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Abstract. Charge density wave (CDW) is one of the most ubiquitous electronic

orders in quantum materials. While the essential ingredients of CDW order have

been extensively studied, a comprehensive microscopic understanding is yet to be

reached. Recent research efforts on the CDW phenomena in two-dimensional (2D)

materials provide a new pathway toward a deeper understanding of its complexity. This

review provides an overview of the CDW orders in 2D with atomically thin transition

metal dichalcogenides (TMDCs) as the materials platform. We mainly focus on the

electronic structure investigations on the epitaxially grown TMDC samples with angle-

resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy

as complementary experimental tools. We discuss the possible origins of the 2D CDW,
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novel quantum states coexisting with them, and exotic types of charge orders that can

only be realized in the 2D limit.

Keywords: charge density wave, transition metal dichalcogenides, ARPES, STM, MBE

Submitted to: Rep. Prog. Phys.
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1. Introduction

Charge density wave (CDW) is a periodic modulation in the electron density that

spontaneously breaks the translational symmetry of a solid [1–6]. It occurs due to

the instabilities either in the Fermi surface (FS) or lattice and gets amplified by the

electron-phonon coupling. Despite the long history of research on the subject [7–10]

and the ubiquitous nature of CDW orders in many quantum materials, a comprehensive

microscopic understanding of CDW is yet to be reached. Nonetheless, many essential

aspects of CDW transition, such as FS nesting, Kohn anomaly, strong momentum-

dependent electron-phonon coupling, band Jahn-Teller effect, and excitonic interaction,

have been established [1, 11], and new materials with competing electronic, magnetic,

and topological orders [12–18] have been found to keep the old problem being examined

with fresh perspectives.

Transition metal dichalcogenides (TMDCs), a layered material family with a

transition metal layer sandwiched by two chalcogen (S, Se, Te) layers, have been a

model system in studying CDW orders [4, 19]. They stabilize in various structural

phases following the relative orientation of layer stacking, and the electronic structure

modification caused by the structural and elemental changes brings about substantial

differences in the nature of CDW order [4,20]. The recent development of thinning down

the TMDC materials to atomically thin two-dimensional (2D) limit to harness material

properties vastly different from those of bulk [20–24] has sparked renewed interest in the

various CDW phases of TMDCs in atomically thin, few-layer form. Several interesting

questions naturally arise when symmetry changes and the quantum confinement effect

becomes prominent in the few-layer TMDCs: (i) What happens to the CDW order

itself? Would it retain the same ordering vector as in bulk? How about the transition

temperature? (ii) If there is any change in the CDW order in the 2D limit, how would

it affect the coexisting orders, for example, superconductivity? (iii) Can any novel

quantum many-body phenomena emerge alongside the CDW order? (iv) How would

the reduced screening and subsequent increase in electron-electron and electron-hole

interaction affect the CDW transition? (v) Can there be any novel CDW phases, hard

to find in bulk, favored in the reduced dimensionality?

In this review, we summarize the recent research efforts to answer these questions by

investigating the electronic structures of few-layer TMDCs. We particularly focus on the

results from two complementary experimental tools to study the electronic properties

of solid, angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling

microscopy/spectroscopy (STM/STS). We also focus on the atomically thin samples

synthesized by molecular beam epitaxy (MBE). Still, other samples from standard

preparation methods, such as exfoliation and chemical vapor deposition (CVD), will

be discussed.

Below, we first briefly discuss the basic concepts of CDW transition and introduce

the experimental and theoretical techniques in relation to the CDW. Then, we organize

subsequent sections by TMDC materials that are representative of the aforementioned
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research questions.

1.1. Basic concepts of charge density waves

Many key concepts of CDW transition are well captured in the Peierls transition of the

1D weakly interacting metallic chain [1, 8]. The Lindhard susceptibility χL(q), which

connects electro-static perturbation φ(q) to the induced charge ρind(q) through the linear

response equation ρind(q) = χL(q)φ(q), diverges in 1D (Fig. 1(a)). This divergence is

due to the “nesting” property of the 1D FS (Fig. 1(b)), i.e., two points in the FS are

connected by a common wave vector q = 2kF, consequently making the denominator of

χL(q) zero. The diverging χL implies that any small perturbation will lead to a huge

charge redistribution at T = 0, i.e., the electron system is unstable (Peierls instability).

At a finite temperature, the thermal broadening weakens the divergence. However, χL

is still large at low temperatures [1], making CDW formation possible below a certain

transition temperature T < TCDW for a given system.

When the charge redistribution occurs, the lattice responds through electron-

phonon interaction to compensate for the increased Coulomb repulsion in the charge

𝛘(𝑞)

𝑞2kF

1D
2D
3D

2kF

2kF

2π/a⊥

(a) (b)

(c) (d)

2kF

2kF

2π/a⊥

(a) (b)

(c) (d)

1D 3D

31

1D

2D

3D

q2k
F

0

ωq
(b)

q2k
F

0

ωq
(a)

T=TCDW
MF

T>TCDW
MF

T>>TCDW

Figure 1.10: Acoustic phonon dispersion relation of (a) 1D metal at varying temperatures, (b) 1D,
2D, and 3D metals. From Ref. [52].

the formation of a periodically varying charge or spin density (Peierls instability). At

a finite temperature, the thermal broadening weakens the divergence, but χL is still

large at low temperatures [52], which means that CDW formation may be possible

below a certain transition temperature T < TCDW for a given system. For further

discussion of the finite temperature behavior and CDW transition, it is informative

to investigate the mean-field solution of a Hamiltonian that includes both electron

and lattice degrees of freedom and the interaction between them.

The Frölich Hamiltonian used to describe CDW phenomena is usually written in

the form,

H =
∑

k

ε(k)a†
kak +

∑

q

!ωqb
†
kbk +

∑

k,q

gqa
†
k+qak(b

†
−q + bq), (1.35)

where a†
k(ak) is the electron creation (annihilation) operator, ωq is the phonon dis-

persion relation, b†k(bk) is the phonon creation (annihilation) operator, and gq is the

strength of the electron-phonon interaction.

The mean-field solution of the Frölich Hamiltonian is obtained by decoupling the

electron and phonon degrees of freedom [52]. Let us first look at the mean-field
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Figure 1. Basic concepts of charge density wave (a) Lindhard susceptibility for

weakly interacting electrons in different dimensions. (b) A perfect nesting in the Fermi

surface of free electron-like 1D electrons. Imperfect nesting in a sphere-shaped Fermi

surface of 3D electrons. (c) Phonon dispersion relation from the mean-field solution of

1D Fröhlich Hamiltonian. (d) Schematic diagram of the CDW formation due to Peierls

instability in a 1D chain. ρ(r) is the electron density along the 1D chain. The bottom

panel shows the electron energy-momentum dispersion relation. ∆ is the CDW gap.

The curves in solid lines are the gapped original bands, and the ones in dotted lines

are the folded bands. Figures are created by the authors taking Refs. [1, 2, 4–6, 11] as

references.
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channel. An insightful picture can be gained, e.g., from the mean-field solution of

Fröhlich Hamiltonian [1, 7] (Fig. 1(c)). The phonon frequency is significantly reduced

near q = 2kF, especially for low-T and 1D (phonon softening). This is a direct

consequence of electron-phonon interaction and divergent χL, referred to as the Kohn

anomaly. The temperature at which the phonon frequency becomes zero defines the

transition temperature, TCDW, indicating a “frozen-in” lattice distortion.

The overall consequences of the instabilities in both electron density and lattice

are represented schematically in Fig. 1(d). The periodic lattice distortion (PLD) opens

a gap at the Fermi energy (EF) to compensate for the increased Coulomb repulsion

and elastic energy. The doubling of the lattice results in the periodic modulation in

the electron density following the new periodicity. In the reciprocal space, the base

vector becomes half its original value, and the electron bands are “folded” into the

new periodicity in the extended zone scheme. As we discuss more in the following

subsection, the real space modulation of electron density is naturally detected by STM,

while ARPES has been essential in discerning the opening of a gap and the band folding

in the reciprocal space.

While Peierls instability and the nesting picture capture the essential features of

CDW, such as phonon softening, gap opening, and band folding, the realistic description

of CDW phenomena beyond simple metallic 1D chain is hard to obtain and heavily

material specific. While FS nesting still explains some features of CDW formation in

2D layered materials [25, 26], it does not fully account for the CDWs in many 2D and

3D materials. Prime examples are TMDCs [4, 6, 11]. It has been widely suggested

that a strong q-dependent electron-phonon coupling can create phonon softening and

subsequent PLD and CDW [27–29]. The particular band topology of TMDCs allows a

logarithmic divergence of Lindhard susceptibility at the momentum connecting saddle

points below Fermi energy [30], which has been proposed to explain the lack of FS

nesting in 2H -NbSe2 and 2H -TaSe2. Another notable mechanism of CDW in TMDCs

includes the idea of an excitonic insulator, in which the formation of CDW is associated

with the spontaneous formation of an exciton condensate in small-gap semiconductors

and semimetals [31, 32].

1.2. Experimental and theoretical probes for CDW

The physical properties associated with the CDW transition, e.g., PLD, opening

of a gap, and FS reconstruction, can be measured by various experimental probes.

The opening of a gap shows up in transport measurements as a “CDW hump”

in the temperature-dependent resistivity curves [2, 10, 33]. Spectroscopic tools,

including optical conductivity, STS, and ARPES, can measure the size of the gap

directly [25, 34–37]. The FS reconstruction can be seen through quantum oscillation

and ARPES measurements [38–40]. The PLD and the breaking of translational

symmetry would be measured by x-ray scattering, electron diffraction, STM, and NMR

measurements [13, 14, 41–46]. Raman scattering reveals phonon softening and the
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appearance of amplitude mode [47, 48]. The Kohn anomaly can also be measured by

the inelastic neutron and x-ray scattering [29,49,50]. The second-order phase transition

nature of CDW transition results in anomalies in the thermodynamic measurements,

such as specific heat [51]. This review primarily focuses on the ARPES and STM/STS,

which provide complementary views on the gap opening, electronic band and FS

reconstruction, and periodic modulation in the electron density and lattice.

ARPES has become a standard tool to study CDW or any other collective many-

body phenomena by directly measuring the momentum-resolved electronic structure

of quantum materials [52–54]. It can provide information not only on the size of

the CDW gap, but also on the exact momentum and energy position of the gap in

the reciprocal space with the temperature evolution of the gap size [25, 39, 40, 55–57].

ARPES also directly measures the electron band structure, and its folding due to

the PLD and the formation of the superstructure, enabling a direct comparison to

the advanced theoretical calculations [37, 39, 40, 58]. Since photoemission is a hybrid

of spectroscopy and scattering experiments, the details of lineshape, spectral weight

distribution, and spectral weight transfer, all carry important information related to

the underlying mechanism of quantum phases [57, 59–61]. We will later see that the

ARPES results from CDW systems are no exception. All this information from ARPES

has been proven to be crucial in investigating the driving mechanism and the nature of

the CDW phases, and in setting up the baseline for the more advanced experimental

and theoretical studies.

While ARPES probes momentum-dependent spectral function by extracting

electrons at well-defined crystal momentum from a sample, STM extracts or injects

electrons at well-defined real-space positions. This is achieved through quantum

tunneling between the sample and a tip, by which STM detects the local density

of states (LDOS) of electrons, a quantity that essentially characterizes how many

possible states a sample has for electron extraction or injection at the given tip position

at a given energy [62, 63]. Complimentary to the information provided by ARPES,

STM-based techniques have four unique advantages in characterizing a CDW state.

First, because of the close relationship between LDOS and charge density, atomic-scale

STM imaging allows direct visualization of charge-density modulation (the CDW order

parameter) [45, 64]. For example, temperature-dependent STM imaging can tell us

how charge-density modulation diminishes beyond TCDW. Second, STM/STS can probe

both occupied and unoccupied states of a sample. This is particularly useful when the

energy position of the CDW gap is above the EF [65]. Third, the energy resolution

of STM/STS is typically only limited by thermal broadening and can reach a sub-meV

level in modern cryogenic systems. Because of the last two features, STM is particularly

suitable for resolving fine CDW gaps in many CDW systems [66]. Last, spectroscopic

information obtained by STS can be correlated with real-space information obtained

by STM, providing a unique method to characterize electronic structure associated

with CDW variations, domain walls, defects, and other CDW-related local 0D or 1D

features [67–70].
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Throughout this review, the ARPES and STM results are closely compared

to theoretical calculations, particularly density functional theory (DFT) and its

variants [71–74]. While some of the essential features of the CDW ordering in TMDCs

may be captured in a more simplistic theoretical approaches [4], DFT has been the

go-to theoretical tool to investigate the microscopic origin of CDW orders by providing

information on the crystal structure, phonon softening, electronic band structure, Fermi

surface topology, and energy gap [6, 11, 27, 28, 74]. Despite being a powerful and

widely used theoretical method, DFT has its shortcomings in, e.g., estimating the

size of the gap, and including van der Waals (vdW) interaction, non-local interaction,

and electron correlation [71–73], which are all relevant in understanding the CDW

and surrounding quantum phases as will be discussed in more detail below. New

and improved computational methods continue to be developed to overcome such

shortcomings, including devising complex hybrid functionals [72], the inclusion of on-

site Coulomb interaction (DFT+U) [75], and applying a machine learning approach to

the DFT calculations [76].

