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Butovens Médé — Cognitive & Information Sciences, UC Merced
Jessica M. Ross — Pychiatry and Behavioral Sciences, Stanford Medical School
Michael Spivey — Cognitive & Information Sciences, UC Merced
Kent Gee — Physics and Astronomy, Brigham Young University
Mark Transtrom — Physics and Astronomy, Brigham Young University

Permission to use copyrighted material in Chapters 1 and 4 was automatically
granted by Creative Commons Attribution Licences (CCBY 4.0). Permission
to use copyrighted material in Chapter 3 was obtained by Brill Publishers.
Permission to use unpublished material in Chapter 5 was obtained from all
co-authors. All other material © Shannon Proksch, 2022.

xii



Personal Acknowledgements

To my labmates, Alexandria Pabst, Daniel Comstock, Butovens Médé,
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Rhythms at Small and Large Scales: the Neural Mechanisms of Rhythm
Perception and the Recurrence Dynamics of Large Group Interaction
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Recognizing that understanding the full scope of human cognition and be-
havior is intractable for any one discipline, the field of cognitive science has
embraced the approaches and theoretical background of a diversity of fields,
commonly listed as: philosophy, linguistics, anthropology, neuroscience, arti-
ficial intelligence, and psychology. This dissertation takes a similarly diverse
approach to the study of music cognition and social interaction. In the first
chapter, I review major theories in the neuroscience of musical rhythm per-
ception. In the second, I conduct an experiment to determine how electro-
physiological responses to musical rhythm are impacted by a brain stimula-
tion method that down-regulates target regions of the brain. In the third
chapter, I highlight how social interaction might involve coordination from
low-level physiological signals up to high-level movement and acoustic signals
that can be measured at the individual and group levels. In chapter four, I
present a natural experiment applying nonlinear statistical analysis methods
to acoustic data generated by a musical ensemble, identifying differing recur-
rence patterns dependent upon their mode of interaction. In chapter five, I
extend these methods to a less scripted social interaction through analyzing
the acoustic data generated by crowd sounds at a collegiate basketball game.
This dissertation presents theoretical and experimental work spanning sen-
sorimotor neuroscience, coordination dynamics, and complex systems. This
work is intended to showcase a multiscale approach to the understanding of
human cognition, applying multidisciplinary tools to questions within domains
of music and social cognition.
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Prologue

The brain and body are involved in a constant game of prediction. Our
brain has certain expectations about the way the world will unfold around
us. And our world is full of sensory signals soliciting certain patterns of ex-
pectancies and uncertainties in our brains. If met with unexpected input, our
brains and bodies work together to form new expectations about the world.
Music provides an exceptional playground of expectations and violations for
our brains and bodies to exercise their predictive skills. Any musician could
show you how playing with expectations and violations in melodic or rhyth-
mic patterns will solicit different emotional responses or desires to move along
to the beat. Some musical expectations might even be universal in differ-
ent human cultures, and you don’t have to be a musician to have developed
these expectations already – the American singer Bobby McFerrin led a fan-
tastic demonstration of one of these near universal musical expectations at the
World Science Festival in 2009, in a now famous video about the pentatonic
scale.1

If you watch that video, you will notice that McFerrin communicates a lot
of information with his body, without saying much at all. He jumps in place
to establish a rhythm. He also sings a note out loud, inviting the audience to
sing that note to the beat of his jump. Before we even get to the second note,
the audience has already had to perform a number of cognitive and perceptual
exercises. Their brains had to build an expectation of the beat that they are
seeing and hearing from the stage. Their visual and auditory systems had to
communicate this sensory information from the stage to their motor systems,
and use those sensory signals to entrain, or synchronize their voices to McFer-
rin’s footfalls. The audience even accomplishes the challenging task of flexibly
adjusting their singing to his changing tempos. (This tempo flexibility is some-
thing that many animals find particularly difficult). McFerrin then moves to
the right and introduces a new note. The visual, auditory, and motor sys-
tems of the audience repeat this process of matching sensory expectations to
the singing actions of their bodies. On stage, McFerrin jumps back and forth

1Bobby McFerrin at the 2009 World Science Festival:
https://www.youtube.com/watch?v=ne6tB2KiZuk
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between the two notes, and the audience is relying on sensorimotor couplings
between their brain and body to sing along to the beat, when something excit-
ing happens! McFerrin makes a jump to the right, and without prompting, the
audience instinctively knows and sings the next note! Their brains predicted
what note should happen on that jump, and since they did not hear that note
from the stage, their bodies acted to reduce the uncertainty in the world—and
the entire audience acted so as to make that note come about. They all sang
the note they expected to hear next, and in doing so, their actions brought
the world in line with their sensory expectations. And then, they keep doing
it! The brains and bodies of the audience excel at this careful interplay of
musical prediction and action as they continue singing a pattern of pitches
and rhythms they have never practiced before, even as McFerrin improvises
a tune on top of their voices, and even as he jumps to new ‘notes’ on the far
left and right of the stage. If you were singing along (or imagining singing
along) you may have had the same surprise as the audience in response to this
amazing feat of prediction and action your brains and bodies are capable of!

This dissertation first presents research on how the brain processes rhythm
– the regular organization of events in time – when we listen to music and
rhythmic stimuli. In Chapter 1, I review research that reveals the integral
role of the motor system in neural pathways that enable beat and rhythm per-
ception. Much research in music neuroscience and cognition has asked, why
should the motor cortex and other motor areas of the brain be important in
perceiving a musical beat? When we watched Bobby McFerrin jumping on
stage, he was using the movement of his body to show us the rhythm (and
pitch), and we were using our motor system to interpret and translate his
movements. Once idea is that maybe, we are using our motor cortex to sim-
ulate periodic motor planning activity – sort of like simulating actions that
we would need to make in order to produce a certain rhythm – and we are
using these simulations to help our auditory cortex predict when subsequent
beats occur. Then the parietal cortex acts as the messenger, allowing the au-
ditory and motor cortices to communicate with each other. Together, these
brain regions make up the dorsal auditory pathway, which plays a pivotal
role in our ability to perceive and produce rhythms. The Action Simulation
for Auditory Prediction hypothesis posits that this pathway evolved in ani-
mals that have Vocal Learning abilities—such as humans and birds, but not
monkeys—because vocal learning enhances tight connections between our au-
ditory and motor cortices (Patel & Iversen, 2014). That is why humans and
birds (but not monkeys) are pretty good at perceiving and producing rhythms.
There’s another hypothesis though, called the Gradual Audiomotor Evolution
hypothesis, that posits that the evolution of beat perception and production in
humans was a more gradual process, built on brain mechanisms that already
exist in monkeys (Merchant & Honing, 2014). Monkeys can in fact perceive
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and produce some aspects of rhythms, like the length of a particular interval.
But they can’t process beat-based rhythms, like the recurring beat of a song. It
turns out, in humans, there is a strong connection between the dorsal auditory
pathway we discussed a moment ago, and the subcortical motor-cortico-basal
ganglia-thalamo-cortical circuit. The strengthened connection between these
two pathways may be the reason that humans are better perceivers and pro-
ducers of rhythms than our primate relatives.

In Chapter 2, I experimentally investigate the role of two regions – the
posterior parietal cortex (PPC) on the dorsal auditory stream, and the sup-
plementary motor area which is not part of the dorsal auditory stream – in
beat-based timing perception. Using a technique called Transcranial Magnetic
Stimulation, I apply a magnetic field to the scalp to non-invasively stimulate
electrical activity in the brain. The specific protocol we used, continuous Theta
Burst Stimulation (cTBS) allowed us to downregulate neural activity in the
stimulated brain region for a period of time. By down regulating a brain re-
gion, and comparing behavioral or neural activity before and after cTBS, we
are able to make inferences about the causal role of that brain region in the
activity of interest. We know that humans exhibit certain neural responses
to rhythmic stimuli that are observable via Electroencephalography, or EEG.
Specifically, if we play a predictable rhythmic pattern, but then deviate from
that pattern for a single beat (a deviant stimuli), our brain recognizes this as an
expectation violation which is reflected in an Event Related Potential (ERP).
Participants in this experiment listened to rhythmic sounds with occasional
deviant stimuli while we recorded brain activity with EEG. We used cTBS to
down regulate either the PPC, the SMA, or we applied sham stimulation as
a control. Comparing specific ERPs before and after brain stimulation allows
us to evaluate the role of each brain area in rhythm perception. This chapter
presents preliminary results on a subset of participants in a larger study.

Chapter 3 provides a general introduction to the second part of this dis-
sertation, which investigates the emergent phenomenon of sensorimotor and
neural entrainment extending over multiple bodies and brains. Recall the
audience who participated in Bobby McFerrin’s pentatonic scale demonstra-
tion. Specifically, recall how they coordinated with each other – singing the
next note perfectly in unison, even though not one single audience member
knew beforehand what note was coming next or when. In temporal rhythmic
processing, the interaction of the body, brain, and environment result in an
emergent phenomenon of sensorimotor and neural entrainment (J. M. Ross &
Balasubramaniam, 2014). This emergent phenomenon is extended over mul-
tiple bodies and brains when the movement dynamics of one person becomes
causally coupled with the movement dynamics of another person, forming an
interpersonal synergy through their mutual interaction (M. A. Riley, Richard-
son, Shockley, & Ramenzoni, 2011). This can also occur when the acoustical
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dynamics of one person become causally coupled with the acoustical dynamics
of other people. When we sing in unison, when we chant together at a sport-
ing event, we form a group identity, merging together into a collective “we”
that makes up a large interpersonal synergy (Cummins, 2020). The audience
members attending McFerrin’s demonstration were all individually listening
to the discussion on stage, maybe they were each fidgeting a bit in their seats
or directing their attention to different speakers. But when McFerrin took
the stage, directing everyone in the audience to sing along, they joined in a
collective synergy feeding both off of McFerrin’s direction and on the sounds
made by the rest of the audience. The audience members were coordinated
across multiple signals – from neural, bodily, to social signals — contributing
to their communication during that interaction (Pouw et al., 2021).

In Chapter 4, I demonstrate that we can take just this acoustic signal,
the sound generated by an interacting group of people, and measure when
they become coordinated in a single interpersonal synergy. Importantly, the
individuals in this first group of people are members of a musical ensemble,
musicians coming together to perform a shared musical work. By applying
nonlinear statistical techniques to the audio signal generated by these musi-
cians, we are able to differentiate when they are making music as a bunch of
individuals sharing a stage, and when they have transitioned into a single mu-
sical ensemble. Just like the audience was aided by McFerrin’s direction when
they coordinated into a single singing audience, our musicians were aided by
a musical score, directing when they should begin coordinating. In Chapter
5, I demonstrate that we can evaluate differences in group acoustical interac-
tions even when they are not being directed by something so explicit as a man
on stage or a musical score. We apply the same analysis techniques to the
sounds generated by fans at a collegiate basketball game engaging in collective
behavior such as cheering on their team or making noise to distract the op-
posite team. The brains and bodies of the basketball crowd excel at a careful
interplay of prediction and action as they join together in cheer and collective
noise, falling in and out of interpersonal synergies with each other throughout
the course of the game.

In the general discussion following these primary chapters, I contextualize
the breadth of this work within an approach to cognitive science and the study
of human experience that necessarily incorporates a multiscale approach in
investigations of perception, cognition, and behavior in both music cognition
and social interactions.



Chapter 1

Motor and Predictive Processes
in Auditory Beat and Rhythm
Perception

This chapter is published as a review in which two major hypotheses for
the cortical and sub-cortical underpinnings of beat-based timing perception are
compared. These hypotheses differ primarily in their views on how beat-based
timing evolved and the reason we observe behavioral and perceptual differences
between primates and humans in music and rhythmic timing tasks. This work
is contextualized within recent action oriented approaches to predictive pro-
cessing. The chapter ends with suggestions for future experiments to probe
the causal role of regions in the proposed networks on the neural mechanisms
underlying beat-based timing perception.

Published as:

Proksch, S., Comstock, D. C., Médé B., Pabst, A., Balasubramaniam, R.
(2020) Motor and Predictive Processes in Auditory Beat and Rhythm Percep-
tion. Frontiers in Human Neuroscience
© 2020 Shannon Proksch et al.

Abstract

In this article, we review recent advances in research on rhythm and mu-
sical beat perception, focusing on the role of predictive processes in auditory
motor interactions. We suggest that experimental evidence of the motor sys-
tem’s role in beat perception, including in passive listening, may be explained
by the generation and maintenance of internal predictive models, concordant
with the Active Inference framework of sensory processing. We highlight two
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complementary hypotheses for the neural underpinnings of rhythm perception:
The Action Simulation for Auditory Prediction hypothesis (Patel & Iversen,
2014) and the Gradual Audiomotor Evolution hypothesis (Merchant & Hon-
ing, 2014) and review recent experimental progress supporting each of these
hypotheses. While initial formulations of ASAP and GAE explain different as-
pects of beat-based timing-–the involvement of motor structures in the absence
of movement, and physical entrainment to an auditory beat respectively-–we
suggest that work under both hypotheses provide converging evidence toward
understanding the predictive role of the motor system in the perception of
rhythm, and the specific neural mechanisms involved. We discuss future ex-
perimental work necessary to further evaluate the causal neural mechanisms
underlying beat and rhythm perception.

Keywords: beat perception, motor system, motor planning, sensorimotor
system, rhythm, timing

1.1 Introduction

The coupling of action and prediction in perception has been characterized
by predictive models of perception (Rao & Ballard, 1999) (Rao and Ballard,
1999) including classical Predictive Coding (K. Friston, 2002, 2005) (PC), and
the more recent Active Inference Framework (Active Inference – corollary to
the Free Energy Principle, (K. J. Friston, Daunizeau, & Kiebel, 2009; K. Fris-
ton, 2010; Parr & Friston, 2019)). Under classical PC, the brain is thought
to utilize an internal generative model and a process of probabilistic model
updating to predict the causes of its sensory input. Each level of the neural
hierarchy predicts the activity at the level below, with higher levels of the hier-
archy providing empirical priors, or hypotheses that constrain the generation
of new priors at the level below. At each level, the top-down predictive sig-
nal is compared to the bottom-up inputs from the lower level. When there is
a mismatch between incoming, bottom-up sensory information and top-down
predictions, a prediction error is propagated back to the level above where it
is used to revise and improve the initial hypothesis. If the prediction error
cannot be minimized at the level at which it is being processed, it is relayed
up to the next level above. The higher in the hierarchy the prediction error is
being relayed, the more substantial the revision in the hypothesis. Perceptual
experience arises as prediction error is minimized and a ‘winning’ hypothesis
is selected. Thus, the general idea of PC is perceptual inference.

However, this classical PC/Bayesian account of perception characterizes
the brain as a passive, Helmholtzian, stimulus-response machine, responsive
only to the generation of prediction errors between its top-down sensory pre-
dictions and the actual sensory input from the world (K. J. Friston & Stephan,
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2007; Clark, 2013). Our brains are more aptly described as embodied and en-
active, enabling us to move and interact with our environment to bring about
the minimization of prediction errors through our own action (Thompson,
2010; Gallagher, Hutto, Slaby, & Cole, 2013; Bruineberg, Kiverstein, & Ri-
etveld, 2018). This is the premise of Active Inference. As in PC, the brain
uses an internal generative model to predict incoming sensory data. However,
rather than relying on the passive accumulation of bottom-up sensory pre-
diction errors that are minimized to create the content of perception, Active
Inference formulations incorporate active engagement with the world to make
the sensory inputs more predictable. Thus, in Active Inference, the predic-
tion error minimization process which gives rise to perceptual experience is
achieved through actions which conform sensory inputs to the brain’s predic-
tions (K. J. Friston et al., 2009; Hohwy, 2013; Parr & Friston, 2019).

Music perception and production are exemplar cognitive and behavioral
phenomena to study these predictive processes and to evaluate the role of mo-
tor processing in sensory perception. Koelsch et al. (2019) expanded on the
specific properties of music which make it an ideal paradigm for investigating
predictive processes in the brain. Music, in any culture, is based on the genera-
tion of regularities, from the temporal regularities of rhythm to the predictable
patterns and combinations of musical pitches. These regularities, or expectan-
cies, generated by music have even been proposed as the properties which
underlie emotional experience in music (Meyer, 1956; Huron, 2008; Juslin &
Västfjäll, 2008). Cross-cultural perceptual priors may exist for some aspects of
rhythm perception and production (Jacoby & McDermott, 2017), while other
aspects are shaped by encluturation within a certain musical niche (Cameron,
Bentley, & Grahn, 2015; van der Weij, Pearce, & Honing, 2017; Polak et al.,
2018). In particular, the experience of musical groove, that property of ‘want-
ing to move’ to the music, is proposed to be related to the balance between
prediction and prediction errors generated by rhythmic properties of the mu-
sic (Janata, Tomic, & Haberman, 2012; Matthews, Witek, Heggli, Penhune, &
Vuust, 2019; Matthews, Witek, Lund, Vuust, & Penhune, 2020). Active Infer-
ence formulations account for not only predictions related to expected stimulus
input, but also predictions related to the expected accuracy—the precision, or
uncertainty—of the original sensory prediction, in addition to counterfactual
predictions related to how these prediction errors and their precision would
change in response to active motor engagement with the sensory stimulus. Ex-
pected precision is modulated by sensory context and active engagement with
the sensory signal. The generation of internal, predictive sensorimotor timing
signals aligned to the musical beat may enhance the prediction and precision
of temporal expectancies when perceiving syncopated musical rhythms, such
as in musical groove (Koelsch, Vuust, & Friston, 2019). Whether or not we ac-
tually move our bodies to a musical rhythm, interactions between sensory and
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motor systems in our brain have been theorized to generate predictive timing
signals that help us process musical rhythm (Merchant & Honing, 2014; Patel
& Iversen, 2014; Vuust & Witek, 2014). These predictive timing signals are
what allow for beat induction, or the active detection of the pulse in rhythmic
time-varying stimuli such as music (Honing et al., 2014).

While predictive theories or perception are not new [indeed, they precede
the age of Helmholtz, dating as far back as the 11th century works of Arab
scholar al-Haytham et al. (ca. 1030;1989)], the purpose of this review is
to contextualize recent advances in the role of the motor system in rhythm
and musical beat perception under more recent advances within the Active
Inference framework. We then directly compare two hypotheses for the neu-
ral underpinnings of rhythm perception: The Action Simulation for Auditory
Prediction (ASAP) hypothesis (Patel & Iversen, 2014) and the Gradual Au-
diomotor Evolution (GAE) hypothesis (Merchant & Honing, 2014). We sug-
gest that the both hypotheses–taken together under the umbrella of Active In-
ference–provide converging evidence toward understanding the predictive role
of the motor system within a distributed sensorimotor network underlying the
perception of rhythm.

1.2 Action and Prediction in Rhythm

Perception

The role of the motor system in rhythm perception is most obviously rec-
ognized by examining how it is we engage our body with music. In addition
to beat induction in passive music listening, humans – and a limited group of
birds and mammals (Kotz, Ravignani, & Fitch, 2018; Ravignani et al., 2019)
– can move in time to a musical beat. This process of rhythmic entrainment is
defined as the ability to flexibly perceive and synchronize to the beat of music
or other complex auditory rhythms. It is argued that rhythmic entrainment
abilities are determined by the ability to perceive a beat, the underlying pulse,
within rhythmic stimuli. Beat perception in humans is inherently predictive,
constructive, hierarchical, and modality biased. In addition, beat perception
engages the motor system, even when no movement is present (Grahn & Brett,
2007; Chen, Penhune, & Zatorre, 2008a, 2008b; C. L. Gordon, Cobb, & Bala-
subramaniam, 2018)

In humans, behavioral evidence for prediction in beat perception comes
from tapping experiments that reveal negative mean asynchronies, which are
not observed in other primates. Asynchronies are observed when humans tap
slightly earlier or later than the beat in a rhythmic stimulus, and negative
mean asynchronies are a behavioral indicator that humans actively anticipate
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upcoming stimuli. Mean tapping asynchronies throughout a rhythmic stimulus
are usually negative in the auditory domain, but much more variable in the
visual domain (Pabst & Balasubramaniam, 2018). Humans also adjust future
tapping response based on temporal mismatch between their movement and
the current beat (Balasubramaniam, Wing, & Daffertshofer, 2004), and overtly
tapping along to the beat aids in forming temporal predictions when compared
to passively tracking a beat (Morillon & Baillet, 2017). In addition, when
visual stimuli are presented motion (Hove and Keller, 2010) or a bouncing
ball (Iversen, Patel, Nicodemus, & Emmorey, 2015), predictive entrainment
as demonstrated by negative mean asynchrony becomes much more successful.

According to Active Inference, the brain minimizes prediction error either
by updating predictions or by taking action in the world to bring actual pro-
prioceptive input in line with top-down predictions regarding driving sensory
stimuli. In musical beat perception, this means that we either take action and
move to the beat, or we update our predictions by suppressing actual move-
ment and instead establishing an internal model of the beat which corresponds
to the proprioceptive input we would have received had we actually been mov-
ing to the beat. The ability to flexibly adapt motor behavior in response to a
mismatch between a rhythmic auditory stimulus and current motor movement
(Balasubramaniam et al., 2004) can be construed as one example of this more
general active inference process. Enhanced rhythmic entrainment abilities for
the visual domain when visual stimuli implies movement (Hove & Keller, 2010;
Iversen et al., 2015), and the improvement of temporal predictions in conjunc-
tion with overt rhythmic movement (Morillon & Baillet, 2017) can also be
explained by the increase of sensory information available in order to update
and modulate descending predictions about the temporal regularities of the
stimulus which guide motor movements.

But this Active Inference gloss on beat perception is - by itself – vague.
Plausible neural architectures have been proposed to support the classical
(Helmholtzian) PC/Bayesian processing of music in general (K. J. Friston &
Friston, 2013). However, an empirically detailed account of the specific neural
underpinnings of embodied Active Inference in human musical beat percep-
tion is necessary. The motor system has been proposed to play a key role
in prediction and perception of sensory information (Schubotz, 2007), and is
functionally organized to enable the driving (ascending) and modulatory (de-
scending) message passing hypothesized within the Active Inference Frame-
work (Adams, Shipp, & Friston, 2013). This differs slightly from traditional
theories of motor control, where driving signals arise from descending, top-
down motor commands. Under Active Inference, top-down predictive signals
from the motor system serve to modulate proprioceptive predictions regarding
driving, feed-forward sensory signals (Adams et al., 2013).

Concordantly, the motor system has been found to be consistently active
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when listening to music, even in the absence of specific motor movement. A re-
cent meta-analysis of fMRI studies found clusters of activations in key regions
of the motor system in passive music listening, including bilateral premotor
cortex and right primary motor cortex (C. L. Gordon et al., 2018). Metrical
musical stimuli have also elicited activation in the basal ganglia, supplemen-
tary motor area, and cerebellum (Grahn & Rowe, 2009). Indeed, the modality
bias for human beat perception and rhythmic entrainment for auditory stimuli
(Pabst & Balasubramaniam, 2018), and improvements of auditory beat pro-
cessing when making overt action (Morillon & Baillet, 2017) can be explained
by tight connections between auditory and motor regions of the brain. But
the activation of motor structures of the brain, even in the absence of overt
movement, indicates that the motor system plays a more fundamental role in
the formation of abstract predictive models which support sensory perception
(Schubotz, 2007; Adams et al., 2013; Patel & Iversen, 2014).

Strong explanations of rhythm perception must account not only for pre-
diction in action, but also for the role of the motor activity observed in passive
music listening. Below, we provide an overview on the motor system’s role in
rhythm perception, and review two complementary hypotheses which highlight
the causal role of the motor system in beat-based timing perception.

1.3 Motor System in Rhythm Perception:

Views from the Action Simulation for

Auditory Prediction and the Gradual

Audiomotor Evolution Hypothesis

Rhythm perception involves two types of timing perception,interval-based
(absolute) timing and beat-based (relative) timing (Grube, Lee, Griffiths,
Barker, & Woodruff, 2010; J. M. Ross, Iversen, & Balasubramaniam, 2016;
J. M. Ross, Warlaumont, Abney, Rigoli, & Balasubramaniam, 2016; Iversen &
Balasubramaniam, 2016). Interval-based timing refers to the ability to discrim-
inate absolute differences in interval duration, whereas beat-based timing refers
to the ability to measure the duration of time intervals relative to underlying
temporal regularities such as beats (Teki, Grube, Kumar, & Griffiths, 2011).
Beat-based timing perception is thought to be uniquely human (Merchant &
Honing, 2014), and is believed to rely on the formation and maintenance of in-
ternal predictive models. According to the ASAP hypothesis (Patel & Iversen,
2014), these internal predictive models consist of periodic motor planning ac-
tivity communicated via the dorsal auditory stream which allow for auditory
prediction in beat-based musical timing perception. ASAP highlights the dor-
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sal auditory stream due to its structural and functional relationship between
auditory and motor planning regions, facilitating temporally-precise two-way
signaling between these regions. This neural pathway involved in spatial pro-
cessing of sounds (Rauschecker & Tian, 2000; Patel & Iversen, 2014) is more
developed in humans than nonhuman primates, which is consistent with differ-
ences in beat-based timing behavioral ability (Honing, 2012; Patel & Iversen,
2014). In addition, Rauschecker (2018) postulates that the dorsal auditory
stream may also be forming an “internal model of the outside world...[which]
conver[ts] sensorimotor sequences into a unified experience”(p264–5). In the
case of musical beat-based timing perception, the dorsal stream should form
an internal model of the periodic musical beat.

Complementary to the ASAP hypothesis, the GAE hypothesis has been
proposed to account for differences in beat-based temporal processing be-
tween primates and humans (see 1.1 for an overview comparison of ASAP
and GAE). The GAE hypothesis (Merchant & Honing, 2014) also posits the
dorsal auditory stream as a potential substrate for rhythm entrainment and
perception. However, GAE claims that the evolution of rhythmic entrainment
results more specifically from adaptations to the motor cortico-basal ganglia
thalamo-cortical circuit (mCBGT). This specification arises from observations
that the mCBGT is found to be active in sequential and temporal processing
and movement in Macaques (Tanji, 2001; Merchant, Harrington, Meck, et al.,
2013; Perez, Kass, & Merchant, 2013) and humans (Grafton, Hazeltine, & Ivry,
1995; Harrington, Zimbelman, Hinton, & Rao, 2010), including, for humans,
the processing of musical rhythms (Grahn & Brett, 2007). Explicitly including
the mCBGT loop in the evolution of rhythmic entrainment accounts for the
fact that interval-timing ability appears preserved in macaques (Merchant et
al., 2013) and is shared among primates, including humans. This indicates a
shared neural circuitry for single interval-based timing, upon which GAE hy-
pothesizes human beat-based timing mechanisms would have evolved to enable
beat-based rhythmic entrainment. It is gradual changes to this foundational
neural pathway, in addition to strengtheningconnections to auditory cortices
via the dorsal auditory pathway, that have enabled the human mCBGT to
develop beat-based timing mechanisms that can process the hierarchical prop-
erties of beat-based, rhythmic stimuli, such as music. Although focusing on
slightly different neural pathways, both ASAP and GAE highlight the pre-
dictive role of the motor system in the perception of rhythm, and support
growing consensus on the role of motor pathways in the formation of internal
predictive models in perception more generally.
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Figure 1.1: An overview comparison of the Action Simulation for Auditory
Prediction Hypothesis (ASAP) and the Gradual Audiomotor Evolution Hy-
pothesis (GAE). Shared core assumptions of both hypotheses are listed at
center. Brief differing emphases on neural pathways and evolutionary commit-
ments are listed in each panel. Diagrams depict the neural pathways proposed
under each hypothesis. The ASAP diagram (left), shows ascending pathways
from the auditory cortex (white lines) and descending pathways back to the
auditory cortex (dashed lines) in the dorsal (red) and ventral (green) streams.
The GAE diagram (right) shows the dorsal auditory pathway (white lines) and
dorsal (blue) and ventral (green) streams, and the motor cortico-basal ganglia-
thalamo-cortical (mCBGT) circuit (black lines). PMC, primary motor cortex;
IPL, inferior parietal lobule; AC, auditory cortex; IFC, inferior frontal cortex;
MPC, medial premotor cortex; GP, globus pallidus. Figures adapted from
Merchant and Honing (2014) and Patel and Iversen (2014).



