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∂H: Differentiable Holography
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Over the past decade, the field of holography has gained significant ground due to advances in computational imaging.
However, the utilization of computational tools is hampered by the mismatch between experimental setups and the concep-
tual model. We present differentiable holography (∂H), a novel framework for automatically self-calibrating experimental
imperfections in inverse holographic imaging. The technique is demonstrated on auto-focused complex field imaging from a
single intensity-only inline hologram.

1 Introduction

Imaging objects of various sizes ranging from nanometers to millimeters by investigating the
object-light interaction is of great importance in numerous research fields, from physics [1],
material science [2] to biology [3]. Direct quantification of light waves is challenging when the
waves oscillate beyond the speed of electronic devices, while holography resolves this issue
by using interferometry [4]. However, holographic imaging has been plagued by a number
of challenges that have limited its adoption for the past century, including the unwanted
terms (DC and twin-image) separation [5, 6], phase unwrapping, and auto-focusing [7, 8]. To
mitigate these challenges, computational techniques surpass multiple variants of holography
[9, 10, 11] in the possibility of maintaining a compact inline setup by employing optimization
[5, 12] or deep learning [13, 14]. Suppose that imaging systems encode the target object x
into holograms y with a forward model of f(·), computational techniques aim at decoding the
holograms to obtain the target by inverting the forward model to obtain x with f−1(y)→ x′.

Hand-crafted optimization methods rely on relatively simple and ideal imaging models f(·)
[5, 12, 6], which may not accurately represent reality. The simplicity is mainly due to the
need for hand-crafted optimization solvers. On the other hand, learning-based methods uti-
lize general-purpose but opaque black-box models f(·), requiring a large amount of training
data [15, 13] or time-consuming training [16, 17, 14], and often lacking generalization [15, 13].
Both approaches are sensitive to system-specific factors and unable to compensate for mis-
matches between numerical modeling and real-world conditions [18], such as experimental
imperfections (e.g., light sources, optical alignments, sensor quantization) and physical in-
terference. To solve the inverse problem, accurate modeling of these system imperfections
is crucial; otherwise, the quality of reconstruction will be compromised due to the accumu-
lation of modeling errors [19, 18]. However, as the complexity of modeling increases, the
forward model may not have a simple form, making it difficult to solve using existing solvers.
This challenge is further compounded when additional modeling parameters are introduced,
further complicating the problem-solving process. Inspired by the principles of differentiable
imaging [20], our proposed method, referred to as ∂H , incorporates system imperfections into
the imaging model and employs a differentiable optimization technique to overcome the chal-
lenging inversion of the forward model. Specifically, we consider defocusing and illumination
amplitude variation as additional variables to the model. This approach enables complex field
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imaging from a single-shot inline hologram without the need for additional hardware. The dif-
ferentiable design of the imaging framework ensures flexibility and robustness, allowing it to
be applied to various setups with minimal adjustments to the forward model.

2 Experimental results
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(b) II: Spherical illumination
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Figure 1. Various inline holography systems that are used for the verification: Inline holography with (a) plane
wave illumination and (b) spherical wave illumination, (c) lensless holography, and (d) lensless holography with
fiber bundle setup. L1: laser light source; L2: LED light source; C: collimator; O: object; P: Pinhole; S: camera
sensor; MMF: Multi-mode fiber; FB: fiber bundle; OL: objective lens.

The ∂H has been verified on four different setups, as shown in Figure 1. Each of the setups
induces inverse imaging with varying degrees of complexity. In type I of Figure 1(a), a plane
wave laser beam is used as the illumination, and the primary factor that makes the forward
model inaccurate is the object-camera distance and the perfection of the plane wave; in type II
of Figure 1(b), there are two distances which define the spherical wave illumination, the light
source to object distance zlo and the light source to camera sensor distance zls in the forward
model; in type III of Figure 1(c), the object-camera distance should be extremely small to
maintain a coherence of the LED light source, which makes it more challenging to separate
the twin-image and other terms in the hologram reconstructions; in type IV of Figure 1(d),
apart from the difficulties in III, the fiber bundle also induces additional noise and errors in
the holograms that hinder the imaging. The performance of the ∂H on these configurations
is demonstrated in the following experiments.
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Figure 2. Experiment 1: verification of ∂H with the setup of Figure 1(a), on a phase-only sample (a) and the
reconstructions with (b) and without system parameters (c). See section 4.3 for the definition of θ. z is the object
to camera distance and a is the magnitude of the illumination light.

