UP-1 was significantly longer than UP-2 (one way
ANOVA test: p ¼ 1:07� 10�12, follow-up multi-comparison
test with Tukey-Kramer criterion: DOWN versus UP-1:
p ¼ 9:52� 10�10, DOWN versus UP-2: p ¼ 7:33� 10�8, UP-1
versus UP-2: p ¼ 1:57� 10�5, figure 2a, bottom right). This
result is consistent with the representative example in figure 1c
where UP-1 tended to be longer than UP-2.

Although descriptive statistics such as the mean firing rate
and duration summarized important features of the DOWN
and two UP subtypes, they did not characterize the properties
in temporal dynamics. To this end, we investigated how
quickly the population vectors (PVs) decorrelate within each
subtype. For each UP-1 and UP-2 event, we calculated the cor-
relation coefficient (CC) between the PVs as a function of the
temporal separation between the vectors. The PV was defined
as a vector containing the number of spikes for each neuron
within a bin. The bin size of the firing rate vectors was 1 ms.
PV decorrelation was computed as follows. For a specific UP
subtype event, CCs between the first PV(1) and the succeeding
PVs, PV(2), PV(3), PV(4),… , PV(T), were calculated and the
result was stored as CC(1, 2), CC(1, 3), CC(1, 4),… , CC(1, T ),
where T is the number of bins in the UP subtype event. Next,
CCs between the second PV(2) and the succeeding PVs,
PV(3), PV(4), PV(5),… , PV(T ), were calculated and the result
was stored as CC(2, 3), CC(2, 4), CC(2, 5),… , CC(2, T ).
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Repeating this procedure filled an upper triangle of [T×T ]
matrix of CCs for the specific UP subtype event. We repeated
this procedure for all UP subtype events. Averaging the CC
matrices for UP-1 and UP-2 events separately resulted in one
averaged CCmatrix for UP-1 and one for UP-2. By taking diag-
onal averages on the upper triangle portion (e.g. for one-bin
separation, the average was taken over C(1, 2), C(2, 3), C(3,
4),…, C(T – 1,T )), we obtained a series of CC values describing
how PVs decorrelated as a function of the temporal separation
between them. Finally, we fitted the curve by an exponential
functionwith a bias y ¼ a� exp (�ðx=tÞ)þ b. In the representa-
tive examples (figure 2b, the same three rats as figure 2a), the
UP-1 decorrelated more slowly than the UP-2 for all three
animals; the exponential time constants were tUP-1

rat 1 ¼ 218ms,
tUP-2
rat 1 ¼ 50ms, tUP-1

rat 2 ¼ 148ms, tUP-2
rat 2 ¼ 97ms, tUP-1

rat 3 ¼ 126ms
and tUP-2

rat 3 ¼ 73ms. To investigate whether the exponential
time constants are significantly different between UP-1 and
UP-2, we averaged the exponential time constants over 10 data-
sets (figure 2c; UP-1: 153.3± 14.8 ms, UP-2: 87.7 ± 8.1 ms (mean
± s.e.m.)). Individual values of the exponential time constant
for all 10 datasets are available in table 1. Statistical test con-
firmed that the exponential time constant was significantly
different between UP-1 and UP-2 (Lilliefors test for normality:
p ¼ 0:07 for both distributions, paired t-test: p ¼ 0:002). Based
on these results, we call the long-duration and slow-decaying
subtype the ‘UP-1’ state and the short-duration and fast-decay-
ing subtype the ‘UP-2’ state. In summary, the two subtypes of
UP state were characterized by the differences in duration as
well as in the PV decorrelation rate. These rates can be inter-
preted as a reflection of the speed of neural sequence readout
[17,23].

(c) Memory reactivation occurred predominantly in the
UP-2 state

To investigate possible functional differences between UP-1
and UP-2, we asked whether they were correlated with
memory reactivation dynamics. Using template matching
(TM) [17,23,24], we assessed the strength of memory reactiva-
tion and the best temporal compression rate during rest
3. Briefly, a template is the multi-neuronal spiking activity
that was observed when an animal was engaged in a specific
behaviour. In the sequential task, therewere six or eight behav-
iour segments that correspond to the animal’s departure from
one reward point and arrival at the next one. Thus, we gener-
ated six or eight templates and they were represented by an
N×M matrix, where N represents the number of recorded
neurons and M represents the number of time bins. Following
the previous study [17], bin size was set 100 ms. In order to
measure memory reactivation signals, a target matrix with
the same size as the templatewas selected from rest 3. Similarity
between two matrices, template and target, was calculated
using the Pearson correlation coefficient measure proposed
by Louie & Wilson [24]. The TM comparison was performed
from the beginning to the end of rest 3. After TMby the original
template was completed, the template was shuffled by
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randomly permuting columns (column shuffle) and the TM
procedure was performed again. This shuffling was repeated
500 times. The mean and standard deviation of the correlation
values found for each time bin from these shuffled TM results
were used to z-score the original TM correlation. In this study,
we used the column shuffle because it typically produced the
most conservative z-score compared to other shuffling (e.g.
bin shuffle, swap shuffle and shift shuffle [24]). In order to
investigate whether the reactivation happens faster than the
speed of the patterns during behaviour, we modified the bin
size of the target matrix between 10 and 100 ms; 10 ms corre-
sponds to 10× compression and 100 ms corresponds to no
compression (1× compression). The best compression rate
was assessed by counting the number of significant z-score
peaks of the TM results (e.g. the peaks> z-score = 5). The com-
pression rate with the maximum number of the peaks was
chosen as the best compression rate. This procedure was
repeated for each template, and the template with the maxi-
mum number of the z-score peaks was selected as the best
overall template and the corresponding compression rate was
selected as the best overall compression rate. Note that the tem-
plates that we investigated in this study were highly similar to
each other because of the similarity of sequences between
different reward sites. Therefore, all templates reactivated in
a similar manner.

