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Abstract

Since binary data are ubiquitous in educational, psychological, and social
research, methods for effectively exploring the underlying factor structure of
such data are still undergoing development (Schilling and Bock 2005; Maydeu-
Olivares and Joe 2005; and Song and Lee 2005). Two distinct types of meth-
ods have been developed, those relying on limited information from low-order
marginal and joint frequency responses and those relying on the frequencies
of all distinct item response vectors. The latter approach, a full information
approach to binary factor analysis, has good optimality properties but is com-
putationally demanding. Meng and Schilling (1996) developed a Monte Carlo
EM (MCEM) fitting method for this model. Compared with the Gauss-Hermite
method proposed by Bock and Aitkin (1981), the MCEM method is more sta-
ble and computationally easier. Under the MCEM framework, the E step is
completed by approximating the conditional expectations through observations
that are simulated by Markov Chain Monte Carlo methods, while the M step
is completed by conditional maximization. In the E step proposed by Meng
and Schilling (1996), respondents with the same response pattern are given the
same latent factor scores. When there are many very difficult or easy items,
this may dramatically decrease the number of response patterns and potentially
cause the method to become less stable and accurate. This paper proposes a
new E step for the MCEM method to avoid this problem. Simulation studies
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verify that the new method yields improved results. Possible follow up research
also is discussed.

1 Introduction

Questionnaires and tests that aim to measure attitude, personality, and abilities are

widely used in educational, psychological, and social research. Examples of such

variables include agree or disagree items and right or wrong test items. Respondents’

responses to such items are often dichotomous and are hypothesized to be determined

by a small number of underlying latent factors. There are well established methods,

such as exploratory and confirmatory factor analysis, that can be used to explore

the latent factor structure of continuous variables. However, methods for exploring

the underlying factor structure of binary variables are not equally well developed.

Existing approaches fall into two main categories: those based on limited information

obtained from first and second-order marginal and joint frequencies (e.g., Christof-

fersson 1975) and those which fit latent probit or logit models that use the frequencies

of all distinct response vectors (e.g., Bock and Aitkin 1981). The latter approach,

which may be called the full information binary factor model, is the focus of the

current paper.

Under the probit latent variable model, the probability of a correct response for

a single item is a normal-ogive function of a respondent’s scores on the hypotheti-

cal latent factors. The model is thus a multidimensional normal-ogive item response

model or, alternatively, a multivariate latent probit regression model,with the latent

factors serving as regressors. This method can also be generalized into more com-

plicated situations like polytomous data or mixed data (e.g., Shi and Lee 1997, Shi

and Lee 2000, Lee and Song 2004). Meng and Schilling (1996) developed a Monte

Carlo EM (MCEM) fitting method for this model. Compared with the Gauss-Hermite

method proposed by Bock and Aitkin (1981), the MCEM method is more stable and

computationally easier. Under the MCEM framework, the E step is completed by ap-

proximating the conditional expectations through observations that are simulated by

Markov Chain Monte Carlo methods, while the M step is completed by conditional

maximization. In the E step proposed by Meng and Schilling (1996), respondents

with the same response pattern are given the same latent factor scores. It can be
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hypothesized that when there are many difficult or easy items, this can dramatically

decrease the number of model-based response patterns, causing the method to be less

stable and accurate. To alleviate this problem, in this paper we propose a new E step

for the MCEM method, and report on simulation studies that evaluate the proposed

new method.

2 Model Description

In the probit latent variable model, the probabilities of correct response for items are

determined by respondents’ latent factors through normal-ogive functions of a latent

response variable y that is, in turn, generated by Thurstone’s common factor model

with d factors

yij = α1jZi1 + · · ·+ αdjZid + εij (1)

and a residual uniqueness or error term. For each of J(J > d) latent response

variables, yj, respondent i obtains a correct manifest response to item j when his

latent response yij equals or exceeds a threshold parameter γj. Only the binary

response is observed, and there are J(> d) binary variables in total. Assuming that

εij follows a N(0, σ2
j ) distribution, the probability that respondent i with latent trait

zi = (zi1, · · · , zid)
T correctly responds to item j is given by

P{uij = 1|zi, αj, σj} = P{yij ≥ γj|zi, αj, σj} = Φ(zT
i aj + bj) (2)

where Φ is the CDF of N(0, 1), aj = (a1j, · · · , adj)
T with amj = αmj/σj, (m =

1, · · · , d), and bj = −γj/σj. In the context of test items, bj is usually called the item

difficulty, amj is called the item slope for factor m, and αmj is called the item factor

loading for factor m. These parameters are collected into the vector b = (b1, · · · , bJ)

and the matrix A, which is a d× J matrix whose jth column is aj. Then θ = {A, b}
is the set of parameters.