2. CDW phases in two-dimensional TMDCs

In this section, we review works regarding the properties and driving mechanisms of

CDW phases in single-layer 1H-NbSe2/TaSe2, 1T -VSe2/VTe2, and 1T -TiSe2/TiTe2.

Owing to their complexity and novelty, we defer the discussion of single-layer 1T -TaSe2,

1T -ZrTe2, and 1T -IrTe2/TaTe2 to dedicated later sections.

2.1. Persistent 3×3 CDW orders in 1H-NbSe2 and 1H-TaSe2

Bulk 2H-NbSe2 has long been studied as a prototypical CDW system in which the

interaction of superconductivity (SC) and CDW orders is most pronounced [19, 77]. It

hosts CDW with TCDW ∼ 33 K and SC with TC = 7.2 K. In the quasi-2D FS, the nesting

condition is far from ideal [11], therefore strong momentum-dependent electron-phonon

coupling has been proposed as a driving mechanism of CDW in 2H-NbSe2 [11,28,29,57].

However, a coherent understanding of the CDW mechanism here is still lacking, partially

due to the complexity involved in its electronic structure [4,78–80]. This motivates the

investigation of 2H-NbSe2 in atomically thin monolayer (ML) limit, where a simplified

low-energy electronic structure is expected in the absence of interlayer coupling [81].

This may help us discern the competing or cooperating CDW and SC orders.

Monolayer 1H-NbSe2 has been grown by MBE on a bilayer graphene (BLG)

substrate [82]. The existence of two-dimensional CDW is directly established through

atomically-resolved STM imaging, as shown in Fig. 2. The periodicity of the CDW

wavevector is confirmed to be ∼ 3×3 with qCDW = (1
3

1
3

0)R0◦ r.l.u. (reciprocal lattice

unit; the number after R is the angle between the original reciprocal lattice vector and

the qCDW) by the Fourier transform of STM image, which is similar to previous STM

measurements of bulk 2H-NbSe2 [44, 83]. The CDW of ML 1H-NbSe2 weakens at an
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elevated temperature T = 25 K, where patches of CDW are seen to be separated by

regions without CDW. At T = 45 K, no 3×3 charge modulations can be observed.

Given that bulk 2H-NbSe2 has TCDW ∼ 35 K, this suggests that single-layer and bulk

NbSe2 have similar CDW strength. The overall electronic structure measured from STS

and ARPES is consistent with each other. The polarization-dependent ARPES finds a

much simplied band structure than the bulk, highlighted by the single band crossing

the EF (Fig. 2) [82].

The existence of a similar 3×3 CDW in single-layer 1H-NbSe2 despite the simplified

low energy band structure (Fig. 2) and FS topology allows us to draw some conclusions

regarding the mechanism of CDW formation. First, we may rule out some of the

proposed dimensionality effects on the CDW phase of ML 1H-NbSe2, e.g., reduction

of the CDW wavevector in the 2D limit [81]. Second, the inner pockets around Γ

and K in the bulk 2H-NbSe2 electronic structure are most likely not crucial for the

CDW formation as these bands are not present in the ML while the CDW remains

mostly unchanged. Based on this observation, we may rule out proposed FS nesting

mechanisms involving these pockets [57,78,84]. The absence of these pockets in single-

layer 1H-NbSe2 makes the geometric nesting condition of the FS more difficult to achieve

and favors a CDW mechanism driven by electron-phonon coupling [11,47].

While the 3×3 CDW order persists in ML with roughly the same transition

temperature, the superconducting TC gets suppressed heavily down to ∼ 2 K [82,85,86].

Optical measurements on exfoliated ML 1H-NbSe2 [86] find essentially the same

suppression of SC while it reports an increase in the TCDW, which raised the issue

of sample quality and the impurity pinning [1,87]. The superconductivity in 1H-NbSe2
has been further discussed in terms of multifractal [88] and 2D Ising SC [89]. The

electronic structure of 1H-NbSe2 on BLG has been successfully reproduced even with

the MBE-grown samples on various other substrates [90–92]. At the same time, Dreher

et al. find that some of the substrates strongly interacting with the NbSe2 layer, e.g.,

Au(111) or 2H-WSe2, can destroy either or both CDW and SC order.

2H-TaSe2 provides an ideal testbed for a comparative CDW study against 2H-

NbSe2 since SC in this system is largely suppressed with TC ∼ 0.2 K even in the

bulk [93]. The combined STM and ARPES measurements on the MBE-grown 1H-

TaSe2 find 3×3 CDW order persists down to ML despite the low-energy electronic band

structure and FS topology becomes much simpler, similar to the 1H-NbSe2 case [94].

The STM measurements establish the CDW ordering vector as qCDW = 2/3 ΓM. ARPES

measurements reveal that upon the formation of CDW, the FS becomes gapped mainly

at the momenta equivalent to qCDW with a gap size reaching ∼ 100 meV. The CDW

gap closes at T ∼ 130 K with increasing temperature, defining the CDW transition

temperature. The TCDW of ML 1H-TaSe2 shows only a slight increase from its bulk value

∼ 122 K [95, 96]. Comparison with the first principles calculation finds that enhanced

spin-orbit coupling and lattice distortion play a crucial role in the formation of CDW

order, and suggest that the strong momentum-dependent electron-phonon coupling is a

likely driving mechanism of the CDW order in ML 1H-TaSe2 [47, 94].
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Material Normal 1st CDW 2nd CDW 3rd CDW

2H-NbSe2 T > 33 K T < 33 K

Ref. [77] Normal IC ∼3× 3

2H-TaSe2 T > 122 K 90 K < T < 122 K T < 90 K

Ref. [77] Normal IC ∼3× 3 C 3× 3

2H-TaS2 T > 75 K T < 75 K

Ref. [96] Normal IC ∼3× 3

1T -TaSe2 T > 600 K 473 K < T < 600 K T < 473 K

Ref. [19] Normal IC ∼3.6 ×3.6 C
√

13×
√

13R13.9◦

1T -TaS2 T > 543 K 353 K < T < 543 K See caption T < 183 K

Ref. [141] Normal IC ∼3.5 ×3.5 NC + T C
√

13×
√

13R13.9◦

1T -TiSe2 T > 202 K T < 202 K

Ref. [118] Normal C 2× 2× 2

1T -VSe2 T > 110 K T < 110 K

Ref. [97] Normal IC 4× 4× ∼3.2

Table 1. Charge density waves of bulk transition metal dichalcogenides. In this table,

”C” and ”IC” refer to a commensurate and an incommensurate CDW, respectively.

Following the convention, CDW periodicities are described relative to the undistorted

atomic lattice periodicities, where ”R” indicates a nonzero rotation angle between the

two lattices. For 1T -TaS2, the CDW behavior at the intermediate temperature range

is complicated. Upon cooling, a so-called near-commensurate (NC) CDW phase with

periodicity ∼3.5×3.5R11-13◦ occurs at 183 K < T < 353 K. Upon warming, a triclinic

(T) CDW phase first appears 223 K < T < 280 K, above which the NC CDW phase

appears at 280 K < T < 353 K [141].

2.2. 2D Fermi surface nesting driven CDW transition in 1T-VSe2 and 1T-VTe2

1T -VSe2 has been of particular interest in the TMDC family due to its unusually

long wavelength 3D CDW order in the bulk. A PLD in bulk 1T -VSe2 was reported

in x-ray and electron-diffraction measurements below TCDW ∼ 110 K, and the CDW

vector has both commensurate in-plane and incommensurate out-of-plane components

4×4×3.2 with qCDW ≈ (1
4

1
4

1
3
)R0◦ r.l.u. [19,97–99], suggesting 3D characteristics despite

the layered crystal structure. More interestingly, 1T -VSe2 has ellipse-shaped electron

pockets centered at M(L) that follow the threefold symmetry of the Brillouin zone (BZ)

interior, where the two long sides of each elliptical pocket at M are almost straight and

nearly parallel [100–102]. This FS topology offers an excellent nesting condition, and

the nesting vector is closely matched with the CDW vector, suggesting the FS nesting

as a mechanism for the CDW transition [100,103]. Indeed, a soft x-ray ARPES study on

bulk 1T -VSe2 showed the FS measurement including kz and the possible existence of a

3D FS nesting vector [100]. However, the 3D FS nesting picture is still under controversy

since detailed ARPES studies claimed that the FS nesting picture is not suitable due to

the 3D warping effect and the absence of the CDW gap at any point of the BZ in bulk

1T -VSe2 [101, 102]. Instead, the momentum dependence of the strong electron-phonon
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origin of the CDW in 2D TMD layers.4 Alternative
explanations, such as a saddle point (van Hove singularity)
mechanism as well as electron−phonon coupling have been
proposed.10 While recent spectroscopic,11,12 optical,13 and
transport14 studies on single-layer 1H-NbSe2 were successful in
observing significant suppression of superconductivity, they
show contrasting results regarding CDW formation. The origin
of this discrepancy is still debated.
The 2H-TaSe2 provides an ideal material to investigate CDW

formation in 2D TMDs without the complication of coexisting
superconductivity, because superconductivity is almost com-
pletely suppressed with a transition temperature of TC ∼ 0.2
K.15 There exist two CDW transitions in the bulk form of
TaSe2, both having higher transition temperatures compared to
other TMDs. A normal-to-incommensurate CDW transition
occurs at TN‑IC ∼ 122 K, followed by an incommensurate to
commensurate CDW transition at TIC−CC ∼ 90 K.
Here we present combined ARPES/scanning tunneling

microscopy (STM) spectroscopy and density functional theory
(DFT) simulation indicating that when TaSe2 thickness is
reduced from bulk to single-layer the electronic band structure
changes significantly due to a reduced number of bands
crossing Fermi energy (EF) in the normal state. Despite this
evolution in electronic properties, however, the CDW remains
unchanged. Reduced dimensionality appears to have no
significant effect on either the 3 × 3 symmetry or TN‑IC.
These results suggest that the CDW instability in single-layer
1H-TaSe2 likely arises from electron−phonon coupling rather
than FS nesting or a saddle point mechanism.
Figure 1a,b shows the crystal structure of single-layer TaSe2,

which consists a layer of Ta atoms sandwiched between two
layers of Se atoms in a trigonal prismatic coordination. The
substrate is bilayer graphene (BLG) terminated 6H-SiC(0001).
Sharp reflection high-energy electron diffraction (RHEED)
patterns for single-layer film of TaSe2 (Figure 1d) indicate the
high quality of films growing in a layer-by-layer mode. BLG
diffraction spots observed in submonolayer TaSe2 films (Figure

1c) disappear when the TaSe2 film coverage reaches a single
layer. The low-energy electron diffraction (LEED) pattern
observed for single-layer TaSe2 films (Figure 1e) aligns well
with the BLG diffraction pattern, indicating that TaSe2 has the
same lattice orientation as the substrate. The angle-integrated
core level spectrum (Figure 1f) displays sharp characteristic
peaks for Ta and Se, demonstrating the purity of the TaSe2 film
as well as consistency with previous reports on bulk samples.16

Figure 1g shows a large scale STM image illustrating the typical
morphology of the single-layer TaSe2 films. A zoom-in of the
STM topography obtained at 5 K (Figure 1h) exhibits a clear 3
× 3 CDW superlattice, the same as seen in bulk TaSe2 single
crystals.15

To investigate the electronic structure of single-layer TaSe2,
we first focus on the FS topology measured by in situ ARPES.
Figure 2 shows ARPES FS maps at temperatures above (Figure
2a) and below (Figure 2c) the CDW transition temperature,
along with the simulated FS using DFT for the normal state
(Figure 2b) and CDW state (Figure 2d). The calculated FS
map in CDW state is obtained from the unfolded band
structures at chemical potential of −50 meV potentially due to
the substrate effect. Because there is no detailed study on the
interface structure between TaSe2 and graphene, we tested the
substrate effect using several possible arrangements in our
calculations. This yields that the chemical potential is always
shifted downward consistently with the amount of energy shift
dependent on the assumed structures. The FS of single-layer
TaSe2 in the normal state (Figure 2a,b) is similar to the FS of
bulk TaSe2

17,18 in that it displays circular hole pockets around
the Γ- and K-points and a dogbone-shaped electron pocket
around the M-points, but there is a significant difference. In
contrast to bulk TaSe2, the Γ-point hole pocket and the M-
point electron pocket of single-layer TaSe2 are not separated.
This is due to a single band crossing EF along the Γ-M
direction, as a result of the reduced number of bands, from two
to one, when TaSe2 thickness is reduced to a single layer
(Figure 2e−j). The reduced number of bands crossing EF and