In the first experiment, we verified ∂H on an object with ground truth captured by setup
I in Figure 1(a) with a wavelength of the laser centered at 532 nm. The object was a highly
transmitting silica wafer with an etched phase profile that is shown by the middle image of
Figure 2(a). The amplitude photo was taken in the bright field imaging condition, revealing
the target’s amplitude profile, as the result of absorption at the edges of the etched parts. The
ground truth phase image was calculated from the fabricated sample using the experimental
parameters. An inline hologram (right image of Figure 2(a)) was captured by an image sensor
of 3.45µm pixel pitch. The reconstructions of ∂H with and without imperfection modeling
parameters (here, defocus represented by θ show a significant difference. With θ, the phase
target was well reconstructed, as shown in Figure 2(b). The phase value also approximates
the theory one. The right image of Figure 2(b) shows the convergence of the axial location z of
the target, which is usually obtained in advance by auto-focusing in the conventional inverse
imaging solver. On the contrary, without θ, the reconstructed images blur severely, as shown
in Figure 2(c). The comparison of the loss in the right image of Figure 2(c), shows that with
θ included, the loss also converges much better than without it. This is because the forward
model is essentially inaccurate without θ, which causes the convergence to stagnate. Because
it has a high transmittance, the sample used in Figure 2 is typically treated as a phase-only
target. However, in practice, other than the restricted options of phase-only substances, the
misalignment of the system may cause light absorption in some portions of the target, making
it crucial to consider the target as a more generalized complex field.
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Figure 3. Experiment 2: verification on a tilia root microscopy samples with the setup in Figure 1(a). The
hologram (a), MP (b) and ∂H (c) reconstructions.

∂H also works well on microscopy samples of realistic phase and amplitude distributions.
Figure 3 shows the imaging of a tilia root. The multi-plane (MP) phase retrieval result serves
as a reference due to its relatively consistent nature and widespread usage [15]. Both the
amplitude and the phase reconstructed by ∂H in Figure 3(c) match well with the reference
reconstruction of the MP phase retrieval from five holograms in Figure 3(b). Except for the
clear background of the reconstructed phase by ∂H, the magnified portions demonstrate that
the ∂H achieves an even better resolution. It is crucial to recognize that the performance
of the MP technique heavily depends on the alignment of the system. Implementing the MP
approach requires capturing multiple images with axis translation, which introduces potential
errors during the process. These errors may include inaccuracies in the translation distance
and direction, as well as camera rotation.
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Figure 4. Experiment 3: verification on a cheek cell sample with the setup in Figure 1(c) (data from [14]). The
hologram (a), DCOD (b) and ∂H (c) reconstructions.

Figure 4 shows a comparison to state-of-the-art learning-based complex field imaging with
a single-shot inline hologram based on the physical model: Deep Compressed Object Decoder
(DCOD) [14]. ∂H reconstructed the phase image with a clear background so that higher
frequency with more detail can be observed after 25000 iterations in 46 seconds on an Nvidia
GTX 1080 GPU, whereas it took 40 minutes to run 30000 iterations for DCOD on an Nvidia
Tesla k80 GPU as reported in [14], shown in Table 1.