13

One important difference between the ASAP and GAE hypotheses is that
ASAP purports to explain the presence of motor activity in beat percep-
tion even in the absence of overt movement, while GAE explains how evo-
lution within motor pathways enables physical entrainment—synchronized
movement—to a rhythmic stimulus. ASAP claims that beat perception in
humans arose with the emergence of vocal learning abilities, which strength-
ened tight audio-motor connections in the dorsal auditory stream underlying
rhythmic entrainment along the primate lineage.

In contrast, GAE favors a gradual strengthening of these connections over
evolutionary time, building on specific interval timing mechanisms already
extant in the mCGBT circuit of the primate brain. The result being the for-
mation of an additional beat-based mechanism with enhanced connection of
the mCGBT to the auditory cortex via that same dorsal auditory stream in the
human brain (Merchant & Honing, 2014). Recent neurophysiological evidence
highlights the interconnectedness of interval and beat-based timing mecha-
nisms proposed by GAE, indicating that even in passive listening, monkeys
are able to detect isochrony in rhythm, due in part to extant interval-based
timing mechanisms of the monkey motor system, but that monkeys cannot
detect the underlying beat in a rhythmic stimulus, which requires auditory-
motor beat-based timing mechanisms present in humans (Honing, Bouwer,
Prado, & Merchant, 2018).

1.4 Evidence for Prediction and Motor

Activity in GAE and ASAP

In addition to fMRI observation of motor activation in music listening
and rhythm processing, the predictive and causal roles of specific motor struc-
tures highlighted by the ASAP and GAE hypotheses have been experimentally
tested via electroencephalography (EEG) and transcranial magnetic stimula-
tion (TMS). Specific Event Related Potentials (ERPs) relating to prediction
errors evoked by rhythmic deviations in musical stimuli include the mismatch
negativity (MMN) and P3a (Honing et al., 2018; Koelsch et al., 2019). These
auditory event related components indicate violation of temporal expectations
in oddball paradigms, with early responses related to bottom-up sensory pro-
cessing and later responses reflecting top-down cortical processes (Garrido et
al., 2007) and (perhaps conscious) attention to deviant stimuli (Sussman, Win-
kler, & Schröger, 2003). EEG studies provide insight into the neural mecha-
nisms of beat-perception while removing the limitations of behavioral response
(Honing, 2012). The MMN and P3a components have been observed in re-
sponse to rhythmic violations in adult humans, as well as infants and monkeys
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(Ladinig, Honing, Haden, & Winkler, 2009; Winkler, Haden, Ladinig, Sziller,
& Honing, 2009; Honing et al., 2018). However more recent research in mon-
keys comparing ERPs in passive listening to jittered and isochronous stimuli
with occasional deviants have demonstrated that monkeys might be able to
detect isochrony in rhythm – which could rely on extant interval timing mech-
anisms in the primate brain; but not the beat – which relies on more evolved
beat-based timing mechanisms, while humans are able to detect both isochrony
and the beat (Bouwer, Werner, Knetemann, & Honing, 2016; Honing et al.,
2018). This collection of experiments supports the gradual evolution of beat-
based timing mechanisms hypothesized by GAE.

Action Simulation for Auditory Prediction has been further supported by
TMS research, demonstrating causal links between specific types of beat pro-
cessing and regions of the dorsal auditory stream. A set of TMS experiments
evaluated the role of the posterior parietal cortex (PPC), which is thought to
serve as an interface for bidirectional communication between auditory and
motor regions of the brain, and the dorsal pre-motor cortex (dPMC), which
is also part of the dorsal auditory stream and is associated with movement
planning and synchronization to auditory stimuli (Chen et al., 2008a; Giovan-
nelli et al., 2014). By down-regulating neural activity in left PPC according
to the Huang et al. (2005) protocol, Ross et al. (2018b) showed that left PPC
may be involved in one aspect of beat-based timing–phase shift detection–but
not tempo detection or discrete interval discrimination. Ross et al. (2018a)
down-regulated activity in left dPMC, showing that left dPMC may be in-
volved in tempo detection, but not phase shift detection or discrete interval
discrimination. Additionally, measures of Motor Evoked Potentials (MEPs)
in single pulse TMS over the motor cortex have indicated that musical groove
modulates cortical excitability in the motor cortex. High levels of musical
groove are characterized by syncopated rhythms, enhanced energy in the bass
line, and the phenomenological property of ‘wanting to move’ with the music
(Janata et al., 2012; Stupacher, Hove, Novembre, Schütz-Bosbach, & Keller,
2013; J. M. Ross, Warlaumont, et al., 2016). High-groove music has been
shown to more strongly activate the motor system (resulting in higher MEPs)
when compared with low-groove music (Stupacher et al., 2013). These re-
sults indicate the bidirectionality of auditory-motor interactions, as causally
down-regulating activity in the motor cortex can impair auditory perception
of aspects of musical rhythm, and varying degrees of rhythmic information in
auditory stimuli (i.e., syncopation and bass frequencies in musical groove) can
change aspects of motor cortical function.
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1.5 Mechanisms for Timing and Rhythm

Prediction

While there is growing consensus that the motor system is causally in-
volved in timing and rhythm perception, and that the neural substrate in-
cludes cortical structures of the dorsal auditory stream and subcortical struc-
tures within the motor-cortico basal ganglia thalamo-cortical loop, the specific
neural mechanisms which enable timing and rhythm perception within these
substrates remains an open question. For some years, cognitive scientists have
been looking for how internal timing can be instantiated by patterns of tem-
poral stimuli via, e.g., clock-based or oscillatory mechanisms (Povel & Essens,
1985; Large & Jones, 1999). Given the amount of neuroscientific evidence
pointing to a distributed timing network in the brain (Buonomano, 2014),
mechanisms of entrainment to patterns of temporal stimuli have received sig-
nificant attention. The striatal beat frequency model was suggested to support
a clock-based mechanism based on banks of oscillators (Matell & Meck, 2000,
2004). In contrast, Large et al. (2015) describe an oscillatory model of pulse
perception called Neural Resonance Theory (NRT), which provides a plausible
mechanism of adaptive entrainment and beat-based timing without requiring
an internal clock mechanism. According to NRT, rhythmic stimuli are en-
coded in sensory networks which interact with motor networks thus entraining
them to the pulse frequency. Neural entrainment is induced to the pulse, even
when the rhythmic stimulus itself lacks physical information at the location of
the pulse—such as silences found ‘on the beat’ within syncopated rhythms—
demonstrating the influence of top-down effects on pulse perception (Large,
Herrera, & Velasco, 2015; Tal et al., 2017). The cerebellum has also been
shown to play a prominent role in absolute timing (Nozaradan, Schwartze,
Obermeier, & Kotz, 2017)–but not beat-based timing–with proposed mecha-
nisms including an oscillatory pacemaker based on regular oscillations found
within the inferior olive (Ashe & Bushara, 2014), and a state-spaced based
mechanism, in which the timing of a stimulus can be inferred from the state of
a relevant cortical network over time (Buonomano, 2014). In various cortical
areas, ramping activity of neural firing rates has been proposed as a mech-
anism for interval-based timing—where interval duration is encoded in the
modulation of neural spiking thresholds or by varying the slope of ramping
activity preceding threshold (Durstewitz, 2003). However, in the Macaque
brain, ramping activity has also been implicated for relative timing in coordi-
nation with multidimensional state space models as part of a multilayer timing
system involving two neural populations (Merchant et al., 2014). These two
neural populations are differentially associated with absolute and relative tim-
ing, and are observed in the medial motor cortex, consistent with the proposed
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role of the motor system under the GAE hypothesis (Crowe, Zarco, Bartolo,
& Merchant, 2014; Merchant et al., 2014).

Continuous state-space models have also been proposed in Active Infer-
ence accounts for the generation of predictive models in action and sensory
processing more generally, neurally mediated by the balance of pre- and post-
synaptic activity (K. J. Friston, Parr, & de Vries, 2017) and neuronal firing
rates in, e.g., medial or lateral intraparietal areas (de Lafuente, Jazayeri, &
Shadlen, 2015). Striatal dopamine in particular has been proposed to code for
both prediction error and certainty in response to sensory stimuli (Sarno, de
Lafuente, Romo, & Parga, 2017) across a variety of timescales (Schultz, 2007).
Dopaminergic activity also plays a role in rhythmic motor control (Koshimori
& Thaut, 2018) and is responsive to rhythmic auditory stimulation (Koshimori
et al., 2019), positioning dopamine as a crucial facilitator of the motor system’s
role in auditory-motor interactions underlying beat-based timing perception.
The motor system’s predictive role in music and rhythm perception is only one
component of larger networks of sensorimotor processing, namely the dorsal
auditory pathway and the mCBGT. Further experimental and computational
work is necessary to determine whether and how the specific neural mech-
anisms of the human motor cortex processes timing information within the
cortical and subcortical networks proposed by ASAP and GAE. To facilitate
the generation of experimental and computational hypotheses, we have com-
piled an overview of recent experimental and theoretical research on the motor
and distributed brain areas and mechanisms within the dorsal auditory path-
way and the mCBGT–including the dopaminergic system–which are involved
in the predictive processing of auditory-motor beat and rhythm perception in
Table 1.1.1

1The motor system’s predictive role in music and rhythm perception is only one compo-
nent of larger networks of sensorimotor processing, namely the dorsal auditory pathway and
the motor cortico-basal ganglia-thalamo-cortical circuit. This table provides an overview
of the brain areas and mechanisms which make up these networks and are involved in the
predictive processing of auditory beat and rhythm perception. Each brain area is introduced
with one or more Theoretical or Review Papers contextualizing that brain area’s proposed
role, followed by a non-exhaustive list of supporting experimental work. This table is in-
tended to serve as a tool for new or continuing researchers engaging in work on rhythm and
musical beat perception.
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Table 1.1: Overview of brain areas and mechanisms which make up cortical
and subcortical networks involved in the predictive processing of auditory beat
and rhythm perception

Brain Area Authors Proposed Role of

Each Brain Area

Experimental Task

& Stimulus Type

Type of
Data

Cerebellum Ivry & Schlerf, 2008

Dedicated timing
mechanism; Coordination of
movement, internal timing
mechanisms involved with
sub-second timing

Theoretical Paper/ Review

Bastian, 2006
Predictive models of
movement

Theoretical Paper/ Review

Nozaradan et al.,
2017

Tracking beats in rhythms
with fast tempos; more
prominent role in absolute
timing vs relative timing

Passive Listening. Auditory
rhythms designed to induce
a beat - syncopated and
unsyncopated.

EEG

Gordon et al., 2018

Meta-analysis of fMRI
studies of recruitment of
motor system during music
listening

Meta-analysis. Various
listening tasks - Auditory
rhythms or music.

fMRI

Basal
Ganglia

Nozaradan et al.,
2017

Tracking beats in complex
rhythm sequences

Passive Listening Auditory
rhythms designed to induce
a beat - syncopated and
unsyncopated.

EEG

Merchant,
Harrington, Meck,
2013

Interacts with the
cortico-thalamic-striatal
circuit in a context
dependent manner

Theoretical Paper/ Review

Coull & Nobre, 2008
Perceptual temporal
expectation; explicit timing

Theoretical Paper/ Review

Grahn, 2009
Internal beat generation;
More prominent role in
relative vs absolute timing

Discrimination task, same
or different judgement of
two auditory stimuli.
Auditory rhythms -
beat-based structure and
non-beat-based structure;
Accents- duration or
volume accented (externally
generated) or unaccented
(internally generated)
beats.

fMRI/
Behavioral

Grahn et al., 2011

Internal representation of
auditory rhythms that
support cross-modal
interactions in beat
perception and generation

Discrimination task,
rhythmic tempo change.
Auditory tone metronome
and visual flashing
metronome. Two groups:
one with auditory first
visual second, and the other
vice versa.

fMRI/
Behavioral
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Brain Area Authors Proposed Role of

Each Brain Area

Experimental Task

& Stimulus Type

Type of
Data

Grahn & Rowe 2009

Internal beat generation:
part of cortico-subcortical
network involved in beat
perception and generation

Indicate the strength of the
percieved beat. Auditory
rhythms of varying
complexity and some with
volume accents.

fMRI/
Behavioral

Grahn & Rowe 2013
Putamen activity in beat
prediction, but not beat
finding

Attentive listening;
occasionally indicate level
of feeling of the beat.
Auditory rhythms of
varying intervals and rates,
beat and non-beat
(jittered) rhythms.

fMRI/
Behavioral

Grahn & Brett, 2007

Higher activity for rhythms
with integer ratio
relationships between
intervals and with regular
perceptual accents

1st experiment (behavioral)
reproduce auditory
rhythms. 2nd experiment
(fMRI) indicate if the
rhythm played matched
previous rhythms. Metered
auditory rhythms of varying
integer intervals and
complexity.

fMRI/
Behavioral

Teki et al., 2011

Striato-thalamo-coritcal
network involved in
beat-based timing, while an
olivocerebellar network
involved in duration-based
timing

Judge duration matches in
a set of tones. Auditory
tones, either isochronous or
jittered, arranged in in
either rhythm-based or
absolute duration-based
sets.

fMRI/
Behavioral

Araneda et al., 2017

Hearing, feeling or seeing a
beat recruits a supramodal
network in the auditory
dorsal stream

Discrimination task,
between beat and non-beat
rhythms. Auditory, visual,
and vibrotactile rhythms.

fMRI/
Behavioral

Primary and
premotor
cortices

Kilavik et al., 2014
Movement preparation, cue
anticipation

Theoretical Paper/ Review

Schubotz, 2007

Predictive processing of
external events, even in the
absence of proprioceptive or
interoceptive information

Theoretical Paper/ Review

Morillon & Baillet,
2017

Beta and delta oscillations
directed to auditory cortex
encode temporal predictions

Passive listening (listen
condition); Active tapping
with the beat (tracking
condition). Auditory
melody - different tones
either on beat, anti-phase,
or quasi-phase with the
beat.

MEG/
Behavioral

Gordon et al., 2018

Meta-analysis of fMRI
studies of recruitment of
motor system during music
listening

Meta-analysis. Various
listening tasks - Auditory
rhythms or music.

fMRI
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Brain Area Authors Proposed Role of

Each Brain Area

Experimental Task

& Stimulus Type

Type of
Data

Premotor
cortex

Grahn & Rowe 2009

Cortico-cortical coupling
with SMA and Auditory
cortex in duration beat
perception; part of
cortico-subcortical network
involved in beat perception
and generation

Indicate the strength of the
percieved beat. Auditory
rhythms of varying
complexity and some with
volume accents.

fMRI/
Behavioral

Teki et al., 2011

Striato-thalamo-coritcal
network involved in
beat-based timing, while an
olivocerebellar network
involved in duration based
timing

Judge duration matches in
a set of tones. Auditory
tones, either isochronous or
jittered, arranged in in
either rhythm-based or
absolute duration-based
sets.

fMRI/
Behavioral

Chen et al., 2008
Motor regions recruited
while listening to music
rhythms

Experiment 1: Listen to
rhythm passively then tap
along with rhythm.
Experiment 2: Listen to
rhythm passively then tap
along to rhythm without
foreknowledge of being
asked to tap with the
rhythm Auditory tones in
simply, complex, or
ambiguous rhythms.

fMRI/
Behavioral

Supplemen-
tary motor
area

Coull, Vidal, Burle,
2016

Perceptual and motor
timing; Comparing the
duration of perceptual
events, error monitoring

Theoretical Paper/ Review

Ross, Iversen,
Balasubramaniam,
2018

Not causally implicated in
perceptual auditory interval
timing

Discrimination task -
same/different judgement of
auditory intervals;
Detection task -
identification of tempo or
phase shifted metronome
click. Auditory intervals of
pairs of tones; Metronome
click track over musical
stimuli.

Behavioral
(pre/post
TMS down-
regulatory
stimulation)

Grahn & Brett, 2007

Higher activity for rhythms
with integer ratio
relationships between
intervals and with regular
perceptual accents; In
musicians: higher activity
for all rhythms when
compared to rest

Experiment 1 (behavioral):
reproduce auditory
rhythms. Experiment 2
(fMRI): indicate if the
rhythm played matched
previous rhythms. Metered
audtory rhythms of varying
integer intervals and
complexity.

fMRI/
Behavioral

Grahn & McAuley
2009

Stronger activity in strong
beat-perceivers vs weak
beat-perceivers, no
correlation with
musicianship

Discrimination task,
rhythmic tempo change.
Auditory isochronous
rhythms.

fMRI/
Behavioral
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Brain Area Authors Proposed Role of

Each Brain Area

Experimental Task

& Stimulus Type

Type of
Data

Grahn & Rowe 2009

Coupling with STG in beat
perception for musicians;
part of cortico-subcortical
network involved in beat
perception and generation

Indicate the strength of the
percieved beat. Auditory
rhythms of varying
complexity and some with
volume accents.

fMRI/
Behavioral

Teki et al., 2011

Striato-thalamo-coritcal
network involved in
beat-based time, while an
olivocerebellar network
involved in duration-based
timing

Judge duration matches in
a set of tones. Auditory
tones, either isochronous or
jittered, arranged in in
either rhythm-based or
absolute duration-based
sets.

fMRI/
Behavioral

Chen et al., 2008
Motor regions recruited
while listening to music
rhythms

Experiment 1: Listen to
rhythm passively then tap
along with rhythm.
Experiment 2: Listen to
rhythm passively then tap
along to rhythm without
foreknowledge of being
asked to tap with the
rhythm Auditory tones in
simply, complex, or
ambiguous rhythms.

fMRI/
Behavioral

Araneda et al., 2017

Hearing, feeling or seeing a
beat recruits a supramodal
network in the auditory
dorsal stream

Discrimination task,
between beat and non-beat
rhythms. Auditory, visual,
and vibrotactile rhythms.

fMRI/
Behavioral

Medial
premotor
cortex

Merchant et al., 2014

Absolute and relative
timing mechanisms within
two separate neural
populations

Theoretical Paper/ Review

Crowe et al., 2014

Absolute and relative
timing mechanisms within
two separate neural
populations

Synchronization
Continuation Task.
Isochronous visual stimuli
or auditory tones.

Behavioral;
Extracellular
activity of
single neurons
(in Macaca
mulatta)

Grahn & McAuley
2009

Stronger activity in strong
beat-perceivers vs weak
beat-perceivers, no
correlation with
musicianship

Discrimination task,
rhythmic tempo change.
Auditory isochronous
rhythms.

fMRI/
Behavioral

Parietal
Cortex

Patel & Iversen,
2014; Merchant &
Honing, 2014;
Rauschecker, 2011

Interface between motor
and auditory cortices,
sensorimotor integration

Theoretical Papers/
Reviews

Coull & Nobre, 2008
Perceptual temporal
expectation; implicit timing

Theoretical Paper/ Review
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Brain Area Authors Proposed Role of

Each Brain Area

Experimental Task

& Stimulus Type

Type of
Data

Coull, Cotti, Vidal
2016

Temporal predictibility via
fixed or dynamic
predictions

Cued reaction time task.
Visual cue that predicted
target presentation time
(temporal condition), or
provided no information for
target presentation (neutral
condition) with variable
intervals between cue and
target.

fMRI/
Behavioral

Ross, Iversen,
Balasubramaniam,
2018

Causally implicated in
perceptual beat-based
timing

Discrimination task -
same/different judgement of
auditory intervals;
Detection task -
identification of tempo or
phase shifted metronome
click. Auditory intervals of
pairs of tones; Metronome
click track over musical
stimuli.

Behavioral
(pre/post
TMS down-
regulatory
stimulation)

Auditory
Cortex

Koelsch, Vuust,
Friston, 2019

Event related potentials
associated with predictive
processes in music

Theoretical Paper/ Review

Fujioka et al., 2012
Beta-band activity predicts
onset of beats in music

Passive listening, while
watching silent videos.
Auditory isochronous
rhythms of several tempos
and one irregular rhythm.

MEG

Fujioka et al., 2015

Beta-band activity
represents timing
information being
translated for
auditory-motor
coordination

Passive listening to metered
rhythms, followed by
attentive listening to
un-metered rhythms that
the participants were asked
to imagine as metered.
March and Waltz metered
rhythms

MEG

Auksztulewicz et al.,
2010

Temporal prediction of
rhythm and beats

Identify target chords.
Auditory rhythmic or
jittered sequences of
distractor chords preceding
target chords.

MEG/ EEG/
Behavioral

Honing et al., 2018
Event related potentials to
perceptual deviants in
rhythmic stimuli

Passive listening. Auditory
oddball paradigm with
isochronous or jittered
rhythms.

EEG (of
Macaca
mulatta)

Bouwer et al., 2016

Event related potentials to
perceptual deviants in
rhythmic stimuli; ERPs
modulated by attention in
musicians

Passive or attentive
listening. Auditory oddball
paradigm with isochronous
or jittered rhythms.

EEG
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Brain Area Authors Proposed Role of

Each Brain Area

Experimental Task

& Stimulus Type

Type of
Data

Dopaminergic
System /
Striatal
Dopamine

Schultz, 2007

Multiple time courses of
dopamine changes mediate
multiple time courses of
behavioral processes

Theoretical Paper/ Review

Friston et al., 2009
Reward learning, encoding
of precision

Theoretical Paper/ Review

FitzGerald et al.,
2015; Friston et al.,
2012

Reward learning, encoding
of precision

Theoretical Papers/
Computational Models

Simulated
dopaminergic
responses

Sarno et al., 2017

Temporal expectation of
perceptual cues; reward
prediction error and
(un)certainty

Detect weak vibrotactile
stimuli. Variable interval
durations between tactile
start cue and vibrotactile
stimuli.

Intracellular
recording,
monkey brain

Koshimori et al.,
2019

Rhythmic auditory
stimulation (RAS)
attenuates dopaminergic
response

Synchronization task, RAS
and no-RAS conditions;
Various auditory rhythms,
single auditory beats or
metronome clickes over
instrumental music.

Behavioral/
MRI/ PET

Brodal et al., 2017
Rhythmic music reduces
connectivity between basal
ganglia and reward system

Passive listening. Electronic
dance music in a
continuous-stimulation
design.

fMRI

1.6 Conclusions and Future Directions

In this paper, we reviewed recent advances in research on rhythm per-
ception, focusing on the role of predictive processes in auditory motor inter-
actions in beat-processing. We highlighted two complementary hypotheses
for the neural underpinnings of rhythm perception: The ASAP hypothesis
(Patel & Iversen, 2014) and the GAE hypothesis (Merchant & Honing, 2014)
and reviewed recent experimental progress supporting each of these hypothe-
ses. While initial formulations of ASAP and GAE explain different aspects
of beat-based timing–the involvement of motor structures in the absence of
movement, and physical entrainment to an auditory beat respectively–both
theories have moved us closer to understanding the predictive role of the mo-
tor system in the perception of rhythm and the specific neural mechanisms
involved. In fact, recent computational formulations of ASAP have further in-
corporated the subcortical structures proposed to be involved in the evolution
of beat-based timing perception by GAE. Cannon and Patel (2019, preprint),
have proposed the CBGT loop as responsible for the resetting of relative tim-
ing mechanisms via a hyper direct pathway from the SMA. In addition, they
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hypothesize a role for striatal dopamine in the maintenance of internal rhyth-
mic timing models by tracking confidence (uncertainty) in the beat, consistent
with Predictive Coding and Active Inference accounts of rhythm perception
and perception more generally.

Future work in understanding the neural, cognitive, and behavioral dy-
namics of musical beat perception in humans should investigate not only the
sensorimotor processes responsible for the perception of rhythm, but also the
specific neural mechanisms by which top-down predictions serve to modulate
driving proprioceptive sensations arising from concrete actions of the body or
abstract activity of the motor systems. While EEG experiments (e.g., Ladinig
et al., 2009; Winkler et al., 2009; Honing et al., 2018) point to the neural
mechanisms of internal predictive models in beat-based timing perception,
EEG alone cannot provide causal evidence forthe role of specific brain struc-
tures. Similarly, while TMS experiments (e.g., Stupacher et al., 2013; Ross
et al., 2018a,b) have lended causal evidence for the role of specific structures
in beat-based timing perception, the mentioned experiments do not provide
direct evidence for the presence of internal predictive models of beat-based
timing. If motor activity is causally involved in the formation of auditory
predictions, then causal TMS manipulation to down-regulate activity in, e.g.,
parietal cortex or dPMC should result in the reduction of MMN and P3a event
related responses to perceptual deviants in rhythmic stimuli, and this response
might differ based on whether the stimuli contains timing deviants related to
tempo or phase. Future research should include stimuli designed to elicit spe-
cific prediction errors with perceptual deviants, such as in oddball paradigms,
while measuring event-related potentials associated with predictive processes
in combined EEG and causal TMS experiments. Results from these exper-
iments could extend and strengthen already emerging support for GAE and
ASAP, as well as further contextualize the role of Active Inference in music
and beat-based timing perception.
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Chapter 2

Causal TMS Investigation of
Supplementary Motor Area and
Posterior Parietal Cortex on
ERP Responses to Auditory
Rhythms

This chapter contains analysis of preliminary data from an unpublished
and ongoing experiment probing the causal role of two cortical regions involved
in beat perception. The experiment examines the effect of down-regulatory
brain stimulation on well-known sensory evoked electrophysiological responses
to deviants in rhythmic auditory stimuli. By comparing these evoked responses
before and after brain stimulation, we can clarify whether or to what extent
these cortical regions affect the low-level neural mechanisms involved in beat
perception. Conclusions from these preliminary results indicate there may not
be a large effect of stimulation, however final conclusions should not be drawn
until complete data from the full experiment is assessed.

Authors:
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Abstract

Humans and rhesus monkeys (Macaca mulatta) share some aspects of
rhythm cognition. Both monkeys and humans are sensitive to isochrony in
a rhythmic stimulus, but only humans are sensitive to the metrical structure.
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Humans remain sensitive to the isochrony and metrical structure of rhyth-
mic stimuli even when the stimuli are unattended. Beat perception – the
ability to perceive a regular pulse in (musical) rhythm – appears specific to
humans. One reason for this may be stronger auditory-motor connections in
the human brain compared to non-human primates. In this study, we eval-
uate the causal role of motor processes on auditory beat perception using
electroencephalography (EEG) and transcranial magnetic stimulation (TMS).
We presented human participants with isochronous (regular) rock beat stim-
uli with evenly spaced intervals and jittered rock beat stimuli with randomly
spaced intervals, while preserving the order of individual sounds within each
sequence. We compared ERP responses to oddball stimuli on the beat and off-
beat in both conditions. We compared these same ERP responses before and
after downregulatory TMS to either the supplementary motor area (SMA),
posterior parietal cortex (PPC), or a sham stimulation condition.