Figure 1. Growth of epitaxial single-layer 1H-TaSe2 film. (a) Crystal structure of 1H-TaSe2 single-layer film on bilayer graphene over 6H-SiC(0001)
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origin of the CDW in 2D TMD layers.4 Alternative
explanations, such as a saddle point (van Hove singularity)
mechanism as well as electron−phonon coupling have been
proposed.10 While recent spectroscopic,11,12 optical,13 and
transport14 studies on single-layer 1H-NbSe2 were successful in
observing significant suppression of superconductivity, they
show contrasting results regarding CDW formation. The origin
of this discrepancy is still debated.
The 2H-TaSe2 provides an ideal material to investigate CDW

formation in 2D TMDs without the complication of coexisting
superconductivity, because superconductivity is almost com-
pletely suppressed with a transition temperature of TC ∼ 0.2
K.15 There exist two CDW transitions in the bulk form of
TaSe2, both having higher transition temperatures compared to
other TMDs. A normal-to-incommensurate CDW transition
occurs at TN‑IC ∼ 122 K, followed by an incommensurate to
commensurate CDW transition at TIC−CC ∼ 90 K.
Here we present combined ARPES/scanning tunneling

microscopy (STM) spectroscopy and density functional theory
(DFT) simulation indicating that when TaSe2 thickness is
reduced from bulk to single-layer the electronic band structure
changes significantly due to a reduced number of bands
crossing Fermi energy (EF) in the normal state. Despite this
evolution in electronic properties, however, the CDW remains
unchanged. Reduced dimensionality appears to have no
significant effect on either the 3 × 3 symmetry or TN‑IC.
These results suggest that the CDW instability in single-layer
1H-TaSe2 likely arises from electron−phonon coupling rather
than FS nesting or a saddle point mechanism.
Figure 1a,b shows the crystal structure of single-layer TaSe2,

which consists a layer of Ta atoms sandwiched between two
layers of Se atoms in a trigonal prismatic coordination. The
substrate is bilayer graphene (BLG) terminated 6H-SiC(0001).
Sharp reflection high-energy electron diffraction (RHEED)
patterns for single-layer film of TaSe2 (Figure 1d) indicate the
high quality of films growing in a layer-by-layer mode. BLG
diffraction spots observed in submonolayer TaSe2 films (Figure

1c) disappear when the TaSe2 film coverage reaches a single
layer. The low-energy electron diffraction (LEED) pattern
observed for single-layer TaSe2 films (Figure 1e) aligns well
with the BLG diffraction pattern, indicating that TaSe2 has the
same lattice orientation as the substrate. The angle-integrated
core level spectrum (Figure 1f) displays sharp characteristic
peaks for Ta and Se, demonstrating the purity of the TaSe2 film
as well as consistency with previous reports on bulk samples.16

Figure 1g shows a large scale STM image illustrating the typical
morphology of the single-layer TaSe2 films. A zoom-in of the
STM topography obtained at 5 K (Figure 1h) exhibits a clear 3
× 3 CDW superlattice, the same as seen in bulk TaSe2 single
crystals.15

To investigate the electronic structure of single-layer TaSe2,
we first focus on the FS topology measured by in situ ARPES.
Figure 2 shows ARPES FS maps at temperatures above (Figure
2a) and below (Figure 2c) the CDW transition temperature,
along with the simulated FS using DFT for the normal state
(Figure 2b) and CDW state (Figure 2d). The calculated FS
map in CDW state is obtained from the unfolded band
structures at chemical potential of −50 meV potentially due to
the substrate effect. Because there is no detailed study on the
interface structure between TaSe2 and graphene, we tested the
substrate effect using several possible arrangements in our
calculations. This yields that the chemical potential is always
shifted downward consistently with the amount of energy shift
dependent on the assumed structures. The FS of single-layer
TaSe2 in the normal state (Figure 2a,b) is similar to the FS of
bulk TaSe2

17,18 in that it displays circular hole pockets around
the Γ- and K-points and a dogbone-shaped electron pocket
around the M-points, but there is a significant difference. In
contrast to bulk TaSe2, the Γ-point hole pocket and the M-
point electron pocket of single-layer TaSe2 are not separated.
This is due to a single band crossing EF along the Γ-M
direction, as a result of the reduced number of bands, from two
to one, when TaSe2 thickness is reduced to a single layer
(Figure 2e−j). The reduced number of bands crossing EF and

Figure 1. Growth of epitaxial single-layer 1H-TaSe2 film. (a) Crystal structure of 1H-TaSe2 single-layer film on bilayer graphene over 6H-SiC(0001)
from top view and (b) side view. (c) RHEED pattern of epitaxial bilayer graphene on 6H-SiC(0001) substrate and (d) 0.9 monolayer (ML, 0.9 ML
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from bulk NbSe2 shown in green in fig. S1k. However, our ARPES results indicate that single-layer 

NbSe2 has distinctly different band structure from 5 ML NbSe2. 

 

Figure S1: ARPES spectra of NbSe2 films on BLG. a, Schematic drawing of the geometric setting in 

ARPES measurement. b, 2D Brillouin zone (dotted hexagon) and Fermi surface sketch map (orange 

dotted lines) of single-layer NbSe2. c, and d, Fermi surface mapping of single-layer NbSe2 film by 

using s-polarization photon and sp-mixed polarization photon, respectively; the dotted lines depict the 

Brillouin zone (black) and Fermi surface (orange) for the two dominantly rotated lattice orientations, 

respectively. e, ARPES spectra and f, the second-derivative spectra of monolayer NbSe2 film taken 

with s-polarization photon. g, ARPES spectra and h, the second-derivative spectra of single-layer 

NbSe2 film taken with sp-mixed polarization photon. The dotted and dot-dashed orange curves indicate 

bands from the Γ-K and Γ-M directions, respectively. i, ARPES spectra and j, the second-derivative 

spectra of 5 ML NbSe2 film taken with sp-mixed polarization photon. k) Theoretical calculations of the 

band structures for monolayer and bulk NbSe2 (ref. 2). 
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Figure 1 | Structure of single-layer NbSe2 on bilayer graphene. a, Top and side view sketches of single-layer NbSe2, including the substrate. b, Large-scale
STM image of 0.9 ML of NbSe2/BLG (Vs =�100 mV, It =3 nA, T=5 K). c–e, Atomically resolved STM images of single-layer NbSe2 for di�erent
temperatures: T=45 K (Vs =+95 mV, It =53 pA) (c), T=25 K (Vs =�120 mV, It =70 pA) (d) and T=5 K (Vs =�4 mV, It =50 pA) (e). The FFT of the
STM image of e is shown in the inset.

means of STS (observed here to be 2� = 8 meV centred at EF).
Superconductivity in NbSe2, on the other hand, is significantly
suppressed in the 2D limit, showing an onset of superconducting
fluctuations at 1.9 K and a broadened superconducting transition
with a midpoint at 0.65 K consistent with a Kosterlitz–Thouless
transition. The one Nb antibonding band6 that remains in the
Fermi surface of single-layer NbSe2 thus seems to play a critical role
in the NbSe2 CDW state, whereas the absent bands have a stronger
influence on NbSe2 superconductivity17. These results provide a
window into the electronic structure of single-layer NbSe2 and help
to clarify the long-standing debate over NbSe2 CDW formation.

Our experiments were carried out on high-quality submonolayer
NbSe2 films grown on epitaxial bilayer graphene (BLG) on
6H-SiC(0001), as sketched in Fig. 1a. The large-scale STM image
in Fig. 1b shows the typical morphology of our single-layer NbSe2

samples. Black regions correspond to the BLG substrate and the
NbSe2 layer is purple. The temperature dependence of the electronic
ground state of single-layer NbSe2 was measured by means of
STM and electrical transport. Figure 1c–e shows STM topographic
data for selected temperatures from T = 45 K to T = 5 K. At
T =45 K, well above the critical transition temperature for bulk
NbSe2 (TCDW = 33 K), only the undistorted crystal structure is
observed (Fig. 1c). At a lower temperature of T = 25 K, weak and
spotty signatures of a superlattice are apparent (Fig. 1d). Here,
small CDW patches surrounded by non-CDW regions can be seen.
This is reminiscent of STM images of bulk NbSe2 at temperatures
close to the CDW transition temperature19. At T = 5 K, the 3⇥3

CDW superlattice is fully and uniformly developed for single-
layer NbSe2 (Fig. 1e). Figure 2 shows the temperature-dependent
electrical resistance of single-layer NbSe2 on BLG, acquired using
a four-point probe low-excitation dc method (see Supplementary
Information). No signature of the CDW transition is seen in the
temperature dependence of the resistivity. Previous temperature-
dependent resistivity measurements19,29 for bulk NbSe2 samples
show a change in slope near the CDW onset temperature only for
samples with large residual resistivity ratios. The absence of such
a signature in the single-layer limit could be due to di�erences in
the dominant electron scattering mechanism for bulk versus 2D
samples. Importantly, a sharp downturn in the resistance begins at
T = 1.9 K, indicative of the onset of superconducting fluctuations,
the superconducting transition midpoint is at 0.65 K and the zero
resistance point at 0.46 K, as shown inset. These data indicate that
the trend of reduced superconducting transition temperature (Tc)
with decreasing layer number in NbSe2 (refs 11,12) continues down
to the single-layer limit.

The alignment of the 3 ⇥ 3 CDW superlattice with the 1 ⇥ 1
atomic arrangement for single-layer NbSe2 can be seen in Fig. 1e,
similar to what has been seen previously in STM images of bulk
NbSe2 (refs 18,19,30). The 3⇥3 superlattice remains unchanged in
our STM images, regardless of the orientation between the NbSe2

layer and the BLG (see STM and LEED data in the Supplementary
Information). This rules out the possibility that the 3⇥3 superlattice
observed here in single-layer NbSe2 is a moiré pattern (moiré
patterns have been observed in MoSe2/BLG (ref. 31)). A 3 ⇥ 3
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1 nm

3 x 3

Figure 2. Charge density wave in single-layer 1H-NbSe2 and 1H-TaSe2 (a)

Top and side views of 1H-NbSe2 and 1H-TaSe2 samples grown on bilayer graphene/SiC

substrates by MBE. (b) 3×3 CDW structure of 1H-NbSe2 imaged by STM. The inset

shows the Fourier transform of the image with the primary and 3×3 superstructure

peaks. (c) ARPES intensity map of 1H-NbSe2. Due to the rotational degeneracy of the

epitaxially grown samples, the ARPES signals along Γ-M and Γ-K directions overlap

in a single detection angle. (d) DFT band calculation results of bulk and single-layer

1H-NbSe2. The band structure is significantly simplified in single-layer 1H-NbSe2, but

the 3×3 CDW still persists. (e) Intensity modulation due to 3×3 CDW in the STM

image of 1H-TaSe2. Figures are reproduced from Refs. [82, 94]

coupling is suggested as a primary driving mechanism in bulk 1T -VSe2, supported by

inelastic x-ray scattering [104] and Raman studies [105], due to the dominant role of

vdW interactions.

Thinned down to an atomically thin 2D limit, CDW order and driving mechanism

can be modified due to the change of the electronic structure as well as the absence of the

kz dispersion [101,106–110]. Indeed, the epitaxially grown ML 1T -VSe2 exhibits
√

7×
√

3

CDW, qCDW = ( 1√
7

1√
3

0)R11◦ r.l.u. [109], in contrast to the 4×4 for the bulk. The

change of the CDW vector is due to the formation of the perfect 2D FS nesting condition

driven by enhanced electron-electron correlations in ML 1T -VSe2 [106, 111]. Moreover,

the CDW gap is clearly obtained in ML 1T -VSe2 at perfectly nested FS sections with

gap size 60 ∼ 90 meV, suggesting the FS nesting picture as a CDW driving mechanism

in ML 1T -VSe2 [101,106–109].

Despite the clear signature of the CDW superstructure and gap in ML 1T -VSe2,

discrepancies exist in determining the TCDW. While low energy electron diffraction

(LEED) [107] and STM measurements [106, 109] extracted TCDW = 140 - 150 K,

the ARPES results show a very broad range of TCDW = 110 - 340 K by fitting the
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temperature-dependence of CDW gap to a BCS model [101,106,109]. Moreover, ARPES

reveals an anisotropic two-gap structure in ML 1T -VSe2, where the band near Γ starts

opening the gap below∼ 150 K while another band near M shows a two-step transition of

the gaps at 150 K and 340 K, respectively [109]. Since the
√

7×
√

3 CDW superstructure

is only obtained below 150 K, several possible origins of the high-temperature gap

structure have been proposed, including the substrate effect [106], pseudogap phase

by charge and spin fluctuation [108], and hidden incommensurate CDW formation at

high temperature [109].

The unique
√

7×
√

3 CDW and the two-gap structures obtained in ML totally

disappear even at the bilayer (BL) thickness. BL 1T -VSe2 film exhibits 4×4 CDW

like the bulk case, albeit without ordering in the kz direction, and TCDW ∼ 180 K, much

higher than the bulk value of 110 K [110]. As thickness increases, 4×4 CDW order

persists and TCDW is suppressed. Since the additional layers modify the FS topology

due to the relaxed quantum confinement, resulting in the transition from
√

7×
√

3 to

4×4 CDW formations, the thickness-dependent behaviors in 1T -VSe2 are understood in

terms of the dimensional crossover of phonon instability driven by competition of nesting

vectors [110]. Therefore, the FS nesting picture is considered as a fundamental driver for

the CDW transition in epitaxially grown 1T -VSe2 films, which leads to first-order energy

lowering following the PLD in accordance with the nesting conditions [101,106,110].

Another FS nesting-driven CDW material in TMDC is ML 1T -VTe2 [112–114], a

sister compound of 1T -VSe2. Bulk 1T -VTe2 has been reported to have a 3×1×3 CDW

order with TCDW = 480 K, and FS shows a quasi-1D character due to the formation

of V double zigzag chain by the strong Te-Te interlayer coupling and Jahn-Teller

distortion [115–117]. In the ML limit, where the total absence of the Te-Te interlayer

coupling, the FS significantly changes from that of bulk, and it becomes similar to that

of 1T -VSe2 with well-defined 4×4 nesting condition along the M-K direction [112,113].