Table 1. Computational efficiency compared to DCOD [14].

image size (in pixel) iteration time cost GPU

DCOD 512× 512 30000 ∼40 minutes Nvidia Tesla k80

∂H
512× 512 2500 ∼36 seconds

Nvidia GTX 1080
1024× 1024 2500 ∼113 seconds

Besides, DCOD fails in reconstructing some parts of the target, especially around the im-
age border, whereas ∂H reconstructed the image clearly everywhere. People may claim that
other neural networks can achieve much faster imaging speed than DCOD [14]. In fact, there
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are numerous neural networks that could handle complex field imaging [15], phase imag-
ing [17], or auto-focusing phase imaging with holograms [8]. It is true that neural networks
outperform optimization in certain aspects, for example, computational speed. However, the
inexplicable models trained by neural networks lack generalization and can hardly be further
manipulated. Additionally, research related to neural networks driven by data is not practical
if a large amount of training data is not accessible. Although the most recent self-supervised
learning only needs simulation data and can conduct complex field imaging with two or more
holograms, it is still unable to handle the experiment-theory mismatch [18]. On the contrary,
the ∂H solves the widespread mismatch issues, which neither optimization nor neural net-
works have yet sufficiently addressed. The reference [14] was chosen for comparison because
it is the most recent single-shot complex field imaging technique that uses only one hologram
based on the physical model.

(a) hologram

amplitude
1.0

0.5

phase
1.0

0.0

(b) ∂H reconstruction.

Figure 5. Experiment 4: Complex field imaging with the spherical wave illumination setup of Figure 1(b). The
hologram (a) and (b) ∂H reconstructions.

(a) hologram (b) ∂H reconstruction

Figure 6. Experiment 5: Intensity-only object imaging with fiber bundle setup of Figure 1(d) (data from [21]).
The hologram (a) extracted from a fiber-bundle setup, and (b) ∂H reconstructions.

In the preceding experiments, we validated the viability of the proposed ∂H method by con-
ducting comparisons with ground-truth measurements, as well as existing approaches such
as MP phase retrieval and learning-based methods. Nonetheless, it is important to recognize
that the potential of ∂H extends beyond these comparisons. The interpretable approach of
the proposed ∂H also enables it to work well on a variety of datasets from various setups, as
demonstrated in Figure 5 and Figure 6. In Figure 5, a divergent spherical wave was used as
illumination. This setup can achieve a large field of view and reduce interference of reflected
beams from the object and camera sensor. In this particular experiment, the object under
investigation was a wafer containing a highly transmissive pattern etched onto its surface.
The height of these patterns measured 100 nm, which corresponds to a phase difference of
0.3174π when illuminated with a wavelength centered at 630 nm. The reconstructed patterns
exhibited a phase value of approximately −0.316π, closely matching the intended design. Re-
garding Figure 6, the experimental setup employed a fiber bundle lensless imaging system.
The target object used in this setup was a positive resolution chart, which exhibited no phase
difference and could therefore be considered an amplitude-only object. The reconstructed im-
ages obtained through the ∂H technique exhibited clear patterns without any presence of twin
images. In both Figure 6 and Figure 4, the lensless setup utilized LED light sources, requiring
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a very short object-camera distance to maintain the desired coherence of the light sources.
However, this proximity poses a challenge when it comes to eliminating unwanted terms in the
holograms, especially when the object-camera distance is inaccurately determined. Despite
this difficulty, the ∂H approach is capable of convincingly reconstructing clear images even
with a roughly estimated distance.

3 Discussions and Conclusion

In conclusion, we have successfully demonstrated the effectiveness of ∂H as a method for
enabling complex field imaging using a single inline hologram without the need for additional
optics. This innovative approach has the potential to inspire new solutions for compact and
in vivo 3D imaging [21].

When compared to optimization-based compressive holography [5] and its variants [6, 12,
22], ∂H offers several distinct advantages: (i) It adheres to a rigorous formulation of holo-
graphic imaging, ensuring a reliable and accurate reconstruction process. (ii) System imper-
fections are treated as additional variables to be optimized, allowing for better compensation
and enhanced imaging performance. (iii) The framework is designed to be differentiable, en-
abling efficient optimization and allowing for the incorporation of gradient-based algorithms.
(iv) ∂H is capable of reconstructing complex fields, providing more comprehensive and detailed
imaging results. In this work, we have made the complex field, target location, and illumi-
nation light magnitude differentiable, facilitating the optimization process. Additionally, the
differentiable design of the framework, as described in Section 4.3, allows for straightforward
extensions by introducing other system parameters or modifying the object scattering model
[23, 24]. This flexibility enables the adaptation of ∂H for various types of imaging, broadening
its potential applications.