2.1 Introduction

The human capacity for beat-based timing perception relies on auditory
and motor predictive mechanisms (Balasubramaniam et al., 2021; Koelsch et
al., 2019; Proksch, Comstock, Médé, Pabst, & Balasubramaniam, 2020; Can-
non & Patel, 2021). The dorsal auditory stream, an auditory-motor network
routed through parietal cortex, may be causally involved in making these sen-
sory predictions (see Action Simulation for Auditory Prediction, ASAP (Patel
& Iversen, 2014), as well as Gradual Audiomotor Evolution, GAE (Merchant
& Honing, 2014)). Additionally, the supplementary motor area (SMA) is con-
sistently active during musical and rhythmic tasks (C. L. Gordon et al., 2018)
and is proposed to support timekeeping during beat anticipation (alongside
subcortical structures(Merchant & Honing, 2014; Cannon & Patel, 2021)).
Humans show stronger auditory-motor connectivity compared to non-human
primates, which may explain better performance on behavioral beat-based
timing tasks (Merchant & Honing, 2014).

Electroencephalography (EEG) experiments shed light on the neural mech-
anisms underlying rhythm perception that might not be apparent in behavioral
tests. These studies have revealed event-related potentials (ERPs) relating to
prediction errors as a result of rhythmic deviations in musical stimuli (Lumaca,
Trusbak Haumann, Brattico, Grube, & Vuust, 2019; Vuust, Ostergaard, Palle-
sen, Bailey, & Roepstorff, 2009) (see Koelsch et al., 2019 for a review). Two
ERPs, the mismatched negativity (MMN) and P3a, are responses to tempo-
ral deviations in patterned stimuli that have been shown to differ in Rhesus
macaques and humans when presented with on- or off-beat deviants in regular
isochronous or jittered rhythmic stimuli (Bouwer et al., 2016; Honing et al.,
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2018). However, this EEG paradigm cannot isolate the causal role of specific
neural structures involved. We seek to manipulate auditory-motor connectiv-
ity in human participants to reduce predictive timing and probe the causal
role of PPC and SMA in beat-based timing.

Causal manipulation of neural activity, i.e. by downregulating neural fir-
ing using TMS, can be used to study the causal role of neural activity on
subsequent perceptual or behavioral tasks (Huang, Edwards, Rounis, Bhatia,
& Rothwell, 2005). TMS experiments have shown that downregulating neural
activity in the SMA (involved in motor planning outside of the dorsal auditory
stream) does not impact beat-based timing perception. However, downregu-
lating activity in the PPC (which is part of the dorsal auditory pathway) does
impact aspects of beat-based timing perception (J. M. Ross, Iversen, & Bal-
asubramaniam, 2018; J. M. Ross, Proksch, Iversen, & Balasubramaniam, in
review). The lack of effect from downregulating SMA on beat-based timing
ability is surprising because SMA is consistently reported to be active in mu-
sical and rhythmic tasks, even in passive listening (C. L. Gordon et al., 2018).
Furthermore, SMA (and its analogue, the medial premotor cortex in monkeys)
is proposed to operate alongside subcortical structures to support timekeeping
during beat anticipation (Cannon & Patel, 2021; Penhune & Zatorre, 2019;
Gámez, Mendoza, Prado, Betancourt, & Merchant, 2019).

There is a known auditory bias for human rhythm perception in contrast
to a visual bias for monkey rhythm perception. Behavioral data from mon-
keys engaging in simple synchronization continuation tasks demonstrates that
monkeys have at least a precursor of human beat-perception, perhaps through
extant interval timing mechanisms (Gámez et al., 2019; Penhune & Zatorre,
2019). Further, neural data from monkeys show MMN response to rhythmic
grouping in isochronous stimuli and higher ERPs to deviants in isochronous
compared to jittered stimuli, indicating a gradual evolution toward human
auditory motor beat-based timing mechanisms as proposed by the Gradual
Audiomotor Evolution (GAE) hypothesis (Merchant & Honing, 2014). Down-
regulating activity in the SMA or the PPC is expected to cause changes in
the functioning of the neural mechanisms underlying human beat perception,
reflected in ERP responses to perceptual deviants in rhythmic stimuli.

In contrast with GAE, the Action Simulation for Auditory Prediction
(ASAP) hypothesis posits that human beat-based timing mechanisms arose
from the coupling of auditory and motor processes as a result of vocal learning
(Patel & Iversen, 2014). The cortical substrate supporting beat-based timing
is the dorsal auditory pathway. This pathway implicates not the SMA, but
the primary motor cortex (PMC). Motor planning activity in PMC provides
predictive information for the motor cortex via the posterior parietal cortex.
Thus, downregulating activity in the PPC – but not the SMA – is expected
to cause changes in the neural mechanisms involved in beat-perception.
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In this study, we further investigate the role of SMA and PPC in beat-
based timing by combining the EEG paradigm and rhythmic stimuli from
Bouwer et al., 2016 (Bouwer et al., 2016) and Honing et al 2018 (Honing
et al., 2018) with the downregulatory TMS paradigm in Ross et al., 2018
(J. M. Ross et al., 2018). Observing changes in ERP response before and
after downregulatory TMS stimulation will shed light on the causal roles of
SMA and PPC. Incorporating EEG and a stimulus designed specifically to
elicit neural prediction error responses will reveal changes in underlying neural
mechanisms that may not have been observable in behavioral output of Ross et
al., 2018. It is expected that the MMN and P3a ERPs will be attenuated after
downregulatory TMS to parietal cortex or to SMA, such that prior to TMS
ERP results should resemble those of human participants in Bouwer et al.,
2016. Following downregulatory TMS, ERP results are expected to resemble
those of the monkeys in Honing et al., 2018, i.e. with attenuated MMN and P3a
response following TMS. These results will shed light on the neural mechanisms
underlying human beat-based timing perception, and which differ between
human and non-human primates.

2.2 Methods

Participants

Ten participants were recruited from undergraduate and graduate student
population of the University of California, Merced. One participant’s data
was excluded due to extensive artifacts in their EEG signal, allowing us to
analyze a total of nine participants for this study (average age = 22.7, female
= 6) All participants were dominantly right-handed, with typical hearing,
and screened for history of neurological disorders and other contraindications
for TMS. The study was approved by the University of California, Merced,
Institutional Review Board, and written informed consent was obtained from
all participants.Total experiment time including consent and study preparation
ranged from 2 to 2.5 hours per session. Participants were compensated $10
per each session.

Design

Participants completed three experimental sessions with a pre/post design
in each session. Each experimental session consisted of:

1. Pre-stimulation (baseline) EEG recording during passive listening to
rhythmic sequences
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2. Administration of cTBS to target location

3. Post-stimulation EEG recording during during passive listening to the
same rhythmic sequences

Figure 2.1: Study Design. Each participant listened to five acoustic stimuli,
received TMS, then heard the same acoustic stimuli in the same order. Stimuli
were randomized across sessions.

As a within-subjects design, each participant received TMS to each target
location (sham, lPPC, and lSMA) on three separate days with EEG recording
sessions pre- and post-TMS each day. Each EEG recording session consisted of
five passive listening blocks: two ten minute blocks of jittered or isochronous
rock beats, and three 3 to 7 minute blocks of metronome tones. All five blocks
were randomized and counterbalanced across participants, with each partici-
pant completing all five blocks before and after TMS each session. Within one
session the order of the blocks stayed the same pre and post-TMS, but the
order of blocks across sessions were randomized each day. Only the Jittered
and Isochronous rock beat conditions are evaluated in this study.

Stimuli

Rhythmic rock beat stimuli were a subset of stimuli from Bouwer et al,
2016 (Bouwer et al., 2016) (also used in Honing et al 2018 ), and the following
description of the stimuli was adapted from those two papers. The rhythmic
sequences were composed of two sounds: a simultaneously sounding bass-drum
and high-hat sound (i.e. accented; 110ms duration), and a hi-hat sound (i.e.
unaccented; 70ms duration). The accented sound was 16.6db louder than
the unaccented sound, and together these acoustic features create a salient
pattern of accented and unaccented beats. Deviant sounds were created by
attenuating the accented bass-drum+hi-hat sound by 25dB (i.e. attenuated;
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110ms). These sounds were combined in four patterns with two-sounds each,
which were concatenated into longer 9minute 45 second rhythmic sequences.
Standard pattern S1 contained an accented followed by an accented sound and
occurred for 60% of the rhythmic sequence, while standard pattern S2 con-
tained an accented sound followed by a second accented sound which occurred
for 30% of the sequence. The remaining 10% of the rhythmic sequence con-
tained ‘oddball’ stimuli: an attenuated sound followed by an accented sound
(deviant pattern D1; 5% of the sequence) or an accented sound followed by
an attenuated sound (deviant pattern D2; 5% of the sequence). These pat-
terns were combined into regular and jittered conditions. Regular conditions
contained consistent 225ms intervals, inducing a beat with a 450ms interval.
Jittered conditions contained intervals randomly distributed between 150 and
300ms with an average of 225ms (uniform distribution), to make beat per-
ception impossible. However, the inter onset interval immediately before and
after a deviant tone was kept constant at 225ms to keep the acoustic and
temporal context surrounding a deviant identical between both conditions for
subsequent ERP analysis.

Concatenation of patterns in each rhythmic sequence was semi-randomized
according to four constraints: 1) Pattern S2 was never presented more than
once in a row; 2) a maximum of four consecutive S1 patterns was allowed; 3)
a deviant on beat (D1) always followed an unaccented offbeat (S2); 4) at least
five standard patterns were presented between two deviant patterns. Sounds
are referred to as on and off beat sounds in both the jittered (non-isochronous)
as well as the regular (isochronous) condition, although they are perceivable
as on/off beats only in the isochronous condition. See Honing et al 2018 or
Bouwer et al 2016 for a visual description of the stimuli. A recording of the
stimuli used can be found in Supplementary Materials.

To fit within the effective window of cTBS, a single 9m 45s regular sequence
and a single 9m 45s jittered sequence were presented to each participant before
and after cTBS, in addition to the three metronome stimuli not presented
in this paper. Pilot data consisting of three participants suggested this was
sufficient to elicit ERPs. Stimuli were presented using Paradigm experimental
stimulus presentation software (Perception Research Systems, 2007). Auditory
stimuli were sent over headphones, while participants fixated on a single image
presented on a 60Hz monitor a comfortable distance away. Overall, the study
design included 19m 30s of rock beat stimuli (jittered and regular blocks) plus
13m 30s over three blocks of metronome stimuli. Participants were allowed
short breaks between blocks, resulting in an average of 37 minutes for each
EEG recording session pre and post TMS. Total experiment time including
consent and study preparation ranged from 2 to 2.5 hours each day.
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TMS Procedure

Each participant completed passive listening tasks while recording with
EEG (as described in section XX) before and after TMS. Downregulatory
TMS was applied using continuous-theta burst stimulation (cTBS) following
the protocol from Huang et al., 2005 (Huang et al., 2005) with the Magstim
Rapid2 system. Specifically, cTBS was applied in bursts of three pulses at
50Hz, repeated at 200ms intervals, for a total of 600 pulses over 40 seconds
at 80% of each participant’s active motor threshold (AMT). If a participant’s
80% of AMT was a greater intensity than can be safely administered by our
machine, then we administered cTBS at the greatest intensity that was safe
(45% of maximum stimulator output).

AMT was determined as the lowest intensity observed to produce a visible
twitch in 5 out of 10 trials in the flexed first dorsal interosseous (FDI) muscle
with single pulse to a left primary motor cortex hotspot. Visible twitch was
verified by motor-evoked potentials (MEPs) of at least 50 microvolts measured
from the right-FDI muscle when administering single pulse TMS over the
motor hotspot. The best location for the motor hotspot was determined by
comparing MEP size and consistency at rest. MEPs were measured using
surface electrode myography (EMG) with Ag/AgCl sintered electrodes over the
belly of the right FDI muscle with a ground electrode placed over bone near the
right elbow. Single pulse TMS to primary motor cortex was conducted using
a figure-of-eight coil (Magstim, D702 70mm coil, Carmarthenshire, United
Kingdom) held tangential to the scalp surface at an angle of 45 degrees from
the anterior-posterior midline.

Neuronavigation to lPPC and lSMA was achieved using Magstim Visor2 3-
D motion capture-guided neuronavigation. Each participant’s brain model was
scaled to the Talairach brain using head size and shape. Coordinates for lPPC
and lSMA stimulation cites were determined from previous literature. The
lPPC target was Talairach -40, -50, 51 following Krause et al 2012 and Ross
et al 2018, and the lSMA target was Talairach -6, -12, 54 following Chauvigné
et al 2014 and Ross et al 2018. Coil orientation for cTBS was 45 degrees from
the anterior-posterior midline with the coil facing anterior and held tangential
to the scalp (Janssen, Oostendorm and Stegeman, 2015. Sham cTBS was
administered over left M1 with the coil facing away from the participant’s
head. Each experimental session was separated by at least two days, with no
more than two sessions per week following UC Merced IRB protocol for TMS
experiments.
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EEG Data Acquisition and Processing

Electroencephalography was collected using an ANT-Neuro 32 channel am-
plifier with the ANT-Neuro 32 electrode Waveguard cap. Electrodes were
positioned according to the 10-20 international system, and EEG data were
recorded with a sampling rate of 1024Hz. Data were pre-processed using the
EEGLab toolbox (version 2022.0; (Delorme & Makeig, 2004)) and ERPLab
toolbox (version 9.00; (Lopez-Calderon & Luck, 2014)) with MATLAB 2018b.
Channel locations were added using the standard location montage for the
Waveguard cap.

Data were downsampled to 512Hz, high-pass filtered with a 0.1Hz fre-
quency cutoff IIR Butterworth filter with a filter order of 4 and 24-80dB roll-
off, and DC offset removed. ICA was run to remove eyeblinks and saccades
for each participant before data was re-referenced using the average reference.
Frontal electrodes (FP1, FPz, and FP2) for three participants were removed
prior to ICA and interpolated following ICA component rejection. Data was
epoched to a range of -150 to 500ms for all channels before and after standard
and deviant stimuli, with pre baseline correction. Epochs with deflections
exceeding +/- 150 microvolts were rejected, and data were filtered with a
low-pass IIR Butterworth filter at 30Hz. Difference waves were obtained by
subtracting ERP responses to the standard sounds from ERP responses to the
deviant sounds at the same position (beat or off beat). We averaged over all
participants to obtain grand average ERPs and difference waves.

EEG Data Analysis

Two clusters were identified in the grand average ERPs: a negative right
fronto-central cluster and a later positive fronto-central cluster. We defined
region of interest across these clusters as shown in Table 2.1. Difference waves
measured across five electrodes in the right cluster exhibited an early negative
peak between 100 and 200 ms after the onset of the deviant consistent with
the latency of the MMN. Difference waves measured across six electrodes in
the central cluster exhibited positive peaks observed between 200 and 350 ms
after onset of the deviant consistent with a the latency of the P3a and P3b
components. Following Bouwer et al., 2016 we defined ERP components as
a 60 ms window surrounding peak amplitudes corresponding the MMN and
P3a.
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Right Cluster Central Cluster

– F3
Fz Fz
F2 F2
– FC1

FC2 FC2
Cz Cz
C4 –

Table 2.1: Electrodes analyzed for the MMN component (Right Cluster) and
the P3a component (Central Cluster).

Regular (Isochronous)

Jittered (non-Isochronous)

ROIs for Analysis

Figure 2.2: Topoplots show average activation in response to an “on beat”
deviant within a 140 to 200 ms window corresponding to the MMN (Right
Cluster), and a 220 to 280 ms window corresponding to the P3a (Central
Cluster). Line plots show difference waves for both “on” and “off” beat de-
viants in each ROI cluster.

The observed peak negative latency fell at about 174ms, allowing a window
between 144 to 204 ms. To ensure we did not overlap with the following
positive component, we offset this window by -5 ms. Thus, we defined the
MMN as the average amplitude in a sixty second window between 140 and
200ms. There were two peaks in the P300 range at 250 and 305 ms. We chose
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a 60ms window surrounding the first peak to focus on the P3a component,
and defined the P3a as the average amplitude between 220 and 280ms.

Statistical Analysis

To test the effect of regularity and beat position in the baseline data, mean
ERP amplitudes extracted from difference waves were compared using a linear
mixed effects model with fixed effects of regularity and position, and a random
effect of subject. This random effect accounts for each participant having a
different intercept. A separate model was run for each ERP component (MMN
and P3a).

• Amplitude ∼ Regularity (Reg/Jit) * Position(on/off beat) + (1| subj)

To test the effect of cTBS stimulation, mean ERP amplitudes extracted
from difference waves were compared using a separate linear mixed effects
model for each stimulation condition. The model for each stimulation con-
dition contained fixed effects of stimulation, regularity, and position, with a
random effect of stimulation by subject. This random effect structure allows
each participant to have both varying intercepts and varying slopes. A sepa-
rate model was run for each stimulation site (Sham, PPC, SMA) and for each
ERP component (MMN and P3a).

• Amplitude ∼ Stimulation(Pre/Post) * Regularity (Reg/Jit) *
Position(on/off beat) + (stim | subj)

Finally, to compare across cTBS stimulation sites, a pre minus post-cTBS
difference score of mean ERP amplitude was calculated for each cTBS con-
dition and compared using a linear mixed effects model with fixed effects of
stimulation site, regularity, and position with a random effect by subject. A
separate model was run for each ERP component (MMN and P3a).

• Amplitude difference score ∼ Stimulation Site(Sham/PPC/SMA) * Reg-
ularity (Reg/Jit) * Position(on/off beat) + (1| subj)
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2.3 Results

Baseline ERP Reults across all sessions

Results from this preliminary data over all baseline conditions partially
replicate Bouwer et al 2016. The mismatched negativity (MMN) ERP response
to deviant stimuli was highest (most negative) for on beat sound events in
the regular (isochronous) rhythmic sequence compared to off beat events in
the regular sequence. MMN for on beat and off beat events in the jittered
rhythmic sequence did not differ. The later P3a component showed higher
mean amplitude for off beat deviants than on beat deviants in the isochronous
condition. As expected, the P3a was lower for off beat deviants than on beat
deviants in the jittered condition. Difference waves and topoplots showing
mean activation in each ROI can be seen in Figure 2.3 and Figure 2.4. Mean
ERP responses are showin in Figures 2.7 and 2.8. Linear mixed effects model
results evaluating the effect of regularity and beat position for both MMN and
P3a amplitudes for all baseline conditions can be seen in Table 2.2.

On 

Beat

Off 

Beat

Jittered (non-Isochronous)Regular (Isochronous)

All Baseline ERPs

On 

Beat

Off 

Beat

Figure 2.3: Topoplots show average activation in response to “on” and “off”
beat deviants. Line plots show standards, deviants, and difference waves mea-
sured from the corresponding ROI for both “on” and “off” beat deviants. Data
correspond to the baseline EEG recording (pre-TMS) over all three experiment
sessions.
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All Baseline ERPs

MMN MMN P3a P3a

Beat Position Beat Position

Figure 2.4: Mean ERP amplitude in response to “on” and “off” beat deviants.
Data correspond to the baseline EEG recording (pre-TMS) over all three ex-
periment sessions.

Table 2.2: Linear Mixed Effects Model Results – Baseline ERPs

MMN Amplitude ∼ Stimulation (Pre/Post) *
Regularity (Regular/Jittered) * Beat (On/Off)

Predictors Estimates 95% Confidence Interval p-value
(Intercept) -0.89 -1.46 – -0.32 0.003
Jitter 0.11 -0.24 – 0.46 0.531
OffBeat 0.57 0.22 – 0.92 0.003
Jitter:OffBeat -0.48 -0.98 – 0.02 0.062
σ2 0.13
Marginal R2 0.063 Conditional R2 0.819

P3a Amplitude ∼ Stimulation (Pre/Post) *
Regularity (Regular/Jittered) * Beat (On/Off)

Predictors Estimates 95% Confidence Interval p-value
(Intercept) 1.26 0.63 – 1.88 <0.001
Jitter -0.15 -0.64 – 0.35 0.547
OffBeat 0.38 -0.12 – 0.87 0.131
Jitter:OffBeat -0.72 -1.42 – -0.02 0.044
σ2 0.26
Marginal R2 0.106 Conditional R2 0.719
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ERP Results Pre and Post TMS

We analyzed mean ERP amplitude pre to post-cTBS within each stimula-
tion site. Difference waves and topoplots showing mean activation in each ROI
can be seen in Figures 2.7 and 2.8 respectively. The preliminary results for the
linear regression model including the effects of pre to post cTBS stimulation
are shown in Tables 2.3, 2.4, and 2.5 respectively.

We expected to find no significant differences pre and post sham stimu-
lation, however the interaction effect of beat(off beat) on stimulation(post) *
regularity(jitter) was statistically significant and positive (beta = 1.62, 95 % CI
= -0.09 - 3.13, p = 0.038), representing an increase in P3a mean amplitudes for
that interaction compared to the intercept of stimulation(pre)*regularity(regular)*beat(on
beat). All other differences were non-significant for both MMN and P3a mean
amplitudes for sham stimulation.

We hypothesized attenuated MMN and P3a mean amplitudes pre to post
either PPC and SMA stimulation. For PPC stimulation, the effect of beat(off
beat) on P3a mean amplitudes was statistically significant and positive (beta
= 0.67 , 95% CI = 0.03 – .321, p= 0.040), representing a decrease in P3a for off
beat deviants. The interaction effect of beat(off beat) on regularity(jitter) was
statistically significant and positive (beta = 0.71, 95% CI = -0.58 – 1.99, p=
0.278), representing an increase in the P3a for off beat deviants in the jittered
condition. All other differences were non-significant for both MMN and P3a
mean amplitudes for PPC stimulation.

For SMA stimulation, the effect of beat(off beat) on MMN mean ampli-
tudes was statistically significant and positive (beta = 0.65, 95% CI = 0.11 –
1.20, p = 0.019), representing a decrease (less negative) in MMN for off beat
deviants. All other differences were non-significant for both MMN and P3a
mean amplitudes for PPC stimulation.
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Table 2.3: Linear Mixed Effects Model Results – Pre and Post Sham cTBS
Stimulation

MMN Amplitude ∼ Stimulation (Pre/Post) *
Regularity (Regular/Jittered) * Beat (On/Off)

Predictors Estimates 95% Confidence Interval p-value
(Intercept) -1.07 -1.73 – -0.41 0.002
Post 0.47 -0.24 – 1.18 0.192
Jitter 0.50 -0.11 – 1.11 0.105
OffBeat 0.54 -0.06 – 1.15 0.078
Post:Jitter -0.52 -1.38 – 0.33 0.022
Post:OffBeat -0.61 -1.47 – 0.24 0.157
Jitter:OffBeat -0.65 -1.51 – 0.21 0.136
Post:Jitter:OffBeat 1.11 -0.10 – 2.33 0.071
σ2 0.41
Marginal R2 0.048 Conditional R2 0.581

P3a Amplitude ∼ Stimulation (Pre/Post) *
Regularity (Regular/Jittered) * Beat (On/Off)

Predictors Estimates 95% Confidence Interval p-value
(Intercept) -1.05 0.34 – 1.76 0.005
Post 0.58 -0.22– 1.38 0.154
Jitter 0.06 -0.70 – 0.82 0.875
OffBeat -0.01 -0.77 – 0.75 0.983
Post:Jitter -0.78 -1.85 – 0.30 0.154
Post:OffBeat -0.77 -1.85 – 0.30 0.156
Jitter:OffBeat -0.39 -1.46 – 0.69 0.476
Post:Jitter:OffBeat 1.62 -0.09 – 3.13 0.038
σ2 0.65
Marginal R2 0.062 Conditional R2 0.470
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Beat
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Beat

Post cTBSPre cTBS
Sham Stimulation
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Off 

Beat

PPC Stimulation

On 
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Beat

SMA Stimulation

Regular (Isochronous) Rhythm Condition

Figure 2.5: Topoplots show average activation in response to “on” and “off”
beat deviants. Line plots show standards, deviants, and difference waves mea-
sured from the corresponding ROI for both “on” and “off” beat deviants. Data
correspond to the the regular (isochronous) rhythm condition, pre and post
cTBS at each stimulation site.
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Figure 2.6: Topoplots show average activation in response to “on” and “off”
beat deviants. Line plots show standards, deviants, and difference waves mea-
sured from the corresponding ROI for both “on” and “off” beat deviants.
Data correspond to the the jittered (non-isochronous) rhythm condition, pre
and post cTBS at each stimulation site.