An example TM result is depicted in figure 3a. The tem-
plate consisting of 22 neurons and 25 bins (figure 3a(i)) was
moved over a segment of rest 3 (figure 3a(ii)). This procedure
resulted in TM correlations that were z-scored by the shuf-
fling procedure (figure 3a(iii)). The timing of memory
reactivation occurrence was estimated at the centre of the
TM result. This example shows that the best TM correlation,
with z-score = 7.41, was detected at around 380 ms in which
time was aligned with neural activity during rest 3
(figure 3a(ii)). As the red background represents UP-2, it indi-
cates that reactivation occurred within UP-2. As was shown
in previous studies, reactivation was never perfect; some
neurons do not fire and the order of neurons’ firing can be
reversed. Even though the z-scored TM correlation reached
7.41, the raw correlation value was 0.396.

To investigate the relationship betweenUPsubtypes and the
timing ofmemory reactivation, we combined the results of sub-
type detection byHMMand that of TM.We found thatmemory
reactivationoccurredpredominantly in theUP-2 (figure 3b, 9.0 ±
3.3% in UP-1 and 91.0± 3.3% in UP-2 (mean± s.e.m.), the
threshold z-score= 5, Lilliefors test for normality: p ¼ 0:08 for
both UP-1 and UP-2, paired t-test: p ¼ 6:4� 10�7). If reactiva-
tion is distributed over UP-1 and UP-2 equally, the ratio is
expected to be proportional to the subtype event ratio (71.0%
inUP-1 and 29.0% inUP-2, figure 1d) or similarly to the subtype
event duration (78.1% inUP-1 and 21.9% inUP-2). Both suggest
thatmore reactivationshouldoccur inUP-1.However, theoppo-
site result was obtained, indicating that memory reactivation of
recent experience preferred UP-2.

For the 10 datasets that we analysed in this study, the com-
pression rates of the TMmemory reactivation were 5–10 times
with amean of 7.4 times. Thismeans that sequence reactivation
during rest 3 occurred on average 7.4 times faster than the
speed that was observed during the task period. We asked
whether these compression rates were comparable to the
ratios of the exponential time constants of PV decorrelation
between the task and UP subtypes. The ratio between task
and UP-2, ttask=trestUP-2, was distributed between 4.1 and 12.7
with amean of 7.5. This suggests that the PVs duringUP-2 dec-
orrelate on average 7.5 times faster than those during task. The
ratio between task and UP-1, ttask=trestUP-1, was distributed
between 1.8 and 7.2 with a mean of 4.5, suggesting that the
PVs during UP-1 decorrelate on average 4.5 times faster than
those during task. Statistical test over the three variables,
TM compression rate, ttask=trestUP-2 and ttask=trestUP-1, confirmed
that ttask=trestUP-2 and TM compression rate were not significantly
different, while ttask=trestUP-1 and TM compression rate as
well as ttask=trestUP-1 and ttask=trestUP-2 were significantly different
(Lilliefors test for normality: p ¼ 0:5 for all distributions, one-
way ANOVA: p ¼ 0:0035, follow-up multi-comparison test
with Tukey-Kramer criterion: TM compression rate versus
ttask=trestUP-1: p ¼ 0:0094, TM compression rate versus
ttask=trestUP-2: p ¼ 0:996, ttask=trestUP-1 versus ttask=trestUP-2:
p ¼ 0:0076). These results confirmed that the compression
rates by TM were comparable to the ratio of exponential time
constants between the task and UP-2, but not with that
between the task and UP-1. Taken together, these results
show that memory sequence reactivation occurs predomi-
nantly in UP-2. We also confirmed that the decorrelation
speed of the PVs during UP-2 was comparable to the TM
compression rate.
(d) Sequence of UP subtypes is influenced by the
duration of UP state and occurrence of memory
reactivation

To investigate how the UP-1 and UP-2 are sequenced within a
single UP state, especially in UP states that contained signifi-
cant reactivation signals (reactivating UP states), we sorted
the reactivating UP states by duration (figure 4a, the same
three rats as figure 2a,b). We found that entire UP states
were dominated by UP-2 when the duration of UP states
was relatively short. When the duration got longer, UP
states tended to start with UP-1 and transit to UP-2.

