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Context-dependent Recognition in a Self-organizing Recurrent Network
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{myung.1, kim.315}®@osu.edu

Abstract

Cognition of an object depends not only upon the sensory
information of the object but also upon the context in which
it occurs, as demonstrated in many psychology experiments.

Although there has been considerable amount of research in
cognitive science that demonstrates the importance of
context. seldom has this research concerned specific
computational mechanisms for learning and encoding of
context. As context is largely an integration of the past up to
the present, some form of information about the past stimuli
must be abstracted and stored for a certain period of time so
as to be used in the interpretation of the present stimulus. In
this modelling approach we explore such mechanisms. In
particular, we describe an unsupervised, sparsely connected,
recurrent network that creates its own codings of input
stimuli on ensembles of network units. Moreover, it also self-
organizes itself into a short-term memory system that stores
such codings. Simulations demonstrate the context-
dependent recognition performance of the network.

Introduction

The study of context-dependent recognition has long been a
focus of cognitive psychology, for example, in visual and
auditory perception (e.g., Labov, 1973), speech perception
(Maslen-Wilson, 1975), word recognition and recall
(Sweeney, 1979), and sentence processing (Tyler &
Maslen-Wilson, 1977). The top panel of Figure 1 shows
examples of context-dependent recognition. Here the
surrounding letters (numbers) determine the interpretation
of the middle letter (number) (Hunt & Ellis, 1974). The
bottom panel illustrates yet another context effect, which we
might call a "mental hysterisis” effect. In this figure
ambiguous pictures in the middle of the series are perceived
differently, as a man's face or as a woman, depending upon
whether the series is viewed from left to right, or in the
opposite order, respectively (Fisher, 1967). These examples
demonstrate that the same sensory stimulus gives rise to
multiple, intenally evoked interpretations of that stimulus,
depending upon the context in which it occurs. In contrast
to such numerous demonstrations of the importance of
context, specific computational mechanisms for learning
and encoding of context has yet to be well understood. As
context is largely an integration of the past up to the present,
a minimal condition for a system to exhibit context-
dependent recognition is that some form of information
about the past stimuli be abstracted and preserved for a
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period of time so as to be used in the interpretation of the
present stimulus. In this modelling approach we explore
such mechanisms.

Hebbian Learning and Assembly Coding

According to the Hebb rule (Hebb, 1949), two neurons that
tend to fire repeatedly in close temporal proximity are likely
to develop an excitatory synaptic connection between them
so that when one of the pair gets excited later by an input,
the other will also get excited through the connection. A
congregation of such interconnected, mutually excitatory
neurons, all induced by the same input, is called a cell
assembly which itself is a distributed internal representation
of the input. We might then view the activation pattern of
the cell assembly as the neural code for the input stimulus,
On the other hand, in psychology of perception, what an
observer perceives internally for an externally presented
input is called a percept. To the observer the percept is
his/her mental interpretation or meaning of the input. How
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Figure I. Examples of context-dependent recognition
(After Hunt & Ellis, 1975; Fisher, 1967).
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might percepts then be represented in the cognitive system?
We make the standard and relevant assumption, as other
researchers (Anderson & Murphy, 1986; Elman, 1990), that
for a given sensory input, the percept is an activation pattern
that has arisen in the cognitive system as a result of the
input, that is, the neural code of that input.

In this paper we describe a neural network that finds its
own neural codes for input stimuli without external teaching
signals or internal error-correcting signals but rather, self-
organizes itself into a short-term memory system that
maintains internal representations of inputs in the network
for a short-period of time. In other words, our network
seems to meet the forementioned condition necessary for
context-dependent  recognition  performance.’' The
following simulations bear out this hypothesis, showing that
the network indeed exhibits such performance, in particular,
context-dependent recognition of ambiguous objects and a
mental hysterisis effect.

Simulations

The Network

The network, similar to the one in Levy, Wu and Baxter
(1995), is a McCulloch-Pitts based recurrent network with
asymmetric, sparse random connections. Network
connectivity, which is defined as the probability of any two
neurons being connected, is 0.05. A portion of the network
units called "external” units is used to encode input stimuli.
The rest called "internal" units receive no inputs directly but
instead, they are activated through their connections to the
external units as well as recurrent connections among
themselves. The activation pattern over the internal units
that has arisen as a response to an input is interpreted as the
internal representation or percept of the input stimulus. The
external units are also recurrently activated, but they are not
counted during decoding. The firing (z = 0 or 1) of any
given unit at time t is determined by
Yow,(t-1)z,(t-1)
Tow,(t-Dz,-D+K, Lz (- DKL)

z ()= 1 if either

or x,)=1

and z(t) = 0 otherwise. In the equation w; (0 < w; < 1) is
the connection weight between unitsiand j, 8 (0 <6 < 1) is
a threshold, K, (=0.007) and K, (=0.0032) are delayed- and
feedforward-inhibition constants, respectively, and x, (= 0

! Here we distinguish between temporal context and spatial
context. The present study primarily concerns modeling of
temporal context. An example of modeling of spatial context
is Anderson and Murphy's (1986) brain-state-in-a-box model
of context-dependent classification.