40

    

    

   

   

   

   

   

   

   

   

   

  
       

   
       

             
 
 
 
  
 
 
 
  
 
 
  
  
 
 

   

                                                   

    

    

   

   

   

   

   

   

   

   

   

  
       

   
       

             

 
 
 
  
 
 
 
  
 
 
  
  
 
 

    

                                                   

    

    

    

    

    

    

    

   

   

   

  
       

   
       

             

 
 
 
  
 
 
 
  
 
 
  
  
 
 

   

                                                   

    

    

    

    

    

    

    

   

   

   

  
       

   
       

             

 
 
 
  
 
 
 
  
 
 
  
  
 
 

    

                                                   

    

    

    

    

    

    

    

   

   

   

  
       

   
       

             

 
 
 
  
 
 
 
  
 
 
  
  
 
 

   

                                                  

    

    

    

    

    

    

    

   

   

   

  
       

   
       

             

 
 
 
  
 
 
 
  
 
 
  
  
 
 

    

                                                  

    

    

    

    

    

    

    

   

   

   

  
       

   
       

             

 
 
 
  
 
 
 
  
 
 
  
  
 
 

   

                                                  

    

    

    

    

    

    

    

   

   

   

  
       

   
       

             

 
 
 
  
 
 
 
  
 
 
  
  
 
 

    

                                                  

Sham

PPC

SMA

P3aMMN

    

    

   

   

   

   

   

   

   

   

   

  
       

   
       

             

 
 
 
  
 
 
 
  
 
 
  
  
 
 

   

                                                  

    

    

   

   

   

   

   

   

   

   

   

  
       

   
       

             

 
 
 
  
 
 
 
  
 
 
  
  
 
 

    

                                                  

    

    

   

   

   

   

   

   

   

   

   

  
       

   
       

             

 
 
 
  
 
 
 
  
 
 
  
  
 
 

   

                                                  

    

    

   

   

   

   

   

   

   

   

   

  
       

   
       

             

 
 
 
  
 
 
 
  
 
 
  
  
 
 

    

                                                  

Regular (Isochronous) Rhythm Condition

Figure 2.7: Mean ERP amplitude in response to “on” and “off” beat deviants.
Data correspond to the the regular (isochronous) rhythm condition, pre and
post cTBS at each stimulation site.
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Figure 2.8: Mean ERP amplitude in response to “on” and “off” beat deviants.
Data correspond to the the jittered (non-isochronous) rhythm condition, pre
and post cTBS at each stimulation site.
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Table 2.4: Linear Mixed Effects Model Results – Pre and Post PPC cTBS
Stimulation

MMN Amplitude ∼ Stimulation (Pre/Post)
* Regularity (Regular/Jittered) * Beat (On/Off)

Predictors Estimates 95% Confidence Interval p-value
(Intercept) -0.75 -1.39 – -0.10 0.024
Post -0.11 -0.67– 0.45 0.701
Jitter 0.04 -0.59 – 0.52 0.890
OffBeat -0.51 -0.05 – 1.06 0.072
Post:Jitter -0.69 -0.10 – 1.48 0.084
Post:OffBeat -0.11 -0.68 – 0.89 0.783
Jitter:OffBeat -0.43 -1.22 – 0.35 0.276
Post:Jitter:OffBeat 0.44 -1.55 – 0.67 0.433
σ2 0.35
Marginal R2 0.071 Conditional R2 0.633

P3a Amplitude ∼ Stimulation (Pre/Post) *
Regularity (Regular/Jittered) * Beat (On/Off)

Predictors Estimates 95% Confidence Interval p-value
(Intercept) 1.39 0.70 – 2.08 <0.001
Post -0.14 -0.85– 0.57 0.690
Jitter -0.24 -0.88 – 0.41 0.468
OffBeat 0.67 0.03 – .321 0.040
Post:Jitter -0.40 -0.51 – 1.32 0.378
Post:OffBeat -0.71 -1.62 – 0.20 0.126
Jitter:OffBeat -0.96 -1.87 – 0.05 0.040
Post:Jitter:OffBeat 0.71 -0.58 – 1.99 0.278
σ2 0.47
Marginal R2 0.105 Conditional R2 0.542
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Table 2.5: Linear Mixed Effects Model Results – Pre and Post SMA cTBS
Stimulation

MMN Amplitude ∼ Stimulation (Pre/Post) *
Regularity (Regular/Jittered) * Beat (On/Off)

Predictors Estimates 95% Confidence Interval p-value
(Intercept) -0.85 -1.54 – -0.16 0.016
Post 0.14 -0.41– 0.69 0.612
Jitter -0.13 -0.68 – 0.41 0.630
OffBeat 0.65 0.11 – 1.20 0.019
Post:Jitter 0.18 -0.59 – 0.95 0.635
Post:OffBeat -0.29 -1.06 – 0.48 0.456
Jitter:OffBeat -0.35 -1.12 – 0.42 0.371
Post:Jitter:OffBeat -0.30 -1.38 – 0.79 0.587
σ2 0.33
Marginal R2 0.064 Conditional R2 0.685

P3a Amplitude ∼ Stimulation (Pre/Post) *
Regularity (Regular/Jittered) * Beat (On/Off)

Predictors Estimates 95% Confidence Interval p-value
(Intercept) 1.33 0.57 – 2.09 0.001
Post -0.22 -0.91– 0.47 0.523
Jitter -0.27 -0.88 – 0.34 0.382
OffBeat 0.46 -0.14 – 1.07 0.132
Post:Jitter 0.45 -0.41 – 1.31 0.296
Post:OffBeat -0.25 -1.11 – 0.61 0.569
Jitter:OffBeat -0.25 -1.11 – 0.61 0.569
Post:Jitter:OffBeat -0.82 -1.68 – 0.04 0.062
σ2 0.42
Marginal R2 0.092 Conditional R2 0.613
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Difference Scores of Pre to Post ERPs Across
Stimulation Sites

Finally, we compared the percent difference in ERP amplitude from pre
to post cTBS stimulation across each stimulation site, shown in Figures 2.9
and 2.10. The preliminary results for the linear regression model evaluating
percent difference after cTBS for each stimulation are shown in Table 2.6.
For the change in MMN amplitudes, the effect of condition(jitter) for stimu-
lation(PPC) was statisticallly significant and negative (beta = -1.21, 95% CI
= -2.37 – -0.05, p = 0.040), representing an increase (more negative) in MMN
for deviants in the jittered condition and PPC stimulation. For the change
in P3a amplitudes, the interaction effect of beat(off beat) on condition(jitter)
was statistically significant and negative (beta = -1.61, 95% CI -2.86 – -0.36,
p = 0.012), representing a decrease in P3a for off beats in the jittered condi-
tion. All other differences were non-significant for both MMN and P3a mean
amplitudes for PPC stimulation.

[This space intentionally blank for formatting purposes.]
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Figure 2.9: Mean ERP amplitude in response to “on” and “off” beat deviants.
Lines connect amplitude values from individual participants. Data correspond
to the the regular (isochronous) rhythm condition, pre and post cTBS at each
stimulation site.
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Figure 2.10: Mean ERP amplitude in response to “on” and “off” beat deviants.
Lines connect amplitude values from individual participants. Data correspond
to the the jittered (non-isochronous) rhythm condition, pre and post cTBS at
each stimulation site.
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Table 2.6: Linear Mixed Effects Model Results – Percent Difference after cTBS
Stimulation

Difference Score of MMN Amplitude ∼ Target (Sham/PPC/SMA) *
Regularity (Regular/Jittered) * Beat (On/Off)

Predictors Estimates 95% Confidence Interval p-value
(Intercept) -0.47 -1.06 – 0.13 0.121
PPC 0.58 -0.24 – 1.40 0.167
SMA 0.33 -0.49 – 1.15 0.429
Jitter 0.52 -0.30 – 1.34 0.207
OffBeat 0.62 -0.20 – 1.44 0.140
PPC:Jitter -1.21 -2.37 – -0.05 0.040
SMA:Jitter -0.71 -1.87 – 0.45 0.228
PPC:OffBeat -0.73 -1.89 – 0.43 0.217
SMA:OffBeat -0.33 -1.49 – 0.83 0.579
Jitter:OffBeat -1.12 -2.28 – 0.04 0.059
PPC:Jitter:OffBeat 1.56 -0.08 – 3.20 0.063
SMA:Jitter:OffBeat 1.41 -0.23 – 3.05 0.091
σ2 0.77
Marginal R2 0.085 Conditional R2 0.125

Difference Score of P3a Amplitude ∼ Target (Sham/PPC/SMA) *
Regularity (Regular/Jittered) * Beat (On/Off)

Predictors Estimates 95% Confidence Interval p-value
(Intercept) -0.58 -1.28 – 0.12 0.103
PPC 0.72 -0.16 – 1.61 0.109
SMA 0.80 -0.09 – 1.69 0.076
Jitter 0.78 -0.11 – 1.66 0.086
OffBeat 0.77 -0.12 – 1.66 0.088
PPC:Jitter -1.18 -2.43 – 0.07 0.065
SMA:Jitter -1.23 -2.48 – 0.03 0.055
PPC:OffBeat -0.06 -1.32 – 1.19 0.920
SMA:OffBeat -0.52 -1.78 – 0.73 0.410
Jitter:OffBeat -1.61 -2.86 – -0.36 0.012
PPC:Jitter:OffBeat 0.91 -0.87 – 2.68 0.313
SMA:Jitter:OffBeat 1.45 -0.33 – 3.22 0.109
σ2 0.90
Marginal R2 0.134 Conditional R2 0.302
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2.4 Discussion

Non-human primates, such as the rhesus macaque and chimpanzee, have
robust interval timing ability – they can detect detect changes in inter-onset
intervals and use interval timing information to plan their actions. However,
the beat-based timing ability that allows for flexible perception or movement to
a complex rhythm appears to be uniquely human. Previous work has demon-
strated that pre-attentive markers of beat perception are present in human
ERP responses to complex rhythmic stimuli, but are absent in monkey data
(Bouwer et al., 2016; Honing et al., 2018). The results of the current study
replicate these effects in human data.

Specifically, there are effects of metrical position on ERP response to de-
viants in rhythmic sequences. The first aim of this study was to replicate
whether there are stronger ERP responses for all the baseline conditions in
regular rhythmic sequences vs jittered rhythmic sequences, consistent with
beat perception abilities in humans. And to replicate whether there are atten-
uated ERP responses to off beat deviants, consistent with Bouwer et al 2016,
showing that humans are also engaging in sequential learning during even dur-
ing passive listening. We did observe MMN and P3a components in response
to perceptual deviants, and the MMN was lower for off-beat deviants in the
regular (isochronous) condition. This means we found a small effect of metrical
position on MMN in the predictable, regular (isochronous) rhythm condition.
However, we found minimal difference in MMN response based on beat posi-
tion for the jittered condition, or for P3a in the based on either regularity or
beat position. This finding for the jittered (non-isochronous) condition means
we did not observe a metrical position effect or a sequential learning effect on
the ERPs when the sound onsets are not predictable, despite the sound events
themselves being presented in the same order. These overall null results may
be due to the fact that we shortened the original protocol from Bouwer et al
2016 down to only 9 minutes and 45 seconds for each rhythmic stimuli, and to
the small sample size in this preliminary data covering only nine participants.

The second aim of this study was to extend the findings of previous work by
probing the causal role of motor regions implicated in human beat perception.
Human beat-based timing perception is thought to rely on tight connections
between auditory and motor processes in the brain, such that predictions from
motor activity guide sensory response to rhythmic events. We applied TMS
to two motor regions: the SMA (implicated in beat-based timing outside of
the dorsal auditory stream) and the PPC (implicated in beat-based timing as
a hub between motor and auditory cortex within the dorsal auditory stream).
If cTBS applied to either SMA or PPC led to an attenuation of these ERP
responses, more closely aligned with ERPs in experiments of monkey rhythm
perception, then we would have an indication that beat-based timing either
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inside or outside the dorsal auditory pathway was involved in the underlying
oscillatory mechanisms for meter perception or sequential learning in response
to these two rhythmic stimuli. Our results with this preliminary data are thus
far inconclusive.

Conclusion

To conclude, the aim of this study was to investigate the role of SMA and
PPC in beat-based timing perception. We evaluated the neural mechanisms
of predictive timing and sequential learning in rhythm cognition by measuring
ERPs in response to deviant stimuli in isochronous and jittered rhythmic se-
quences. As in Bouwer et al., 2016, we show a robust MMN and P3a responses
to on beat deviants in isochronous sequences. However, we did not observe a
clearly attenuated response to on beat deviants in jittered sequences. Addi-
tionally, we observed attentuation of the MMN response in off beat deviants
compared to on beat deviants, but only in the regular (isochronous) rhythm
condition. This demonstrates that humans are engaging in the process beat
perception while passively listening to rhythmic stimuli, but does not clarify to
what extent regularity and metrical position affect these neural mechanisms.

We then perturbed these mechanisms using downregulatory TMS. To our
knowledge, this represents the first causal investigation – using transcranial
magnetic stimulation – into the motor regions and neural mechanisms in-
volved in human beat-perception within (PPC) and outside (SMA) the dorsal
auditory stream. Post TMS, we did not observe a clear attenuation of ERP
response after stimulation of either SMA or PPC. These results cannot conclu-
sively support either region’s role in beat perception activity as implicated in
either GAE or the ASAP hypothesis. Significant heterogeneity among partic-
ipant’s ERP response, and response to the cTBS protocol, are both possible
factors in this inconclusive data. Analysis of the complete dataset, includ-
ing comparing any effects of musicianship status, as well as cTBS stimulation
thresholds, may provide further evidence regarding the role of enhanced corti-
cal connections between auditory and motor areas in the human brain support
beat-based timing perception.



Chapter 3

Measuring Acoustic Social
Worlds: Reflections on a Study
of Multi-Agent Human
Interaction

Chapter 3 provides a conceptual bridging between the first two chapters
focused on low-level neural mechanisms in music and rhythm perception, to
the final two chapters focused on the rhythms of large group interaction. In
this chapter, I review work in musical interaction through the philosophical
framework of 4E (embodied, enactive, extended and embedded) cognition. I
argue that our implicit understanding of the relationship between the senses and
our bodily and motor expertise (a specific view called sensorimotor contingency
theory) underpins not only our experience as an individual engaging with the
world, but also our experience as an individual musician embedded within larger
musical interaction. The chapter ends by briefly summarizing the results of
the study presented in chapter five, where these theories inform our empirical
investigation of the coordination of members of a large musical ensemble.

In press as:

Proksch, S., Reeves, M., Spivey, M., Balasubramaniam, R. (n.d.) Measuring
Acoustic Social Worlds: Reflections on a Study of Multi-Agent Human Inter-
action Eds S. Besser, F. Lysen, & N. Geode, forthcoming with Brill in 2023
© Brill Academic Publishers. Reproduced with permission.
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Abstract

When individuals are sharing similar behavioral, physiological, or neu-
ral states—that is, when individuals’ actions, body states, or brain activity
are changing together in time—then a collective interpersonal synergy forms
(M. A. Riley et al., 2011). Each individual starts to behave together as a
member of one large group. Measurement of an interpersonal synergy can be
indicative of shared social cognition—of joint participation in co-regulating
multiple patterns of activity between two or more agents engaged in a social
interaction (De Jaegher, Di Paolo, & Gallagher, 2010). In order to exam-
ine the dynamics of multiagent groups of people, and the emergence of these
interpersonal synergies, scientists generally measure signals emitted by each
individual to detect correlations between these signals.

However, humans are highly capable of tracking complex behavioral dy-
namics of multiagent groups in our everyday interactions with the world even
without access to individual behavioral, physiological, or neural signals from
each individual agent. Our everyday human interactions provide us with access
to a shared and co-created acoustic social world. Interactions among members
of musical ensembles in particular provide useful insight into the co-creation of
acoustic social worlds and the emergence of collective synergies. In the context
of 4E cognition and the dynamical systems framework, this chapter provides an
examination of the measurement of collective synergies from acoustic signals
not of individual musicians, but of the acoustic signal co-created by a musical
ensemble as a whole, in performance of a musical work that was composed to
highlight the emergence of such a collective synergy.

3.1 Introduction

Humans are highly capable of tracking complex behavioral dynamics of
crowds in our everyday interactions with the world. Imagine the sounds of a
crowded coffee shop. Consider how individuals in that coffee shop might be
interacting with each other. There may be some small groups or pairs, and
many individuals engaging in small, temporary interactions—but these indi-
viduals are not coordinating with every other individual in a cohesive “coffee
shop group”. They are just a jumble of individuals cohabiting a shared space.

Now, imagine the audience on the floor of a rock concert, cheering or
singing along with the artists on stage. Alternatively, imagine the fan section
at your favorite sporting event emerging into synchronous chant, or a chorus
of resounding “boos”. Imagine how individuals in those large crowds might
be interacting with each other. As they cheer, or sing, or chant, or boo, they
are sharing similar behavioral states—engaging in similar actions. They are
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likely sharing similar physiological and neural states as well. These crowds are
changing together in time. They are behaving—-coordinating—like one large
interdependent group. They have formed a synergy.

The differences between this coffee shop crowd and the rock concert au-
dience or the sporting event crowd are trivially easy for you or I to identify.
An uncoordinated group of independent individuals, happening to coexist in
a shared space versus a coordinated interdependent group of members of a
crowd. We can simply hear that these two groups of people sound different.
Similarly, we can simply hear when we are engaged and participating in a col-
lective synergy while we are interacting in a large group of people. Or perhaps,
in a very large musical ensemble.

As scientists in the lab, we are able to measure one or many signals from
every individual in an interacting or non-interacting group. We can measure
those signals and, usually, identify which members of the group are sharing the
same behavioral state by identifying when their movements synchronize with,
or complement, other members of the group. We can measure the pattern of
each individual’s heartbeats or electrodermal activity (subtle electrical signals
conducted by the skin) to identify when individuals are sharing the same
physiological state. We can even measure precise patterns of brain activity
(EEG, or fMRI) to identify when individuals are sharing the same neural
state (Balconi & Fronda, 2020; Misaki et al., 2021; Schirmer, Fairhurst, &
Hoehl, 2021). When individuals are sharing similar behavioral, physiological,
or neural states—that is, when individuals’ actions, body states, or brain
activity are changing together in time—then a collective interpersonal synergy
forms (M. A. Riley et al., 2011). Each individual starts to behave together as
a member of one large group. Measurement of an interpersonal synergy can
be indicative of shared social cognition: of joint participation in co-regulating
multiple patterns of activity between two or more agents engaged in a social
interaction (De Jaegher et al., 2010).

However, as humans going about our everyday lives, we don’t carefully
measure the individual components of our successful social interactions or
the emergence of interpersonal synergies in our joint actions to determine
whether we are engaged in a participatory instance of social cognition. We
don’t carefully monitor our own movement and brain patterns or carefully
compare each of these many individual signals that we generate to the many
individual signals that our friends, coworkers, or other individuals generate
as we are interacting in real time. In fact, we don’t even have access to
individualised movement, body, and brain data of ourselves and the people
with whom we interact on a daily basis.

Scale this up to an interaction between four or five people, or even further
to a very large audience attending a concert—and this feat is unmanageable
for any single human’s sensory system. Often, you might lack even visual
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access to every member of the group you are interacting in. What you do
have access to is a shared and co-created acoustic world (albeit from your own
unique point of reference). With this in mind, we turn first to the science
of interpersonal coordination, and then to an empirical study evaluating the
formation of interpersonal synergy within a set of musicians, who join together
in co-creating an acoustic musical world.

3.2 Interpersonal Coordination

The science of interpersonal coordination has made advances in describing
how individuals interact as part of a dyad or a large group by evaluating
a multitude of movement, body, and brain signals from each individual in
comparison with each other individual.

But what if scientists don’t have access to the vast array of recording de-
vices they rely upon in their lab? What if a scientist wants to study how real
groups interact in the wild? Can science identify these same differences in an
uncoordinated group of independent individuals versus a coordinated, inter-
acting and interdependent crowd? This is the question we asked in a recent
study of multi-agent interaction within a musical ensemble. These musicians
performed a piece that was specifically composed so that the musicians first
create uncoordinated noise for a period of time on each of their instruments,
before joining together into a coordinated joint musical performance. Proksch
et al. (2021) wanted to understand how the musicians were changing their
acoustic behavior in time, either independently or interdependently, in the
two different musical interactions dictated by their musical score. With the
understanding that individuals often do not have unobstructed visual access to
every member of an interacting group (let alone physiological or neural data),
we restricted our dynamical systems analysis to a single measurement of the
shared and co-created behavior generated by the musicians—a raw audio file
of the ensemble’s acoustic behavior.

The dynamical systems framework in cognitive science allows for the study
of the formation of interpersonal synergies. An interpersonal synergy occurs
when the movement dynamics of one individual become causally coupled to
the movement dynamics of another individual (M. A. Riley et al., 2011). This
means that the actions of cognitive agents constrain each other, interacting as a
single coupled unit. Interpersonal synergies can arise from simple interactions,
such as walking through the park engaged in a conversation and finding one
has begun walking in step with your conversation partner (Atherton, Sebanz,
& Cross, 2019). Subtler interpersonal synergies can arise in conversation when
standing still. Even if one cannot see their conversation partner, the mere act
of interacting through conversation serves to constrain subtle sway patterns
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of body movement, such that body movement is distinctly coupled to the
movement of the unseen partner (Shockley, Santana, & Fowler, 2003).

Perhaps more immediately observable, however, are the interpersonal syn-
ergies which we see and hear in musical interactions. Where conversation
partners might incidentally fall into step or sway together in time, a pair or a
group of musicians co-creating a musical performance are intentionally coordi-
nating their acoustic behavior. It’s important to note here, that coordinating
acoustic behavior in order to engage in a successful musical interaction often
involves musicians moving their bodies differently from their musical partners.
A trombone player will make different movements than the string bass player,
and a trumpet player or pianist will make different movements and perhaps
even play more notes in the same amount of time compared to the trombon-
ist and bassist. But together, these differing movement dynamics from each
musician join to co-create the same shared acoustic social world. The acoustic
output of each musician constrains the acoustic output, and motor behavior,
of each other musician in the ensemble. In fact, if the low voices (the trom-
bone and the bassist) were to play a continuous drone, one single chord for
a prolonged time, then the duet that the trumpet player and pianist impro-
vise together may result in a different ‘performance narrative’ than if the low
voices provided a rhythmic bass line. In a study involving duets performed
by pairs of skilled pianists, improvising over the unstructured ‘drone’ backing
track resulted in increased movement coordination between the two pianists
compared to improvisation over the rhythmic bass line (Walton et al., 2018).
Specifically, pianists repeated their improvisation partner’s note combinations
and head movements in longer sequences when improvising over the drone
backing track. Further, listeners rated this performance as more ‘harmonious’
than the improvisation over the structured, rhythmic bass line, with listeners
giving higher ‘harmonious’ ratings when the musicians repeated each other’s
note combinations for longer sequences of time (Walton et al., 2018).

Experimental setups are typically designed to identify interpersonal syner-
gies by correlating one or more of the movement/body/neural signals from each
member of the interacting or non-interacting group. But in principle—once
an interpersonal synergy is formed—it should be possible to analyze group
behavioral dynamics from one single signal measured from that system. This
is due to two factors—dimensional compression, and reciprocal compensation
(M. A. Riley et al., 2011). Dimensional compression within a synergy occurs
when the movement of many potentially independent elements (such as the
movement of two independent pairs of legs on two independent walking indi-
viduals) become coupled so that they move in time together (the two pairs of
legs begin to walk in step, as one interdependent walking dyad). Reciprocal
compensation, also termed mutual adaptation, describes the ability of move-
ment in one element of a synergy to react to, or adapt to, the movement of
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another element of the synergy (one member of the walking dyad can adjust
their walking speed to ensure they are in step with their walking partner; Riley
et al., 2011). The behavior of the musicians in the improvising piano duets we
visited earlier exhibited these features of dimensional compression and recip-
rocal compensation. The movement of two independent pairs of hands, and
two independent heads, on two individual musicians became coupled so that
they created music in time together, and the musical behavior of each musician
reacted to, or adapted to, the musical behavior of the other musician. The
listeners, who rated this musical performance, were able to extract an acoustic
signal from that system and attune to differences in how the two duetting
pianists coordinated their sound and movement (Walton et al., 2018). If these
listeners were able to attune to these differences in coordination in two forms of
coordinated music making (improvised duets over two different backing tracks)
based on a single acoustic signal—the raw audio of the music performance it-
self—then perhaps this same feat can be scaled up to a multi-agent interaction
of a much larger musical ensemble. And if the motor and acoustic behavior
of individuals within a much larger musical ensemble are functioning together
in time, so as to have the features of dimensional compression and reciprocal
compensations necessary to form an interpersonal synergy, then it should be
possible to detect that synergy from something as sparse as a raw audio file.

3.3 An Empirical Study of Multi-Agent

Musical Interaction

We investigated the coordination dynamics of a performance of “Welcome
to the Imagination World”, composed by Daisuke Shimizu (Shimizu, 2016)
and performed by the Inagakuen Wind Orchestra (Proksch et al. (2021))1.
Specifically, we evaluated the acoustic behavior of this musical ensemble us-
ing methods from dynamical systems theory of phase space reconstruction
and recurrence quantification analysis. These time series analysis methods
allow researchers to detect two features of interpersonal synergies discussed
above—dimensional compression and reciprocal compensation—and to mea-
sure patterns of this synergistic behavior over time. In this case, we were
somewhat playing the role of the listeners of the improvising pianists. The
difference was, instead of asking whether one could hear differences in coor-
dination, the question was whether one might empirically measure differences
in coordination using those dynamical systems tools. And importantly, can
these differences in coordination be measured using only the raw audio signal

1https://www.youtube.com/watch?v=-wJ9ZsgO3QI
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of the musical performance, without access to individual recordings of each
musicians’ acoustic output.

The musical performance was divided into two main coordination cate-
gories: uncoordinated and coordinated. This uncoordination was in fact a
specific feature of the musical composition itself. Shimizu composed this piece
to reflect the “arrival and development of a simple fanfare motif into an ac-
complished work” (windrep.org), beginning with “random ad lib music...free of
tempo and as expressive as possible” until the musicians invite the conductor
on stage as the horn, tenor, and brass instruments unify into a majestic intro-
duction’ (windrep.org). These descriptions are from program notes describing
“Welcome to the Imagination World”. Listening to a performance of this work,
one can easily hear the difference between the uncoordinated improvisations
of individual musicians on stage and the coordinated, collective interaction of
the musicians as they co-create ‘an accomplished work’. Importantly, however,
we were also able to measure those differences in coordination dynamics from
the raw audio signal.

The results from the time series analysis make clear that there is a de-
tectable difference between the uncoordinated and coordinated portions of the
performance. They tell us that when the musicians began to coordinate their
actions, such that the actions of each musician became interdependent on the
action of each of the other musicians in the ensemble, they formed a single
complex system—a collective interpersonal synergy.

3.4 Discussion

What are the implications of measuring these differences in coordination
dynamics between the acoustic behavior of non-interacting uncoordinated mu-
sicians gathered on a stage versus the acoustic behavior of the same musicians
when interacting and coordinated as a cohesive musical ensemble?

The current pragmatic turn in cognitive science toward action-oriented
views of cognition (c.f. Engel, Friston & Kragic, 2016) provides a useful ex-
planatory viewpoint for discussing coordination as it relates to multi-agent
musical interaction. Specifically, we can interpret the collective coordination
which emerged in this musical ensemble in terms of sensorimotor contingency
theory under the cognitive framework of enactivism. We argue that the skilled
coordination of these musicians engaging in joint musical action is grounded
in (implicit or explicit) knowledge of sensorimotor contingencies supporting
music perception and production. These shared sensorimotor contingencies
enable an interacting multi-agent group of musicians to co-create a shared,
acoustic social world—forming a single complex system—as the interdepen-
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dent actions of individual musicians give rise to emergent dynamics of an
interacting musical ensemble.

Enactive sensorimotor contingency theory is a theory of perception, which
describes perception as a process which is guided by action, emphasizing a
“pre-conceptual, pre-linguistic form of understanding related to bodily and
motor expertise” (Matyja & Schiavio, 2013). Developed originally as an ex-
planation for visual perception (O’Regan & Noë, 2001; Noë, Noë, et al., 2004),
the classic example of sensorimotor contingency theory is ‘seeing the whole
tomato’. When we see a tomato, we don’t just see a two-dimensional gradi-
ent of colors and edges, but in some sense, we see the ‘whole’ tomato. Our
awareness of the back of the tomato arises from our bodily knowledge of a
repertoire of motor actions, the sensorimotor contingencies (SMCs), necessary
in perceiving tomatoes: we know that if we were to perform a certain action
(turn the tomato around), that we would see the back of a tomato. Enac-
tivist accounts of music cognition place the perception of music in (implicit
or explicit) bodily knowledge of a repertoire of motor actions and their effect
on associated sensory stimulation, or knowledge of sensorimotor contingencies
(Matyja & Schiavio, 2013). Rather than passive listeners, simply receiving
a barrage of acoustic stimuli and later appraising it as musical (as in a tra-
ditional, cognitivist account of music perception), we perceive music through
skilled action (Maes, Leman, Palmer, & Wanderley, 2014; Maes, 2016). The
music listener learns to ‘manipulate’ the barrage of acoustic stimuli she hears
through active (attentive) listening and skillful engagement with the musical
environment (Krueger, 2009, 2013). Musical training or experience enhances
her knowledge of the sensorimotor contingencies involved in producing music,
which enables her to selectively attend to increasingly more salient musical
features when perceiving music. Knowledge of SMCs involves not only knowl-
edge of what sound can be heard given a certain action, but also what action
most likely caused or will cause a certain sound. This bidirectional associa-
tion between action and perception enables individuals to plan and respond
to their own action, and also to predict and coordinate with others through
joint musical action—as listeners and players at the same time.