Both ML films display a similar triangular pocket at the K point, whereas a circular hole

pocket only exists in 1T -VSe2 [112]. The CDW ordering vector of ML 1T -VTe2 is much

smaller (qCDW = (1
4

1
4

0)R0◦ r.l.u.) than that of ML 1T -VSe2 due to the larger triangular

pocket at the K point. LEED, STM, and ARPES measurements confirmed 4×4 CDW

order in ML 1T -VTe2 with TCDW ∼ 190 K [112,113]. The CDW gap is obtained in ML

1T -VTe2 at perfectly nested FS sections with gap size ∼ 50 meV [112, 113], suggesting

the FS nesting picture as a primary driving mechanism like ML 1T -VSe2.

2.3. TiSe2, TiTe2: the role of substrate

1T -TiSe2 is a prototype of CDW materials, which has been extensively studied for

decades [118]. However, the origin of the CDW state in 1T -TiSe2 is still under debate.

While it is generally considered a prime candidate for an excitonic insulator with finite

momentum transfer [4,32,61,119–121], a clear-cut consensus has not been reached since

the resultant CDW phase and PLD is hard to discern between the electronically driven

excitonic insulator and the conventional CDW. The successful epitaxial growth of ML
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1T -TiSe2 has allowed the control of the dimensionality of this material [122–125], which

inspires new experimental and theoretical investigations on the origin of the CDW

transition [126–129].

In the normal state of single-layer 1T -TiSe2, the bands near the Fermi level consist

of a valence band centered at the Γ point, mainly derived from Se 4p orbits, and a

conduction band centered at the M point, primarily composed of Ti 3d orbits. At low

temperatures, the 2×2 CDW state with qCDW = (1
2

1
2

0)R0◦ r.l.u. emerges, and folding of

the BZ, the conduction band, and the valence bands are observed with a CDW ordering

vector that connects the Γ and M points in the k-space. The CDW interaction further

hybridizes the conduction and valence band, which opens the CDW gaps between them.

The first single-layer 1T -TiSe2 samples were grown on bilayer graphene/SiC [122,

123]. The CDW state is preserved in the ML limit, as evidenced by the folding of the

top valence bands to the M point in the 2×2 superstructure. The CDW gap is found

to be approximately 180 meV, much larger than the 110 meV gap in bulk 1T -TiSe2.

The temperature dependence of the ML CDW gap follows a BCS-like form, yielding

a transition temperature of 232 ± 5 K, slightly elevated from that of bulk. Both the

increased gap size and transition temperature indicate an enhancement of the CDW

instability in the 2D limit.

The thickness dependence of the CDW transition has also been studied by Raman

spectroscopy on exfoliated nanoflakes of 1T -TiSe2 [130]. By tracking the evolution of the

amplitude mode, the Raman measurements find that the CDW transition temperature

increases as the thickness is reduced down to the ML limit, consistent with previous

ARPES experiments on epitaxial 1T -TiSe2. However, the study also demonstrated the

significant role of the substrate. On SiO2 substrates, TCDW decreases as the 1T -TiSe2
thickness is reduced. In contrast, for TiSe2 encapsulated in hexagonal boron nitride

(hBN), TCDW increases with decreasing thickness. Remarkably, a 10 nm 1T -TiSe2
flake encapsulated in hBN exhibits an enhanced TCDW up to 235K. These observations

highlight that the CDW instability in few-layer 1T -TiSe2 is very sensitive to the dielectric

environment, which can tune the interactions underpinning the ordered state. Careful

consideration of substrate effects and dielectric screening is required to reveal the

intrinsic behavior in the 2D limit.

The substrate-dependence of the CDW transition in monolayer 1T -TiSe2 has been

further investigated by growing samples on different substrates and characterizing them

using STM and ARPES [131, 132]. A substantial enhancement of both the CDW

transition temperature and gap size is observed for 1T -TiSe2 grown on MoS2 compared

to graphite or graphene substrates. Remarkably, monolayer 1T -TiSe2 on MoS2 exhibits

an enlarged CDW gap of 250 meV and a transition temperature of 280K. These studies

have shown a consistent trend that reducing the dimensionality and choosing a substrate

with poorer screening strengthen the CDW in 1T -TiSe2. This aligns with theoretical

expectations that the exciton binding energy increases in 2D monolayers and is highly

sensitive to the dielectric environment [133–135]. The experimental enhancement of

the CDW instability with lower dimensions and reduced screening lends an interesting
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Temperature dependence of the folded bands and CDW
transition temperature. A detailed view of the folded bands
around M is shown in Fig. 2a, where the blue and red curves

indicate the dispersion relations of the conduction band and the
folded valence bands, respectively, assuming that they are not
interacting. Second derivatives of this ARPES map (Fig. 2b)
reveal additional details. At higher temperatures (Figs. 2c–f),
the intensity of the replica bands diminishes and becomes
undetectable at 100 K and above. A region of interest, defined by
the red dashed rectangle shown in Fig. 2b, is used for ARPES
intensity integration as a quantitative measure of the folding
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reveal additional details. At higher temperatures (Figs. 2c–f),
the intensity of the replica bands diminishes and becomes
undetectable at 100 K and above. A region of interest, defined by
the red dashed rectangle shown in Fig. 2b, is used for ARPES
intensity integration as a quantitative measure of the folding

g

0 50 100 150
Temperature (K)

1 TL

Fit

2 TL

3 TL

Bulk

Tc = 92 K

200 250 300

In
te

ns
ity

Max

Min

N
or

m
al

iz
ed

 in
te

ns
ity

 (
ar

b.
 u

ni
ts

)

0.0

–0.2

–0.4

E
ne

rg
y 

(e
V

)
E

ne
rg

y 
(e

V
) 0.0

–0.2

–0.4

10 K

80 K

a b c

d e f

0.8

ky (Å
–1) ky (Å

–1) ky (Å
–1)

1.2 0.8 1.2 0.8 1.2

100 K 150 K

10 K 50 K

Fig. 2 Temperature dependence of the folded valence bands and the CDW transition temperature. a ARPES map around M at the zone boundary taken at
10 K. The red and blue curves indicate the (2 × 2) folded valence bands and the conduction band, respectively, on the left side only, assuming that the bands
do not interact. b Second-derivative map of the same data, which highlights the band dispersions. The red dashed box indicates a region of interest used for
integrating the ARPES intensity as a measure of the folded-band intensity. c–f ARPES maps taken at 50, 80, 100, and 150 K, respectively. The folded
valence bands diminish as T increases. g Integrated ARPES intensities over the region of interest as a function of temperature for the 1-TL, 2-TL, and 3-TL
and bulk TiTe2 samples. The error bar is deduced from the s.d. of the fitting. The blue curve is a fit using a mean-field equation described in the text

0.0

a

b

c

–0.5
1 TL 2 TL 3 TL Bulk

E
ne

rg
y 

(e
V

)

0.0

0.4

0.0

–0.4

–0.5

0.0 1.0

ky (Å
–1)

k y
 (

Å
–1

)

–0.2 0.2 –0.2 0.2 –0.2 0.2

kx (Å
–1) kx (Å

–1) kx (Å
–1)

–0.2 0.2

kx (Å
–1)

0.0 1.0 0.0 0.01.0 1.0

In
te

ns
ity

Max

Min

ky (Å
–1) ky (Å

–1)ky (Å
–1)

E
ne

rg
y 

(e
V

)

Γ M Γ M Γ M Γ M

Fig. 3 ARPES maps of thin-film and bulk TiTe2. a ARPES maps, taken at 10 K, for 1-TL, 2-TL, and 3-TL and bulk TiTe2 along the Γ-M direction. b Same data
but superimposed with band structures calculated using GGA (red curves) and GGA + U (cyan curves) for comparison. c ARPES constant-energy-contour
maps around Γ at an energy of –0.25 eV

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00641-1 ARTICLE

NATURE COMMUNICATIONS |8: �516� |DOI: 10.1038/s41467-017-00641-1 |www.nature.com/naturecommunications 3

and are most obvious just below the conduction band, as indicated
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indicate the dispersion relations of the conduction band and the
folded valence bands, respectively, assuming that they are not
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reveal additional details. At higher temperatures (Figs. 2c–f),
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(a) (b)

Figure 3. Layer thickness dependence of electronic band structure and

CDW gap in 1T -TiTe2 (a) ARPES intensity map measured along Γ-M direction

for one, two, three layers, and bulk 1T -TiTe2. The bottom panels are overlaid with

theoretical calculations using GGA (red curves) and GGA + U (cyan curves). (b)

Temperature dependence of integrated ARPES intensity in the region of folded bands

around the M point. Figures are reproduced from Refs. [136]

implication for an excitonic condensation scenario as the mechanism driving the CDW

in 1T -TiSe2 [61, 120,121].

1T -TiTe2, a sister material of 1T -TiSe2, has also been grown epitaxially in the

ML limit [136–139]. Surprisingly, a 2×2 CDW was observed in ML 1T -TiTe2 with a

transition temperature of 92K (Fig. 3). In contrast, no CDW transition was detected

in the bilayer, trilayer, or bulk 1T -TiTe2, even though 1T -TiTe2 is considered as

quasi-2D in the bulk form (Fig. 3). Through extensive ARPES studies, evidence of

band hybridization between the backfolded conduction and valence bands at the CDW

transition was found [136, 139]. This hybridization gains energy by opening up the

CDW gap. It was also found that the hybridization is orbital-selective, which explains

the absence of the CDW state in the bulk. In the bulk, 3D band dispersions and an

orbital inversion with kz lead to mismatched backfolded bands between electron and

hole pockets. This suppresses the energy gain from hybridization, explaining the lack

of a CDW in bulk 1T -TiTe2.

The strain also plays a vital role in enhancing or suppressing the CDW state. Zhao

et al. found that the moir pattern formed between 1T -TiTe2/1T -TiSe2 with a small twist

angle could raise the CDW transition temperature to above room temperature [140].

This is much higher than the CDW temperature of individual 1T -TiTe2 and 1T -TiSe2
layers. Fragkos et al. find that the epitaxial strain imposed by the InAs substrate,

which compresses the 1T -TiTe2 film out-of-plane and reduces the van der Waals gap

between layers, enhances interlayer coupling and facilitates propagation of the CDW-

driving phonon modes [137]. This allows the multilayer 1T -TiTe2 films to exhibit a

robust 2×2×2 CDW distortion at room temperature, unlike bulk 1T -TiTe2. Lin et al.

investigated the CDW state in single-layer 1T -TiTe2 grown on thin films of PtTe2 [138].
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They found that CDW transition temperature reduces to 65K and completely suppressed

in 2 or more layers of PtTe2 as metallicity of PtTe2 layer and screening from the substrate

increases.

3. Mott insulator phase and signatures of quantum spin liquid in 1T -TaSe2
and related materials

3.1. Bulk 1T -TaS2 and 1T -TaSe2: history and debate

In their bulk forms, 1T -TaS2 and 1T -TaSe2 have long been known to undergo several

CDW transitions upon lowering the temperature (Table 1) [19, 141]. At the lowest

temperature, a commensurate in-plane
√

13×
√

13 CDW with qCDW = ( 1√
13

1√
13

0)R13.9◦

r.l.u. sets in for both materials, where every 13 Ta atoms, together with 26 Se atoms

around them, move closer to form a so-called star-of-David CDW cell (Fig. 4(a)). This√
13×

√
13 CDW structure is home to various predicted and reported exotic correlation

behaviors, as we discuss in this section.

The unusual electronic structure of bulk 1T -TaS2 has already triggered interest in

the 1970s [19, 142]. In terms of electron-number counting, each Ta4+ atom contributes

one conduction electron, hence each star-of-David CDW unit cell contains an odd

number of 13 electrons. These electrons should fill up six and a half bands, creating a

metallic state at the single-particle level. In contrast to this single-particle prediction,

clear insulating behavior has been shown in transport measurements of bulk 1T -

TaS2 [19, 143]. Even for metallic bulk 1T -TaSe2 [19] which seemingly agrees with this

prediction, the majority of its surface state has been known to be insulating [144,145].

Two sets of ideas were proposed to resolve this apparent contradiction. The

first, initially put forward by Tosatti and Fazekas in 1976 [142, 146], resorts to Mott

localization [147]. It has been known that for a half-filled band with bandwidth W ,

a sufficiently strong Coulomb repulsion U can produce an insulating phase. As the

U/W ratio increases beyond a critical value, the metal makes a transition into a Mott

insulator, characterized by two Hubbard subbands separated by U [147,148]. The early

proposal of a possible Mott insulating phase in bulk 1T -TaS2 was further supported by

later electronic structure calculations, which show the appearance of a half-filled flat

band (i.e., with a small bandwidth W and hence a large U/W ratio) at least in the

single-layer form of 1T -TaSe2 and 1T -TaS2 in the
√

13 ×
√

13 CDW phase [149–152].

This narrow band arises in this CDW phase because the band is mainly composed of

a Ta dz2 orbital near the center of each CDW cell, and hence two nearest neighbors of

such orbitals, separated by one superlattice constant (∼1.2 nm) away from each other,

experience much reduced hopping amplitude.