We quantified this tendency by dividing the reactivating
UP states into two groups. With a duration threshold of 580–
1250 ms, the two groups had almost the same number of
samples. We then investigated in which UP subtypes (UP-1
or UP-2) the reactivating UP states started and ended. We
found that reactivating UP states with short durations tended
to start and end with the UP-2, supporting the observation
that UP states were dominated by UP-2 (figure 4b, left: UP-1:
0.3321± 0.0369, UP-2: 0.6679± 0.0369 (mean± s.e.m.): Lilliefors
test for normality: p ¼ 0:5 for both distributions, two-sample t-
test: p ¼ 0:0025; figure 4b, right: UP-1: 0.0520± 0.0186, UP-2:
0.948± 0.0186 (mean± s.e.m.): Lilliefors test for normality:
p ¼ 0:227 for both distributions, two-sample t-test:
p ¼ 1:7� 10�9). By contrast, reactivating UP states with long
durations tended to start with UP-1 and end with UP-2.
(figure 4c, left: UP-1: 0.682± 0.0366, UP-2: 0.318± 0.0366
(mean± s.e.m.): Lilliefors test for normality: p ¼ 0:5 for both
distributions, two-sample t-test: p ¼ 0:012; figure 4c, right:
UP-1: 0.143± 0.0381, UP-2: 0.857± 0.0381 (mean± s.e.m.): Lil-
liefors test for normality: p ¼ 0:335 for both distributions,
two-sample t-test: p ¼ 1:1� 10�6).

To investigate whether the sequential structure of UP-1
and UP-2 described above is specific to reactivating UP
states, we also analysed non-reactivating UP states by cate-
gorizing them into short- and long-duration ones, using the
same duration threshold as above. We found that both
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short and long UP states started and ended with the UP-1
predominantly (figure 4d, left: UP-1: 0.798 ± 0.0134, UP-2:
0.202 ± 0.0134 (mean± s.e.m.): Lilliefors test for normality:
p ¼ 0:5 for both distributions, two-sample t-test:
p ¼ 4:9� 10�9; figure 4d, right: UP-1: 0.730 ± 0.0143, UP-2:
0.271 ± 0.0143 (mean± s.e.m.): Lilliefors test for normality:
p ¼ 0:475 for both distributions, two-sample t-test:
p ¼ 1:2� 10�7; figure 4e, left: UP-1: 0.904 ± 0.0096, UP-2:
0.096 ± 0.0096 (mean± s.e.m.): Lilliefors test for normality:
p ¼ 0:5 for both distributions, two-sample t-test:
p ¼ 9:3� 10�12; figure 4e, right: UP-1: 0.741 ± 0.0244, UP-2:
0.259 ± 0.0244 (mean± s.e.m.): Lilliefors test for normality:
p ¼ 0:121 for both distributions, two-sample t-test:
p ¼ 4:4� 10�6). These results suggest that a sequence of UP
subtypes within a single UP state is influenced by occurrence
of reactivation of recent experience. In summary, we showed
that the short reactivating UP states were dominated by UP-2
and the long reactivating UP states exhibited transition from
UP-1 to UP-2. We also showed that the sequential structure of
subtypes within non-reactivating UP states was different
from that of reactivating ones, indicating that the sequence
of UP subtypes depended on the existence of memory
reactivation of recent experience.

(e) Two UP subtypes are separated along the first
principal component

Finally, we asked whether UP-1 and UP-2 could be separated
distinctively. To answer this question, we first converted
an individual UP subtype event in rest 3 to a mean firing
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rate vector. That is, an UP subtype that was represented by a
[N×T ] matrix, where N is the number of neurons and T is the
number of time bins, was converted to a [N× 1] mean firing
rate vector. The mean firing rate vectors from both UP-1
and UP-2 were concatenated together to make one large
matrix. Then, neuron-wise (row-wise) standardization was
performed using the mean and the standard deviation of
each neuron’s firing activity. Principal component analysis
(PCA) was performed on this set of vectors, and the result
was projected onto two-dimensional space spanned by the
first two principal components (figure 5a, the same three
rats as figures 2a,b and 4a). Each dot represents a UP subtype
event where UP-1 is plotted in blue and UP-2 in red. Larger
dots denote the UP subtype events containing significant TM
reactivations (z-score = 5 and above). Percentages of UP-1 and
UP-2 events that had significant reactivation for each dataset
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are summarized in figure 5b. We found that the two subtypes
were clearly separated along the first principal component
but not in other principal components (electronic supplemen-
tary material, figure S2). We also confirmed that 7 other
datasets exhibited a similar tendency. To assess how well
UP-1 and UP-2 clusters were separated, we calculated the
cluster strength measure D [25]. In short, D is a measure of
the quality of clustering result where a higher D value indi-
cates better cluster separation with small within-cluster
distances and large inter-cluster distances. Generally, cluster-
ing is considered valid when clusters have D>2. We found
that D>2 for all 10 datasets (figure 5c), suggesting that two
UP subtype clusters were clearly separated. In conclusion,
we found that UP-1 and UP-2 were distinct states and that
they were separated along the direction of the first principal
component.
3. Discussion
Inspired by the recent finding that SWRs can sometimes be
differentiated into multiple subtypes [16], we investigated
whether the cortical UP state could be decomposed into sub-
types. Using the HMM with three states, we showed that the
UP–DOWN oscillations were separated into a DOWN state
and two UP state subtypes. The two subtypes were character-
ized by different durations and different speed of PV
decorrelation, where the long-duration and slow-decorrelating
subtype is called UP-1 and the short-duration and fast-decorr-
elating subtype is called UP-2. We showed that a sequential
reactivation of recent experience predominantly occurred in
the UP-2 state. Furthermore, we found that a short-duration
reactivating UP state was predominantly composed of UP-2
and a long-duration reactivating UP state exhibited a transition