A series of studies by Drost et al. (2005, 2007) demonstrate that indi-
viduals with musical training were more susceptible to making mistakes in a
forced production task due to incongruencies between visually and auditorily
presented chords, and that the effect was stronger when the auditory stimulus
presented was in the timbre of their own instrument. These studies indicate
that musical training leads to more precise sensorimotor representations of the
action necessary to produce a sensory stimulus (the heard chord). A number
of piano timing experiments demonstrated that pianists (ignorant of the task
condition, and told that they were performing with a live partner) were bet-
ter able to play in time with recordings of themselves than of other musicians
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(Keller, Knoblich, & Repp, 2007) or with others who were matched in terms of
preferred performance tempo (Loehr, Large, & Palmer, 2011). Each of these
studies indicate that higher knowledge of SMCs enhances the participant’s
ability to be in time in a music production task by enhancing the participant’s
ability to plan and coordinate with a partner in joint musical activity.2

Rhythmic interaction in naturalistic music making, such as musical en-
semble performance, relies on extending these simple sensorimotor contingen-
cies—knowledge of the sound your instrument will make when you perform an
action; knowledge of the sounds you will hear based on the preferred tempo
at which you play music—to more complex SMCs which take into account the
dynamics of two or more interacting agents, such as knowing what musical
phrase you will hear from your band mates in a jam session after you have
each taken a certain set of musical actions. Humans excel at the precise tim-
ing and coordination of motor and acoustic output from multiple musicians in
part because they excel at a skill called entrainment, which is where we are
headed next.

Successful coordination within and between human individuals in music
making may reflect a greater (implicit or explicit) knowledge of the sensorimo-
tor contingencies involved in perceiving and producing musical events. Take
our pianists for example, they are better able to synchronize with recordings
of themselves (Keller et al., 2007) or with others who are matched in preferred
performance tempo (Loehr et al., 2011). This is because the pianist (unknow-
ingly) playing with a recording of herself has a very strong implicit knowledge
of what actions it would take for her to produce the sound she hears from
the recording. This strong knowledge of SMCs makes it easier for her to pre-
dict when and what she will hear, and enhances the strength of entrainment
between musician and recording. It is thus easier for the pianist to form an
interpersonal synergy alongside their own pre-recorded musical activity. The
pianist who is playing with another who prefers similar tempi has a similarly
strong knowledge of SMCs involved in producing the sounds they hear at their
preferred tempo, enhancing the strength of entrainment at that tempo, and
enabling the emergence of a tight interpersonal synergy.

Entrainment, or a specific form of coordination referring roughly to the
ability to synchronize or to be together in time with one or more individuals,
has been taken to “relate phenomenologically to a sense of social belonging”

2The original authors interpretation of these experiments and results was taken as sup-
port for the role of cognitive representations of the actions of self and other in musical
activity. Thus, by their account, musicians are cognitively simulating the movement and
production of the other musician. Under moderate accounts of SMC, these representations
may be thought to include knowledge of SMCs, however under more radical accounts of
SMC (with no role for representations) these studies may be taken to support the role of
bodily knowledge/memory of the SMCs involved in music production and response.
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and has been conceived as one explanation for group cohesion and bonding
that emerges from joint activities such as music making (Clayton, Sager, &
Will, 2005). Our human ability to entrain with others ranges from the sub-
conscious synchrony of repetitive motions (i.e. happening to walk in step
with another) to the synchronization of intentional temporal events such as
synchronizing melody and harmony in joint musical interaction. In temporal
rhythmic processing, it is the interaction of the body, brain, and environment
which results in the emergent phenomenon of sensorimotor and neural en-
trainment (J. M. Ross & Balasubramaniam, 2014). Interpersonal synchronous
movement between two or more individuals may be further linked through syn-
chrony of neural oscillations across individuals (Novembre, Knoblich, Dunne,
& Keller, 2017) and has been found to occur in naturalistic social interactions
among affiliative partners (Kinreich, Djalovski, Kraus, Louzoun, & Feldman,
2017). Even when referring in part to neural phenomena, such multi-scale and
multi-level coordination patterns likely relate to our phenomenological expe-
rience of being part of an extended social and cultural environment. Kirchoff
and Kiverstein describe this feeling as “phenomenal attunement— the feeling
of being at home in a familiar culturally constructed environment” (Kirchhoff
& Kiverstein, 2020). The interactions of a musical ensemble, specifically when
the ensemble is made up of a group of musicians who have engaged in re-
peated rehearsals and joint musical interactions together, provides an ideally
structured social and musical environment for that ensemble to exhibit an ex-
tended cognition, if not an extended conscious mind (Spivey, 2020; Kirchhoff
& Kiverstein, 2020).

In perhaps a less enactivist light, shared predictive models of sensorimotor
contingencies developed during and as a result of group music making may give
rise to group identity in a similar fashion to the “predictive perception of sen-
sorimotor contingencies” which are proposed to underlie a sense of self (Seth,
2014). While radical enactivism maintains a strictly antirepresentational char-
acter of the nature of cognitive processes (c.f. Hutto & Myin, 2012), we do not
take a stance in this debate in this chapter. Rather, we argue that enactive
SMC theory grounds and enhances aspects of coordination in joint musical
action in terms of bodily and environmental states, regardless as to whether
these states are represented in the brain as models or wholly constituted by
the bodily/environmental states themselves.

Individuals engaged in joint music making often join together in larger
groups than these piano duets, ranging from a four-person quartet to a large
chorus, orchestra, or even a stadium full of concert goers singing along with
their favorite band on stage. Nevertheless, the shared sensorimotor contin-
gencies among multi-agent groups of interacting musicians enable them to co-
create a shared, acoustic social world. In doing so, they form collective inter-
personal synergies, allowing the interdependent actions of individual musicians
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to give rise to the emergent dynamics of an interacting musical ensemble. By
examining these synergies in the context of 4E cognition (Newen, De Bruin, &
Gallagher, 2018), we can see them as emerging from groups of agents who are
embodied and enactive, as well as embedded in an environment, thus making
their cognition extended across many interacting elements. That is, when the
people and their instruments are well coordinated by virtue of their shared
and co-created acoustic social world, they form one complex system that, by
itself, bears a substantial statistical similarity to a mind.



Chapter 4

Coordination Dynamics of
Multi-Agent Interaction in a
Musical Ensemble

Chapter 4 is a published empirical case study, applying nonlinear statistical
analysis techniques to investigate the interaction of musicians within a musical
ensemble. With the theoretical background provided in chapter 3, I demonstrate
that we can measure one of the many possible sources of sensory and behavioral
information, and characterize two different modes of coordination. Specifically,
nonlinear analyses applied to the acoustic signal created by these musicians can
be used to differentiate when musicians are engaged in individual - independent
- musicianship, and coordinated - collective - musical ensemble performance.
This chapter concludes with a call to extend these methods to study other forms
of large group social interaction ’in the wild’, anticipating the study of crowd
sound interaction presented in chapter five.
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Abstract

Humans interact with other humans at a variety of timescales and in a
variety of social contexts. We exhibit patterns of coordination that may differ
depending on whether we are genuinely interacting as part of a coordinated
group of individuals vs merely co-existing within the same physical space.
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Moreover, the local coordination dynamics of an interacting pair of individ-
uals in an otherwise non-interacting group may spread, propagating change
in the global coordination dynamics and interaction of an entire crowd. Dy-
namical systems analyses, such as Recurrence Quantification Analysis (RQA),
can shed light on some of the underlying coordination dynamics of multi-agent
human interaction. We used RQA to examine the coordination dynamics of
a performance of “Welcome to the Imagination World”, composed for wind
orchestra. This performance enacts a real-life simulation of the transition
from uncoordinated, non-interacting individuals to a coordinated, interacting
multi-agent group. Unlike previous studies of social interaction in musical per-
formance which rely on different aspects of video and/or acoustic data recorded
from each individual, this project analyzes group-level coordination patterns
solely from the group-level acoustic data of an audio recording of the perfor-
mance. Recurrence and stability measures extracted from the audio recording
increased when musicians coordinated as an interacting group. Variability
in these measures also increased, indicating that the interacting ensemble of
musicians were able to explore a greater variety of behavior than when they
performed as non-interacting individuals. As an orchestrated (non-emergent)
example of coordination, we believe these analyses provide an indication of
approximate expected distributions for recurrence patterns that may be mea-
surable before and after truly emergent coordination.

Keywords: Coordination Dynamics, Social Interaction, Emergence, Dy-
namical Systems, Music

4.1 Introduction

Science has looked to art for inspiration in explaining human cognition.
Music, in particular, has aided scientists exploring human engagement with
the world, from emotional experience (Meyer, 1956; Huron, 2008; Juslin &
Västfjäll, 2008) to social interaction (D’Ausilio, Novembre, Fadiga, & Keller,
2015; Walton, Richardson, Langland-Hassan, & Chemero, 2015; Chang, Liv-
ingstone, Bosnyak, & Trainor, 2017; Walton et al., 2018; Chang, Kragness,
Livingstone, Bosnyak, & Trainor, 2019). Music provides an ideal model sys-
tem of human social interaction—balancing ecological validity of the interac-
tion and environment with experimental control (D’Ausilio et al., 2015).

Consider the initiation of the slow clap by one, then two, then four peo-
ple, before breaking into full audience applause or the first musician in a
flash mob initiating a flow of musicians and audience members engaging in
shared music making. The truly emergent sound of audience applause, and
the script-guided pseudo-emergent sound of a musical flash mob each provide
examples of acoustic behavioral patterns showcasing the transition from indi-
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vidual behavior to multi-agent interaction. Studying the patterns which arise
from pseudo-emergent coordination aided by a musical script can shed light on
some of the coordination dynamics which underlie truly emergent multi-agent
human interaction.

Transitions from disorder to order are exhibited by a variety of animals
ranging from locusts marching (Buhl et al., 2006) to birds flocking (Cavagna
et al., 2010) to humans clapping (Néda, Ravasz, Bréchet, Vicsek, & Barabási,
2000). The patterns and conditions for this emergent coordination between
individuals has been a subject of laboratory study for decades. Spontaneous,
or emergent, patterns of entrainment are measured between individuals by
analyzing video and motion capture from interacting dyads swinging pendu-
lums (Schmidt & O’Brien, 1997) or rocking in rocking chairs (M. J. Richard-
son, Marsh, Isenhower, Goodman, & Schmidt, 2007). Recent work has eval-
uated motor coordination dynamics of naturalistic interactions such as inter-
active problem solving (Abney, Paxton, Dale, & Kello, 2015; Nalepka, Kallen,
Chemero, Saltzman, & Richardson, 2017), naturalistic conversation between
individuals (Paxton & Dale, 2017; D. C. Richardson & Dale, 2005), speed-
dating partners (Chang et al., 2020), and motor and acoustic coordination of
performing musicians in duets (Walton et al., 2015, 2018) and larger ensembles
(Chang et al., 2017, 2019). In these interactions, behavioral output of each
interacting individual was measured and analyzed for meaningful correlations
between individuals. An investigation of emergent synchrony in audience ap-
plause explicitly measured acoustic output of the group (Néda et al., 2000).
However, the motor behavioral patterns were still measured from the local be-
havior of individual audience members in order to evaluate correlation with
the global signal of the audience. In each of these studies, it has been possible
to obtain clear measurements of individual behavior to examine the emergent
coordination dynamics of multi-agent interaction and social self-organization.
However, if that multi-agent group has indeed self-organized into a complex
system, then the interdependence between the agents’ functions should make
it possible to detect that coordination from almost any time series emitted
from that system, using state-space reconstruction (Takens, 1981; Vlachos &
Kugiumtzis, 2010). Thus, if obtaining movement or acoustic measurements at
the individual and local level is not feasible or practical with group behaviors
in the wild, then global-level measurements should suffice. One of the simplest
global measures to employ is an acoustic recording taken from a well-placed
microphone. Increasingly, naturalistic recordings from e.g. Youtube are be-
ing used in human behavioral research where specific recording equipment is
unknown, and likely does not contain visual or auditory signals mapped to
individual-level behavior in group settings. Benefits of these sorts of record-
ings include heightened ecological validity and real world behavior. Already,
Alviar et al 2020 and Kello et al 2017 analysed coordination between sound
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and movement, and multiscale structure in orchestral music, jazz, TED talks,
and even animal vocalizations through a collection of videos found on youtube
(and other corpora) with ostensibly varying recording setups, number and type
of microphones, etc (Alviar, Dale, Dewitt, & Kello, 2020; Kello, Bella, Médé,
& Balasubramaniam, 2017).

This paper shows that it is possible to describe coordination patterns of
multi-agent interaction by analyzing a time series extracted solely from group-
level audio data. Rather than analyzing the individual-level behavior of inter-
acting agents, we used nonlinear methods from the dynamical systems frame-
work on group-level acoustic data. We analyzed global patterns of coordination
in a musical performance of “Welcome to the Imagination World” (Shimizu,
2016). This performance enacts a physical simulation of an orchestrated (non-
emergent) transition from uncoordinated to coordinated interaction. We used
Recurrence Quantification Analysis (which relies on state-space reconstruc-
tion) to investigate patterns of coordination from the audio signal of a perfor-
mance of this work(InagakuenWindOrchestra, 2009). Although this is analysis
is being applied on a single recording, we believe recurrence measures of this or-
chestrated musical performance provide an indication of the possible expected
distributions for recurrence patterns that may be observable before and after
spontaneous emergent coordination. Moreover, analysis of the transition it-
self from uncoordinated to coordinated behavior may provide insight into the
trade-off between the playful enjoyment of novelty and the rigor of predictive
success (Kiverstein, Miller, & Rietveld, 2019). Finally, we discuss applica-
tions to other examples of real-world multi-agent human interactions, such as
multi-agent interaction at sporting events or of individuals coordinating in a
protest.

4.2 Human Behavior as a Complex

Dynamical System

Principles of Complex Dynamical Systems

A canonical example of a simple dynamical system is the pendulum clock.
A pendulum is a mechanical device—e.g. a fixed weight on a string—which
oscillates isochronously around a central point, meaning that swings in both
directions take equal amounts of time. The consistent rate of oscillation made
the pendulum clock an ideal time-keeper following its invention in the seven-
teenth century by Cristian Huygens. The pendulum clock and the metronome
are examples of simple dynamical systems. The state (location) of the pendu-
lum at any given time is determined by the trajectory of the pendulum over
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historical time. The oscillatory behavior of a pendulum can be explained by
a system of differential equations.

What is relevant here is the behavior that emerges among two or more
pendulums placed on a shared surface. Huygens observed that two pendulums
hanging from a single beam will spontaneously—or emergently—synchronize
their behavior, swinging simultaneously in anti-phase with one another. Mul-
tiple metronomes placed atop a platform balanced on two cylinders will also
demonstrate emergent synchronized behavior (Pantaleone, 2002; Francke, Pogrom-
sky, & Nijmeijer, 2020). A metronome is a special type of pendulum, which
clicks at isochronous intervals to aid time-keeping for musicians. Metronomes
feature a fixed weight at the base of a rod, in addition to a moveable weight
which slides along the top of the rod to adjust the speed of the metronome
oscillations, and thus the speed (tempo) of the audible metronome clicks. If
set at the same tempo, the oscillating pendulum and audible clicks of multiple
metronomes will begin to synchronize both in-phase and anti-phase with one
another (Francke et al., 2020). What begins as multiple individual metronome
clicks will transition to clicks occurring simultaneously, as globally isochronous
acoustic events. For both the pendulum clocks and the clicking metronomes,
the local behavior of each individual pendulum is coupled to the behavior of
the surrounding pendulums due to their behavior within a shared context — in
this case a physical connection via a single beam or a single platform. The local
behavior of each individual metronome or pendulum (each oscillating at ap-
proximately the same frequency but different phase) eventually self-organizes
into emergent global patterns of synchronized behavior.

We observe similar patterns of behavioral synchronization in multi-agent
human interaction. The shared context for multi-agent human behavior need
not be a physical connection like the metronomes’ shared platform. Rather,
the shared context mediating emergent global patterns of human behavior
is the interaction itself. When local behavior of individual human agents
becomes coupled to the behavior of surrounding agents—via the shared context
of interaction—the agents self-organize to exhibit emergent global patterns of
coordinated behavior. We can detect this emergent coordination of multi-
agent human groups from their acoustic behavior over time, just as we can
detect the emergent coordination of metronomes from their acoustic output
over time.

Principles of Recurrence Quantification Analysis

Multi-agent human behavior, such as in crowds or musical ensembles, can
be considered as complex dynamical systems, where complex global patterns
of behavior emerge as a result of the self-organization of individual agents over
time acting according to simple local rules. The behavior of such a dynamical
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system can be visualized in recurrence plots. These recurrence plots display
the system’s trajectory through a phase-space, depicting when that trajectory
revisits locations within that phase-space at each moment in time. Recurrence
quantification analysis is used to describe the complexity of a system over time
by analyzing small-scale structures in the recurrence plot.

There are a few key concepts underlying the generation of recurrence plots
from time series data. In a recurrence plot, the time series data will sit on a
plot with axes of time by time. A point (i, j ) is plotted if the value at time
i and time j are sufficiently similar — that is, recurrent — within a specified
neighborhood size of the N-dimensional state-space (Balasubramaniam, Riley,
& Turvey, 2000). The state-space of a dynamical system is the vector of pos-
sible combinations of states in some number of observable and unobservable
dimensions. In order to determine which points are recurrent, it is necessary
to reconstruct the higher dimensional phase space of the system. State-space
reconstruction is done by embedding the original time series against a time
lagged copy of itself (M. Riley, Balasubramaniam, & Turvey, 1999). Each
time lagged copy is an additional embedding dimension within the state-space
(Stephen, Dixon, & Isenhower, 2009). Takens’ theorem (1981) shows that the
coupling of activity between dimensions preserves the information dynamics of
the system as a whole in any single dimension. Put another way, because the
subcomponents of a complex dynamical system are intrinsically interdepen-
dent, a measurement taken from any one observable subcomponent encodes
information from every other (potentially unobservable) subcomponent in the
system. Thus, reconstruction of the N-dimensional state-space from a single
measured time series allows us to infer the topological dynamics of a multivari-
ate system because the influence of higher dimensional dynamics is encoded
in the measured dimension (Marwan & Webber, 2015)

The logic of state-space reconstruction and embedding within higher di-
mensions is important for evaluating the dynamics of a natural complex sys-
tem. The dynamics of natural systems such as crowd behavior, sounds within
a piece of music, or even weather patterns, contain N possible state variables
as well as N possible combinations of nonlinear and bidirectional interactions.
State-space reconstruction allows us to infer these unmeasured or unobserv-
able higher order dynamical variables from a single measured variable, in or-
der to evaluate the characteristic dynamics of a system’s behavior over time.
For a weather system, we might measure the flow of high- and low-pressure
systems to evaluate the transitions from stable, ‘good’ weather to instability
that precedes a storm. In a crowd or a musical performance, we might mea-
sure movement or acoustic signal to investigate the higher order dynamics of
transitions between periods of instability and incoherence to periods of sta-
bility and coordination. Here, we take a simple global measure of acoustic
signal recorded from a musical performance. This performance demonstrates
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an orchestrated (non-emergent) transition from uncoordinated to coordinated
interaction (described in more detail below). We use RQA to investigate the
patterns of coordination in the audio signal as represented in small-scale struc-
tures within recurrence plots. We focus on five key measures: recurrence rate,
determinism, entropy, average diagonal length, and laminarity.

4.3 Music and multi-agent human

intearction: A model from acoustic data

Musical ensembles as models of human social
interaction

Music provides an ideal model system of human social interaction by pro-
viding a balance between ecological validity of the social interaction and ex-
perimental control(p111) (D’Ausilio et al., 2015).

Analysis of social interactions in musical performance are aided by a “script-
like description of the interaction” via the musical score that can be manipu-
lated or referenced by researchers examining the behavioral dynamics of the
interaction (p112) (D’Ausilio et al., 2015). Applying methods of Granger-
causality to motion capture data of individual musicians within a performing
string quartet can be used to investigate how predictive the history of behav-
ior of one musician is for the future behavior of another. The bodily sway
dynamics of these interacting musicians carries Granger-causal information
about leader and follower behavior of each musician (Chang et al., 2017), and
Granger-coupling of bodily sway also carries information about the joint emo-
tional expression and perceived emotional intensity of a musical performance
(Chang et al., 2019). Even without reference to a strict musical score, stud-
ies of musical interaction have provided insight into how we anticipate and
adapt to the behavior of other individuals. Nonlinear analysis techniques have
revealed spontaneous self-organizing patterns of coordination across a variety
of timescales during joint musical improvisation without a strict score. In a
series of experiments analyzing interactions between improvising musicians,
Walton et al. describe how behavior produced and received from both the
kinesthetic and sonic domain serves to influence and constrain mutual impro-
visers from the lens of complex dynamical systems (Walton et al., 2015, 2018) .
Using cross-wavelet spectral analysis and Recurrence Quantification Analysis,
Walton et al. describe how mutual behavioral constraints enable an impro-
vising ensemble to produce more complex patterns than any individual would
otherwise(Walton et al., 2015, 2018). This mutual interaction establishes a
single synergetic system at the level of the improvising group, rather than a
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set of individuals behaving as single agents.
Rather than analyzing the individual-level behavior of interacting musi-

cians, we apply dynamical systems analysis — specifically RQA — on group-
level acoustic data to analyze global patterns of coordination in a musical
performance. We chose to analyze this performance because it enacts a phe-
nomenological simulation (described below) of the transition from the unco-
ordinated behavior of individuals to coordinated group behavior that mimics
naturalistic multi-agent human interaction.

The composition “Welcome to the ImaginationWorld” composed by Daisuke
Shimizu for wind orchestra serves as the model system for multi-agent human
interaction. Specifically, the interaction of interest is the shift in dynamics
from an uncoordinated, incidental collection of musicians, to a coordinated,
interacting ensemble. This transition from uncoordinated, to coordinated in-
teraction is evident in the phenomenological experience of attending (or indeed,
performing) this piece of music. The audience will note that, at first, the mu-
sicians on stage have no conductor. They sound and look like they are each
playing their individual warm up routine. This is because, in fact, the musi-
cians’ score tells them to play at random. The composer wanted the sound
to be aleatoric, or to occur by chance without being strictly composed. This
uncoordinated soundscape continues until a melodic pattern starts to emerge
from a few of the musicians, still in the absence of a conductor, and still not
appearing to be coordinating with the other performers. Next, the “conductor
walks on stage [as] the horn, tenor and bass instruments unify into a majestic
introduction”, according to program notes from the composer (windrep.org).
This marks the transition from the uncoordinated actions of individual mu-
sicians to the coordinated ensemble musicianship the audience expects. The
remaining musical score is composed to dictate the acoustic interaction of the
musicians on stage. Thus, the rest of the performance demonstrates the co-
ordinated interactions of an interdependent complex system: the multi-agent
musical ensemble.

4.4 Results

Recurrence Quantification Analysis

Figures 4.1 and 4.2 show recurrence plots generated from the time series
data of the recording. The recurrence plots visualize the characteristic pat-
terns of recurrence which are then quantified through recurrence quantification
analysis. Figure 4.1 displays recurrence plots for the first and last 30 seconds
of each Coordination Category (Uncoordinated or Coordinated). Darker seg-
ments of the recurrence plots indicate the presence of more recurrent data
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points. Vertical and horizontal lines indicate periods of stability in the sys-
tem, where one state was visited for a period of up to a few seconds at a
time.

The recurrence plots in Figure 4.2 are representative 5-second samples
drawn from each 30 second sample in Figure 1. These shorter samples are
labeled as the associated Performance Event the 5-second sample is drawn
from. Note that the ‘Introduction’ section falls in the middle of the perfor-
mance, marking the shift from the Uncoordinated to Coordinated interac-
tion among the musicians, and thus the order of Performance Events is: 1.
Aleatoric, 2. Transition, 3. Introduction, 4. Finale. Thirty second samples
from the start and end of each Coordination Category were chosen to maintain
balanced samples from each category for computing inferential statistics, and
because independent raters noted a clear Transition section in the final thirty
seconds of the uncoordinated performance.

Increased presence of diagonal lines and vertical structures in the Introduc-
tion and Finale sections indicate increasingly coordinated interaction among
the musicians. The diagonal striping in the Introduction indicates some peri-
odicity in the signal, similar to the periodicity of a sine wave, and results in this
case from a(n almost) unison chord during those few seconds. The Aleatoric
and Transition plots at the top more closely resemble white noise, with fewer
recurrent points, shorter diagonals, and less apparent vertical structures.

Recurrence Quantification Analysis quantifies the qualitative patterns ob-
served in these recurrence plots. To describe the behavior of our model multi-
agent system, five RQA measures were evaluated. The first RQA measures
evaluated are common measures of recurrence: a) patterns that repeat over
time (Recurrence, the percentage of recurrent points on the recurrence plot);
b) behaviors that belong to a longer sequence of behavior (Determinism, or
the percentage of points that fall on any diagonal line in the recurrence plot);
c) the amount of disorder there is in these sequences (Entropy, or the vari-
ability in lengths of these diagonal lines). Additional patterns of stability in
the system’s behavior were measured by examining d) clusters of behavior
(Laminarity, or the percentage of points that fall on a vertical line in the



70

Figure 4.1: Time Series and Recurrence Plots for the first and last 30 sec-
onds of each Coordination Category (Uncoordinated or Coordinated). Darker
segments of the recurrence plots indicate the presence of more recurrent data
points. Vertical and horizontal lines indicate periods of stability in the sys-
tem, where one state was visited for a period of up to a few seconds at a time.
Note: 9 seconds of audience applause during the Introduction Performance
Event were not analyzed, and are subsequently excluded from all data visual-
izations.
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Figure 4.2: Time Series and Recurrence Plots for representative 5-second sam-
ples drawn from each 30-second sample in Figure 1, and labeled as the asso-
ciated Performance Event the 5-second sample is drawn from. Uncoordinated
Aleatoric and Transition plots more closely resemble white noise, with fewer
recurrent points, shorter diagonals, and less apparent vertical structures. In-
creased presence of diagonal lines and vertical structures in Coordinated Intro-
duction and Finale plots indicate increasingly coordinated interaction among
the musicians. Note: 9 seconds of audience applause during the Introduction
Performance Event were not analyzed, and are subsequently excluded from all
data visualizations.
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recurrence plot), and e) the average length of time our multi-agent system
stays in one behavioral pattern (average diagonal length, the average length
of diagonal lines). Average diagonal line length is a measure related to de-
terminism. Longer average diagonal lines reflect the stability of a system by
indicating longer, more continuous states. Similarly, higher laminarity shows
the rigidity, or ‘stickiness’ of a system that stays in one or more states of a
behavior for a length of time (Davis, Pinto, & Kiefer, 2017).

Higher values and increased variability were evident for most RQA mea-
sures for Performance Events within the Coordinated sections of the perfor-
mance vs Uncoordinated sections (Figure 4.3). However, distribution plots
do not readily visualize different trajectories of behavior over time. Varying
trajectories of each RQA measure for Coordinated vs Uncoordinated sections
of the performance is evident in the serial plots in Figure 4.4. The majority of
RQA values hover around a single value over time during the Uncoordinated
Performance Events (Aleatoric and Transition), indicating little interaction
among musicians—the agents in our model system. As interactive behavior
emerges among musicians, the joint activity of the interacting ensemble in the
Coordinated Performance Events (Introduction and Finale) begin to show in-
creased recurrent points overall (Recurrence Rate), with emerging presence of
longer sequences of behavior as represented by higher levels of Determinism,
and higher levels of Entropy indicating more variability in sequence length.
Increased values of Laminarity indicate enhanced stability in the system. The
intermittency of these stable periods in the Coordinated Performance Events
as shown in the recurrence plots can also be seen in the varying high and low
values of Laminarity over time.