=0
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or 1) is the activation of input unit i.  The connection
weight is modified according to a Hebbian-type, associative
rule (Levy, 1982)

w+D)=(-g)w ()+ez@)((z@0-1)-w, (1)
where € (=0.02) is a learning rate.

Context-dependent Recognition of Ambiguous
Objects

Methods. The network consisted of 90 external units and
710 internal units, and two categories of artificial stimuli
were used as training inputs. A total of nine input vectors
of size 90 were generated as follows. Each input vector was
made up with 10 ON units (x;=1) and 80 OFF units (x;=0).
No overlap was allowed between any two of the nine
"orthogonal” vectors. Four of these inputs were designated
as category A stimuli indicating Al, ..., A4, and another
four as category B stimuli indicating BI, ..., B4. The
remaining input denoted as W was the ambiguous stimulus
that was included in both categories. In other words,
category A consists of five stimuli, {Al,..., A4, W (= A5)}
and category B consists of five stimuli, {Bl,..., B4, W (=
B5)}. Note that because of the non-overlapping coding
scheme, all nine stimuli were equally dissimilar or similar to
one another and consequently, the present distinction
between the two categories was completely arbitrary. The
network was trained in blocks of 50 stimuli that belonged to
the same category, either A or B, and that were randomly
selected with equal probability (0.2) from the five category
stimuli.  The network received 100 blocks of training, of
which a half was category A blocks and the other half was
category B blocks. The two types of blocks were randomly
mixed. The idea behind this training procedure was that
during training, stimuli from the same category would be
associated with one another so "learmed" similarities
between them would be developed and represented in the
internal units. The neural code for a given input stimulus
was defined as the pattern of activations over the 710
internal units arising in response to the input during
training. As activation patterns varied across repeated
presentations of the same input, the neural code was
computed as an average activation across the last five
presentations of that input. At the end of the 100th block,
the connection weights were fixed and network
performance was evaluated.

Results. To test network performance, a test stimulus in a
given context was presented as an input to the network, and
then the resulting activation pattern over the internal units
was compared to the forementioned neural codes. To obtain
recognition probability, an ensemble of 100 independently
trained networks was created, and each network received
100 training blocks with different initial weights and



randomization of input stimuli. Performance of each
network was tested separately as follows. A test input was
deemed to be recognized as one of the nine stimulus
members whose neural code had the greatest pattern
similarity” to the activation pattern over the internal units
responding to the test input. Using this definition,
recognition probability was estimated as a proportion of the
100 networks in which the test input was recognized as a
particular stimulus member.

Context-dependent recognition performance of the
network is shown in Figure 2. The lightness of each
rectangle represents recognition probability of a test input
(ordinate) as a stimulus member (abscissa). The simulation
included three conditions: without-context, with-context,
and mixed-context. The left panel shows the result from the
without-context condition in which the ambiguous stimulus
(W) was presented to the network for recognition in the
absence of any context. That is to say, because stimulus W
was the first item of the input sequence, it could be a
member of category A (AS) or category B (BS5). As
expected, the network was undecided between the two
stimulus members, specifically, recognition probabilities
being estimated as 0.52 and 0.48 for A5 and BS,
respectively. The panel also shows that for the
unambiguous stimuli in the input sequence such as A4 and
A3, the network had no difficulty recognizing them
correctly. A key demonstration of context-dependent
recognition is shown in the middle panel for the with-
context condition. Here, the ambiguous stimulus W was
presented following four category A stimuli, Al through
A4. In this case, about two thirds of the time (i.e.,
probability of 0.67), the network recognized W as a member
of the category of the preceding stimuli, that is, A5. The
right panel shows the result from the mixed-context
condition. Here, a random mixture of category A and B
stimuli was presented followed by stimulus W (so context
information was inconclusive). As expected, recognition of
the ambiguous stimulus was blurred, with recognition
probabilities of 0.54 and 0.46 for A5 and B5, respectively.
To summarize, these results together confirm that the
network can learn and use context to interpret ambiguous
stimuli.