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190227

10
from UP-1 to UP-2. Finally, we showed that UP-1 and UP-2
were distinct states that were separated along the direction of
the first principal component.

The finding that long reactivating UP states exhibited a
transition from UP-1 to the UP-2 has several implications. We
speculate that the long reactivating UP state may reactivate
other experiences during UP-1, possibly remote experiences,
and transit to reactivation of recent experience during UP-2.
This mechanism may support gradual integration of recent
experience with pre-existing cortical memories. It may have
attractor dynamics that is similar to the transition from global
to fine information in the macaque temporal cortex [26,27].
Although there is no evidence that remote memory is reacti-
vated during UP-1 because neural activity templates for the
remote experiences are not easily available, this UP-1 to UP-2
transition is in linewith the hypothesis of inter-leaved reactiva-
tion of newer and older memories as a mechanism of
preventing catastrophic interference [28].

According to a standard consolidation model [29], the
hippocampus is thought to integrate information from
the distributed cortical modules and rapidly fuse the infor-
mation into a coherent memory trace. Reactivation of the
hippocampal–cortical network during sleep leads to strength-
ening and/or rearrangement of cortico-cortical connections,
which eventually allows new memories to become indepen-
dent of the hippocampus. Although evidence suggests that
the hippocampal–cortical interaction occurs around SWRs
and UP states, the detailed interactions in the SWR subtype
and UP subtype level are not clear. We speculate that
SWRs interact with UP-2 more strongly than UP-1 because
UP-2 contains reactivation of recent experience. However, it
warrants future investigation.

In this study, we have detected two subtypes of UP states
by the three-state HMM. It is possible that cortical UP states
are further decomposed into more than 2 subtypes, just as
SWRs were differentiated into four subtypes [16]. This ques-
tion can be investigated using the HMM with 4 or more
hidden states. However, it is out of the scope of this short
paper and warrants future investigation.
4. Methods
(a) Recording procedures
Threemale BrownNorway/Fisher 344Hybrid rats 7–9months old
at the time of surgery, 350–400 g) were used for the recording,
which consisted of two 50–60 min sequential task sessions and
three 30–60 min rest sessions. The recording started with the first
rest session (rest 1), followed by the first task session (task 1), the
second rest session (rest 2), the second task session (task 2) and
the third rest session (rest 3). Two rats were implanted with a
hyperdrive (more details below) containing 12 independently
movable tetrodes [21,30] in the mPFC and twisted-pair local field
potential electrodes in the hippocampus. The third rat was
implanted with a dual-bundle Hyperdrive in the mPFC and CA1
of the hippocampus. The numbers of recorded neurons in each
dataset are summarized in table 1. Detailed surgical and recording
procedures are explained in the experimental protocol of [17].
Here, we provide brief description.

(i) Apparatus
All behaviour took place on a 1.3 m diameter circular arena. Light-
emitting diodes (LEDs) were positioned at eight equally spaced
locations around the perimeter. The LEDs were located 2 cm
above the table surface and flashed at 2 Hz when lit. The exper-
iment was controlled by a microcontroller card and a standard
PC computer. The computer also performed data acquisition.
Custom software monitored the rat’s position and turned on
lights, tones and electrical brain stimulation as required.

(ii) Data acquisition
Neural recordings were obtained via a chronically implanted
‘hyperdrive’ consisting of 12 independently movable tetrodes.
Each tetrode consisted of four polyimide-coated nichrome wires
(diameter 14 µm) twisted together [20]. Hyperdrive construction
was as described in Gothard et al. [30]. During recording sessions,
the hyperdrive was connected to a unity-gain headstage that
enabled low-noise transmission of neural data to the recording
system. The headstage also contained an array of LEDs that
could be detected by an overhead camera, enabling tracking of
the position of the rat on the maze at 60 frames per second (FPS).
All data were recorded using a Neuralynx Cheetah recording
system. Single unit data from each tetrode were amplified, filtered
between 0.6 and 6 kHz and digitized at 32 kHz. Video spatial res-
olution was approximately 3 pixels cm−1.