Statistical Analysis

Descriptive Statistics

Statistical analysis was performed on the first and last 25 samples of each
Coordination Category, representing the first and last 30 seconds each of Un-
coordinated and Coordinated sections of the piece. Recurrence (REC) for the
first thirty seconds of each category was highest in coordinated (mean 0.093/
sd 0.030) when compared to uncoordinated (mean 0.081/ sd 0.009). REC for
Performance Event showed a slight decrease from Aleatoric (mean 0.085 /sd
0.009) to Transition (mean 0.078 / sd 0.008) and increased in both Introduc-
tion (mean 0.089/ sd 0.017) and Finale (mean 0.098 /sd 0.039) (Figure 4.3 A).
Determinism (DET) for the first thirty seconds of each category was, highest
in the coordinated condition (mean 0.277/ sd 0.147) when compared to un-
coordinated (mean 0.163/ sd 0.024). DET for Performance event shows the
same pattern, with a slight decrease from Aleatoric (mean 0.167 /sd 0.023) to
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Transition (mean 0.160 / sd 0.025), and increases in both Introduction (mean
0.266/ sd 0.106) and Finale (mean 0.288 /sd 0.179) (Figure 4.3, B). Entropy for
the first thirty seconds of each category was highest in the coordinated condi-
tion (mean 0.693/ sd 0.432) when compared to uncoordinated (mean 0.295/ sd
0.091). Entropy for Performance event shows the same pattern, with a slight
decrease from Aleatoric (mean 0.305 /sd 0.074) to Transition (mean 0.292 / sd
0.110), and increases in both Introduction (mean 0.654/ sd 0.325) and Finale
(mean 0.731 /sd 0.521) (Figure 4.3, C.) Laminarity for the first thirty seconds
of each category was highest in the coordinated condition (mean 0.340/ sd
0.175) when compared to uncoordinated (mean 0.236/ sd 0.045). Laminarity
for Performance event shows the same pattern, with a slight decrease from
Aleatoric (mean 0.240/ sd 0.053) to Transition (mean 0.234 / sd 0.037), and
increases in both Introduction (mean 0.353/ sd 0.162) and Finale (mean 0.326
/sd 0.190) (Figure 4.3, D).

Higher values and increased variability were evident for most RQA mea-
sures for Performance Events within the Coordinated sections of the perfor-
mance vs Uncoordinated sections (Figure 4.3). However, distribution plots do
not readily visualize different trajectories of behavior over time. Varying tra-
jectories of each RQA measure for Coordinated vs Uncoordinated sections of
the performance is evident in the serial plots in (Figure 4.4). The majority of
RQA values hover around a single value over time during the Uncoordinated
Performance Events (Aleatoric and Transition), indicating little interaction
among musicians—the agents in our model system. As interactive behavior
emerges among musicians, the joint activity of the interacting ensemble in the
Coordinated Performance Events (Introduction and Finale) begin to show in-
creased recurrent points overall (Recurrence Rate), with emerging presence of
longer sequences of behavior as represented by higher levels of Determinism,
and higher levels of Entropy indicating more variability in sequence length.
Increased values of Laminarity indicate enhanced stability in the system. The
intermittency of these stable periods in the Coordinated Performance Events
as shown in the recurrence plots can also be seen in the varying high and low
values of Laminarity over time.
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Figure 4.3: Raincloud Plots show higher levels, and wider variance, in each
RQA metric in Coordinated compared to Uncoordinated Categories. Boxplots
show sample median and interquartile range. Note: 9 seconds of audience
applause during the Introduction Performance Event were not analyzed, and
are subsequently excluded from all data visualizations.
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Figure 4.4: Serial plots visualizing the trajectories of recurrence behaviors over
time. A) Coordinated Performance Events (Introduction and Finale) show in-
creased recurrent points overall (Recurrence Rate) compared with Uncoordi-
nated Performance Events (Aleatoric and Transition). B) Emerging presence
of longer sequences of behavior as represented by higher levels of Determinism,
and C) higher levels of Entropy in Coordinated Performance Events, indicating
more variability in sequence length. D) Increased values of Laminarity in Co-
ordinated Performance Events indicate enhanced stability in the system. The
intermittency of these stable periods in the Coordinated Performance Events
as shown in the recurrence plots (Figures 4.1 and 4.2) can also be seen in the
varying high and low values of Laminarity over time in the serial plots. Note:
9 seconds of audience applause during the Introduction Performance Event
were not analyzed, and are subsequently excluded from all data visualizations.
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Inferential Statistics - Model Comparisons

To further examine the trends above, Linear Mixed Effects models (LMEs)
were applied to determine the differential effect of Coordination Category and
Performance Event on each RQA measure of interest. LMEs (or multilevel
models) account for the nested structure of hierarchical data, as when individ-
ual observations are nested within groups (Demos, Chaffin, & Logan, 2017).
In this case, the individual observations of RQA measures in each 5 second
sample are nested within larger uncoordinated or coordinated categories (or
the subcategories of performance event). A linear mixed effects model assumes
that fixed effects (of coordination category or performance event) do not vary,
while the random effect structure of a LME allows each individual sample
to vary. This accounts for interdependence between subsequent samples in
each category. Model comparisons between LME with and without fixed ef-
fects enables inference regarding the contribution of the fixed effect of interest
(Winter, 2013). If model comparisons show that a model with fixed effects is
statistically different from a model without a fixed effects (a random effects
only model in this case), then we can conclude that the model with the fixed
effect better explains the data. Therefore, we can infer the differential effect
of the fixed effect of interest (Coordination Category or Performance Event)
on the RQA measure of interest.

Log REC was predicted by Coordination Category (χ2 (1) = 8.0805, p =
0 .0045), and by Performance Event (χ2 (3) = 12.594, p = 0.0056 ). Log
DET was predicted by Coordination Category (χ2(1) = 30.455, p = 3.418e-8),
and by Performance Event (χ2 (3) = 30.656, p = 1.004e-6). Log Entropy was
predicted by Coordination Category (χ2 (1) = 41.261, p = 1.332e-10), and
by Performance Event (χ2 (3) = 41.739, p = 4.557e-9). Log Laminarity was
predicted by Coordination Category (χ2 (1) = 10.382, p = .0013), and by
Performance Event (χ2 (3) = 11.516, p = 0.0092).

LME model comparison results are reported in Table 4.1 for log transfor-
mations of each RQA measure, except for Average Diagonal Length because
assumptions of normality/heterocedasticity were not met. LMEs with a fixed
effect of Coordination Category showed lower AIC and BIC values than the
null model, or the model with a fixed effect of Performance Event, indicating
that RQA measures are better predicted by the Coordination Category (Un-
coordinated vs Coordinated) of each sample than by the Performance Event
(Aleatoric, Transition, Introduction, and Finale—which are smaller subdivi-
sions of each Coordination Category). Table 4.1. Linear mixed effects model
results. Models were fixed effect of interest (Coordination Category or Per-
formance Event) with random effect of Sample Number, against a random
intercept model without the fixed effect in question. Models reveal differential
effect of the fixed effect of interest on the log transformed RQA measure of
interest (Recurrence Rate, Determinism, Entropy, or Laminarity).
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Table 4.1: Linear Mixed Effects models evaluating the effect of Coordination
Category and Performance Event on each RQA Measure of Interest

Recurrence Rate Determinism
Fixed Effects Full Model Null Model Full Model Null Model

Estimate (SE) Estimate (SE)

Coordination Category
Uncoordinated (Intercept) -2.514 (0.0304) -1.8225 (0.0503)
Coordinated 0.1052 (0.0360) 0.4217 (0.0703)
Goodness of Fit
Deviance -43.82 -35.74 75.801 106.256
AIC -35.82 -29.74 83.801 112.256
BIC -25.4 -21.924 94.222 120.071
χ2 (df) 8.0805(1)** 30.455(1)***

Performance Event
Aleatoric (Intercept) -2.4678 (0.0389) -1.8006 (0.0706)
Transition -0.0924 (0.049) -0.0439 (0.0993)
Introduction 0.0324 (0.0494) 0.4039 (0.0993)
Finale 0.0856 (0.0494) 0.3956 (0.0993)
Goodness of Fit
Deviance -48.334 -35.74 75.599 106.256
AIC -36.334 -29.74 87.599 112.256
BIC -20.703 -21.924 103.23 120.07
χ2 (df) 12.594(3)** 30.656(3)***

Entropy Laminarity
Fixed Effects Full Model Null Model Full Model Null Model

Estimate (SE) Estimate (SE)

Coordination Category
Uncoordinated (Intercept) -1.2647 (0.0709) -1.4567 (0.0535)
Coordinated 0.7169 (0.1003) 0.2506 (0.0758)
Goodness of Fit
Deviance 145.78 187.04 89.655 100.037
AIC 153.78 193.04 97.655 106.037
BIC 164.2 200.86 108.08 113.85
χ2 (df) 41.261(1)*** 10.382(1)**

Performance Event
Aleatoric (Intercept) -1.2167 (0.1001) -1.4504 (0.0753)
Transition -0.0961 (0.1415) -0.0127 (0.1065)
Introduction 0.6593 (0.1415) 0.3008 (0.1065)
Finale 0.6783 (0.1415) 0.1877 (0.1065)
Goodness of Fit
Deviance 145.3 187.04 88.521 100.037
AIC 157.3 193.04 100.52 106.04
BIC 172.94 200.86 116.15 113.85
χ2 (df) 41.739(3)*** 11.516(3)**

Note. ***p<0.001, **p<0.01, *p<0.05
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4.5 Discussion

The current study evaluated a musical performance which enacted a real-
life simulation of the transition from uncoordinated to orchestrated (non-
emergent) coordinated behavior. That is, the musicians in this ensemble sim-
ulated the transition from disorder to order in one form of social interaction–a
musical performance–by following the orchestration of the musical score, accen-
tuated by the presence of a conductor on stage at just the time the musicians
begin to play music together as a single interacting ensemble.

We have empirically demonstrated differences in the acoustic coordination
patterns of this originally non-interacting collection of independent musicians
versus their collective dynamics as an interdependent group of musicians par-
ticipating in a joint musical interaction. Thus, this study is one example of
how conceptualizing and evaluating musical interaction using the tools of coor-
dination dynamics and dynamical systems theory can reveal insights into the
self-organizing behavior which underlies multi-agent musical interaction (see
Schiavio et al, 2021 for a thorough review (Schiavio, Maes, & van der Schyff,
2021)).

Unlike previous studies of human social interaction, this study evaluated
acoustic data of a musical performance to infer the global behavior of musicians
in the performing ensemble. This means we did not have access to the behavior
of individual musicians in order to evaluate correlations between individuals.
Instead, we relied on recurrence features extracted from global acoustic data
and represented in recurrence plots. The uncoordinated acoustic behavior of
individual, non-interacting musicians at the start of the performance demon-
strated lower measures of recurrence and stability in the group-level acoustic
data. When the musicians began interacting with each other as a coordi-
nated musical ensemble, recurrence and stability measures increased overall.
The interaction served as a coupling mechanism for this multi-agent human
group, just as the physical platform served as a coupling mechanism for the
metronome group. In addition, the interacting ensemble also exhibited further
variability in these recurrence measures. This indicates that the interacting en-
semble of musicians were able to explore a greater variety of acoustic behavior
than when they performed as a stage full of individual musicians.

When the function of each musician becomes interdependent with the func-
tions of the other musicians, the group becomes a complex system. The col-
lective cognition (c.f. (Clark, 2003; Theiner, Allen, & Goldstone, 2010) ) that
takes place in order to generate the coordinated music makes the group func-
tion a little bit like one large mind (Kirchhoff & Kiverstein, 2020; Spivey,
2020) (c.f. (O’Regan & Noë, 2001) ). Thus, when that collective mind has
an audio time series extracted from it (that is subjected to state-space recon-
struction),it can provide insight into the dynamics by which those individual
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subcomponents achieve their coordinated behavior.
We present an example of Recurrence Quantification Analysis applied to

group level acoustic data from a single performance. However, this musical
performance is a model system for other forms of multi-agent human interac-
tion. A priori, we know the local rules that govern the emergence of interaction
in this ensemble arise from a musical score, which stipulates when the musi-
cians must begin performing as an interacting group, as well as a conductor
who acts as a leader during the coordinated section of musical performance.
This provides for the ecological validity of a natural performance as well as
ground truth knowledge of the ensemble’s acoustic performance as they tran-
sition from uncoordinated to coordinated behavior. Thus, RQA applied to
this model system provides an indication of the possible expected distribu-
tions for what recurrence dynamics to expect in truly emergent coordination
in multi-agent human interaction in the wild–perhaps in less orchestrated (i.e.
more improvised) forms of musical interaction such as leaderless interaction in
free jazz improvisation(Goupil, Saint-Germier, Rouvier, Schwarz, & Canonne,
2020), and even day-to-day social dynamics extending beyond musical inter-
action, such as walking in groups(Tunçgenç, Travers, & Fairhurst, 2021) or
interacting in large crowds.

Extending the current analysis methods to other forms of multi-agent hu-
man interaction will also expand current knowledge regarding the affective dy-
namics of acoustic and motor coordination during social interaction. Listening
to music while moving in time with a partner increases perceived connectedness
among a dyad (Demos, Chaffin, Begosh, Daniels, & Marsh, 2012). Movement
synchrony in dancers increases affiliation with the group (von Zimmermann,
Vicary, Sperling, Orgs, & Richardson, 2018) and can increase affective en-
gagement from an audience (Vicary, Sperling, von Zimmermann, Richardson,
& Orgs, 2017). In a dot-motion paradigm, velocity-based synchrony (asso-
ciated with expert interaction) in comparison with interval-based synchrony
(associated with novice interaction) from ostensibly improvising performers
is rated by observers as more beautiful, and the ’performers’ are judged to
like each other more (McEllin, Knoblich, & Sebanz, 2020). The affiliatory
effects of synchronous interaction are not always positive, however, and can
actually lead to increased compliance with requests to engage in aggressive
behavior (Wiltermuth, 2012). Multi-agent groups in the wild, such as crowds
at a sporting event or gathering for a protest, may not be engaging in strictly
synchronous motor coordination, however their acoustic behavior may exhibit
measurable patterns of distributed coordination which influence the affective
states of the group and individual. A question remains as to what are the re-
currence dynamics of acoustic behavior of multi-agent groups in the wild, and
what role does coordinated acoustic behavior play in the affective dynamics of
individuals engaging in or observing these social interactions.
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4.6 Methods

Extracting Acoustic Data

Table 4.2: Coordination Category and Performance Event Labels for Recur-
rence Quantification Analysis. 30-second samples used for analysis are indi-
cated. Audience noise was discarded before analysis.

Music
Event

Coordination Category
Performance

Event
Start
Time

End
Time

30-second
Sample

Recording
Starts

Audience Noise – 0m00s 0m14s –

Scattered
Entrances

Uncoordinated Aleatoric 0m14s 2m43s 0m14s to 0m44s

Flute Cue Uncoordinated Transition 2m43s 3m15s 2m45s to 3m15s

French Horn Cue Coordinated Introduction 3m15s 3m53s 3m15s to 3m53s*

Conductor
Appearance

Audience Noise – 3m37s 3m45s *discarded above

Drum Cue Coordinated – 3m53s 9m06 –

Performance
Continues

Coordinated Finale 8m36s 9m06s 8m36s to 9m06s

Performance
Ends

Audience Noise – 9m06s 9m23s –

An audio recording of ‘Welcome to the Imagination World’ was obtained
from the 2009 performance by the InagaukenWind Orchestra posted on YouTube.
An MP3 was downloaded using the YouTube to Mp3 video converter. The au-
dio recording was labeled by two independent raters with terminal music de-
grees and substantial training in music theory. Raters were familiarized with
the program notes for the composition (retrieved from www.windrep.org) and
were instructed to identify where the musicians’ transition from “random ad
lib” to “unify[ing] majestic introduction” as described in the program note
from the composer (operationalized as uncoordinated and coordinated, respec-
tively), as well as noting any details of the performance they found important.
The audio was subsequently labeled into two Coordination Categories: Unco-
ordinated and Coordinated. The first and last 30-seconds of each Coordination
Category (Uncoordinated or Coordinated) were also labeled into four Perfor-
mance Event subcategories (Aleatoric, Transition, Introduction, and Finale),
two in each Coordination Category, respectively, as shown in Table 4.2.

The audio recording was converted from stereo to mono in Audacity 2.3.0,
converted from an MP3 to a WAV file, removed DC offset, and normalized to
-1.0 dBFS. Python 3.7 in Jupyter Notebooks was used first to create a time
series of the full audio data, then to downsample this time series from 44.1KHz
to 44.1 Hz. Downsampling to this rate prioritizes the rhythmic content and
aggregate amplitude of the acoustic signal rather than pitch or harmonic prop-



81

erties for the purposes of Recurrence Quantification Analysis. It may be a con-
cern that this is a low sampling rate in relation to human auditory perception,
which is sensitive to pitch information in the 20hz to 20,000hz range. This
is not problematic, however, as this analysis does not seek to explain pitch
perception but rather recurrence properties of sound onsets in the acoustic
signal itself. This downsampling filters out sound wave properties interpreted
as pitch by the human auditory system while preserving frequencies relevant
to rhythm perception and identification of event sequences. A 44.1hz sam-
ple rate is more than sufficient to capture rhythmic events performed within
a tempo range of 60bpm to 135bpm (1hz to 2.25hz) as in this performance.
Finally, a separate time series was created for each 30-second Coordination
Category. The time series for each labeled Performance Event Category was
then extracted into 5-second overlapping windows, sliding by 1 second at a
time, saving only full 5-second samples. Time series containing only audience
noise, or dominated by audience noise, were discarded. This included nine sec-
onds within the ’Introduction’ Coordination Category which were discarded
due to noise from audience applause overshadowing the signal from the music.
These samples are not included in any analysis or data visualization.

Note: 30 second samples were chosen for analysis due to limitations in du-
ration of uncoordinated performance. The Uncoordinated section of music, at
3 minutes in duration, is half the length of the remaining 6 minutes of the Co-
ordinated section. An equal representation from each Coordination Category
is required so as not to bias the results of statistical analysis. We know, due
to the score, where the coordinated music begins and ends. Further, indepen-
dent raters indicated a clear Transition section during the last thirty seconds
of Uncoordinated performance. For this reason we choose to analyze both the
first and last thirty seconds of the shorter Uncoordinated section, and the first
and last thirty seconds of the longer Coordinated section. This selection also
allows us to compare recurrence dynamics between the the start and end of
each Coordination Category in the case that RQA shows individuals are more
coordinated at the end of a section than the beginning after interacting for a
period of time, rather than solely because of the coordination indicated by the
musical score. For an overview of the global variability of recurrence metrics
across a larger subset of data, see Supplementary Figure 1 for a serial plot vi-
sualizing all six 30-second samples from Uncoordinated performance and the
first and last three 30-seconds of Coordinated performance.

Recurrence Quantification Analsys

The CRP toolbox in MATLAB 2018b was used to visualize the acoustic
time series as recurrence plots and to carry out RQA (Marwan, n.d.; Marwan,
Romano, Thiel, & Kurths, 2007). RQA parameters were set with an embed-
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ding dimension of 4, delay of 10, neighborhood size (radius) of 1 ∗ standard
deviation, using maximum norm to calculate neighbors of the phase space tra-
jectory. Parameters for the time delay and embedding dimension were chosen
based on AMI and FNN respectively using a custom MATLAB GUI provided
from the 2019 APA Advanced Training Institute in Nonlinear Methods for
Psychological Science. There are various approaches to setting the threshold
value for detecting nearest neighbors. In classification based on recurrence dy-
namics of harmonic, transient, and noisy acoustic signals, Zhang 2011 (Zhang,
Liu, Zhang, & Bu, 2011) set this threshold value using 1 ∗ standard error. Here
we set the threshold value at 1 ∗ standard deviation, because the standard de-
viation is always larger than standard error, assuring a radius large enough
to sufficiently capture recurrent structures in the recurrence plots. 5 ∗ σ has
been suggested as an optimal threshold value for detecting signal in cases of
high observational noise (Thiel et al., 2002), however, 1 ∗ σ is standard and
is preferable when the amount of observational noise is unknown (Schinkel,
Dimigen, & Marwan, 2008). For further discussion regarding parameter se-
lection in RQA see Marwan, 2011 (Marwan, 2011) and Webber and Marwan,
2015 (Webber & Marwan, 2015).

Statistical Analysis

Statistical analysis was performed on the first and last 25 samples of each
Coordination Category, representing the first and last 30 seconds each of Unco-
ordinated and Coordinated sections of the piece. Raincloud plots (Allen et al.,
2021) and serial time series plots to visualize distributions and trajectories of
the RQA measures were created in RStudio 1.1.463 using ggplot2 (Wickham,
2016).

Linear Mixed Effects models (LMEs) were applied to determine the differ-
ential effect of Coordination Category and Performance Event on each RQA
measure of interest. LMEs were calculated using the lme4 package (Bates,
2015). The first model examined the effects of Coordination Category on each
RQA measure, with a fixed effect of Coordination Category and random ef-
fects of Sample Number, to account for any variance arising from individual
five-second samples. The second model examined the effects of Performance
Event on each RQA measure, with a fixed effect of Performance Event and
random effects of Sample Number.

• Full model with fixed effect of Category (Coordinated vs Uncoordinated)
and random effects of order (sample number):

RQAMetrici ∼ N
(
αj[i] + β1(Category), σ

2
)

αj ∼ N
(
µαj

, σ2
αj

)
, for SampleNum j = 1, . . . ,J
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• Null, intercept-only model without the fixed effect of Category:

RQAMetrici ∼ N
(
αj[i], σ

2
)

αj ∼ N
(
µαj

, σ2
αj

)
, for SampleNum j = 1, . . . ,J

• Full model with fixed effect of Performance Event (Aleatoric, Transition,
Introduction, Finale) and random effects of order:

RQAMetrici ∼ N
(
αj[i] + β1(Performance.Event), σ2

)
αj ∼ N

(
µαj

, σ2
αj

)
, for SampleNum j = 1, . . . ,J

• Null, intercept-only model without the fixed effect of Performance Event:

RQAMetrici ∼ N
(
αj[i], σ

2
)

αj ∼ N
(
µαj

, σ2
αj

)
, for SampleNum j = 1, . . . ,J

LMEs with random intercepts such as this are robust to variability in in-
dividual subjects, or five-second samples in this case. This is because random
intercept models assume a different baseline-level of the RQA measure of inter-
est in each fixed effect for each sample, thus accounting for any differences that
may appear by virtue of the sequential order of obtaining each sample. Mixed
models also address issues of non-independence due to inherent correlations
between successive samples of musical performance data (Demos et al., 2017).
Goodness of fit was evaluated by model comparison of the full models against
null, intercept only models without the fixed effect in question, as shown in
the equations above. Four of the five RQA measures of interest were modeled
Recurrence Rate, Determinism, Entropy, and Laminarity). LME results based
on Average Diagonal Length are not reported. Residuals plots revealed that
the LMEs for Average Diagonal Length did not meet criteria for assumptions
of normality and heteroscedasticity, even after log transformation, and as such
were not a good model for the data. Statistical significance was obtained by
computing a likelihood ratio test of the full model to a null model without the
fixed effect in question.
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Figure 4.5: Supplemental Figure. Serial plots visualizing the trajectories of
recurrence behaviors over time. Shown are all six 30-samples of Uncoordinated
performance, and the first and last three 30-second samples of Coordinated
performance. Recurrence and stability measures are increased overall and ex-
hibit greater variability during Coordinated compared to Uncoordinated per-
formance.

This material is based upon work supported by the National Science Foun-
dation under Grant No. DGE-1633722. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.

Author contributions statement

S.P. devised the project, the main conceptual ideas, and led writing the
manuscript. M.R. performed data cleaning and preparation. S.P. and M.R.
performed the nonlinear analysis, S.P performed statistical analysis. R.B. and
M.S. verified the analytical methods and supervised the findings of this work.
All authors discussed the results and contributed to the final manuscript.



Chapter 5

Recurrence Quantification
Analysis of Crowd Sound
Dynamics at a Basketball Game

Chapter 5 is an unpublished empirical study, investigating the acoustical be-
havioral dynamics of crowd sound at a basketball game. This chapter extends
the theories and methods presented in chapters three and four, and applies the
same nonlinear statistical analysis techniques to investigate the interaction of
fans over the course of a basketball game. When applying these analysis meth-
ods to the acoustical signal generated by the crowd, we can identify differing
coordination patterns in different forms of crowd behavior, such as cheering,
chanting, or making sounds to distract the other team. We can further use the
results from these analyses to train a model that classifies between these forms
of crowd sound. The results of this study provide further support for the use of
these techniques in analyzing group-level behavior. The chapter concludes by
contextualizing these results within the larger research program of joint action
and coordination, and proposes future studies extending to interaction over
multiple games and at different sporting events.
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Abstract

When multiple individuals interact in a conversation or as part of a large
crowd, emergent structures and dynamics arise that are behavioral properties
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of the interacting group rather than of any individual member of that group
(M. A. Riley et al., 2011). Recent work using traditional signal processing
techniques and machine learning has demonstrated that global acoustic data
recorded from a crowd at a basketball game can be used to classify emergent
crowd behavior in terms of the crowd’s purported emotional state (Butler et
al., 2018). We propose that the description of crowd behavior from such global
acoustic data could benefit from nonlinear analysis methods derived from dy-
namical systems theory. Following from Zhang et al., 2011 and Proksch et al.,
2022, we leverage nonlinear analyses to extract features that are relevant to the
behavioral interactions that underlie audio signals produced by a crowd. We
propose that recurrence dynamics measured from these audio signals via Re-
currence Quantification Analysis (RQA) reflect information about the behav-
ioral dynamics of the crowd itself. We analyze these dynamics from acoustic
signals recorded from a crowd at a basketball game, and that were manually
labeled according to the crowd’s emotional state across six categories: angry
noise, applause, cheer, distraction noise, positive chant, and negative chant.
We show that RQA measures are useful to differentiate the emergent acoustic
behavioral dynamics between these categories, and can provide insight into
the recurrence patterns that underlie crowd interactions.

Keywords: Recurrence Quantification Analysis; Acoustical Analysis; Crowd
Behavior; Dynamical Systems; Emergence

5.1 Background

Interaction-dominant systems – such as a collection of individuals interact-
ing within a crowd – can be described by emergent structures and dynamics
that are behavioral properties of the system itself, rather than of any individ-
ual component (M. A. Riley et al., 2011). The emergent dynamics of crowd
behavior have been fruitfully modeled according to biological phenomena such
as swarm behavior (Kok, Lim, & Chan, 2016). Classification of emergent
crowd dynamics, often using computer vision technology, have typically relied
on analysis of video data for features such as crowd density estimation, motion
detection, and movement/behavior tracking of individual signals or group be-
havior (Kok et al., 2016; Swathi, Shivakumar, & Mohana, 2017). However, it
is not always feasible to obtain high quality image, video, or speech data of a
crowd in action, nor is it always feasible to obtain signals measured from each
individual in an interacting crowd. We seek to extend the study of emergent
crowd behavior to include analysis of the global acoustic output of a crowd as a
whole. This acoustical analysis of crowd behavior can augment current video-
based crowd behavior analysis, and can also mediate in cases where video data
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are incomplete or unclear.