In a Mott insulator, each lattice site has one localized electron that carries an

electron spin-1/2, and thus a Mott insulator naturally realizes a spin-1/2 lattice.

Furthermore, since the CDW lattice of bulk 1T -TaS2 is triangular, the magnetic ground

state is expected to be frustrated, which has been noted early on [146]. Based on
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a Mott-insulating ground state and other experimental observations, Law and Lee in

2017 proposed that bulk 1T -TaS2 could realize a gapless quantum spin liquid (QSL)

with a spinon FS [153, 154]. Some experimental evidence has been obtained [155–157],

although a consensus has not been reached [150].

Recently, a second set of ideas emerged that challenges the long-held interpretation

of Mott localization in bulk 1T -TaS2. Here, the focus was on the out-of-plane stacking

of the
√

13 ×
√

13 CDW structure [158–160], whose ramifications had not been quite

thoroughly investigated (see, however, Ref. [161]). It was shown both experimentally

[162–164] and theoretically [158–160,165] that star-of-David CDW cells in bulk 1T -TaS2

tend to form an interlayer dimer-stacked structure, at least when sufficiently relaxed into

the structural ground state [160]. As a result, in terms of electron-number counting, a

CDW unit cell composed of two (vertically aligned) star-of-David cells contains an even

number of 26 electrons, which makes it plausible to realize a “trivial” band insulator

without invoking any strong correlation effects. A further careful comparison between

the DFT bands of band-insulator electronic structure and ARPES results of bulk 1T -

TaS2 show apparent similarities [158,159,165]. If the system were a band insulator, no

spin liquid state would be formed.

3.2. Mott insulating state in single-layer 1T -TaSe2, 1T -TaS2, and 1T -NbSe2

Whether bulk 1T -TaS2 and 1T -TaSe2 realize a Mott insulator or a band insulator is still

debated. To resolve this issue, researchers have been exploiting at least four different

strategies:

(i) Sub-surface stacking. The idea is that as-grown or perturbed samples can host

different stacking orders, and a careful study of them may help distinguish the

contributions from interlayer coupling (which changes with stacking orders) and

electron correlation (which barely changes). Indeed, in bulk 1T -TaS2, two distinct

types of surface states of two different gap sizes have been identified [166–169].

Although the surface states with larger/smaller bandgaps have been suggested to

arise from interlayer dimerization/Coulomb repulsion U , respectively [165, 166], a

recent study shows that the surface electronic structure is not solely determined by

the stacking of the top two CDW layers [169]. A similar complication was observed

at bulk 1T -TaSe2 surface [170], where the surface states can even range from

insulating to weakly metallic to strongly metallic [170, 171]. These complications

create difficulty in reaching a one-to-one correspondence between stacking orders

and electronic structures in related materials.

(ii) Surface modification, including adatoms [168, 172–176] or domain wall formation

[177–181]. The idea is that Mott insulators and band insulators may respond

to these surface modifications differently. For example, potassium (K) doping is

argued to distinguish two surface states of bulk 1T -TaSe2 mentioned above, because

doping a Mott insulator with one more electron per site causes the disappearance

of its upper Hubbard band, whereas doping a band insulator leads to a rigid band
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shift [172].

(iii) Ultrafast dynamics. Upon light pumping across the bandgap, Mott insulators and

band insulators may “melt” at different time scales [182–185]. One complication

is that in these materials the possible Mott insulating phase is built on top of

a CDW lattice, which itself has a strong dynamical response by exciting CDW

amplitude oscillations [182, 184], or by transforming into meta-stable “hidden”

CDW phases [163,186,187].

(iv) Magnetic measurements. Naively, a Mott insulator hosts a lattice of spin-1/2

magnetic moments, while a non-magnetic band insulator does not. Magnetic

measurements should therefore tell their difference. See section 3.3 for more details.

Readers interested in these directions, especially (i) and (ii), are referred to a recent

dedicated review [188].

The advancement in the synthesis of 2D materials enables a different, perhaps more

direct, strategy:

(v) Remove interlayer coupling (by studying a single layer), then add it back

systematically (by adding to the material one layer at a time).

The idea is straightforward. One should first test whether the Mott and possibly QSL

states can be established in the most probable scenario, that is a single layer where the

interlayer effects are absent. After that, one can further interrogate if these exotic states

can survive interlayer coupling and persist in bulk materials.

Single layers of 1T -NbSe2 [189], 1T -TaS2 [190], and 1T -TaSe2 [152, 191] have been

grown using MBE. All three single-layer materials host
√

13×
√

13 CDW, similar to their

bulk counterparts (Fig. 4(a)). Inside a single-layer CDW lattice, each CDW unit cell

should contain an odd number of 13 electrons (charge transfer from graphene substrate

has been shown to be negligible for 1T -TaSe2 [152]). As a result, the band-insulator

argument fails at the single-layer limit.

In the following, we use single-layer 1T -TaSe2 as a model system to introduce

the electronic structure measurements, but we also comment on the material-specific

differences when necessary.

As shown in Fig. 4, STM and ARPES spectra of single-layer 1T -TaSe2 exhibit a

fully insulating electronic structure. From STS, the zero LDOS region bracketing the

Fermi level (EF) yields an energy gap of magnitude 109 ± 18 meV (Fig. 4(b)), and this

gapped electronic structure is observed uniformly over the entire single-layer 1T -TaSe2
surface. ARPES spectra measured at 12 K confirm the insulating nature of single-layer

1T -TaSe2 (Fig. 4(c) and (d)). At low binding energies, the ARPES spectra show clear

gapped intensity at all observed momenta, although the signal from coexisting 1H-TaSe2
islands can be seen crossing EF [94] at k ≈ 0.5 Å−1 (white dashed lines). The CDW

superlattice potential induces band folding into a smaller CDW Brillouin zone (Fig.

4(d) inset). One such band can be seen in the ARPES spectrum for p-polarized light

that shows a prominent flat band centered at E−EF ≈ −0.26 eV within the first CDW

Brillouin zone (black dashed box). A more dispersive band can be resolved outside the
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first CDW Brillouin zone boundary (vertical dashed lines labeled A and B mark this

boundary). For s-polarized light (Fig. 4(d)), the flat band is much less visible, and a

manifold of highly dispersive bands near the Γ-point dominates the spectrum. Similar

insulating STS and ARPES spectra are also observed in single-layer 1T -NbSe2 [189,192]

and 1T -TaS2 [193].

Two additional pieces of evidence support the observed single-layer insulating phase

as a Mott insulator. First, DFT calculations show a half-filled flat band on the order of

tens of meV in these single layers [149–152], hence prone to gap opening by Coulomb

repulsion U . Indeed, Mott insulating band structures as predicted by DFT+U [152]

show very similar features to the experimental observations. Second, as discussed in the

next section, evidence of local moments in single-layer 1T -TaSe2 [194], 1T -NbSe2 [192],

and 1T -TaS2 [195] have been observed through Kondo resonance when placing the 1T

(a) (b)

(c) (d)

Figure 4. Mott insulating ground state in single-layer 1T -TaSe2. (a)

Schematic of in-plane
√

13×
√

13 CDW in the 1T -TaSe2 material family. (b) STM/STS

characterization of the Mott insulating state in single-layer 1T -TaSe2 at T = 5 K. Insets

show STM imaging of electronic states in lower Hubbard band (at ∼ -0.33 V), upper

Hubbard band 1 (at ∼ 0.2 V), and upper Hubbard band 2 (at ∼ 0.6 V). The latter two

are identified due to their unusual complimentary textures. (c and d) ARPES spectra

of the Mott insulating state in single-layer 1T -TaSe2 at T = 12 K. A gapped electronic

structure is seen except for electronic states from coexisting 1H-TaSe2 patches (white

dashed lines). A flat band shows up in the first CDW Brillouin zone under p-polarized

light (c) but not under s-polarized light (d), consistent with a dz2 orbital composition

of the flat band. All panels are modified from Ref. [152].



CDW in 2D TMDC 18

Mott layers onto corresponding 1H metallic layers.

One thing that theoretical calculations fail to show for single-layer 1T -TaSe2 [152]

and single-layer 1T -NbSe2 [196,197] is the exotic orbital texture observed at the upper

Hubbard band (UHB) at a bias voltage of around 0.2 V (Fig. 4(b)). Here, instead

of reproducing the lower Hubbard band (LHB) feature at -0.33 eV, the electronic

LDOS form a “flower”-like pattern with low LDOS at the center of each CDW cell.

Interestingly, such exotic orbital texture has not been observed in single-layer 1T -

TaS2 [193]. Although a first-principles understanding has not been obtained, it was

realized that the flower LDOS pattern at 0.2 V corresponds to the lowest-repulsion

regions from a triangular lattice of occupied LHB electrons [152]. In contrast, the

LDOS pattern at 0.6 V, with complimentary LDOS near centers of CDW cells, seems

to correspond to higher-repulsion regions. Hence, it was interpreted that an original

half-filled band is split into three Hubbard subbands (not two as in “ordinary” Mott

insulator): an LHB at -0.33 V, a UHB1 at 0.2 V, and a UHB2 at 0.6 V. As side evidence,

at elevated temperatures, the LDOS intensity at UHB2 has been seen to jump back to

UHB1, hence forming a normal orbital texture similar to LHB. More investigation is

required to provide a better understanding of this puzzle.

Having established that single-layer 1T materials are Mott insulators, one may

ask the following questions: What role does the interlayer coupling play? How does a

Mott-insulating 1T -TaSe2 single layer evolve into a bulk metal? As a first step towards

answering this question, STS measurements of small MBE-grown bilayer and trilayer 1T -

TaSe2 islands show increasingly weaker insulating behavior [152]. A recent more careful

study [198] shows different results by using thin flakes of 1T -TaSe2 exfoliated from

bulk crystals which are then investigated in a thickness-controlled manner. Transport

measurements revealed a Mott-metal transition occurring above a thickness of 7 layers.

Surface-sensitive STM spectroscopy measurements, however, revealed a Mott state

from single-layer to bulk samples at the surface. To obtain a better understanding of

this apparent contradiction, ARPES measurement was performed [198], which probes

deeper into the bulk than STM. A metallic band crossing EFwas observed in samples

thicker than 7 layers but was absent otherwise. Combined with DFT calculations,

this observation provides evidence that interlayer coupling remarkably broadens the

correlated band and turns 1T -TaSe2 from a Mott insulator in the single-layer form to

a metal in the bulk form. At the same time, the surface of a crystal still exhibits

Mott behavior due to reduced coordination and reduced coupling to bulk. In addition,

unlike 1T -TaS2, which experiences layer dimerization that could lead to a band insulator

[166,199], 1T -TaSe2 does not show any signature of layer dimerization as evidenced by

the ARPES data [198]. Therefore, Tian et al. [198] provide strong evidence that thin

1T -TaSe2 below 7 layers is a Mott insulator.
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Figure 5. Imaging fractional spinons in a quantum spin liquid. (a) Schematic

showing the star-of-David CDW lattice and localized magnetic moments centered at

each star. (b) Fourier transform of an STM image scanned at 0.5 eV in single-layer

1T -TaSe2. (c) Theoretically predicted spinon spatial modulation vectors in a QSL.

(d) Energy dependence of the observed super-modulation strength in single-layer 1T -

TaSe2. (e) Temperature dependence of the observed super-modulation strength in

single-layer 1T -TaSe2. The inset shows the star-of-David CDW modulation persisting

to room temperature. All panels are reproduced from Ref. [194].

3.3. Signatures for quantum-spin-liquid state in single-layer 1T -TaSe2

Mott insulators with antiferromagnetically-coupled localized magnetic moments

arranged in a frustrated lattice have long been regarded as ideal platforms where exotic

quantum magnetic states such as QSL states might arise [200, 201]. QSLs refer to

a class of magnetic ground states in which magnetic moments remain disordered due

to frustration [202–206]. Above this exotic ground state, unusual, fractional excitations

such as spinons are predicted to exist [202–206]. The recent investigation of the Mottness

in 1T -TaS2 has brought new interest to possible QSL state in both 1T -TaS2 and 1T -

TaSe2 [153], and it has been shown numerically that these materials might host a QSL

with fermionic spinons forming a FS [154]. Experimental evidence for QSL in 1T -TaS2

has been collected [155–157,207] but is under debate, possibly due to unwanted interlayer

effects. In this regard, a single-layer 2D frustrated antiferromagnet is greatly desired to

probe the intrinsic QSL behavior [153].

Two prerequisites for QSL are the existence of localized magnetic moments and

the absence of magnetic ordering of these moments. Although a 2D spin lattice is

ideal for testing intrinsic 2D QSL behavior, it poses great challenges in detection via
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conventional magnetic probes. To test whether single-layer 1T -TaSe2 hosts a lattice of

magnetic moments, a new electronic detection method based on the Kondo effect was

utilized in a 1T/1H-TaSe2 heterobilayer [194,208]. It was found that when single-layer

1T -TaSe2 is contacted to metallic single-layer 1H-TaSe2 in the 1T/1H heterobilayer,

Kondo resonance develops in STM spectroscopy at most star-of-David sites. This

verifies that each CDW supercell in single-layer 1T -TaSe2 indeed hosts a local magnetic

moment [194], as indicated by the schematic in Fig. 5(a). Similar Kondo behavior has

also been observed in single-layer 1T -TaS2 [195] and 1T-NbSe2 [192,197] when they are

put into contact with the corresponding 1H layers.