Given the linking function in (2), in this model it is also assumed that conditional

on a respondent’s latent trait or factor score, and the model parameters, responses to

different items are independent of each other. When the number of respondents, n,

is large relative to the number of items, Bock and Aitkin (1981) also proposed to sort
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the response patterns and count the number of occurrences, si, of distinct patterns,

ui, i = 1, · · · , n0. In this setup, i now indexes distinct response patterns rather than

respondents. Thus in the probit latent variable model, we take U as the observed

response patterns and θ = {A, b} as the set of parameters to be estimated. Maximum

likelihood is the standard method used to estimate the parameters.

The likelihood function is needed to generate a methodology for obtaining the

parameter estimates. Under the assumption of conditional independence of responses

to different items, the likelihood function based on response patterns, ui, is

Li(θ|ui, zi) =
J∏

j=1

[Φ(zT
i aj + bj)]

uij × [1− Φ(zT
i aj + bj)]

1−uij (3)

Then the likelihood function of model parameters given all the responses patterns

and latent factors from all n respondents is

L(θ|U,Z) =

n0∏
i=1

Li =

n0∏
i=1

{
J∏

j=1

[Φ(zT
i aj + bj)]

uij × [1− Φ(zT
i aj + bj)]

1−uij}si (4)

where U is the n0×J response matrix, and Z is the n0×d latent factor score matrix.

The fundamental estimation problem is that the above likelihood function involves

latent variables Z which can not be observed, and hence the likelihood function can

not be maximized directly. In order to make progress, as in maximum likelihood

factor analysis for continuous variables, in the probit latent variable model it is typ-

ically assumed that data have been obtained from a sample of respondents drawn

from a population with a certain multivariate distribution of the latent traits Z. In

the exploratory factor analysis context, it is typically assumed that z1, · · · , zn0 are

independently and identically distributed according to the standard d-variate nor-

mal distribution N(0, Id). Then the EM method is used to maximize the likelihood

function using the standard E and M steps.

E step: In this step, the expectation of (3) is taken with respect to Z, eliminating

Z from the likelihood function:
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Li(θ|U) = EZ{
J∏

j=1

[Φ(ZzT
i aj + bj)]

uij × [1− Φ(zT
i aj + bj)]

1−uij} (5)

M step: In this step the unconditional likelihood function is maximized:

L(θ|U) =

n0∏
i=1

{EZ{
J∏

j=1

[Φ(zT
i aj + bj)]

uij × [1− Φ(zT
i aj + bj)]

1−uij}}si (6)

These two steps are iteratively repeated until a specified convergence criterion is met.

At this point, the maximum likelihood estimates (MLE) of all the parameters are

available.

The probit latent variable model involves two indeterminacy problems. The first

one is an indeterminacy of scale and location. The second one is the standard ro-

tational indeterminacy of the multiple factor model. To fix the first indeterminacy

problem, the usual choice is to set the mean vector of the latent distribution to 0 and

the correlation matrix of the factors to the identity matrix I (?, Schilling and Bock

2005). To solve rotational indeterminacy, additional conditions have to be imposed on

the model. In exploratory factor analysis, these conditions are usually imposed in an

arbitary but suitable way so that the estimation method can be implemented without

problems. A useful method is to restrict the factor loadings so that αjk = 0, k > j

(Schilling and Bock 2005). The resulting initial factor loading matrix is often not in-

terpretable, so that it may subsequently be transformed according to typical rotation

criteria, for example, the varimax criterion. In the restricted case of confirmatory fac-

tor analysis, the restrictions are given by the nature of the application (Christoffersson

1975).

We now turn to the methodology of interest, the MCEM approach to the binary

factor analysis model.