Recent work using traditional signal processing techniques and machine
learning has demonstrated that global acoustic data recorded from a crowd
at a basketball game can be used to classify crowd behavior in terms of the
crowd’s purported emotional state (Butler et al., 2018). Importantly, these
data were not a collection of individual acoustic signals from individual mem-
bers of the crowd, but rather a global acoustic signal measured from the crowd
as a whole. Common acoustic analyses used for classifying human speech, as
well as crowd noise, include spectral and mel frequency cepstral coefficients
(Reddy, Sinha, & Seshadri, 2013), where the latter measure is based on an
approximatation of human hearing (Singh & Rani, 2014). These measures
assume that at short enough time scales important features of an audio sig-
nal are reasonably stationary. Nonlinear analysis techniques, such as Recur-
rence Quantification Analysis (RQA), are adept at capturing exactly that non-
stationarity that characterizes audio signals at longer time scales (Wallot &
Leonardi, 2018). We propose that analysis of crowd behavior from such global
acoustic data could benefit from taking a dynamical systems approach that
embraces the nonlinearity and nonstationarity present in the sounds generated
by an interacting crowd.

5.2 Dynamical Systems

Dynamical systems theory seeks to describe the nonlinear behavior of large
scale systems that emerges from interacting components/individuals (Connell,
DiMercurio, & Corbetta, 2017). Such emergent behavior arises due to the
soft-assembly of individual components into metastable patterns of behavior
(Kello & Van Orden, 2009). When large groups of people gather together, they
consciously and unconsciously coordinate their behavior in a number of ways,
from cheering with the same chants to spontaneously synchronizing in their
applause at concert. The patterns of synchronicity in the sounds generated by
crowds demonstrate a process of social self-organization (Néda et al., 2000).

One tool in the dynamical systems toolbox is Recurrence Quantification
Analysis (RQA). RQA is used to quantify structures that can be visualized in
recurrence plots generated from the nonlinear behavior of a time series that
has been subject to state space reconstruction (Marwan, Wessel, Meyerfeld,
Schirdewan, & Kurths, 2002; Marwan et al., 2007; Takens, 1981; Vlachos
& Kugiumtzis, 2010). Traditional RQA, as well multivariate approaches like
crossRQA and multidimensional RQA (mdRQA), has proven useful in describ-
ing behavioral aspects of joint action in dyadic and group interaction. These
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analyses are robust to the nonlinearity and nonstationarity of time-dependent
signals, and can be used to evaluate relative coordination dynamics as well as
transitions between order and chaos in such systems (c.f. Wallot and Leonardi,
2018 for a detailed review and tutorial).

In a recurrence plot, time series data are plotted on axes of time by time.
A point (i, j ) is plotted if the value at time i and time j are recurrent within a
specified neighborhood size of an N-dimensional state-space after state space
reconstruction. The line of incidence (LOI) along the main diagonal shows the
time series at a time lag of 0. Each step away from the LOI represents the
trajectory of the system at a time lag, depicting self-similarity of the system
over time.

Information from a recurrence plot is quantified into a variety of metrics via
RQA. The recurrence rate quantifies the percentage of points on a recurrence
plot and represents patterns of behavior that persist over time. Determinism
quantifies the percentange of points that fall on any diagonal line in the plot
(except the LOI), and represents behaviors that belong to a particular pat-
tern of behavior over time. Entropy is the variability in these line lengths,
representing disorder of these sequences. Finally, laminarity quantifies the
percentage of points that fall on a vertical line on a recurrence plot, and rep-
resents clusters of behavior over a short period of time to which the system
may temporarily visit, leave, and return. Examples of determinism and lam-
inarity depicted from two samples of basketball crowd sound data are shown
in Figures 5.1 and 5.2.

Recurrence Quantification Analysis has additionally proven useful in de-
scribing and classifying acoustic data. Zhang et al., 2011 made use of re-
currence plots and recurrence quantification analysis to classify audio signals
into noise-like, transient, harmonic-like, and mixed signals(Zhang et al., 2011).
Proksch et al., 2022 further justified the use of RQA to describe differences in
acoustical signals generated by multi-agent behavior of a performing musical
ensemble who were either uncoordinated with each other (the audio signal they
collectively generated was noise-like), or were coordinated with each other (the
audio signal they collectively generated was harmonic-like) (Proksch, Reeves,
Spivey, & Balasubramaniam, 2022).

5.3 Dynamics of Collective Interaction

The context of a social event affects the emergence of collective synergies,
synchronicities, and multistable dynamics in the acoustical behavior of col-
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Figure 5.1: Green lines depict trajectories of consecutive recurrent points over
time. Longer trajectories are quantified in higher values of determinism. The
plot on the left has many short diagonal trajectories consisting of only a few
consecutive recurrent points, while the plot on the right contains many long
diagonal trajectories consisting of many consecutive recurrent points over time
(even more than we have highlighted). These plots are zoomed in on two
seconds of data from two different five second samples of crowd sound.

lective interactions. To understand how analysis of the acoustical behavior
of a crowd might expand research on joint action and crowd dynamics, it is
necessary to provide context on the growing body of research evaluating co-
ordination dynamics that arise during group interactions, much of which has
focused on the behavioral and physiological modalities.

Modalities of Synchrony and Coordination in Groups

Recently, Multidimensional Recurrence Quantification Analysis (MdRQA)
was used to measure physiological synchrony in the heart rates of fans who
attended a live basketball game, and fans who gathered in small groups to
attend a live screen of a basketball game on television (Baranowski-Pinto, Pro-
feta, Newson, Whitehouse, & Xygalatas, 2022). MdRQA is able to compute
recurrence measures across multiple signals (i.e. the heart rates of multiple
individuals), in contrast to RQA that evaluates recurrence measures across the
length of a single signal. Increased interdependence in heart rate was found
for fans who attended the live game, indicating that there is an enhanced so-
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Figure 5.2: Highlighted instances of laminar states in a time series reflected
in a recurrence plot. The bursts in the time series appear as white space with
few recurrent points in the recurrence plot. This is because this bursty state
is revisited only three additional times after the instance highlighted in pink
along the main diagonal. Meanwhile, the state highlighted in yellow repeats
an additional five times for the duration of the behavior. This plot is one five
second sample of crowd sound.
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cial effect of the interpersonal dynamics inherent in attending this sporting
event live and in-person compared to virtually engaging with the game over a
television screen. This was demonstrated through increases in both determin-
ism (DET: indicating stability in the system and the ability to predict future
states from past states) and average diagonal line length (ADL: indicating the
length of time, or persistence, of recurrent states within the system). Fur-
ther, Baranowski-Pinto et al., found that individuals who attended the live
game exhibited stronger social cohesion, as reported by stronger feelings of
transformativeness, or the sense that their individual identity has ‘fused’ to
the identity of the group. These self-report measures were correlated with re-
currence measures for fans who attended the game in person. A second study
evaluated behavioral synchrony of an audience attending a live or pre-recorded
rock concert (Swarbrick et al., 2019). Where basketball fans in Baranoiwski-
Pinto et al.,’s study were both watching a live game, which differed only by
being in-person or screened on television, Swarbrick et al.,’s study maintained
the interpersonal dynamic between concert attendees by having concert-goers
in each condition be physically present in the concert venue (Swarbrick et al.,
2019). In the live concert, the rock band performed on the stage, while in
the non-live condition, a recording of that performance was projected onto
the stage. Faster head movements, a measure of vigor and engagement, were
found during the live performance than the non-live performance. No effect
was found between performances for entrainment with the music – however it
was not analyzed whether there was enhanced movement synchrony between
audience members during either performance.

In a third study, both physiological and behavioral synchrony were evalu-
ated in groups of three people engaged in a joint drumming task (I. Gordon,
Gilboa, Cohen, & Kleinfeld, 2020). Synchronous or asynchronous drumming
interaction was achieved by asking participants to drum along to an audi-
tory beat with a predictable or unpredictable tempo, respectively. Gordon
et al, 2020 found that the drumming task itself led to increased synchrony
of heart-beat inter-beat-intervals (IBIs) between group members compared to
baseline (non-interaction). Groups with higher physiological synchrony dur-
ing the initial drumming task were more coordinated during a subsequent
free-improvisation drumming task. Interestingly, this increase in heartbeat
IBI synchrony was not related to whether the initial drumming task was syn-
chronous or asynchronous, indicating that the enhanced heartbeat IBI syn-
chrony may stem from the effect of the interpersonal interaction itself, rather
than the behavioral synchronization of the drumming itself. This may be
similar to interaction at a sporting event, where individuals are not always
synchronizing directly with other fans in attendance. Further, even during a
coordinated cheer individuals may be ‘in sync’ with a global signal without
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being ‘in sync’ to other individuals directly nearby.

These studies highlight the importance of interpersonal interaction – as
well as a live, in-person interaction context – in facilitating physiological and
behavioral synchrony and the emergence and maintenance of shared social
bonds. Although the specific modality of focus differed in each study (from
physiological measures of heart-rate, to behavioral measures of movement), all
of the interactions in these studies occurred in a shared acoustic and auditory
environment. Anthropologist and ethnomusicologist, Blake and Cross (2015),
state that it is precisely this environment that is ‘one of the most powerful
and flexible tools that humans use to manage and mediate relationships with
each other and with the environments that they construct or modify’. In the
next section, we situate our interest in acoustic social coordination and in
the shared social scripts that underlie the coordination of acoustical behavior
during the interactions of a crowd.

Acoustic Social Coordination

The emergence of different joint action dynamics can be analyzed in terms
of social scripts – implicit or explicit norms for organizing behavior in social
contexts that are ‘underwritten by culturally specific narratives’ (Albarracin,
Constant, Friston, & Ramstead, 2021). The acoustical behavior of the musi-
cal ensemble described in section 1.1 was carried out according to an explicitly
social script – a musical score– governing the transition from uncoordinated
action of individuals to coordinated interaction of a multi-agent group. These
two coordination modes are reflected in the emergence of structured recur-
rence patterns over time (Proksch et al., 2022). Applause after concerts can
also follow certain implicit social scripts – spreading by initial social contagion
(Mann, Faria, Sumpter, & Krause, 2013) and perhaps persisting while slowly
dying down, or ending abruptly as soon as a loudness threshold is passed
(Michard & Bouchaud, 2005). Fluctuations in the relative synchrony of sound
generated by the applause of a crowd attending a classical music concert have
been shown to display an emergent periodic signal. Initial applause is fast
and asynchronous, and as synchrony increases the overall signal of the sound
behavior increases, while the average noise of the sound decreases. This de-
crease in average noise is a result of a slower clapping period that emerges
as individuals clap in unison (Néda et al., 2000). Such audiences fluctuate
between asynchronous and synchronous behavior before ultimately fading out
as the event draws to a close.

Basketball games are another social context that affords the emergence of
coordinated acoustical behavior among a group of interacting people. Rather
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than an explicitly written script, fans at sporting events follow an at times
explicit or implicit social script, where events in the game and prompts from
the announcer or cheerleaders, or other fans, govern the behavior of fans gath-
ered in the arena. Patterns of social self-organization emerge and dissipate
according to local interaction among fans and global interactions associated
with the game. When your team scores, the social script affords a cheer, when
the other team is attempting a free throw, the social script affords generating
raucous noises in attempt to distract the player on the court, and when the
cheer leaders or a group of fans begin a rehearsed chant (“De-fense”; “B-Y-U
Cougars”) the social script requires that you chant along. These rehearsed
chants are an example of joint speech, a collective phenomenon where mul-
tiple individuals repeat the same words simultaneously with the purpose of
engaging in group expression (Cummins, 2013).

Synchrony demonstrated in this acoustical behavior, including the syn-
chrony of joint speaking during group chants, is an important characteristic
of interpersonal interaction.The repetition of chants or short rhythmic utter-
ances in sporting events enables “synchronized activity...an extreme form of
coordination”, whereby individuals enact a collective “we” and establish a co-
ordinated group identity for as long as the behavior persists (Cummins, 2020).
Joint action research has demonstrated that higher levels of synchronous be-
havior are associated with various aspects of prosocial cognition including:
increased affiliation (Hove & Risen, 2009; Wiltermuth & Heath, 2009), so-
cial cohesion (Marsh, Richardson, & Schmidt, 2009), group identity (McNeill,
2022), and cooperation (Kirschner & Tomasello, 2010). A recent meta-analysis
has shown that the effects of synchrony on prosocial behaviors and positive
affect are larger for larger groups (Mogan, Fischer, & Bulbulia, 2017). How-
ever, it can be difficult to measure synchronous activity or joint speech from
very large groups of people engaged in naturalistic social interactions. It may
not always be possible to obtain one signal from each member of a large group
to evaluate correlations and synchrony between those signals. What may be
more feasible in such situations, is to record a global acoustic signal generated
by the group as a whole.

5.4 Project Aims

Previously, Proksch et al., 2022 applied RQA analysis to a global acoustic
recording of a performing musical ensemble. Whether individuals within that
ensemble were coordinating their behavior, or not, was dictated by a musical
score. These two patterns of behavioral dynamics (uncoordinated vs coordi-
nated) were reflected in RQA metrics derived from analyzing recurrence plots
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generated from the downsampled audio signals. Here, we analyze a recorded
audio signal of a crowd of students engaging in various forms of acoustical
behavior at a BYU basketball game (Butler et al., 2018). Following from
both Zhang et al., 2011 and Proksch et al., 2022, we leverage nonlinear anal-
yses to extract features that are relevant to the behavioral interaction and
coordination of the crowd who produced these audio signals. We propose that
recurrence dynamics measured from this global audio signal reflect information
about the behavioral dynamics of the crowd itself. We calculate recurrence
features using RQA to evaluate the emergent acoustical behavioral dynamics
of the interacting crowd.

This paper has two objectives. The first objective is a theory-driven de-
scription of crowd sound dynamics using specific RQA metrics relevant for
describing system level collective behavior: Recurrence Rate, Determinism,
Entropy, and Laminarity (described in more detail in the methods below).
We predict that the coordinated acoustical behavior of the crowd will exhibit
higher stability and recurrence (measured by determinism and recurrence rate)
during pseudo-rhythmically organized joint speech such as rhythmic chants.
Meanwhile, the less structured nature of acoustic events such distraction noise
will exhibit lower measures of stability and recurrence.

The second objective is a data-driven, machine learning approach to clas-
sify each crowd sound based on the full suite of metrics available from the the
PyRQA package (a total of 19 RQA metrics, listed in the methods). A combi-
nation of RQA metrics and SVM (support vector machine) classification has
proven effective at discriminating between nonlinear (and non-stationary) dy-
namical systems that exhibit similar dynamics. dos Santos et al., 2014 showed
that RQA plus an SVM classifier showed successful classification of timeseries
data generated from the Logistic map – a canonical example of a nonlinear
dynamical system – as well classification of real biological data describing the
(nonlinear and non-stationary) dynamics of human heart rate variability across
different age groups and health contexts (dos Santos, Barroso, Godoy, Macau,
& Freitas, 2014). We apply an SVM classifier on RQA metrics of samples
of crowd data that were labeled according to differing classes of acoustical
behavior.
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5.5 Methods

Crowd Sound Dataset

Our dataset is recorded audio signal from the student section of a single
Men’s BYU basketball game (Butler et al., 2018). The data set was labeled by
BYU undergraduates into different classes of acoustical behavior along with
labels of associated game events, shown in Table 5.1.

Table 5.1: Crowd Sound Categories and descriptions from Butler et al., 2018

Crowd Sound Category Description

Angry Noise Crowd shouting in anger.

Applause
Crowd clapping that can include

crowd vocalization

Cheer Loud, positive crowd vocalization.

Distraction Noise

Attempts by crowd to draw an opposing
team member’s attention away from the game,

most commonly when the opposing team possesses
the ball or is about to shoot a free throw.

Negative Chant
Crowd shouting in anger or distress, usually

directed toward referees after a less than ideal
call or towards a player from the opposite team.

Positive Chant
Rhythmic crowd shouting, usually directed towards

the home team, e.g. “De-fense” or “B-Y-U- Cougars”

We analyze six classes of acoustical behavior that were observed in the
crowd during this basketball game: Angry Noise, Applause, Cheer, Distraction
Noise, Negative Chant, and Positive Chant. We did not analyze sound events
labeled as Singing (which was accompanied by the band or PA system) or
Silence. The raw acoustic data were sampled at 50kHz, and we resampled
by a factor of ten for nonlinear analysis at 5kHz. As described in Proksch
et al. 2022, downsampling by this rate focuses on the higher order rhythmic
properties and aggregate amplitude of the acoustic signal, essentially filtering
out pitch-information from the acoustical behavior of the audience as well as
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semi-pitched signals from shoes across the basketball court that may have been
picked up by the microphones.

Part 1: Recurrence Quantification Analysis

For Part 1, five-second samples were created using non-overlapping win-
dows (such that a 12 second event will have two 5-second samples, e.g. 0-5s,
and 4-9s, and the remaining two seconds in the event are discarded). Any
samples shorter than five seconds were discarded, and residual data longer
than multiples of five seconds were also discarded. The number of samples for
each crowd sound category is reported in Table 5.2:

Table 5.2: Non-overlapping 5s samples used for RQA and linear regression

Crowd Sound Category # of samples
Angry Noise 16
Applause 15
Cheer 47

Distraction Noise 116 (largest class)

Negative Chant 14 (smallest class)

Positive Chant 63

In order to compute statistics comparing balanced classes, data were boot-
strapped (oversampled with replacement) so that there are 116 observations
in each class.

Based on Proksch et al., 2022, we chose four RQA metrics to evaluate,
which are each indicative of different aspects of behavior in nonlinear dynam-
ical systems: Recurrence Rate, Determinism, Entropy, and Laminarity.

• Recurrence rate (the percentage of recurrence points on the recurrence
plot) represents patterns of behavior that repeat over time.

• Determinism (the percentage of points that fall on any diagonal line in
the recurrence plot) represent behaviors that belong to a longer sequence
of behavior

• Entropy (the variability in lengths of these diagonal lines) represents the
amount of disorder there is in these sequences

• Laminarity (the percentage of points that fall on a vertical line in the
recurrence plot) represents clusters of behavior for a length of time, i.e.
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when a system visits a behavior for a period of time, leaves, and then
returns to that behavioral state

RQA was run on the time series data extracted from the downsampled
audio of these five-second samples using PyRQA version 8.0.0 (Rawald, Sips,
& Marwan, 2017), with an embedding dimension of 5, a delay of 5, and a
neighborhood value fixed radius of 1*standard deviation (SD), using maxi-
mum norm to calculate neighbors of the phase space trajectory. Parameters
for the time delay and embedding dimension were chosen based on AMI and
FNN respectively using a custom MATLAB GUI provided from the 2019 APA
Advanced Training Institute in Nonlinear Methods for Psychological Science.
There are a variety of approaches to setting the neighborhood threshold value.
A standard approach, which we use, is setting this threshold value according
to a fixed amount of nearest neighbors at some ratio of the standard deviation
of the data. This holds constant the number of neighbors within a neigh-
borhood and also hold the number of recurrence points constant in a column
of the recurrence plot (Eckmann, Kamphorst, & Ruelle, 1987). It has been
suggested that 5*SD be used to accurately detect a signal in the presence of
significant observational noise (Thiel et al., 2002). However,“this approach
fails for signals of very low signal to noise ratio, or when the amount of noise
is unknown” (Schinkel et al., 2008). Additionally, the so-called “noise’ is the
signal in our data, therefore we settle on a similar approach to Zhang et al
2011 (Zhang et al., 2011), setting this threshold based on a Fixed Amount
of Nearest neighbors values of 1*SD. (note: Zhang et al., 2011 (Zhang et al.,
2011) used 1*standard error – we chose standard deviation because the value
given by SD of the mean is always larger than the SE of the mean, assuring
that our radius is large enough to sufficiently capture the recurrence structures
in the recurrence plots).

Statistical Analyses

A separate linear regression model with planned contrasts was fit for each
RQA metric of interest (Recurrence Rate, Determinism, Entropy, and Lami-
narity) as a function of six levels of Crowd Sound Category(Angry Noise, Ap-
plause, Cheer, Distraction Noise, Negative Chant, and Positive Chant): RQA
Metric CrowdSoundCategory. Orthogonal (sum-to-zero) contrasts were used
to specify a specific linear combination for each predictor in a priori planned
comparisons. Since we are not testing a specific treatment or change from any
specific baseline of crowd sound behavior, sum contrasts provide the advan-
tage of comparing RQA metrics in each category to average metrics across
all categories, rather than to a baseline or control category(Schad, Vasishth,
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Hohenstein, & Kliegl, 2020). The linear regression and pairwise comparisons
of estimated marginal means were implemented separately for each of the four
RQA measures of interest. This is because each RQA measure addresses a
different aspect of the crowd’s behavior over time, as described previously.

Results

RQA Results

Figure 5.3 shows recurrence plots generated from the time series data of
a representative five second audio sample from two crowd sound categories.
These recurrence plots visualize characteristic patterns of recurrence that are
quantified through RQA. Qualitatively, the recurrence plot generated from
5 seconds of distraction noise resembles recurrence plots of uncoordinated
group behavior (Proksch et al., 2022) or noisy-like audio signals (Zhang et
al., 2011), while the recurrence plot generated from five seconds of labeled
positive chant resemble a recurrence plot generated from coordinated group
behavior (Proksch et al., 2022) or mixed audio signal (Zhang et al., 2011).
Distraction noise shows low levels of stability and recurrence, while positive
chant shows high levels of stability and recurrence, as quantified by RQA.
Further statistical analysis on the distribution of RQA metrics in each crowd
sound category is described below.

Linear Regression with sum-to-zero contrasts and Pairwise
Comparisons

Table 5.3 lists the associated descriptive means, median, and standard devi-
ation of RQA metrics, and Figure 5.4 shows the smoothed density distributions
and quartile lines for the non-bootstrapped data from each crowd sound cate-
gory. Overall, the two chant categories (Positive and Negative chant) display
the highest values of recurrence, determinism, entropy, and laminarity. The
two noise categories (Angry and Distraction Noise) display consistently low
values of these RQA metrics, with Angry Noise having particularly low values
of Entropy and Laminarity. Cheer and Applause are the most variable, with
multimodal or nearly flat distributions exhibited by Cheer.
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Figure 5.3: Representative timeseries and recurrence plots from five-second
samples of two categories of crowd sound: Distraction Noise (left) and Positive
Chant(right). During this sample of chant, the audience is repeating “De-fense,
De-fense”.

Results of the linear regression with sum-to-zero contrasts are shown in
Table 5.4. These results indicate that RQA metrics of most individual crowd
sound categories can be differentiated from grand average RQA metrics across
all crowd sound categories. At an alpha of 0.05, for the RQA metric of Lam-
inarity, only Applause cannot be significantly differentiated from the grand
average.Because positive chant was categorized as a reference level for the
sum-to-zero contrast coding scheme, it’s comparison to grand average RQA
metrics cannot be gathered from this model. Marginal means and pairwise
comparisons with associated confidence intervals were extracted from the lin-
ear regression, and computed for each crowd sound category using R package
emmeans, version 1.5.4 and are plotted in Figure 5.5. Blue bars represent 95 %
confidence intervals, while red arrows represent comparisons among the means.
Where a red arrow overlaps an arrow from another category, this means that
the difference between the overlapping categories is not significant. These re-
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Figure 5.4: Ridgeline plots show the smoothed distribution and individual data
points from the original (non-bootstrapped) distributions, along with quantile
lines for four RQA Measures across six Crowd Sound Categories: Angry Noise,
Applause, Cheer, Distraction Noise, Negative Chant & Positive Chant.

sults indicate that among most RQA metrics, Distraction Noise, Cheer, and
Applause cannot be reliably distinguished from each other. Meanwhile, Angry
Noise shows distinctly low values of each RQA metric, while both Positive and
Negative Chant categories show distinctly high values of each RQA metric and
are statistically different from each other in all metrics except for Entropy.
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Table 5.3: Summary Statistics for each RQA Measure across six Crowd Sound
Categories: Mean, median, standard deviation as calculated from original,
non-bootstrapped data.

Recurrence Rate
mean median sd

AngryNoise 0.06 0.05 0.02
Applause 0.08 0.08 0.03
Cheer 0.10 0.08 0.06
DistractionNoise 0.07 0.06 0.04
NegativeChant 0.12 0.11 0.05
PositiveChant 0.17 0.16 0.07

Determinism
mean median sd

AngryNoise 0.25 0.20 0.10
Applause 0.37 0.36 0.11
Cheer 0.39 0.38 0.23
DistractionNoise 0.34 0.29 0.16
NegativeChant 0.52 0.50 0.14
PositiveChant 0.64 0.62 0.13

Entropy
mean median sd

AngryNoise 0.72 0.66 0.24
Applause 0.94 0.90 0.26
Cheer 0.96 1.00 0.32
DistractionNoise 0.92 0.86 0.27
NegativeChant 1.17 1.13 0.25
PositiveChant 1.32 1.33 0.21

Laminarity
mean median sd

AngryNoise 0.40 0.34 0.11
Applause 0.52 0.51 0.11
Cheer 0.51 0.53 0.22
DistractionNoise 0.45 0.40 0.16
NegativeChant 0.65 0.65 0.13
PositiveChant 0.75 0.74 0.10



102

Table 5.4: Results from the linear regression with sum-to-zero contrasts re-
ported for each RQA measure across six crowd sound categories.

Recurrence Rate

Estimate Std. Error t value Pr(>|t|)
GrandMean(Int) 0.10 0.00 58.78 0.00
AngryNoise -0.04 0.00 -10.97 0.00
DistractionNoise -0.02 0.00 -6.69 0.00
Cheer -0.02 0.00 -4.68 0.00
Applause -0.01 0.00 -4.03 0.00
NegativeChant 0.03 0.00 8.33 0.00

R2/R2 adjusted 0.539/0.536

Determinism

Estimate Std. Error t value Pr(>|t|)
GrandMean(Int) 0.41 0.01 73.38 0.00
Angry Noise -0.17 0.01 -13.59 0.00
DistractoinNoise -0.07 0.01 -5.37 0.00
Cheer -0.08 0.01 -6.31 0.00
Applause -0.03 0.01 -2.62 0.01
NegativeChant 0.13 0.01 10.35 0.00

R2/R2 adjusted 0.525/0.522

Entropy

Estimate Std. Error t value Pr(>|t|)
GrandMean(Int) 0.99 0.01 100.97 0.00
AngryNoise -0.30 0.02 -13.71 0.00
DistractionNoise -0.07 0.02 -3.14 0.00
Cheer -0.12 0.02 -5.64 0.00
Applause -0.05 0.02 -2.27 0.02
NegativeChant 0.23 0.02 10.31 0.00

R2/R2 adjusted 0.510/0.507

Laminarity

Estimate Std. Error t value Pr(>|t|)
GrandMean(Int) 0.54 0.01 100.53 0.00
AngryNoise -0.15 0.01 -12.64 0.00
DistractionNoise -0.08 0.01 -7.05 0.00
Cheer -0.08 0.01 -6.72 0.00
Applause -0.01 0.01 -1.24 0.22
NegativeChant 0.13 0.01 10.56 0.00

R2/R2 adjusted 0.525/0.522
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Figure 5.5: Pairwise Comparisons of Estimated Marginal Means across crowd
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C) Entropy, and D) Laminarity. Blue bars represent 95 % confidence intervals.
Red arrows represent comparisons among the means. Where a red arrow over-
laps an arrow from another category, the difference between the overlapping
categories is not significant.
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Table 5.5: Estimated Marginal Means.