Verification of the absence of long-range antiferromagnetic (AF) ordering down

to the experimental base temperatures has been successfully carried out for bulk 1T -

TaS2 [155–157,207], but so far is still fulfilled for single-layer 1T -TaSe2. The best attempt

up to date utilizes sensitive synchrotron-based x-ray magnetic dichroism [194], which

shows magnetization less than 0.013 µB per star-of-David CDW cell at 2 K under 5 T

magnetic field, indicating the absence of (ferro)magnetism in single-layer 1T -TaSe2 at

least down to 2 K.

A direct, perhaps more desirable, method to test the QSL behavior is to verify

the emergent fractional excitations. In most theoretical predictions for a triangular-

lattice QSL, an electron would split into a chargeless spin-1/2 fermion (spinon) that

forms a FS and a spinless charged boson (chargon) [200–206], a process known as the

spin-charge separation. Although evidence of itinerant spinons has been obtained from

thermal and magnetic measurements in many QSL candidates, key characteristics of

the spinon FS are challenging to determine due to the fractional and chargeless nature

of spinons. There have been theoretical proposals to probe the spinon FS properties

based on unique characteristics of the spinons, such as Ruderman-Kittel-Kasuya-Yosida

(RKKY) magnetism mediated by itinerant spinons [209], spinon Friedel oscillation that

is detectable via conventional STM [210], and Kondo screening from itinerant spin-

1/2 spinons [211]. In the following, we focus on two STM-based methods to provide

evidence of spinons in single-layer 1T -TaSe2: (1) real-space imaging of the spinon

wavefunction via conventional STM [194], and (2) STM spectroscopy of spinon-induced

Kondo resonance resulting from the combined effect of spinon screening and emergent

gauge fluctuations [212].

Conventional STM can be used to image fractional chargeless spinons because

the tunneling probability depends on the real-space distribution of both spinons and

chargons, thus providing a channel to reflect possible real-space oscillations of spinons

due to their FS geometry [210] (while at the same time circumventing the difficulty

in probing long-range magnetism in a single-layer material). When applying this

technique to single-layer 1T -TaSe2 on a bilayer graphene substrate, no predicted Friedel

oscillation was resolved, but a long-wavelength incommensurate super-modulation (ICS)

at wavevector qICS ≈ 0.249(bi+bi+1) was instead observed [194] (bi are the unit vectors

of the CDW reciprocal lattice). Fig. 5(b) displays the Fourier transform image of a

typical STM image acquired in the Hubbard band at 0.5 eV, which shows the qICS vector.
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Figure 6. Probing a gapless quantum spin liquid with a magnetic impurity.

(a) Schematic showing spinon Kondo cloud formation around a magnetic impurity

in a quantum spin liquid. Gauge binding interaction (Ub) additionally attracts a

chargon to the spinon Kondo cloud, thereby forming a Kondo-induced resonance state.

(b) Spectroscopically, such spinon-chargon resonance states should appear near the

Hubbard band edges. (c) STM images of a single Co adatom on single-layer 1T -TaSe2
at negative and positive bias voltages. This Co adatom is located at a CDW supercell

center, hence having the largest overlap with the charge distribution of 1T -TaSe2. (d)

dI/dV spectra of pristine 1T -TaSe2 (blue curve) and a single Co adatom (red curve),

both at the on-center position of a CDW cell (red/blue dots in (c)). Two new resonance

peaks (labeled P1 and P2) appear near the Hubbard band edges for on-center Co. All

panels are reproduced from Ref. [212].

If a QSL scenario with a spinon FS instability is adopted to explain the observed super-

modulation, then one can find that qICS is right at the higher harmonic position (Qi) of

the predicted instability wavevectors Pi ≈ 0.249bi (i.e., qICS = Pi +Pi+1) as illustrated

in Fig. 5(c). For another single-layer 1T -TaSe2 sample grown on a graphite substrate,

an additional super-modulation wavevector qM ≈ 0.5bi ≈ 2Pi was observed [194],

which is also a higher harmonic of Pi. The fact that the observed super-modulation

wavevectors coincide with higher harmonics of Pi can be explained by a composite

spinon density wave order that forms out of primary spinon orders (e.g., pair density

wave or spin density wave) at Pi [213, 214]. In addition, the super-modulation occurs

only at Hubbard band energies but vanishes elsewhere (Fig. 5(d)), suggesting that it

is a correlated phenomenon and consistent with the spin-charge separation picture.

The different temperature-dependent behavior of the super-modulation and the star-of-

David CDW (Fig. 5(e)) further rules out the possibility of the super-modulation being

a conventional CDW induced by the star-of-David CDW. Therefore, the observation of

the novel super-modulation via conventional STM provides important evidence for the

QSL behavior in single-layer 1T -TaSe2.

A QSL with a spinon FS should act as a ”neutral metal” and exhibit metallic

behavior in the spin channel. A natural consequence is the spinon Kondo screening
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around a magnetic impurity, providing another way to probe the itinerant spinons in

a QSL (Fig. 6(a)). A single magnetic impurity in a U(1) QSL with a spinon FS has

been investigated theoretically using a large-N expansion of a Kondo-like model coupled

to a U(1) gauge field [211], and Kondo screening from itinerant spinons was found to

appear despite the system being a charge insulator. Experimentally, the main evidence

for spinon Kondo screening so far comes from muon spin rotation and relaxation studies

conducted on a Kagome lattice QSL candidate, Zn-brochantite (ZnCu3(OH)6SO4). Here

the magnetic impurities, arising from Cu-Zn intersite disorder, were shown to exhibit

reduced magnetic moments [215]. To provide more evidence for the spinon Kondo

effect via spectroscopic characterization, magnetic Co atoms were deposited onto the

surface of single-layer 1T -TaSe2 (Fig. 6(c)), and then STM spectroscopy was acquired

on such magnetic adatoms [212]. Surprisingly, two resonance peaks arise right at the

Hubbard band edges (Fig. 6(d)) when Co adatoms have maximal overlap with the

charge distribution in a star-of-David supercell. It was also found that the resonance

peaks disappear when Co adatoms are shifted away from the supercell center (both

as-deposited adatoms and manually manipulated ones) [212]. They also vanish for

nonmagnetic adatoms such as Au [212] and K. The above observations were explained as

a combined effect of spinon Kondo screening and emergent gauge fluctuations (Fig. 6(b)):

a spinon Kondo cloud forms around a magnetic impurity, serving as a strong attractive

center for chargons that have the opposite emergent gauge charge from spinons. This

attractive interaction thus yields two nearly symmetric composite spinonchargon states

at energies both near the bottom of the doublon branch and near the top of the holon

branch (Fig. 6(b)), in analogy to the donor and acceptor states of a semiconductor

[212,216].

Here two pieces of evidence for spinons in single-layer 1T -TaSe2 have been provided

by STM measurement. We would also like to point out that the spinon interpretation,

though best explaining the experimental observation at the current stage among other

conventional explanations [194,212], is speculative and needs further investigation. For

instance, the strength of the emergent gauge field interaction needs to be carefully

considered, which might lead to confined spinons and chargons [217], and thus failure

of the spin-charge separation. The Friedel oscillations arising from spinon Fermi surface

[210] are still absent in experimental observations.

4. Signatures of excitonic insulator in 1T -ZrTe2

The excitonic insulator is an intriguing condensed phase of matter where electron-

hole pairs condense into a coherent macroscopic quantum state, analogous to BCS

superconductivity [31, 32]. However, an unequivocal material realization of excitonic

insulators has remained elusive despite intense theoretical and experimental efforts on

several candidate materials [119–121, 218–224]. The materials family 1T -TiSe2, TiTe2,

and ZrTe2 share an ideal electron band structure that is known to be advantageous

to host an exciton condensate state [31, 32], with differences in the size of small band
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gap or band overlap. The enhanced CDW transition temperature as the thickness goes

down to ML [122,124, 136] and the enlarged CDW gaps by varying dielectric substrate

environments [130, 131] in 1T -TiSe2 and 1T -TiTe2 provide vital clues that enhanced

excitonic interaction in atomically thin TMDCs [133–135]. The absence of CDW in

bulk 1T -ZrTe2 indicates the suppressed inuence of electron-phonon interaction and a

potential advantage in investigating excitonic instability.

Monolayer 1T -ZrTe2 has been grown by MBE on the graphitized SiC [225–228] and

InAs(111) substrates [229]. At low temperatures, monolayer 1T -ZrTe2 enters a CDW-

ordered state, evidenced by several clear experimental signatures [225,226]. The ARPES

measurements show the folding of the valence band and the opening of an energy gap

between valence and conduction bands. The valence band top at the Γ point becomes

flattened, and its spectral weight is almost entirely transferred to the folded valence

band at the M point. Correspondingly, STM reveals a 2×2 superlattice pattern (qCDW

= (1
2

1
2

0)R0◦ r.l.u.) with contrast modulation reflecting the periodic lattice distortion

(a) (b) (c)

(d)

Figure 7. Excitonic condensation in monolayer 1T -ZrTe2 (a) Temperature

dependent STM measurements on monolayer 1T -ZrTe2. The left panels of each

temperature are topographic images, and the right panel is the Fourier transform

of the image. The 2×2 superstructure peak is clearly visible at low temperatures,

which diffuses and disappears at higher temperatures. (b) Temperature-dependent

ARPES intensity maps of monolayer 1T -ZrTe2 clearly show the folding behavior at

low temperatures (CDW phase). Even above the TCDW, the intensity at the top of

the valence band is depleted and a significant amount of spectral intensity still lies in

the folded part of the spectrum. (c) Upon carrier doping, the system is driven into an

interaction-suppressed normal state, exhibiting a two-step CDW transition. (d) The

energy-dependent asynchronous band folding behavior is well-captured in theoretical

calculations only with the inclusion of excitonic interactions. Figures are reproduced

from Ref. [225].
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(Fig. 7). As temperature increases, the CDW order is thermally suppressed. The gap

size shrinks gradually and band folding intensity reduces. However, ARPES finds a

significant amount of spectral weight is still transferred from the Γ point to the M

point, as shown in Fig. 7(b) [225]. Concurrently, the superlattice contrast in STM

becomes diffusive and finally disappears above the transition temperature TCDW. The

CDW phase of monolayer 1T -ZrTe2 is very sensitive to the sample thickness. Adding

just one more layer causes significant deterioration of the CDW order [226].

The peculiarity of the CDW transition in monolayer 1T -ZrTe2 is that the system

resides in an “intermediate” state at temperatures much higher than the CDW transition

temperature, where only the top valence band at the Γ point shows folding and flattening

and a significant amount of spectral weight is still transferred to the M-point to be

the brightest part of the spectra [225] (Fig. 7). The second valence band at the higher

energy around the Γ point follows the conventional CDW behavior, i.e., folding behavior

completely disappears above TCDW. This energy-dependent, asynchronous band folding

behavior points to an unconventional mechanism different from a conventional electron-

phonon interaction-driven CDW transition. Further evidence of non-conventional CDW

transition comes from the carrier density dependence. By surface potassium doping

or photo-charge injection, therefore moving away from the excitonic regime, Song

et al. [225] revealed the 1T -ZrTe2 recovers a fully interaction-suppressed state, with

sharp band dispersion and no gap (Fig. 7(c)), different from both CDW and non-

CDW high-temperature state with energy-dependent partial band folding. Overall, the

observations align well with theoretical signatures expected for an exciton gas phase at

high temperatures (Fig. 7(d)) [225], which, upon condensation, induces the complete

CDW order at low temperatures. The two-step transition with distinct band folding

effects demonstrates the preformed excitonic nature of the instability in monolayer 1T -

ZrTe2.

5. Novel CDW states in IrTe2 and TaTe2

The absence of interlayer coupling and subsequent changes in the electronic structure

and symmetry in monolayer TMDCs is one of the promising ways to realize novel

physical, chemical, and optical phenomena distinct from bulk. Previous sections indeed

show some examples of such contrast, including the emergence of CDW transition in 1T -

TiTe2 [122], the Mott insulating phase in ML 1T -TaSe2 [152], and excitonic condensation

in ML 1T -ZrTe2 [225]. One of the less investigated ingredients in understanding the

properties of ML TMDCs, or ML vdW materials in general, is how the varying interlayer

coupling strength, which increases going from S, Se to Te, affects the changes of the

material properties in ML limit [230]. In general, the stronger the interlayer coupling,

the more dramatic changes are expected when it is completely deprived. However, the

materials platform that shows such dramatic changes, close to the crossover from the

vdW interaction to the covalent interaction, is rare due to the increased difficulty in both

exfoliation and epitaxial growth as the interlayer interaction becomes stronger [231–233].
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Among the family of TMDCs, 1T -IrTe2 is one of the unique materials since it has a

shorter interlayer distance than the expected vdW bond length, indicating strong Te-Te

interlayer coupling [234, 235]. The short bonding distance induces the formation of a

polymeric (Te2)
3− and destabilizes the highly oxidized state of Ir, resulting in effective

Ir3+ valence states [235, 236]. As a result, the formation of the polymeric Te-Te bond

networks stabilizes the trigonal structure (P 3̄m1) with an Ir3+ valence state at high

temperatures [235, 236]. Upon cooling, the polymeric Te-Te bonds are weakened, and

the bulk 1T -IrTe2 undergoes a first-order-type transition to triclinic structure (P1) with

Ir4+-Ir4+ dimerization, exhibiting a sudden jump in resistivity [235].