Analysis of Firing Patterns. To gain further insight into
the underlying mechanisms of context learning in the
network, we performed a detailed analysis of firing patterns.
Recall that under Hebbian associative learning, "cell"
assemblies are to be formed during training in the network.
Indeed this prediction was confirmed. An analysis of
between-unit correlations of firing activities of the 710
internal units can be summarized into the following three

? Pattern similarity between two vectors, a and b, is defined

as sim(a,b)= Sab,/ /)";afibf. (0<a,b, <1).
i=] i=] =]
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Figure 2. Simulation of context-dependent recognition of
ambiguous objects. Recognition probabilities for the two
critical cells in each condition are as follows:
P(A5|W)=0.52 and P(B5|W)=0.48 for Without-context;
P(AS|W)=0.67 and P(B5|W)=033 for With-context;
P(A5|W)=0.54 and P(B5|W)=0.46 for Mixed-context.

observations.

First, we identified twenty-nine such assemblies. These
mutually exclusive assemblies, whose sizes varied from a
maximum 49 to a minimum 7, account for about 91% of all
internal units. Cell firing of the units belonging to the same
assembly is highly correlated with mean correlations
ranging from 0.74 to 0.93. In other words, network units
within an assembly tend to fire in unison.

Second, the analysis shows that each of the twenty nine
assembles has its own firing selectivity, responding
exclusively to a particular input stimulus, but never to other
stimuli. In this sense then, we might view these assemblies
as internal representations of the input stimuli, Whenever a
particular stimulus is presented as an input to the network,
the corresponding assembly of internal units would respond
by turning themselves on — in unison — thus recognizing
the stimulus.

Third, the analysis also reveals that there are three to four
assemblies responding to a given input stimulus and, most
interestingly, that each of the assemblies was bestowed with
its own temporal selectivity. In other words, these
assemblies fire at different time lags, one following another,
after the input is presented to the network. To illustrate,
suppose that stimulus A1 is presented to the network at time
t. Then, assembly AS1 would fire at time (t+1), assembly
AS2 at time (t+2), and assembly AS3 at time (t+3). This
allows the network to maintain an internal representation of
that stimulus for a few time steps by keeping it circulating
among the assemblies. An important implication of this
observation is that the self-organizing dynamics of the
network somehow rendered itself into the creation of a
time-delayed circuit that mimics short-term memory!

Figure 3 shows network firing during testing, that
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Network Unit (Sorted)

Figure 3. An example of network firing. Network units are sorted according to their assembly membership.

illustrates the above observations. In the figure each dot
denotes firing of a particular network unit at a given time.
Shown in the left-most block is firing of the 90 external
units encoding the nine input stimuli. For example, the
figure indicates the first seven inputs being A1 — A3 — A2
— Al -5 A2 - W — A4. Firing of the 710 internal units,
grouped according to their assembly membership, is shown
in the right blocks of the figure. The dark horizontal lines
indicate firing of assemblies of different sizes. Also note the
stimulus-specific selectivity of these assemblies. For
example, the three assemblies in the block denoted by Al
respond exclusively to stimulus Al, the next four to A2, the
next three to A3, etc. The block U” includes the units that
apparently belong to none of the assemblies.

Figure 3 also illustrates the short-term memory
characteristic of the network, for example, by the successive
firing pattern of the three assemblies associated with
stimulus A1. Note that every time this stimulus is presented
as an input to the network and then removed, these
assemblies continue to fire for a few more time steps,
meaning that information about that stimulus remains in the
network for a while. The significance of this mechanism for
context learning is obvious. That is, at any given time, firing
activities of the network include not only the activity that
has arisen as a response to the present stimulus but also
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activities pertaining to the past few stimuli. It is this
mechanism that enables the network to interpret the present
stimulus in the context of the past stimuli, thus exhibiting
context-dependent recognition.

Mental Hysterisis Effect

In this section we describe results from another simulation
of the mental hysterisis effect using a network similar to the
one used above.