5



3 MCEM Approach

For the MCEM method, the log function of equation (4) is taken, to obtain the

log-likelihood function

logL(θ|θ(t), U) =
J∑

j=1

{
n0∑
i=1

si{uijlogΦ(zT
i aj +bj)+(1−uij)log(1−Φ(zT

i aj +bj))}} (7)

The E-step involves computing the expectation of logL(θ|θ(t), U) over Z given U and

the parameter estimate, θ(t), from the previous M-step. That is

E(logL) =
J∑

j=1

{
n0∑
i=1

si{uijE[logΦ(zT
i aj +bj)]+(1−uij)E[log(1−Φ(zT

i aj +bj))]}} (8)

where the expectations are with respect to f(zi|ui, θ
(t)), i = 1, . . . , n0, which are the

posterior distributions of zi with response pattern ui, i = 1, . . . , n0. To use the Monte

Carlo method to calculate this expectation, draws from the above posterior distribu-

tion are taken.

As pointed out before, the prior distribution for zi is d-variate standard normal

distribution, N(0, Id). The likelihood function for zi based on response pattern ui is

L(zi|ui, θ
(t)) =

J∏
j=1

[Φ(zT
i aj + bj)]

uij [1− Φ(zT
i aj + bj)]

1−uij (9)

Then the kernel of the posterior distribution for zi is

f(zi|ui, θ
(t)) ∝ L(zi|ui, θ

(t))N(0, Id) (10)

Although the posterior distribution is complicated, a method like Metropolis can be

used to make draws from it. Once K draws are available, {zk,i, k = 1, . . . , K}, from

f(zi|ui, θ
(t)), i = 1, . . . , n0, these can be used to form the Monte Carlo estimates for

the expected log-likelihood function. Specifically, (8) can be replaced by

E(logL) =
J∑

j=1

{
n0∑
i=1

si{uij

K

K∑

k=1

logΦ(zT
k,iaj + bj) +

1− uij

K

K∑

k=1

log(1− Φ(zT
k,iaj + bj))}}

(11)
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The M step then maximizes this estimated expected log-likelihood function by the

Newton-Raphson method to obtain parameter estimates for the next iterate.

Although it is possible to use the Metropolis method make draws from any distri-

bution, including the posterior distribution f(zi|ui, θ) used here, as long as a function

proportional to the density can be calculated, its efficiency can be improved by tak-

ing into account the properties associated with different distributions. To improve

this point for current model, Meng and Schilling (1996) proposed to further augment

{U,Z} to {U,Z, X}, where the new data X = (xij) are assumed to have independent

conditional normal distributions given Z:

xij|zi, aj, bj ∼ N(zT
i aj + bj, 1) (12)

Then equation (2) can be expressed as

Pr(uij = 1|zi, aj, bj) = Pr{xij ≥ 0|zi, aj, bj} = Φ(zT
i aj + bj) (13)

In other words, xij is defined so that uij = 1(xij≥0), where 1A is the indicator function

of a set A. If xi was observed, the new posterior distribution for zi will be

f(zi|xi, θ) ∝ N(0, Id)
J∏

j=1

N(xij; z
T
i aj + bj, 1). (14)

Rearranging the kernel of this posterior distribution, it follows that

zi|xi, θ ∼ ind.Nd(V A(xi − b), V ), i = 1, . . . , n0 (15)

where V = (I + AAT )−1. Because given Z, U , and θ, xij’s are independent N(zT
i aj +

bj, 1) truncated at the left by zero if uij = 1 and at the right by zero if uij = 0,

drawing from f(X|Z,U, θ) is the same as drawing from n0 × J univariate truncated

normal distributions. These facts suggest the use of the Gibbs sampler to iterate

between draws from f(θ|X, U, θ),which is given by (15), and from f(X|θ, U, θ) until

the equilibrium distribution f(X, Z|U, θ) is reached.
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If both X and Z were observed, then the new log-likelihood function for θ will be

logL(θ|X, Z) =
J∑

j=1

n0∑
i=1

silog(N(xij; z
T
i aj + bj, 1)) ∝

J∑
j=1

n0∑
i=1

si
−1

2
(xij − zT

i aj − bj)
2.

(16)

From this log-likelihood function, it can be seen that the estimation of θ, conditional

on X,Z, can based on the sufficient statistics,{ZT Z,ZT X, 1T X, 1T Z}. The M step

here is equivalent to the MLE estimation of J separate multiple regressions, by consid-

ering the xj = (x1j, . . . , xnj)
T as dependent variables, and the Z as predictors. Thus

this E step only requires computing the conditional expectations of those sufficient

statistics. The M step is also very easy to implement.

Following Meng and Schilling (1996), let xT
i be the ith row of X, i = 1, . . . , n0.