(iii) Surgery and electrode placement
NIH guidelines and IACUC approved protocols were followed for
all surgical and behavioural procedures. Each ratwas anaesthetized
with Isoflurane, placed in a stereotaxic holder and injected with
Penicillin G. The skull was cleared of skin and fascia and cranio-
tomies were opened for two stimulating electrodes targeting the
MFB and a hyperdrive. The hyperdrive was centred over the left
mPFC at 2.9–3.0 mm AP, 1.3 mm ML and angled at 9.5° towards
the midline. Rats were returned to ad libitum feeding and allowed
to recover for 3–4 days after surgery. Single units frommPFC were
recorded with respect to a reference electrode positioned deep in
the mPFC (5000 µm from brain surface). After all recordings were
complete, the tips of the recording electrodes were marked by elec-
trolytic lesions (5 µamp for 10 s, positive to electrode, negative to
ground) to confirm the recording location.

(iv) Reward
MFB stimulation was used as reinforcing reward. All stimula-
tion used two wires. The choice of electrodes was determined
empirically based on the rat’s response. A range of stimulation par-
ameters was explored using an operant conditioning chamber
equipped to deliver MFB stimulation when the rat performed a
nose poke. The final selected MFB stimulation consisted of a train
of 400 µs wide, 70–100 µA, biphasic current pulses, delivered at
150 Hz for 320–370 ms.

(v) Behavioural procedures
For pre-training purposes, all rats were food-deprived to 85% of
their ad libitum weight. The rats were pre-trained to find reward
at one of the eight, equally spaced zones on the edge of the circular
arena. A training session lasted 50–60 min and comprised a ran-
domly selected series of segments. The process of running each
segment will subsequently be referred to as a ‘trial’. Each trial
began with two, simultaneously presented cues: a non-directional
4 kHz tone that signalled the availability of reward somewhere in
the arena, and the illumination of one blinking LED that marked
the correct reward zone. Rats were trained to run to the vicinity
of the correct reward zone (within 10 cm) whereupon the reward
was delivered and the trial completed. The next trial began after
a fixed delay from the onset of reward delivery (500 ms for stimu-
lation-trained and 1000 ms for the food trained rat). This training
continued until each rat made direct trajectories to reward
locations. Sequence training occurred following surgery. Sequence
tasks were presented to each rat by cueing reward zones in a
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predetermined order. The trial structure and delay periodwere the
same as during pre-training except that MFB stimulation was sub-
stituted for food reward. After a rat completed a sequence three
times with guidance from LED cues (a ‘cued’ block of sequences),
a 5 s delaywas inserted between the non-spatial, audio cue and the
illumination of the cue light, providing time for the rat to move to
the next reward location without the aid of the visual cue. Given
the typical running speed of a rat, the vast majority of cue-delay
trials in well learned sequences were completed without the LED
and are hence referred to as ‘non-cued’ trials. After the rat com-
pleted the non-cued sequence three times, audio and visual cues
were presented simultaneously, again, starting another cued
block. Blocks of three, complete traversals of the sequence alter-
nated between cued and non-cued throughout the duration of
the recording session. Sequences that contained six or eight seg-
ments were used. For each sequence, rats were trained until they
reached asymptotic performance. Asymptotic performance was
usually reached within 3 days, using two training sessions per
day. Electrodes were then pushed down to acquire new cells and
a new sequence was initiated. The new sequence was created by
flipping and rotating the original sequence so as to create a
sequence novel to the rat. The flip ensured that the order of turns
was reversed while the rotation ensured that a different configur-
ation of places was rewarded. In this paper, we used the data
from task 2 as the task session and rest 3 as the post-task rest ses-
sion because memory reactivation signal was most clearly
detected in this combination [17].

(b) Detection of UP–DOWN oscillation epochs
In order to assess the epochs that potentially contain clear UP and
DOWN states within SWS, the firing rates of MUA using a 20 ms
bin size were calculated. Subsequently, by finding all the bins
where the multi-unit firing rate is equal to zero, indicating
DOWN states, a binary vector was made that marks the position
of these bins. Then, this binary vector was convolved with a
Gaussian kernel. To obtain robust results, the binary vector was
convolved separately with three kernels having different standard
deviations of 1.5, 2 and 3 s (electronic supplementary material,
figure S1). The convolved traces were then averaged together
and resulted in a relatively clear bimodal distribution for each of
the 10 datasets. The valley in this bimodal distribution was used
as a threshold for the averaged convolved trace and periods
above this threshold were used as epochs with potentially high
density of UP and DOWN oscillations. Using video recording, it
was verified whether or not the selected epochs occurred when
the animal was motionless and we only selected the parts occur-
ring while the animal was still