Since the transition involves Ir 5d to Te 5p charge transfer with Te bond breaking,

the system responds sensitively to interlayer coupling [234–236]. While Bulk 1T -IrTe2
shows two consecutive first-order transitions with superstructural modulation 5×1×5

at ∼ 280 K and 8×1×8 at 180 K [235], the surface shows multiple transitions as

well as 6×1 structural phase [237, 238], which is not obtained in bulk. When the

interlayer coupling is weakened by substituting Te with Se, not only the transition

temperature is further enhanced up to 560 K, but also a distinct transformation of the

superstructure from 5×1×5 to 6×1×6 occurs [239], suggesting the significant role of

the Te-Te interlayer coupling in 1T -IrTe2. Considering the Te-Te interlayer coupling is

much stronger compared to other TMDCs [234–236] and still exists in both surface and

Se-substituted 1T -IrTe2 [239], ML 1T -IrTe2 is expected to show a dramatic change in

structural and electronic properties due to the complete absence of the Te-Te interlayer

coupling.

High-quality ML 1T -IrTe2 films were synthesized using MBE on BLG/SiC

substrate [240]. Surprisingly, ML 1T -IrTe2 only exhibits a 2×1 Ir dimerized structure

(a complete dimerization), which has never been obtained in bulk 1T -IrTe2 samples,

without any transition up to 300 K [240]. As shown in Fig. 8, a more interesting finding

is that the 2×1 dimer ground state shows a large-gap insulating state with a gap size

larger than 1 eV, in contrast to the metallic 5×1 and 6×1 phases of BL as well as

surface and Se-substituted 1T -IrTe2 [238, 239]. First-principles calculations reveal the

existence of both charge and phonon instabilities at M point in ML 1T -IrTe2, suggesting

that the 2×1 dimer structure in ML may be driven by the Peierls-type CDW transition

with qCDW = (1
2

1 0)R0◦ r.l.u. [240]. However, the experimentally obtained results

for ML 1T -IrTe2 strongly deviate from the Peierls-type CDW features. While typical

CDW formation induces 1∼7% lattice contraction [4], ML 1T -IrTe2 shows 20% lattice

contraction with a heavy electronic reconstruction and a huge energy band gap [240].

Since these features are too large to be explained by conventional CDW pictures [4],

another essential ingredient, such as the local Ir bond formation [241, 242], should be

added for a fuller explanation. Generally, partially filled Ir compounds prefer locally

forming a direct Ir-Ir singlet because of their extended 5d orbital natures [241]. ML

1T -IrTe2 has an edge-sharing octahedral structure and only Ir4+ valence state with

one hole owing to the total absence of the Te-Te interlayer coupling. Even though

it is difficult to discern whether Peierls-like instability or local bond formation is more
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Some of the novel CDW orders in TMDCs only emerge 
in the ML limit owing to the quantum confinement.[22,26–29] 
We have grown multilayer 1T-TaTe2 films up to 8 layers (L) to 
examine whether the 19 19×  CDW order is only limited 
to the ML 1T-TaTe2. Figure 4a–h shows ARPES data of multi-
layer 1T-TaTe2 films, taken along the Μ−Γ−Μ direction using s- 
(Figure 4a–d) and p-polarized photons (Figure 4e–h). The overall 
band structure remains essentially the same (Figure  4a–h),  
except for some additional features due to the quantum con-
finement effect, such as flat bands and band splitting near 
EF coming from interlayer coupling.[20,21,30,31] The atomically 
resolved STM topograph for the two-layer 1T-TaTe2 film still 
shows the 19 19×  superstructure (Figure S9, Supporting 
Information), and the thickness-dependent core level measure-
ments for Ta 4f and Te 4d (Figure  4i,j) do not show any shifts 
from 2 to 8 L samples, while the peak positions and the shapes 
are distinct from those of the bulk. All of these findings indi-
cate that the 19 19×  CDW order is robust in epitaxially 
grown multilayer 1T-TaTe2 films up to 8 L. No evidence of strain 
by substrate and its relaxation with increasing thickness of the 
film has been observed (Figure S6, Supporting Information). In 
addition, we have found that the two-layer 1T-TaTe2 film does 
not show any changes in the ARPES and the core level spectra 
regardless of the annealing temperature (Figure S10, Sup-
porting Information), in contrast to the ML case, suggesting that 
the 19 19×  CDW order is the most stable order in epitaxially 

grown multilayers films of 1T-TaTe2. Instead, Tanneal only affects 
the quality of the epitaxial films in multilayer 1T-TaTe2, rather 
than affecting the microstructures, for example, through the 
change in the Te–Te interlayer coupling (Figures S10 and S11,  
Supporting Information). Moreover, we do not find any sign of 
nearly commensurate or incommensurate CDW order, which 
is well known for the bulk 1T-TaS2,[32,33] and only commensu-
rate 19 19×  CDW order is obtained in 1T-TaTe2 up to 300 K 
(Figure S12, Supporting Information).

3. Discussion
To further understand the experimentally obtained multiple 
CDW ground states of ML 1T-TaTe2, we performed first-prin-
ciples calculations for the phonon dispersions and total energy 
differences for all possible CDW superstructures. The phonon 
calculations found that 3×3, 13 13× , and 19 19×  CDW 
orders are all stable in ML 1T-TaTe2 (Figure S13, Supporting 
Information). However, we found a clear sign of phonon insta-
bility in the natural hypothetical high-temperature unit cell of 
undistorted 1T-TaTe2 (Figure S14i, Supporting Information), 
suggesting its susceptibility to form a CDW order. The total 
energy differences and unit cell volumes for 3×3, 13 13× ,  
and 19 19×  CDW orders are given in Table  1. The total 
energy difference of CDW states is defined as the difference 

Adv. Mater. 2022, 34, 2204579

Figure 3. Polarization- and annealing temperature-dependent ARPES intensity maps and STM images of ML 1T-TaTe2. a–h) ARPES intensity maps of ML 
1T-TaTe2 annealed at 265 °C (a,e), 280 °C (b,f), 340 °C (c,g), and 380 °C (d,h) taken along the M−Γ−M direction using s-polarized (a–d) and p-polarized 
(e–h) photons (T = 13 K). i) Atomically resolved STM image and j) its FT of ML 1T-TaTe2 annealed at 380 °C (Vs = −0.25 V, I0 = 0.5 nA, T = 4.7 K). The 
yellow and blue circles represent Bragg and CDW peaks, respectively. The primary reciprocal lattice vectors of ML 1T-TaTe2 are defined with θ = 120°.
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Some of the novel CDW orders in TMDCs only emerge 
in the ML limit owing to the quantum confinement.[22,26–29] 
We have grown multilayer 1T-TaTe2 films up to 8 layers (L) to 
examine whether the 19 19×  CDW order is only limited 
to the ML 1T-TaTe2. Figure 4a–h shows ARPES data of multi-
layer 1T-TaTe2 films, taken along the Μ−Γ−Μ direction using s- 
(Figure 4a–d) and p-polarized photons (Figure 4e–h). The overall 
band structure remains essentially the same (Figure  4a–h),  
except for some additional features due to the quantum con-
finement effect, such as flat bands and band splitting near 
EF coming from interlayer coupling.[20,21,30,31] The atomically 
resolved STM topograph for the two-layer 1T-TaTe2 film still 
shows the 19 19×  superstructure (Figure S9, Supporting 
Information), and the thickness-dependent core level measure-
ments for Ta 4f and Te 4d (Figure  4i,j) do not show any shifts 
from 2 to 8 L samples, while the peak positions and the shapes 
are distinct from those of the bulk. All of these findings indi-
cate that the 19 19×  CDW order is robust in epitaxially 
grown multilayer 1T-TaTe2 films up to 8 L. No evidence of strain 
by substrate and its relaxation with increasing thickness of the 
film has been observed (Figure S6, Supporting Information). In 
addition, we have found that the two-layer 1T-TaTe2 film does 
not show any changes in the ARPES and the core level spectra 
regardless of the annealing temperature (Figure S10, Sup-
porting Information), in contrast to the ML case, suggesting that 
the 19 19×  CDW order is the most stable order in epitaxially 

grown multilayers films of 1T-TaTe2. Instead, Tanneal only affects 
the quality of the epitaxial films in multilayer 1T-TaTe2, rather 
than affecting the microstructures, for example, through the 
change in the Te–Te interlayer coupling (Figures S10 and S11,  
Supporting Information). Moreover, we do not find any sign of 
nearly commensurate or incommensurate CDW order, which 
is well known for the bulk 1T-TaS2,[32,33] and only commensu-
rate 19 19×  CDW order is obtained in 1T-TaTe2 up to 300 K 
(Figure S12, Supporting Information).

3. Discussion
To further understand the experimentally obtained multiple 
CDW ground states of ML 1T-TaTe2, we performed first-prin-
ciples calculations for the phonon dispersions and total energy 
differences for all possible CDW superstructures. The phonon 
calculations found that 3×3, 13 13× , and 19 19×  CDW 
orders are all stable in ML 1T-TaTe2 (Figure S13, Supporting 
Information). However, we found a clear sign of phonon insta-
bility in the natural hypothetical high-temperature unit cell of 
undistorted 1T-TaTe2 (Figure S14i, Supporting Information), 
suggesting its susceptibility to form a CDW order. The total 
energy differences and unit cell volumes for 3×3, 13 13× ,  
and 19 19×  CDW orders are given in Table  1. The total 
energy difference of CDW states is defined as the difference 
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Figure 3. Polarization- and annealing temperature-dependent ARPES intensity maps and STM images of ML 1T-TaTe2. a–h) ARPES intensity maps of ML 
1T-TaTe2 annealed at 265 °C (a,e), 280 °C (b,f), 340 °C (c,g), and 380 °C (d,h) taken along the M−Γ−M direction using s-polarized (a–d) and p-polarized 
(e–h) photons (T = 13 K). i) Atomically resolved STM image and j) its FT of ML 1T-TaTe2 annealed at 380 °C (Vs = −0.25 V, I0 = 0.5 nA, T = 4.7 K). The 
yellow and blue circles represent Bragg and CDW peaks, respectively. The primary reciprocal lattice vectors of ML 1T-TaTe2 are defined with θ = 120°.
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ciples calculations for the phonon dispersions and total energy 
differences for all possible CDW superstructures. The phonon 
calculations found that 3×3, 13 13× , and 19 19×  CDW 
orders are all stable in ML 1T-TaTe2 (Figure S13, Supporting 
Information). However, we found a clear sign of phonon insta-
bility in the natural hypothetical high-temperature unit cell of 
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suggesting its susceptibility to form a CDW order. The total 
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and 19 19×  CDW orders are given in Table  1. The total 
energy difference of CDW states is defined as the difference 
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Figure 3. Polarization- and annealing temperature-dependent ARPES intensity maps and STM images of ML 1T-TaTe2. a–h) ARPES intensity maps of ML 
1T-TaTe2 annealed at 265 °C (a,e), 280 °C (b,f), 340 °C (c,g), and 380 °C (d,h) taken along the M−Γ−M direction using s-polarized (a–d) and p-polarized 
(e–h) photons (T = 13 K). i) Atomically resolved STM image and j) its FT of ML 1T-TaTe2 annealed at 380 °C (Vs = −0.25 V, I0 = 0.5 nA, T = 4.7 K). The 
yellow and blue circles represent Bragg and CDW peaks, respectively. The primary reciprocal lattice vectors of ML 1T-TaTe2 are defined with θ = 120°.
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finement effect, such as flat bands and band splitting near 
EF coming from interlayer coupling.[20,21,30,31] The atomically 
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Information), and the thickness-dependent core level measure-
ments for Ta 4f and Te 4d (Figure  4i,j) do not show any shifts 
from 2 to 8 L samples, while the peak positions and the shapes 
are distinct from those of the bulk. All of these findings indi-
cate that the 19 19×  CDW order is robust in epitaxially 
grown multilayer 1T-TaTe2 films up to 8 L. No evidence of strain 
by substrate and its relaxation with increasing thickness of the 
film has been observed (Figure S6, Supporting Information). In 
addition, we have found that the two-layer 1T-TaTe2 film does 
not show any changes in the ARPES and the core level spectra 
regardless of the annealing temperature (Figure S10, Sup-
porting Information), in contrast to the ML case, suggesting that 
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grown multilayers films of 1T-TaTe2. Instead, Tanneal only affects 
the quality of the epitaxial films in multilayer 1T-TaTe2, rather 
than affecting the microstructures, for example, through the 
change in the Te–Te interlayer coupling (Figures S10 and S11,  
Supporting Information). Moreover, we do not find any sign of 
nearly commensurate or incommensurate CDW order, which 
is well known for the bulk 1T-TaS2,[32,33] and only commensu-
rate 19 19×  CDW order is obtained in 1T-TaTe2 up to 300 K 
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3. Discussion
To further understand the experimentally obtained multiple 
CDW ground states of ML 1T-TaTe2, we performed first-prin-
ciples calculations for the phonon dispersions and total energy 
differences for all possible CDW superstructures. The phonon 
calculations found that 3×3, 13 13× , and 19 19×  CDW 
orders are all stable in ML 1T-TaTe2 (Figure S13, Supporting 
Information). However, we found a clear sign of phonon insta-
bility in the natural hypothetical high-temperature unit cell of 
undistorted 1T-TaTe2 (Figure S14i, Supporting Information), 
suggesting its susceptibility to form a CDW order. The total 
energy differences and unit cell volumes for 3×3, 13 13× ,  
and 19 19×  CDW orders are given in Table  1. The total 
energy difference of CDW states is defined as the difference 
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Figure 3. Polarization- and annealing temperature-dependent ARPES intensity maps and STM images of ML 1T-TaTe2. a–h) ARPES intensity maps of ML 
1T-TaTe2 annealed at 265 °C (a,e), 280 °C (b,f), 340 °C (c,g), and 380 °C (d,h) taken along the M−Γ−M direction using s-polarized (a–d) and p-polarized 
(e–h) photons (T = 13 K). i) Atomically resolved STM image and j) its FT of ML 1T-TaTe2 annealed at 380 °C (Vs = −0.25 V, I0 = 0.5 nA, T = 4.7 K). The 
yellow and blue circles represent Bragg and CDW peaks, respectively. The primary reciprocal lattice vectors of ML 1T-TaTe2 are defined with θ = 120°.
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except for some additional features due to the quantum con-
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regardless of the annealing temperature (Figure S10, Sup-
porting Information), in contrast to the ML case, suggesting that 
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Figure 3. Polarization- and annealing temperature-dependent ARPES intensity maps and STM images of ML 1T-TaTe2. a–h) ARPES intensity maps of ML 
1T-TaTe2 annealed at 265 °C (a,e), 280 °C (b,f), 340 °C (c,g), and 380 °C (d,h) taken along the M−Γ−M direction using s-polarized (a–d) and p-polarized 
(e–h) photons (T = 13 K). i) Atomically resolved STM image and j) its FT of ML 1T-TaTe2 annealed at 380 °C (Vs = −0.25 V, I0 = 0.5 nA, T = 4.7 K). The 
yellow and blue circles represent Bragg and CDW peaks, respectively. The primary reciprocal lattice vectors of ML 1T-TaTe2 are defined with θ = 120°.
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Figure 8. Novel CDW orders in IrTe2 and TaTe2 (a) The STS dI/dV spectra for