Then

xi|θ ∼ iidNJ(b, I + AT A). (17)

Further, let e(ui|θ) = E[(xi − b)|ui, b, A] and D(ui|θ) = E[(xi − b)(xi − b)T |ui, b, A].

Then it can be shown that

E[1T X|U, θ] =

n0∑
i=1

si[e
T (ui|θ) + bT ] (18)

E[1T Z|U, θ] = [

n0∑
i=1

sie
T (ui|θ)]AT V T (19)

E[ZT X|U, θ] = V A

n0∑
i=1

si[D(ui|θ) + e(ui|θ)bT ] (20)

E[ZT Z|U, θ] = n ∗ V + V A[

n0∑
i=1

siD(ui|θ)]AT V T (21)

Suppose that K draws {Xk, Zk, k = 1, . . . , K} from f(X, Z|U, θ) have been ob-

tained. Meng and Schilling (1996) suggested that there are two ways to use these

draws in the E step. The first way is simply to replace the sufficient statistics

{ZT Z, ZT X, 1T X, 1T Z} by their corresponding sample averages. The second way

is to use only {Xk, k = 1, . . . , K} to compute
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ê(ui|θ) =
1

K

K∑

k=1

[xi,k − b] (22)

and

D̂(ui|θ) =
1

K

K∑

k=1

[xi,k − b][xi,k − b]T (23)

and substitute them for e(ui|θ) and D(ui|θ) in (18)-(21).

To summarize, the MCEM method developed by Meng and Schilling (1996) works

as follows

E Step: Make K draws from each posterior distribution f(xi, zi|ui, θ). Estimate

ê(ui|θ) and D̂(ui|θ) by equations (22) and (23). Then substitute them for e(ui|θ)
and D(ui|θ) in (18)-(21) to obtain the expectation of sufficient statistics.

M Step: Estimate the parameters by equations below

A = (ZT Z − (1T Z)T (1T Z)/n)−1(ZT X − (1T Z)T (1T X)/n) (24)

b = (1T X − 1T ZA)/n; (25)

They found this to be a successful methodology, although it has been suggested

more recently that adaptive quadrature would be more effective (Schilling and Bock

2005). Staying within the general framework of Meng and Schilling (1996), we now

develop an alternative potential improvement.

4 Modified MCEM

As noted previously, when the number of respondents, n, is large relative to the

number of items, Bock and Aitkin (1981) proposed to sort the response patterns and

count the number of occurrences of distinct patterns. Meng and Schilling (1996)

also adopted this strategy in their MCEM approach, which has the effect that every

respondent who has the same pattern of observed responses also is assumed to have
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identical latent trait scores. Although this simplifying assumption does make the

likelihood equation and the M step easier to deal with, a potential disadvantage of

doing so is that some information is lost. This information might be obtainable from

the E step if it were possible to allow respondents to obtain different latent trait scores

drawn from the same posterior distribution, especially when items are very difficult

or very easy and hence many respondents will share the same response patterns.

We thus propose a modified MCEM procedure to alleviate this drawback. We treat

respondents that have the same response pattern, ui, as having the same posterior

distribution, f(zi, xi|ui, θ), but we do not force such respondents to have exactly the

same latent trait scores. This is achieved as follows. In the E step, for subjects with

the same response pattern ui, we make K draws for each respondent from the same

posterior distribution f(zi, xi|ui, θ). We repeat this procedure for all the response

patterns. Then in the M step, we treat all the
∑n0

i=1 si×K draws as a whole and use

them to estimate all the item parameters θ = {A, b}. The potential benefits of doing

so are that it may be possible to obtain better parameter estimates, and potentially

the MCEM computations may be more stable when there are many very difficult or

very easy items or binary variables.

The modified MCEM (MMCEM)method works as follows

E Step: Respondents having the same response pattern are treated as having the

same posterior distribution, f(xi, zi|ui, θ), but not as having exactly the same

value for latent variables. For each respondent with a given response pattern,

ui, K draws are taken. Totally there are K × si draws from the posterior

distribution f(xi, zi|ui, θ) and
∑n0

i=1 si ×K = K × n draws for the E step.

M Step: The parameters are estimated by treating X as dependent variables, and

Z as predictors using linear multiple regression.

As usual, the E and M steps are iterated until a convergence criterion is met.