(c) Hidden Markov model
An HMM is a statistical Markov model in which the system being
modelled is assumed to be a Markov process with unobserved
(hidden) states [21]. In an HMM, the state is not directly visible
but the output, dependent on the state, is visible. Each detectable
hidden state by HMM has a probability distribution over the poss-
ible output tokens. In the HMM, each state is defined by a vector
consisting of the average firing rates of the N recorded neurons.
For each state, neurons are assumed to be independent of the
events before and can be fully described by the immediate firing
probability, similar to a stationary Poisson process. The HMM can
be fully described by two matrices, E and A. Eij is an emission
matrix that determines the probability of neuron j firing in state Si.
Aij is a transition matrix that gives the probability of transitioning
from state Si to state Sj. The probability of a transition between
two hidden states only depends on the identities of the states. As
a result,Aij is independent of time. The HMMmodel predicts a dis-
tinct hidden state at time t to represent all of the information
preceding it. These matrices, E and A, are determined as a part of
the training algorithm for HMMs. The HMM used in this study
was a three-state model trained by binning the MUA with 1 ms
bins. Each bin was set to the ID of the neuron that fired in that bin
and ifnoneuron firedavalueof0wasgiven. Incaseswheremultiple
neurons fired within the same bin, which was on average 1.68% of
the bins of our datasets, a randomly selected neuron ID among
the IDs of firing neurons was used. Neuron IDs were provided in
the recording procedure by Neuralynx cheetah recording system,
and these IDs do not necessarily carry specific information.

In order to understand how HMM works, the key point is to
calculate, P(Oj l), which is the probability of the observation
sequence O, given the model λ, where O ¼ O1:O2 . . . OT and
l ¼ {E, A} [21]. In our case, Oi [ {0, . . . ,N} is the ID of the neuron
that fired within the bin, with 0 being used to indicate that no
spikes occurred. The probability of the observation sequence O
for the state sequence Q is

P(OjQ, l) ¼ QT
t¼1

P(Otjqt, l), ð4:1Þ

where qt is the state at time t and T is the number of all observa-
tions. By assuming the observations are statistically independent,
we get the following expression:

P(OjQ, l) ¼ eq1 (O1) : eq2 (O2) . . . eqT (OT) ð4:2Þ

in which we define Eij ¼ feqt ðOtÞ ¼ eiðjÞ as the probability distri-
bution for the firing of neuron j in the state Si. For the state
sequence Q:

P(Qjl) ¼ pq1aq1q2aq2q3 . . . aqT�1qT ð4:3Þ

where A ¼ faijg is the state transition probability distribution. Sub-
sequently, the joint probability of O and Q can be defined as

P(O,Qj l) ¼ P(OjQ, l)P(Q, l): ð4:4Þ

Then, by calculating the sum of this joint probability across
all possible state sequences q, the probability of O, given the
model, can be calculated as follows:

P(Oj l) ¼ P
all Q

P(OjQ, l) P(Qjl) ð4:5Þ

¼ P
q1,q2,::,qT

pq1 eq1 (O1)aq1q2 eq2 (O2) . . . aqT�1qT eqT (OT): ð4:6Þ

Now the best approach to make the calculations computation-
ally feasible is the forward–backward procedure. The forward
probability, at(i), is defined as

at(i) ¼ P(O1O2 . . .Ot, qt ¼ Sijl) , ð4:7Þ

which is the probability of the partial observation sequence up to
time t, O1O2 . . .Ot, with state Si at time t, given the model l. The
equation can be solved as follows:

(1) Initialization

a1(i) ¼ piei(O1), 1 � i � N: ð4:8Þ

By introducing the joint probability of state Si and initial
observation O1, the forward probabilities are initialized.

(2) Induction

atþ1(j) ¼
XN
i¼1

at(i)aij

" #
ej(Otþ1), 1 � t � T � 1,

1 � j � N:

ð4:9Þ

By completing the computation for all states j, and sub-
sequently, iterating all t, the probability of the complete history
of the observation from which the likelihood P(Oj l) can be
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obtained is defined by the forward probability as follows:

P(Oj l) ¼ PN
i¼1

aT(i): ð4:10Þ

As a result, to find P(Oj l) we just need to find the sum of
aT(i)s.

In the same manner, the backward probability bt can be
defined as

bt(i) ¼ PðOtþ1 Otþ2 . . . OT jqt ¼ Si,lÞ, ð4:11Þ
which is the probability of partial observation sequence from time
t+1 to the end, given that the state at time t is Si and the model λ.

Again, for the backward probability we can solve it as
follows:

(1) Initialization

bT(i) ¼ 1, 1 � i � N: ð4:12Þ

Here for the initialization step we arbitrarily define bT(i) to
be 1 for all i.