ML and BL IrTe2. The inset is a close-up of the black dashed box near Fermi energy

(b) The ARPES intensity maps for ML and BL IrTe2. (c) The crystal structures of

the undistorted ML 1T-IrTe2 and 2×1 dimerized one. (d) RHEED images from the

different annealing conditions of 1T -TaTe2. Left panel is after 340◦C annealing, which

leads to a mixture of 3×3 and
√

13×
√

13 CDW. Right panel is after 400◦C annealing

that results in a
√

19×
√

19 superstructure. (e) The ARPES spectra from different

CDW orders, 3×3 and
√

13×
√

13 (left) and
√

19×
√

19 (right). (f) Fourier transform

of STM image verifies the formation of
√

19×
√

19 CDW. Figures are reproduced from

Refs. [240,243].

dominant or which one triggers the other in the dimer formation, once any perturbations

are triggered, the effect of both mechanisms amplifies each other, making the heavy

electronic reconstruction with the large band gap and massive lattice distortion as

described in Fig. 8.

The large-gap insulating 2×1 dimer structure in ML completely disappears in BL

1T -IrTe2 (Fig. 8). In the case of BL, the recovered Te-Te interlayer coupling suppresses

the charge instability owing to the split of FS and eliminates the phonon softening.

Moreover, the Ir3+ state partially exists in a BL-like surface state from the polymeric Te-

Te interlayer coupling, which prevents the formation of the fully dimerized structure as

in ML. The suppression of the CDW instability in BL does not allow the fully dimerized

2×1 structure. Instead, 6×1 and 5×1 phases are obtained as the ground states like

surface and Se-Substituted 1T -IrTe2 [238, 239]. This metal-to-insulator transition from

BL to ML 1T -IrTe2 indicates that the strong Te-Te interlayer coupling dramatically

affects the phonon and charge instabilities in 1T -IrTe2, thus playing a vital role in

defining the charge-ordered ground states of 1T -IrTe2.

1T -TaTe2 is another good testbed to investigate the effect of stronger interlayer

coupling on CDW states. As described in Section 3, 1T -TaS2 and 1T -TaSe2 form a√
13×
√

13 star-of-David CDW, which persists even down to ML limit. On the other
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hand, 1T -TaTe2 exhibits 3×1×3 and 3×3×3 CDW orders with double zigzag chain and

butterfly-like clusters due to the stronger Te-Te interlayer coupling and the significant

charge transfer to Ta atoms, resulting in Jahn-Teller distortion [115,116,230]. Compared

to 1T -TaS2 and 1T -TaSe2, which have the same crystal symmetry as 1T -TaTe2, natural

questions arise what type of CDW order emerges when the strong Te-Te interlayer

coupling gets completely removed in the ML form of 1T -TaTe2: Does ML still have 3×3

or 3×1 CDW orders like the bulk or transform to
√

13 ×
√

13 CDW order with Mott

insulating state as obtained in the sister compounds 1T -TaS2 and 1T -TaSe2? Or, would

the electronic structure of ML 1T -TaTe2 be entirely modified by the absence of the

Te-Te interlayer coupling and result in a distinct CDW order, as is the case of 1T -IrTe2?

These questions have been answered by investigating the ML 1T -TaTe2 films grown

on BLG substrate using MBE [243, 244]. Surprisingly, ML 1T -TaTe2 exhibits a variety

of metastable CDW orders, including 3×3,
√

13×
√

13, and unprecedented
√

19×
√

19

superstructures (Fig. 8). The multiple CDW orders in ML 1T -TaTe2 can be selectively

stabilized by controlling the post-growth annealing temperature. Once a new CDW

order is obtained by annealing at a higher temperature, it does not turn back to the

previous CDW orders by annealing at the lower temperature. Moreover, the Mott-

insulating state obtained in ML 1T -TaSe2 is not observed despite the formation of√
13×
√

13 CDW order in ML 1T -TaTe2 due to the less electronegativity and extended

nature of Te atoms [115]. The most impressive feature in ML 1T -TaTe2 is that
√

19×
√

19

CDW order is found with qCDW = ( 1√
19

1√
19

0)R36.6◦ r.l.u., which has rarely been

predicted nor reported in TMDCs. The experimental evidence of
√

19×
√

19 CDW order

in 1T -TaTe2 was confirmed by RHHED, STM, and ARPES measurements (Fig. 8),

and it persists up to 8 layers for epitaxially-grown 1T -TaTe2 thin films [243]. DFT

calculations supported the stability of the distinct
√

19×
√

19 CDW order as well as

3×3 and
√

13×
√

13 in ML 1T -TaTe2 by demonstrating stable phonon dispersion and the

minimal difference of the relative total energy among three distinct CDW orders [243].

The epitaxially-grown ML 1T -NbTe2 also displays multiple CDW orders, including

4×1, 4×4,
√

19×
√

19, and even larger
√

28×
√

28 superstructures with qCDW = ( 1√
28

1√
28

0)R7◦ r.l.u. [245] controlled by the post-annealing temperature with an irreversible

process, in a similar way as ML 1T -TaTe2. The origin of the unexpected
√

19×
√

19 and√
28×
√

28 CDW orders is not fully understood yet because the conventional pictures

of CDW transition, such as Peierls instability or momentum-dependent strong electron-

phonon coupling, are not clearly connected in these systems [243, 245]. Nonetheless,

the emergence of new types of CDW orders in the ML TMDCs strongly indicates that

the stronger interlayer coupling in the Te system plays a significant role in creating a

dramatic transformation of quantum orders.

6. Summary and Outlook

In summary, we have reviewed various CDW orders and accompanying quantum

phenomena on epitaxially grown 2D TMDCs. We have mainly focused on the electronic
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structures investigation using ARPES and STM/STS as complementary experimental

probes.

We have found that the changes in the CDW order at the atomically thin 2D

limit from that of bulk are heavily material-dependent despite the commonly imposed

conditions of deprived interlayer coupling, broken symmetry, and consequent changes in

electronic structure. In some cases, such as 1H-NbSe2, 1H-TaSe2, and 1T -TaSe2, the

CDW ordering vector in the monolayer limit is exactly the same as that of bulk. The

TCDW exhibits only moderate changes, while coexisting SC gets suppressed dramatically.

In other cases, monolayer qCDW becomes vastly different from that of bulk. Examples

include 1T -VSe2, 1T -VTe2, 1T -TiSe2, and 1T -IrTe2. There has also been the case

that CDW order emerges only in the monolayer limit, while it is absent in the bulk, as

witnessed in 1T -TiTe2 and 1T -ZrTe2. These various examples show us that the material-

specific details, e.g., strength and character of interlayer bonding, orbital characters of

transition metal atoms, charge carrier density, and Fermi energy filling, all play essential

roles in building up this prototypical cooperative electronic phase.

We have also reviewed how exotic electronic orders emerge in connection with the

2D CDW in monolayer TMDCs. A prime example is the Mott insulating state with

unusual orbital texture in monolayer 1T -TaSe2. We have further discussed the evidence

of the QSL state from STM, which includes the supermodulation in Fourier-transformed

STM data corresponding to the spinon FS and the spinon Kondo effect when a magnetic

impurity is added at the charge modulation center. The excitonic insulator has been

studied extensively in recent years, and the CDW state in 1T -ZrTe2 was discussed in

that context. The asynchronous band folding and spectral weight transfer, along with

the two-step CDW transition, provide strong spectroscopic evidence that monolayer

1T -ZrTe2 may indeed be an excitonic condensate.

New types of charge order and CDWs are found in the monolayer of IrTe2, in

which a Peierls-like FS instability and local bond formation cooperatively enhance and

stabilize the fully dimerized charge order state. Finally, large cell superstructures such

as
√

19×
√

19 and
√

28×
√

28, rarely reported previously, have been found in 1T -TaTe2
and 1T -NbTe2 through controlled post-growth annealing.

In this review, we have limited ourselves to the 2D CDW orders and surrounding

phenomena that are realized in a single materials platform for a focused discussion.

However, there are many classical materials systems that have been investigated in the

context of CDW order and competing electronic phases. Well-known examples include

rare earth tritellurides [246], molybdenum bronzes [247], and even cuprates [248, 249].

It would be of tremendous interest to realize the 2D form of these materials and study

how the CDW itself evolves in the atomically thin 2D limit, how the potential changes

in the CDW impact other coexisting orders, and whether there are any novel physical

properties associated with it [250, 251]. α-phase uranium (α-U) takes a special place

as being the only single element material that exhibits a series of low-temperature

CDW transitions [252]. It also makes a transition into an SC as the temperature

further decreases. Thin films of α-U have been grown on substrates such as Nb
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and W, and show a great enhancement of TCDW due to the epitaxial strain from

the substrates, suggesting a possibility of controlling CDW order using strain [253].

Further investigation on atomically thin α-U and the potential interplay between CDW

and SC would be immensely interesting. Another fascinating recent development not

discussed in the review is the CDW phases in Kagome materials, in which the CDW

coexists with other emerging orders, such as orbital order, electronic nematicity, SC,

and topological orders [16–18]. The epitaxial growth of Kagome thin films is still in its

early stage [254,255]. Whether the epitaxial thin film down to a few layers of thickness

can be achieved with high enough quality to be measured by ARPES and STM remains

to be seen.

By stacking 2D materials into lateral and vertical heterostructures with varying

relative orientations, one can achieve novel physical, chemical, and optical properties

that are not easily attainable in constituent materials themselves [256, 257]. The

CDW phenomena at the domain boundaries of 2D TMDCs have been previously

studied [69, 70]. Whether a similar CDW would arise at the boundaries of lateral

heterostructures of other 2D materials is currently unclear. The realization of correlated

electronic phases in twisted bilayer graphene ignited an intense research effort on twisted

vertical heterostructures of 2D materials [257]. Experimental and theoretical efforts

are underway to find out how the complex order parameters with potentially different

symmetries would affect each other when assembled into a heterostructure with well-

defined relative orientation. Materials with 2D CDW would provide an essential member

of the materials library for such research effort.

Many 2D TMDCs presented in this review are waiting to be measured with other

experimental probes (some of which were introduced in Section 1) that have been crucial

in revealing the CDW orders in bulk materials. While some of the scattering-based

measurements are challenging for the few-layer samples due to the lack of scattering

centers in the 2D layers, other techniques are mainly limited by the availability of

samples and difficulty in sample transfers among ultra-high vacuum systems. A

tight integration of sample growth and characterization tools, as well as continued

improvements in the photon, electron, neutron sources, and detection technology, may

close this gap. It would be fascinating to apply, e.g., time-resolved ARPES [119] and

x-ray scattering [13, 14] measurements on the CDW phases discussed in this review to

gain further insight into their origins and coexisting orders.

To conclude, we believe there remains much to be explored in the complex

electronic phases of atomically thin 2D materials. As the materials library expands with

advanced synthesis, in situ sample manipulation, and heterostructure stacking, and as

the experimental tools improve with better precision and stability, a more profound

understanding of complex quantum phases will become possible and contribute to the

development of future electronic, spintronic and quantum devices.
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