The ∂H is capable of handling multiple specific variables as neural networks. Unlike
conventional neural networks [15, 13, 16, 17, 14] that typically learn as black-box models,
∂H addresses the common challenge of experiment-theory mismatch. It provides a mecha-
nism for incorporating system parameters into the imaging model, making the method adapt-
able to various data types acquired from different experimental setups. Furthermore, ∂H does
not require an extensive amount of training data. To the best of our knowledge, this is the
first learning-free approach for complex field imaging using a single-shot inline hologram.
In contrast to traditional holography techniques, ∂H offers numerous advantages, such as
effectively bridging the gap between theory and experiment, enabling generalization across
different setups, and not relying on extensive training datasets.

Beyond the demonstrated success in holography, we firmly believe that the underlying
philosophy of differentiable imaging will lead to significant advancements in imaging with
complex systems or in scenarios that require multiple captures. By either addressing the
theory-experiment gap or developing novel imaging modalities, differentiable imaging has the
potential to revolutionize the field and unlock new possibilities for imaging applications.

4 Method

To showcase the versatility of ∂H and its ability to apply to various scenarios, we initially
present the method in a generalized form in Sections of 4.1 to 4.2. Following that, we offer an
example that incorporates domain-specific parameters, effectively tackling the complexities
associated with field imaging from one single-shot inline hologram in Section 4.3.
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4.1 General problem formulation

We approach holographic imaging as an inverse imaging problem. Unlike traditional compu-
tational imaging methods that employ an imaging forward model as y = f(x) with the objective
of finding f−1(y) → x, we are considering a different approach here. Our approach involves
a forward model f(x,θ) that establishes a relationship between the intensity-only inline holo-
gram y and the target object x, while accounting for various unknown parametric conditions
represented by θ. These conditions may include optical aberrations, the combined impact of
the light source and the sensor on the illumination wave, and other similar factors.

system

target x

light sensor images

Encoding

processing
Decoding

- Wavelength
- Coherence

- Diffraction
- Scattering
- Other physical properties

- Misalignment
- Aberration

- Quantification
- Sensitivity

restore x’
x’

Figure 7. Realistic factors (blue color text represented by θ) in a typical holography system that may affect the
modeling. ∂H models and retrieves some of these parameters.

The inversion of this forward model is achieved by minimizing an error metric with constraints,
defined as (i) a least squares fitting to penalize the deviation of the model from measurement
data (i.e., reality), (ii) regularization terms (soft constraints) to favor desirable properties, and
(iii) hard constraints to guarantee specific physical constraints for the reconstruction to fulfill.
These are collectively written as:

minimize
x, θ

∥f(x,θ)− y∥2 +
N∑

n=1

βnRn(x,θ),

subject to x ∈ Ωx, θ ∈ Ωθ,

(1)

where ∥f(x,θ)−y∥2 ensures the fidelity of the data, Rn(·) is a collection of soft regularizers, βn

are weights, and Ωx,θ are respective physical constraints.
Given a large number of unknowns, the non-linearity of the model, and the non-convexity

of the constraints, solving Eq. (1) is non-trivial and a naı̈ve solver cannot converge in practice.
Based on the modeling, the proposed differentiable holography mitigates these challenges, by
adopting differentiable programming with reverse automatic differentiation [25]. Specifically,
Eq. (1) is solved by projected gradient descent, as shown in Algorithm 1.