Methods. The network consisted of 84 external units and
616 internal units. A total of twenty input vectors that
mimic the kind of stimuli used in studies of the mental
hysterisis effect were generated as follows. The first input
vector of size 84 was made up with eight ON units (x=1,
i=1,...,8) and 76 OFF units (x,=0 , i=9,...,84). The second
input vector of the same size was created from the first
vector by shifting its eight ON units to the right by four
units (i.e., x=1, i=5,..,12; x, = 0, i = 1,...4, 13,...84).
Similarly, the remaining eighteen vectors were created by
successively shifting the eight ON units to the right by four
units. This overlapping-coding scheme means that a pair of
successive input stimuli would be more similar to each other
than to other stimuli, thus mimicking the face-women
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Figure 4. Simulation of the mental hysterisis effect. The
error bars represent 95% confidence intervals.

pictures in Figure 1. The first seven inputs indicating C1,
..., C7 were designated as category C stimuli; the next six
inputs indicating CD1,..., CD6 as both categories C and D;
and finally, the remaining seven inputs indicating D7, ..,
DIl as category D stimuli. In other words, category C
contained thirteen stimuli, and six of them were also
members of category D, and vice versa. The network was
trained in blocks of 65 stimuli of either category C or D.

Each block was made up with five repeated presentations of
the same sequence of 13 inputs, that is, either {C1,....C7,
CD1,..,.CD6} for category C blocks or {CDI,...,.CD6, D7....,
D1} for category D blocks. The network received 100
training blocks. The neural code for each input stimulus was
defined using the 616 internal units similarly as in the
previous simulation.

Results. Network performance was evaluated by presenting
to the network a test stimulus embedded in one of two
sequences and then comparing the resulting activation
pattern over the internal neurons to the neural code of that
stimulus. Sequence 1 consisted of 20 stimuli {C1 —» ..—
C7 - CD1 —» ...=» CD6 — D7 —...— D1}, and sequence 2
was the reverse of sequence 1. Recognition probability was
estimated, again as in the previous simulation, using an
ensemble of 100 independently trained networks. For each
of these networks, an input stimulus was assumed to be
recognized as a category C member if the activation pattern
over the internal units was more similar to the neural code
of the prototypic stimulus of category C (i.e., C4) than the
neural code of the prototypic stimulus of category D (i.e.,
D4). Figure 4 shows recognition probability curves
obtained for each sequence. The non-overlapping feature of
the two curves reveals a mental hysterisis effect. That is,
note that stimulus CD4 was recognized more often as a
category C member (60% time) than as a category D

member when the stimulus was preceded by category C
members (sequence 1). In contrast, when the same stimulus
was preceded by category D members (sequence 2), now it
was recognized more often as a category D member (60%
time) than as a category C member.

Discussion and Conclusion

Perhaps the most important aspect of our network that
deserves comment and distinguishes ours from previous
network models of context learning is the self-organizing
creation of a short-term memory system. As discussed
earlier, short-term memory is central to modeling of
temporal contexts. Any recurrent network with asymmetric
connections would exhibit short-term memory as the
recurrency lets the network retain information about a few
past stimuli (see Hertz, Krogh, & Palmer, 1991, for a review
of recurrent networks). A popular way to model temporal
contexts has been to set up what are called context units in a
recurrent network. Such units receive time-delayed
feedback signals from other part of the network or from an
external source such as the experimenter. Therefore, the
function of these context units, and even their connectivity
to other units of the network, are explicitly defined or
manually imposed by the experimenter. Examples of
network models based on this approach are Jordan's
network (1989), Elman's recurrent network of speech
perception (1990), McClelland and Rumelhart's (1981)
interactive activation models of letter perception (Rumelhart
& McClelland, 1982; McClelland, 1991), and Wang and
Arbib's (1990) sequence learning network, that uses a dual-
neuron oscillator design for short-term memory, rather than
a delayed feedback circuit. In contrast, our network creates
its own context units, which preserve information about the
recent past stimuli, through the locally adaptive process
without any external mediation. Note the self-organizing
nature of the network: the specific function and roles of the
context units are not given a priori, but instead, we let the
network develop its own representation of context.

Another aspect of our network that deserves comment is
sparse connectivity. Because each unit is connected to a
very small portion (5%) of the network, the unit would
develop a representation of local events, reflecting only the
activities of the units which it is connected to. Furthermore,
if a subgroup of these interconnected units happens to fire in
close temporal proximity, then Hebbian associative learning
assures that this group of units will form an ensemble,
through the reinforced, mutually excitatory connections.
This way, the network produces ensembles that are locally
sensitive but largely independent of one another. As
discussed earlier, such ensembles were crucial to context-
dependent recognition in our network. Recently, similar
networks to this one have been successfully applied to
simulations of other context-dependent phenomena,
including sequence disambiguation (Minai, Barrows &
Levy, 1994), sequence prediction (Levy & Wu, 1996), and
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short cut finding (Levy, Wu & Baxter, 1995).

In conclusion, the main contribution of the present study
is its demonstration that a self-organizing recurrent network
based on Hebbian associative learning can create its own
context units bestowed with short-term memory, that is
central to modeling of context-dependent recognition.
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