(2) Induction

bt(i)¼
PN
i¼1

aijej(Otþ1)btþ1(j), t¼ T� 1, T� 2, . . . , 1, 1� i�N:

ð4:13Þ

The probability of being in state Si at time t and state S j at time
tþ 1 given the model and the observation can be defined as
follows to explain how the HMM parameters re-estimate ξt(i, j):

jt(i, j) ¼ P(qt ¼ Si, qtþ1 ¼ SjjO,l): ð4:14Þ

Also, the variable gt(i), which is the probability of being in
state Si at time t, given the observation sequence O and the
model λ, is defined as follows:

gt(i) ¼ P(qt ¼ SijO,l) : ð4:15Þ

This equation can be explained by using the forward and
backward probabilities as follows:

gt(i) ¼
at(i)bt(i)
P(Ojl) ¼ at(i)bt(i)PN

i¼1 at(i)bt(i)
: ð4:16Þ

Then the relation between gt(i) and jt(i, j) after summing
over j is

gt(i) ¼
PN
j¼1

jt(i, j) ¼
at(i)bt(i)PN
i¼1 at(i)bt(i)

: ð4:17Þ

Now by summing gt(i) over the time index, the obtained
quantity can be interpreted as the expected number of times
that state Si is visited, or equally, the expected number of tran-
sitions from Si. Similarly, by summing jt(i, j) over time index,
the expected number of transitions from Si to Sj would be
obtained. By using the above formulae, the method for re-esti-
mation of HMM parameters l ¼ {E, A} can be achieved. Then,
the re-estimation of the model parameters in the maximization
step is defined as follows:

anewij ¼
PT�1

t¼1 jt(i, j)PT�1
t¼1 gt(i)

ð4:18Þ

and

enewi (j) ¼
PT�1

t¼1,Ot¼j jt(i, j)PT�1
t¼1 gt(i)

: ð4:19Þ
In equation (4.18),
PT�1

t¼1 jt(i, j) is the expected number of tran-
sitions from Si to Sj and

PT�1
t¼1 gt(i) is the expected number of

transitions fromSi to any state. Thus, the variable anewij can be inter-
preted as the probability of transition from Si to Sj, which is exactly
what it was supposed to be. For equation (4.19),

PT�1
t¼1,Ot¼j jt(i,j) is

the expected number of times in which the system is in the state Si
andwithobservation Ot ¼ j,which in this study indicates theprob-
ability distribution of firing for neuron j. The denominator again is
the expected numberof times the system is in state Si. Consequently,
variable enewi (j) is the probability of observing neuron j firing while
the system is in the stateSi. It has been provenbyDempster et al. [31]
that the re-estimated model is more likely than the initial model:
P(Ojlnew) . P(Ojl): As a result, we can find a new model by
which the observation of sequence is more likely to be generated,
as the model is led to a maximum-likelihood estimate.

Each detected UP–DOWN oscillation epoch was treated as a
separate trial that was used to train the HMM for each dataset.
The most probable sequence of hidden states was generated
using this HMM for each epoch. In this study, similar to Ponce-
Alvarez et al. [22], the re-estimation stops at the point the increase
in the log of the likelihood is less than a tolerance factor (10−6) or
it was not reached by the maximum number of iterations (500).
We reran the re-estimation algorithm ten times, each time by
using new initial parameters, to verify that the likelihood has
reached the global maximum likelihood and not only a local
maximum. For the emission matrix, the initial components
were chosen randomly, while for the transition matrix com-
ponents were randomly initialized as diagonal elements D in
the range (0.99–0.999), and for non-diagonal elements equal to
ð1�DÞ=(N � 1).

By using three-state HMM, the three states were identified as
the DOWN state, the UP-1 state and the UP-2 state. The DOWN
state was distinguished as a state with a very low mean firing
rate. The UP-1 state was characterized by having a slower PV
decorrelation time constant and longer duration than UP-2.

In order to check how much the result given by HMM is con-
sistent, and as it is technically impossible to use cross-validation for
our method, we used two methods to measure the stability of the
HMM result instead. In the first method, after finding all DOWN
states that were provided by the original HMM, the number of
all DOWN states was divided into halves. First, an HMM was
trained using only the data from the first half of the DOWN
states and the corresponding UP state that followed each DOWN
state. All the methods are the same except here we only used
approximately half of the data to feed to the HMM. Similarly,
another HMM was created using the second half of the DOWN
states and associated subsequent UP states. For the second
method, the DOWN states from the original HMM were split
into even and odd subsets. Once again, two new models were
trained using these two subsets and their subsequent UP states.
Finally, these four (first half, second half, odd and even) models
generated using these subsets of the original data were compared
against the initial HMM to check the consistency of the results
(electronic supplementary material, figure S3). The state sequence
for each epochwas obtained for each of thesemodels and eachwas
compared to the original HMM. The state sequence gives us the
most likely hidden state at each observation bin, using a 1 ms bin
size. Using only UP states that contained a transition between
UP-1 and UP-2, we found the percentage of bins that had the
same value as the original HMM. This was then averaged over
datasets. The average percentage agreement was similar for each
of the four different subsets, with 96.0% agreement for the odd
model, 95.8% for the even model, 96.0% for the first half model
and 95.6% for the second half model.