Recurrence Rate

emmean SE lower.CL upper.CL

AngryNoise 0.06 0.00 0.05 0.06
DistractionNoise 0.07 0.00 0.06 0.08
Cheer 0.08 0.00 0.07 0.09
Applause 0.08 0.00 0.07 0.09
NegativeChant 0.13 0.00 0.12 0.14
PositiveChant 0.16 0.00 0.16 0.17

Confidence level used: 0.95

Determinism

emmean SE lower.CL upper.CL

AngryNoise 0.24 0.01 0.21 0.27
DistractionNoise 0.34 0.01 0.32 0.37
Cheer 0.33 0.01 0.30 0.36
Applause 0.38 0.01 0.35 0.40
NegativeChant 0.54 0.01 0.51 0.57
PositiveChant 0.63 0.01 0.60 0.66

Confidence level used: 0.95

Entropy

emmean SE lower.CL upper.CL

AngryNoise 0.69 0.02 0.64 0.73
DistractionNoise 0.92 0.02 0.87 0.96
Cheer 0.86 0.02 0.82 0.91
Applause 0.94 0.02 0.89 0.98
NegativeChant 1.21 0.02 1.16 1.26
PositiveChant 1.30 0.02 1.26 1.35

Confidence level used: 0.95

Laminarity

emmean SE lower.CL upper.CL

AngryNoise 0.39 0.01 0.36 0.41
DistractionNoise 0.45 0.01 0.43 0.48
Cheer 0.46 0.01 0.43 0.48
Applause 0.52 0.01 0.50 0.55
NegativeChant 0.66 0.01 0.64 0.69
PositiveChant 0.74 0.01 0.72 0.77

Confidence level used: 0.95
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Part 2: SVM Classification with RQA features

The objective in Part 2 was to explore the usefulness of the full suite of
19 RQA metrics as features for the classifcation of different crowd sounds. To
perform classification we utilized a support vector machine (SVM) classifier
with an RBF kernel. The SVM classifier partitions the n-dimensional feature
space (in our case n = 19) using hyper planes to best distinguish the data based
on class. Samples extracted from the crowd sound data set for classification
in Part 2 are different than the samples analyzed in Part 1. In order to create
a larger data set from which to learn we took windowed samples from the
entire length of each crowd sound event. Five-second samples were extracted
sliding by one second windows at a time. This means a 7 second crowd event
can generate 3 samples instead of a singular sample. In order to prevent over
fitting, we used disjoint events for each class in the training, validation, and
test sets. This means that even though we are windowing samples, there will
be no overlap between distinct crowd events in the training, validation, and
test sets. We then performed RQA analysis on each sample to generate the
RQA features as described above. Whereas statistical analysis above focused
on four RQA metrics commonly studied in behavioral experiments of human
interaction, training and classification was computed on all 19 RQA metrics
reported by PyRQA (Rawald et al., 2017):

• Minimum diagonal line length
• Maximum diagonal line length
• Minimum white vertical line
length

• Recurrence rate
• Determinism
• Average diagonal line length
• Longest diagonal line length
• Divergence
• Entropy diagonal lines
• Laminarity
• Trapping time

• Longest vertical line length
• Entropy vertical lines
• Average white vertical line
length

• Longest white vertical line
length

• Longest white vertical line
length divergence

• Entropy white vertical lines
• Ratio determinism/recurrence
rate

• Ratio laminarity/determinism

In this analysis, we look at two different classification problems. In the
first problem we look at 19 RQA metrics over six crowd sound classes defined
in the analysis: angry noise, distraction noise, positive chant, negative chant,
cheer, and applause. We also looked at a second classification problem after
combining crowd sound classes that showed similar performance in the SVM
classifier (trained on all 19 RQA metrics), and that showed overlap in the
original means comparisons of the subset of four theoretically motivated RQA
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metrics described in Section 2.Thus we combined positive/negative chant into
a singular chant class, cheer/applause into a singular cheer class, and kept dis-
traction noise in a class by itself. We excluded angry noise from the conglom-
erated classes due to comparatively low prevalence in the data, and minimal
confusion with crowd sound categories in the six-class SVM classifier results.

Table 5.6 lists the distribution of samples in the training set in each of
the six original classes. Training samples were bootstrapped (over sampling
the minority classes) so each class has 281 samples. Testing samples were not
bootstrapped. Table 5.7 lists the distribution of samples in the training set
by conglomerated class. As above, training samples were bootstrapped (over
sampling the minority classes) so each class has 281 samples. Testing samples
were not bootstrapped.

Table 5.6: Overlapping 5s samples used for RQA and SVM Classification

Crowd Sound Category # of samples
Angry Noise 37
Applause 19 (smallest class)

Cheer 97
Distraction Noise 281 (largest class)

Negative Chant 26
Positive Chant 142

Table 5.7: Overlapping 5s samples used for SVM Classifcation after combining
crowd sound classes

Conglomerated Category # of samples
Applause/Cheer 116
Distraction Noise 281

Chant 168

Classification Results

Results of the SVM classifier performance on the test set data are displayed
in the confusion matrix in Figure 4. Here we have the true label on the y axis
and the predicted label on the x axis. The values have been normalized across
the true label, since each class contains a different number of samples because
we did not bootstrap the test set. When analyzing the results of the SVM
trained on size classes we see strong distinction (above 0.8) for angry noise,
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distraction noise, positive chant, and cheer. We see confusions for applause
with miss-classifications split between cheer and angry noise. We also see sig-
nificant confusion for negative chant with a sizeable portion being classified as
positive chant. Along with the statistical analysis performed earlier this led
us to join classes into three subgroups: chant, cheer/applause, and distraction
noise. When we train an SVM classifier on these joined classes we see perfor-
mance above 0.8 for all classes. This demonstrates that features generated by
RQA are distinct for the different classes and that we can use them to discern
between different crowd events in classification problems.

Figure 5.6: SVM test set results for both 6 classes (left) and 3 classes (right).

5.6 Discussion

We have empirically demonstrated differences in acoustic coordination pat-
terns of differing crowd responses recorded from noisy, naturalistic acoustic so-
cial behavior of fans at a basketball game. The results here and from Proksch
et al., 2022 (Proksch et al., 2022) indicate that RQA (and phase space re-
construction) can be meaningfully applied to global acoustic recordings when
individual recordings are not available. The collegiate basketball crowd sound
data set analyzed here is exemplar of naturalistic crowd interactions that are
not dictated by a set of pre-determined instructions, like in a musical score.
While crowd behavior is influenced by the events of the basketball game over
time, the specific acoustic output of the crowd is neither rehearsed nor ex-
plicitly dictated via shared access to a ‘behavioral score’. Instead, individuals
of the crowd ‘softly assemble’ into certain functional patterns acoustic of be-
havior, which emerge from local interactions among fans and influenced by
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external events of the environment. Further, we have demonstrated that a
combination of RQA and SVM classifier can effectively differentiate between
at least a subset of acoustic crowd responses. Future research involving clas-
sification of acoustic crowd behavior can test whether classification accuracy
of SVMs, Naive Bayes Classifiers, or even Convolutional Neural Networks –
which are typically trained on more standard measures of acoustic analysis
(such as spectral features and mel cepstral coefficients) – may be improved by
incorporating numerical RQA metrics or even Recurrence Plot images into the
classification.

This work adds to the growing body of research on joint action and coor-
dination among groups. Baranowski-Pinto et al 2022 found heart-rate inter-
dependence between fans attending live (vs televised) basketball games, but
did not measure synchrony in behavioral (i.e. movement or acoustic) dynam-
ics. Swarbrick et al 2019 demonstrated that movement vigor and engagement
was enhanced by attending a live concert compared to a pre-recorded con-
cert, but did not analyse coordination in these dynamics between audience
members. And Gordon et al 2020 demonstrated an independence between be-
havioral and physiological synchrony – such that physiological and behavioral
synchrony are not always coordinated. Incorporating analysis of coordination
measured from global acoustical signals (as shown in our work) to group in-
teraction studies such as these will help shed light on the role of acoustical
behavior in joint action, and whether that role is meaningfully correlated with
movement, physiological, and psychological dynamics.

To conclude, we sought to describe emergent coordination dynamics in
the acoustical behavior of a crowd in a naturalistic setting. Specifically, we
performed phase space reconstruction and RQA on acoustic data recorded from
fans attending a basketball game. While there was overlap in some categories,
we found reliable differences in recurrence measures after SVM classification
for three conglomerated categories of crowd activity (e.g. chant, cheer, and
distraction noise). In the future it would be beneficial to analyze how these
recurrence measures extend to additional basketball games or to acoustical
behavior of crowds at different sporting events. Analyzing these signals over
the time course of a game may shed light into how joint acoustical behavior
changes over time. Further, it would be insightful to relate these acoustical
behavioral dynamics with coordination dynamics across modalities.
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Epilogue

General Discussion

In this dissertation, I have presented work on how the brain processes
rhythm, as well as work on the rhythms that underlie the interpersonal social
interaction of large groups of people.

In Chapter 1, I reviewed how the perception of musical rhythm relies on
the interaction of motor, parietal, and auditory regions of the brain within a
pathway called the dorsal auditory stream. This pathway enables predictions
from the motor cortex to travel via the parietal cortex and inform auditory
regions where in time the next musical beat will land, according to the Ac-
tion Prediction for Auditory Simulation (ASAP) hypothesis (Patel & Iversen,
2014). I argued that cortical networks proposed by the ASAP hypothesis, in
conjunction with subcortical networks proposed by the Gradual Audiomotor
Evolution hypothesis (Merchant & Honing, 2014), provide a converging and
more complete description of the role of the motor system in musical timing
perception (Proksch et al., 2020). Additionally, these hypotheses can be in-
tegrated under the Active Inference framework of sensory processing, which
posits that action and sensation are not two separable processes, but rather
that the brain+body system actively solicits internal predictive models of in-
coming sensory stimuli in an ongoing process of prediction error minimization
(Adams et al., 2013).

In Chapter 2, I applied non-invasive transcranial magnetic stimulation
(TMS) to temporarily down-regulate neural activity within the dorsal auditory
stream (the posterior parietal cortex) and a motor region outwith this pathway
(the supplementary motor area) to probe the causal role of the motor system
in the neural response to deviant rhythmic stimuli. This chapter presented
preliminary evidence indicating that, while each of these cortical areas may
play a role in beat perception, down-regulation of these areas may not have
a substantial effect on beat and meter perception at the level of event related
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evoked neural responses recorded using EEG. However, due the small sample
size of the preliminary dataset and substantial variability across participants’
response to both the rhythmic stimuli and to brain stimulation, this question
requires further research.

Bridging the divide between music cognition and interpersonal coordina-
tion, Chapter 3 introduces the concept of an interpersonal synergy. Measure-
ment of interpersonal synergies can be indicative of shared social cognition: of
joint participation in co-regulating multiple patterns of activity between two
or more agents engaged in a social interaction (De Jaegher et al., 2010). Ide-
ally, in the controlled setting of a lab, we can measure when an interpersonal
synergy develops by correlating individual signals recorded from each individ-
ual within a group social interaction, e.g. electrodermal activity, movement
dynamics, speech signals, or even neural activity. However, individual mea-
surements such as these may not always be available or easy to obtain in very
large, naturalistic social interactions.

In Chapters 4 and 5, I leveraged tools from dynamical systems theory to
evaluate the coordination dynamics of large, multi-agent groups of people,
where we did not have access to these individual level signals. The signal
that we did have access to was the group-level acoustic signal generated by
two different interacting groups: a musical ensemble, and fans at a collegiate
basketball game. Specifically, in Chapter 4 I showed that Recurrence Quantifi-
cation Analysis (RQA), when applied to only a single aggregate measurement
– sound –, can reveal coordination patterns that differ during independent
behavior, and after the formation of a single complex system during interde-
pendent interaction of a musical ensemble (Proksch et al., 2022). The inter-
actions of this musical ensemble provided a strong test case, as the musicians’
behavior is both rehearsed and performed according to a musical score. The
musical score provided a ground truth against which we were able to compare
the results of these statistical techniques. As musicians co-created a shared
acoustic social world, we found that they formed a larger complex system –
an interpersonal synergy unified over all the musicians in the ensemble. In
Chapter 5, I showed that these same techniques can be applied to a much
‘noisier’ interpersonal interaction, one that lacks the specific instructions of a
musical score. Specifically, I showed that RQA can be used to differentiate
categories of crowd sound behavior from fans attending a collegiate basketball
game. This research is significant because it highlights that, even without a
predetermined behavioral score, individuals in a crowd ‘softly assemble’ into
functional patterns of interpersonal coordination that are detectable from their
acoustical output.
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General Conclusion

This dissertation has presented theoretical and experimental work spanning
sensorimotor neuroscience, coordination dynamics, and complex systems. By
beginning with the fruitful ground of music cognition and an enactive, em-
bodied, multiscale approach to investigating human brain and behavior, I was
able to ask – What networks in the brain are responsible for our perception
of events in musical time? How do large groups of people coordinate their
behavior over time?

Investigating these questions, this dissertation has presented work from
two very different scales of measurement – from the neural processes involved
in beat and rhythm perception, to the large-scale rhythmic patterns of large
group interpersonal coordination. Each of these areas of research are related
in their emphasis on the complex interaction of brain, body, and environ-
ment in perception and behavior. Musical phenomena, including pitch and
rhythm, are built by organizing regularities in melodic and rhythmic events.
The deeply embodied nature of our perception of musical rhythm relies in no
small part on the predictive capacity of the motor system, and our active en-
gagement with music allows us to move to the beat and even to perceive the
beat when we are standing still. Music provides a phenomenal playground for
investigating not only predictive processes in the brain, but also the coordi-
nation dynamics of interpersonal interaction. The regularities that enable us
to perceive musical rhythm also enable us to coordinate action among a large
group of individuals, extending our cognitive and behavioral processes among
a collective interpersonal interaction. The balance between naturalistic and
controlled interaction afforded by a musical score allows us to explore the use
of new analysis paradigms to describe these social interactions. Finally, we can
apply what we learn in these musical contexts to large group interactions ‘in
the wild’, such as at sporting events when there is no strict coordinating be-
havioral score. Future research in music and social cognition should continue
to take a multiscale approach, integrating findings across scales of measure-
ment and of neural, physiological, and behavioral processes to evaluate both
the neural and behavioral dynamics of our often musical and always rhythmic
social life.



References 113

References

Abney, D. H., Paxton, A., Dale, R., & Kello, C. T. (2015, November). Move-
ment dynamics reflect a functional role for weak coupling and role struc-
ture in dyadic problem solving. Cognitive Processing , 16 (4), 325–332.
doi: 10.1007/s10339-015-0648-2

Adams, R. A., Shipp, S., & Friston, K. J. (2013). Predictions not commands:
active inference in the motor system. Brain Structure and Function,
218 (3), 611–643.

Albarracin, M., Constant, A., Friston, K. J., & Ramstead, M. J. D. (2021). A
variational approach to scripts. Frontiers in Psychology , 3035.

al Haytham, I. (ca 1030; 1989). The optics of Ibn al-Haytham. Translated by
A. I. Sabra.

Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., van Langen, J., &
Kievit, R. A. (2021). Raincloud plots: a multi-platform tool for robust
data visualization [version 2; peer review: 2 approved]. Wellcome Open
Res , 4 (63). doi: 10.12688/wellcomeopenres.15191.1.

Alviar, C., Dale, R., Dewitt, A., & Kello, C. (2020, September). Multimodal
Coordination of Sound and Movement in Music and Speech. Discourse
Processes , 57 (8), 682–702. doi: 10.1080/0163853X.2020.1768500

Araneda, R., Renier, L., Ebner-Karestinos, D., Dricot, L., & De Volder, A. G.
(2017). Hearing, feeling or seeing a beat recruits a supramodal network in
the auditory dorsal stream. European Journal of Neuroscience, 45 (11),
1439–1450.

Ashe, J., & Bushara, K. (2014). The olivo-cerebellar system as a neural clock.
Neurobiology of Interval Timing , 155–165.

Atherton, G., Sebanz, N., & Cross, L. (2019). Imagine all the synchrony: The
effects of actual and imagined synchronous walking on attitudes towards
marginalised groups. PloS one, 14 (5), e0216585.

Auksztulewicz, R., Myers, N. E., Schnupp, J. W., & Nobre, A. C. (2019).
Rhythmic temporal expectation boosts neural activity by increasing neu-
ral gain. Journal of Neuroscience, 39 (49), 9806–9817.

Balasubramaniam, R., Haegens, S., Jazayeri, M., Merchant, H., Sternad, D.,
& Song, J.-H. (2021). Neural encoding and representation of time for
sensorimotor control and learning. Journal of Neuroscience, 41 (5), 866–
872.

Balasubramaniam, R., Riley, M. A., & Turvey, M. (2000, February). Specificity
of postural sway to the demands of a precision task. Gait & Posture,
11 (1), 12–24. doi: 10.1016/S0966-6362(99)00051-X

Balasubramaniam, R., Wing, A., & Daffertshofer, A. (2004, September). Keep-
ing with the beat: movement trajectories contribute to movement timing.
Experimental Brain Research. doi: 10.1007/s00221-004-2066-z



References 114

Balconi, M., & Fronda, G. (2020). The dialogue between two or more
brains: the “hyperscanning” for organization. Frontiers in Psychology ,
11 , 598332.

Baranowski-Pinto, G., Profeta, V. L., Newson, M., Whitehouse, H., & Xy-
galatas, D. (2022). Being in a crowd bonds people via physiological
synchrony. Scientific reports , 12 (1), 1–10.

Bastian, A. J. (2006). Learning to predict the future: the cerebellum adapts
feedforward movement control. Current opinion in neurobiology , 16 (6),
645–649.

Bates, D. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal
of Statistical Software. doi: 10.18637/jss.v067.i01

Blake, E. C., & Cross, I. (2015). The acoustic and auditory contexts of human
behavior. Current Anthropology , 56 (1), 81–103.

Bouwer, F. L., Werner, C. M., Knetemann, M., & Honing, H. (2016,
May). Disentangling beat perception from sequential learning
and examining the influence of attention and musical abilities on
ERP responses to rhythm. Neuropsychologia, 85 , 80–90. doi:
10.1016/j.neuropsychologia.2016.02.018

Brodal, H. P., Osnes, B., & Specht, K. (2017). Listening to rhythmic music
reduces connectivity within the basal ganglia and the reward system.
Frontiers in neuroscience, 11 , 153.

Bruineberg, J., Kiverstein, J., & Rietveld, E. (2018). The anticipating brain
is not a scientist: the free-energy principle from an ecological-enactive
perspective. Synthese, 195 (6), 2417–2444.

Buhl, J., Sumpter, D., Couzin, D., Hale, J., Despland, E., Miller, E., & Simp-
son, S. (2006). From Disorder to Order in Marching Locusts. Science,
312 , 1402–1406. doi: 10.1126/science.1125142

Buonomano, D. V. (2014). Neural dynamics based timing in the subsecond
to seconds range. Neurobiology of interval timing , 101–117.

Butler, B. A., Pedersen, K., Cook, M. R., Wadsworth, S. G., Todd, E., Stark,
D., . . . Warnick, S. (2018). Classifying crowd behavior at collegiate
basketball games using acoustic data. In Proceedings of meetings on
acoustics (Vol. 35).

Cameron, D. J., Bentley, J., & Grahn, J. A. (2015). Cross-cultural influences
on rhythm processing: reproduction, discrimination, and beat tapping.
Frontiers in Psychology , 6 , 366.

Cannon, J. J., & Patel, A. D. (2021). How beat perception co-opts motor
neurophysiology. Trends in Cognitive Sciences , 25 (2), 137–150.

Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Ste-
fanini, F., & Viale, M. (2010). Scale-Free Correlations in Starling
Flocks. Proceedings of the National Academy of Sciences , 107 (26). doi:
10.1073/pnas.1005766107



References 115

Chang, A., Kragness, H. E., Livingstone, S. R., Bosnyak, D. J., & Trainor,
L. J. (2019, December). Body sway reflects joint emotional expres-
sion in music ensemble performance. Scientific Reports , 9 (1), 205. doi:
10.1038/s41598-018-36358-4

Chang, A., Kragness, H. E., Wei, T., Bosnyak, D. J., Thiede, A., &
Trainor, L. J. (2020). Body Sway Predicts Romantic Interest in Speed
Dating. Social Cognitive and Affective Neuroscience, 185–192. doi:
10.1093/scan/nsaa093

Chang, A., Livingstone, S. R., Bosnyak, D. J., & Trainor, L. J. (2017,
May). Body sway reflects leadership in joint music performance. Pro-
ceedings of the National Academy of Sciences , 114 (21), E4134–E4141.
doi: 10.1073/pnas.1617657114

Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008a). Listening to musical
rhythms recruits motor regions of the brain. Cerebral cortex , 18 (12),
2844–2854.

Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008b). Moving on time: brain
network for auditory-motor synchronization is modulated by rhythm
complexity and musical training. Journal of cognitive neuroscience,
20 (2), 226–239.

Clark, A. (2003). Natural-Born Cyborgs: Minds, Technologies, and the Future
of Human Intelligence. Oxford University Press.

Clark, A. (2013). Whatever next? predictive brains, situated agents, and
the future of cognitive science. Behavioral and brain sciences , 36 (3),
181–204.

Clayton, M., Sager, R., & Will, U. (2005). In time with the music: the concept
of entrainment and its significance for ethnomusicology. In European
meetings in ethnomusicology. (Vol. 11, pp. 1–82).

Connell, J. P., DiMercurio, A., & Corbetta, D. (2017). Dynamic systems the-
ory. In J. Vonk & T. Shackelford (Eds.), Encyclopedia of animal cognition
and behavior (p. 1-8). New York: Springer International Publishing.

Coull, J., & Nobre, A. (2008, April). Dissociating explicit timing from tem-
poral expectation with fMRI. Current Opinion in Neurobiology , 18 (2),
137–144. doi: 10.1016/j.conb.2008.07.011

Coull, J. T., Cotti, J., & Vidal, F. (2016). Differential roles for parietal and
frontal cortices in fixed versus evolving temporal expectations: Dissoci-
ating prior from posterior temporal probabilities with fmri. Neuroimage,
141 , 40–51.

Coull, J. T., Vidal, F., & Burle, B. (2016). When to act, or not to act: that’s
the sma’s question. Current Opinion in Behavioral Sciences , 8 , 14–21.

Crowe, D. A., Zarco, W., Bartolo, R., & Merchant, H. (2014). Dynamic rep-
resentation of the temporal and sequential structure of rhythmic move-
ments in the primate medial premotor cortex. Journal of Neuroscience,



References 116

34 (36), 11972–11983.
Cummins, F. (2013). Joint speech: The missing link between speech and

music? PERCEPTA-Revista de Cognição Musical , 1 (1), 17–17.
Cummins, F. (2020). The territory between speech and song: A joint speech

perspective. Music Perception, 37 (4), 347–358.
Davis, T. J., Pinto, G. B., & Kiefer, A. W. (2017). The Stance Leads the

Dance: The Emergence of Role in a Joint Supra-Postural Task. Frontiers
in Psychology , 8 . doi: 10.3389/fpsyg.2017.00718

De Jaegher, H., Di Paolo, E., & Gallagher, S. (2010). Can social interaction
constitute social cognition? Trends in cognitive sciences , 14 (10), 441–
447.

de Lafuente, V., Jazayeri, M., & Shadlen, M. N. (2015). Representation of
accumulating evidence for a decision in two parietal areas. Journal of
Neuroscience, 35 (10), 4306–4318.

Delorme, A., & Makeig, S. (2004). Eeglab: an open source toolbox for analysis
of single-trial eeg dynamics including independent component analysis.
Journal of neuroscience methods , 134 (1), 9–21.

Demos, A. P., Chaffin, R., Begosh, K. T., Daniels, J. R., & Marsh, K. L.
(2012, February). Rocking to the beat: Effects of music and partner’s
movements on spontaneous interpersonal coordination. Journal of Ex-
perimental Psychology: General , 141 (1), 49–53. doi: 10.1037/a0023843

Demos, A. P., Chaffin, R., & Logan, T. (2017). Musicians body sway embodies
musical structure and expression: A recurrence-based approach. Musicae
Scientiae, 22 (2), 244–263. doi: 10.1177/1029864916685928

dos Santos, L., Barroso, J. J., Godoy, M. F. d., Macau, E. E., & Freitas,
U. S. (2014). Recurrence quantification analysis as a tool for discrimina-
tion among different dynamics classes: The heart rate variability associ-
ated to different age groups. In Translational recurrences (pp. 125–136).
Springer.

Drost, U. C., Rieger, M., Brass, M., Gunter, T. C., & Prinz, W. (2005). When
hearing turns into playing: Movement induction by auditory stimuli in
pianists. The Quarterly Journal of Experimental Psychology Section A,
58 (8), 1376–1389.

Drost, U. C., Rieger, M., & Prinz, W. (2007). Instrument specificity in
experienced musicians. Quarterly Journal of Experimental Psychology ,
60 (4), 527–533.

Durstewitz, D. (2003). Self-organizing neural integrator predicts interval times
through climbing activity. Journal of Neuroscience, 23 (12), 5342–5353.

D’Ausilio, A., Novembre, G., Fadiga, L., & Keller, P. E. (2015, March). What
can music tell us about social interaction? Trends in Cognitive Sciences ,
19 (3), 111–114. doi: 10.1016/j.tics.2015.01.005

Eckmann, J.-P., Kamphorst, S. O., & Ruelle, D. (1987, November). Recurrence



References 117

Plots of Dynamical Systems. Europhysics Letters (EPL), 4 (9), 973–977.
(Publisher: IOP Publishing)

Engel, A. K., Friston, K. J., & Kragic, D. (2016). The pragmatic turn: Toward
action-oriented views in cognitive science (Vol. 18). mit Press.

FitzGerald, T. H., Dolan, R. J., & Friston, K. (2015). Dopamine, reward
learning, and active inference. Frontiers in computational neuroscience,
136.

Francke, M., Pogromsky, A., & Nijmeijer, H. (2020, February). Huy-
gens’ clocks: ‘sympathy’ and resonance. International Journal of
Control , 93 (2), 274–281. (Publisher: Taylor & Francis) doi:
10.1080/00207179.2019.1590736

Friston, K. (2002). Beyond phrenology: what can neuroimaging tell us about
distributed circuitry? Annual review of neuroscience, 25 (1), 221–250.

Friston, K. (2005). A theory of cortical responses. Philosophical transactions
of the Royal Society B: Biological sciences , 360 (1456), 815–836.

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature
reviews neuroscience, 11 (2), 127–138.

Friston, K. J., Daunizeau, J., & Kiebel, S. J. (2009). Reinforcement learning
or active inference? PloS one, 4 (7), e6421.

Friston, K. J., & Friston, D. A. (2013). A free energy formulation of music
generation and perception: Helmholtz revisited. In Sound-perception-
performance (pp. 43–69). Springer.

Friston, K. J., Parr, T., & de Vries, B. (2017). The graphical brain: belief
propagation and active inference. Network neuroscience, 1 (4), 381–414.

Friston, K. J., Shiner, T., FitzGerald, T., Galea, J. M., Adams, R., Brown,
H., . . . Bestmann, S. (2012). Dopamine, affordance and active inference.
PLoS computational biology , 8 (1), e1002327.

Friston, K. J., & Stephan, K. E. (2007). Free-energy and the brain. Synthese,
159 (3), 417–458.

Fujioka, T., Ross, B., & Trainor, L. J. (2015). Beta-band oscillations repre-
sent auditory beat and its metrical hierarchy in perception and imagery.
Journal of Neuroscience, 35 (45), 15187–15198.

Fujioka, T., Trainor, L. J., Large, E. W., & Ross, B. (2012). Internalized timing
of isochronous sounds is represented in neuromagnetic beta oscillations.
Journal of Neuroscience, 32 (5), 1791–1802.

Gallagher, S., Hutto, D., Slaby, J., & Cole, J. (2013). The brain as part of an
enactive system. Behavioral and Brain Sciences , 36 (4), 421-22.
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