5 Simulation Study

In the last section, we introduced a modified procedure for the E step of MCEM

approach. We expect that this MMCEM method will work better when there are some
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very difficult or very easy items, but this conjecture needs empirical evaluation. In

this section, we describe four simulation studies aimed at evaluating the performance

of the proposed MMCEM method as compared to the original MCEM method. We

focus on the convergence rates of these alternative procedures as well as accuracy of

the parameter estimates. Convergence is monitored by plotting the largest parameter

change against the EM iteration, and accuracy was assessed by computing the mean

square error (MSE) between the estimated and generated loadings for each factor.

Before discussing these simulation studies, we need to evaluate the Gibbs sampler

to decide how to set up the E step. Figures 1 show that the Gibbs sampler mixes

very fast in our setup, with autocorrelations typically decaying to near zero after five

iterations. To be more conservative, in the simulations below we discard the first 15

iterations, and then choose every tenth iteration afterward until the required number

of draws is reached.

5.1 Two Factor Simulations

To evaluate the performance of both methods in a low dimensional situation, we

introduce two simulations of 32 item binary response tests here.

Simulation 1: 32-item test with factor loadings as shown in table 1. Item difficulties

are set to zero. 1500 responses were simulated, yielding 1500 response patterns.

Simulation 2: 32-item test with factor loadings and difficulties are shown in table

1. 1500 responses was simulated, yielding 1130 response patterns.

To assess the estimation accuracy and convergence rate, the original MCEM and

modified MMCEM methods are applied with different specifications to the data gen-

erated from simulations 1 and 2. These specifications balance the total number of

draws in the E step for the two methods.

MCEM: Use 8 draws from the posterior distribution of each response pattern for

simulation 1 and 11 draws for simulation 2, yielding 1500*8=12000 draws for

simulation 1 and 11*1130=12430 draws for simulation 2.

MMCEM: Use 8 draws for both simulation 1 and 2, yielding 8*1500=12000 draws

for both simulations.
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In simulation 1, every subject has their own response pattern. In such a situation,

the two MCEM methods are equivalent. Figure 2, which plots the largest parame-

ter change against the number of iterations, shows that both methods converged in

around 20 iterations. Their mean square errors (MSEs) are also roughly the same,

0.0025 for MCEM, and 0.0023 for MMCEM.

In simulation 2, many subjects share the same response pattern. Thus we ex-

pect that the MCEM method will show more fluctuation and converge slower than

the MMCEM method. Comparing the left panels of Figures 3 and 4, with the fixed

approximate 12000 random numbers in E step, the MMCEM method converges in

around 40 iterations, but the MCEM method shows substantial fluctuation, suggest-

ing nonconvergence. When the number of MCEM draws is increased from 11 to 33

and 55, as shown in the middle and right panels of Figure 3, its fluctuation decreases.

With 55 MCEM draws, its largest parameter change gradually decreases as the num-

ber of iterations increase; it can be considered as converged at roughly 50 iterations.

However, the MMCEM method converges similarly with roughly 1/5 the number of

draws. At convergence, the MSEs of the two methods also are very similar at 0.0047

for MMCEM with 40 draws and 0.0055 for MCEM with 55 draws.

5.2 Five Factor Simulations

To evaluate the performance of the two methods in a higher dimensional situation, we

utilize two five factor models whose specifications are given in Table 2 and as follows.

Simulation 3: 32-item test with factor loadings as shown in Table 2, and item dif-

ficulties set to zero. 1500 responses were simulated, yielding 1500 response

patterns.

Simulation 4: 32-item test with factor loadings and difficulties as shown in Table

2. 1500 responses were simulated, yielding 1270 response patterns.

The MCEM and MMCEM methods are applied to the five factor simulation data.

Again slightly different specifications are used in order to equalize the total number

of draws.

MCEM: Use 8*1500=12000 draws for simulation 3 and 10*1270 =12700 draws for

simulation 4.
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MMCEM: Use 8*1500=12000 draws for both simulations 3 and 4.

For simulation 3, as is expected, and is shown in Figure 5, the convergence rates of

the two methods are basically the same. Furthermore, their MSEs are also very close,

0.0025 for MCEM, 0.0028 for MMCEM. Comparing Figures 2 and 5, it can be seen

that the convergences of both methods with 5 dimensions are roughly the same as

they were in the 2 dimension situation. Their accuracies are also quite similar under

2 or 5 dimensions. These results show that Monte Carlo methods are very suitable

for solving the high dimensional integration associated with the binary factor model.