To investigate how much the neuron dynamics affected the
results of the states detected by the HMM, we performed two
types of shuffling of the unidimensional input data: the data
within each subtype found by the original HMM was shuffled
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(within subtypes) and the data within the entire UP state was
shuffled (entire UP state). This was then compared to the results
from the original model. Each shuffling method was performed
10 times. Additionally, neuron IDs were randomly shuffled
(neuron IDs). The 10 shuffles were compared against the original
HMMtodeterminehowmuch theneuron IDs influenced the results
(electronic supplementary material, figure S4a). Similar to the pre-
vious section, the percentage of bins from the state sequence that
were the same between the shuffled HMM and the original HMM
was calculated. This used data only from UP states that had a tran-
sition between UP-1 and UP-2 and their preceding DOWN state.
These were averaged over the ten shuffles and the datasets. Per
cent agreement was 70.4% for entire upstate shuffling, 96.5% for
neuron ID shuffling and 94.5% for within subtype shuffling. The
result that shuffling within each subtype and randomization of
neuron IDs did not affect the performance indicated that each sub-
type can be characterized by the neurons that change their firing
activity in each type. In fact, there are a small number of neurons
that change their firing rate between subtypes significantly (elec-
tronic supplementary material, figure S4b). They tended to be
high-firing rate neurons, presumably interneurons. We also con-
firmed that removing these high-firing rate neurons induced
drastic change in the subtype detections (data not shown),
suggesting that these highly active neurons, possibly interneurons,
may play a key role in distinguishing the UP subtypes.
 227
(d) Template matching analysis
As we typically had six or eight segments as parts of the sequence
task, six or eight templates were generated for each session. Each
template starts when the animal departs from one reward point
and ends when the animal arrives at the next one. More precisely,
a segment was defined as the time between arrival at one reward
zone and arrival at the next reward zone, excluding times during
which MFB stimulation was delivered. Each row of the template
comprised the spike counts from one cell within a series of
100 ms bins covering one segment, averaged over all repetitions
of the sequence. Repetitions were first screened for segments that
took inordinately long (i.e. segments during which the rat was
off-task). For each segment, any repetitions during which the tra-
versal time exceeded four times the distance of the quartile from
themedianwere excluded. For the remaining repetitions, each seg-
ment was scaled so that traversal time equalled the median time.
The spikes from these scaled repetitions were then averaged in
100 ms bins [17]. In TM analysis, we used stable neurons that
were active during all parts of experiment and showed task-related
change in their firing rates. In order to measure the similarity of a
target matrix that is selected with the same size and dimensions as
a template, we used CC as defined in [24]. After TM was per-
formed the template was shuffled by randomly permuting
columns (column shuffle) and the TM procedure was performed
again. We used the column shuffle because it typically produced
the most conservative z-score compared to other shuffling (e.g.
bin shuffle, swap shuffle and shift shuffle [24]). This shuffling
was repeated 500 times. The mean and standard deviation of the
correlation values found for each time bin from these shuffled
TM results were used to z-score the original TM result. For the pur-
pose of investigating whether the reactivation happens faster than
the speed of the patterns during behaviour, we performed TM
analysis with a different range of compression factors between 1
and 10× [17]. To assess which compression factor is the best for
the specific dataset, we counted the number of significant peaks
of the TM results (e.g. the peaks> z-score = 5) and selected the com-
pression factor with the maximum number of the peaks. This
procedure was repeated for each template and the template with
the maximum number of the z-score peaks was selected as the
best overall template, and the corresponding compression rate
was selected as the best overall compression rate.
(e) Population vector decorrelation
Sequences of spike times for each neuron were binned using a bin
size of 1 ms to obtain the number of spikes fired within each bin. A
PV, defined as a vector containing the number of spikes fired for
each neuron within a bin, was created and compared against all
other PVs succeeding it within the specific subtype event by com-
puting the Pearson CC. These CCs were then averaged at each lag
across the different UP-1 andUP-2 states. An exponential function,
y ¼ a� expð�ðx=tÞÞ þ b, was fit using the data up to the point
where the correlation slope, which was smoothed using a 25 ms
moving average, changes from negative to positive after an initial
delay. The decay constant, τ, was found from the fit exponential.
( f ) Principal component analysis
To estimate how UP-1 and UP-2 can be distinguishably clustered,
each subtype event was represented by a vector of the mean firing
rate for each neuron within the subtype event and normalized
using z-score. These vectors were then concatenated together to
create a matrix on which the PCA was performed. The data were
then projected onto each principal component and the resulting
scores for the first two principal components were plotted against
each other to produce two clusters for each subtype. The quality of
these clusters was measured using cluster distance [25]. For each
cluster, the centroid was found by computing

ck ¼
PNk

i¼1 xki
Nk

ð4:20Þ

where xki is the two-dimensional projection for the ith subtype
event in cluster k with a size of Nk. Cluster distance

D ¼
P

k Dk

K
ð4:21Þ

was then calculated for each dataset, where

Dk ¼
P

p�Qk
kp� ckkP

p[Qk
kp� ckk �

Nk

N �Nk
, ð4:22Þ

and Qk is the set of all xki . This compares the distances from all
points within cluster k to its centroid to the distance of all other
points to centroid k.
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