The convergence rates for simulation 4 are shown in Figures 6 and 7. Again

the MMCEM method converges faster than the MCEM method. As expected, once

converged, their MSEs are also basically the same, 0.004 for MCEM, and 0.0038 for

MMCEM.

6 Discussion

MCEM methods have a number of theoretical strong points, including that they are

very suitable for high dimensional models, that the M steps often allow closed form

estimation, and that they can be easily adapted to various complicated models such

as the mixed data latent variable model (Shi and Lee 2000) and the nonlinear struc-

tural model for hierarchically mixed data (Lee and Song 2004). Of course, these

methods also have disadvantages, including (1) in the E step, random numbers need

to be drawn from a truncated normal distribution, which may be difficult; (2) when

a model involves a lot of missing data, the resulting EM algorithm may have a very

slow convergence rate; and (3) variation introduced by Monte Carlo simulation make

it impossible to obtain any definite values for the likelihood-ratio criterion which is

needed for model testing (Schilling and Bock (2005)). Concerning the last point, Lee

and Song (2004) proposed an approach based on the idea of path sampling (Meng and

Wong 1996), which can be used to compute the observed-data likelihoods associated

with specific models of interest, or their ratios, so that the likelihood ratio or the

Bayesian information criteria (BIC) can be evaluated for model comparison or hy-

pothesis testing. This interesting proposal may be adaptable to the current context,

but so far not many theoretical or simulation results are known on the performance

of this sampling based model comparison approach.
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In conclusion, simulation studies in Meng and Schilling (1996) and Schilling and

Bock (2005) indicate that the MCEM method is more accurate than non-adaptive

quadrature based methods. However, the simulation studies reported in the last

section indicate that the MCEM method proposed by Meng and Schilling (1996) can

be improved when items are very difficult or very easy and hence there may be fewer

response patterns than number of respondents. The Meng-Schilling methodology

requires that respondents having the same response pattern also have the same latent

trait scores. As we have shown, this assumption can be relaxed, yielding a more stable

and accurate MMCEM method that can outperform the original MCEM method.
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Appendix: Tables and Figures

Figure 1: Autocorrelation Plot of Gibbers sampler
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Table 1: Factor Loadings (Difficulties) for Simulation 1 and 2. Other Loadings are 0

Items
1-6 6-12 12-18 18-25 25-28 29-32
F1 F2 F1 F2 F1 F2

0.72 (1.5) 0.41 0.37 0.70 0.29 0.75(1.5)
0.69 (1.6) 0.63(1.6) 0.77(1.3) 0.82(1.2) 0.67(1.3) 0.71(1.0)
0.80 (1.5) 0.75(1.3) 0.76(1.4) 0.67(1.3) 0.81(1.4) 0.69(1.2)
0.73 (1.2) 0.68(1.5) 0.75(1.6) 0.77(1.1) 0.78(1.5) 0.68(1.3)
0.67 (1.2) 0.72(1.7) 0.61(1.3) 0.75(1.5) * *
0.71 (1.6) 0.67(1.3) 0.83(1.1) 0.73(1.6) * *

* 0.78(1.4) 0.70(1.1) 0.81(1.1) * *
* * * 0.62(1.3) * *
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Table 2: Factor Loadings (Difficulties) for Simulation 3 and 4. Other Loadings are 0

Items
1-6 6-12 12-18 18-25 25-32
F1 F2 F3 F4 F5

0.72 (1.5) 0.41 0.37 0.70 0.29
0.69 (1.6) 0.63(1.6) 0.77(1.3) 0.82(1.2) 0.67(1.3)
0.80 (1.5) 0.75(1.3) 0.76(1.4) 0.67(1.3) 0.81(1.4)
0.73 (1.2) 0.68(1.5) 0.75(1.6) 0.77(1.1) 0.78(1.5)
0.67 (1.2) 0.72(1.7) 0.61(1.3) 0.75(1.5) 0.75(1.5)
0.71 (1.6) 0.67(1.3) 0.83(1.1) 0.73(1.6) 0.71(1.0)

* 0.78(1.4) 0.70(1.1) 0.81(1.1) 0.69(1.2)
* * * 0.62(1.3) 0.68(1.3)
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Figure 2: MCEM and MMCEM for Simulation 1
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Figure 3: MCEM for Simulation 2
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Figure 4: MMCEM for Simulation 2
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Figure 5: MCEM and MMCEM for Simulation 3
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Figure 6: MCEM for Simulation 4
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Figure 7: MMCEM for Simulation 4
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