Algorithm 1 Differentiable holography solver for Eq. (1).
function Reconstruct object and system parameters(y)

Initialize {x0, θ0}; ▷ Initialization
f0 ← f(·,θ0); ▷ Initialization of the forward imaging model
while not converged do ▷ Iteration

xk+1,θk+1 ← argmin
x, θ

∥fk(x,θ)− y∥2 +
∑N

n=1 βnRn(x,θ); ▷ update with automatic differentiation (section 4.2)

xk+1 ← Ωx(x
k+1), θk+1 ← Ωθ(θ

k+1); ▷ Projection on physical constraints
fk+1 ← f(·, θk+1); ▷ Imaging model update

return {xK , θK}; ▷ At final iteration K

The target x and the system parameters θ are updated by gradient descent, while the deriva-
tives are calculated using backward-mode automatic differentiation, which computes accu-
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rate derivatives of a computer program by operating directly on the parameters of interest.
Complex numbers are treated as mono variables with the conjugate Wirtinger derivative. For
non-differentiable functions, approximate gradients are adapted. The detail is presented in
section 4.2. The physical constraints are employed by projecting the updated parameters to
the physical domain. Regularizers for complex numbers are applied to amplitude and phase,
respectively, as described in section B. We implemented the method in PyTorch, which pro-
vides a dynamic computational graph and allows the forward imaging model to be altered
at run-time, thus allowing for optimizing more than one target. It is important to note that
PyTorch is not the only programming language available for implementation. Other languages
such as TensorFlow [26], JAX [27], or Julia [28] can also be utilized. The selection of a pro-
gramming language largely relies on the user’s preferences, familiarity, and the specific needs
of the problem. A projection adaptive momentum estimation [29] was used as the optimizer.
Compared to compressive holography [5, 6], a more accurate imaging model with system pa-
rameters is modeled instead of an approximated linear model, and the model differentiability
allows versatility in formulating the inverse problem, as well as incorporating plug-and-play
priors and physical constraints, thus enable single-shot complex field imaging.

4.2 Automatic differentiation optimization

Optimization of the unconstrained part in the algorithm of Eq. (1) is achieved by using gradient
descent of the loss function that relies on iterative-refined optimization. This concerns solving
the following sub-optimization problem:

min
x, θ

L(x,θ) = ∥f(x,θ)− y∥2 +
N∑

n=1

βnRn(x,θ), (2)

where at iteration n, given a step size τ , we update xn+1 and θn+1 by
xn+1 ← xn − τ

∂L
∂x

∣∣∣∣
x=xn

,

θn+1 ← θn − τ
∂L
∂θ

∣∣∣∣
θ=θn

.

(3a)

(3b)

To achieve optimization of Eq. (3), gradient descent methods like mirror descent or its vari-
ants can be utilized. In our scenario, we found that the default gradient implementation in
PyTorch, specifically the conjugate Wirtinger derivative, is sufficient for convergence purposes
and offers simplicity. Generally, the analytic expression of

(
∂L
∂x
, ∂L
∂θ

)
is derived by writing an ex-

plicit expression for the error metric L and symbolically differentiating with respect to each of
the input parameters. However, it is tedious and even impossible in our multivariate case, and
the partial derivatives indicate that both x and θ affect the error metric locally. Here we apply
the reverse-mode automatic differentiation [30]. Automatic differentiation takes advantage of
the fact that any computer program, regardless of how complex it may be, executes a series
of basic arithmetic operations (addition, subtraction, multiplication, division, etc.) and basic
functions (exp, log, sin, cos, etc.). Applying the chain rule repeatedly to these operations al-
lows one to automatically compute derivatives of arbitrary order precisely while using at most
a small constant factor more arithmetic operations than the original program. By defining
the loss function as a composition of elementary operators with derivatives, we can compute
the loss function’s derivative by chain rule [31].

Eq. (3a) needs to optimize real-valued loss functions with complex variables, i.e., L(x) : C→
R. Since a non-constant real-valued function of a complex variable is not complex analytic
and, therefore, is not differentiable, a complex-variable function is usually viewed as a func-
tion of the real and imaginary components of the complex variable, which may not satisfy
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the Cauchy–Riemann equations and cannot be addressed by complex differentiation [32, 33].
Besides, the real parametrization leads to a multivariate optimization problem that is two
times larger than the actual size of the medium and ill-posed. We adopt the Wirtinger deriva-
tive [34, 35] and perform a monovarietal optimization in the complex domain. By rewriting a
real differentiable function L(x) as two variable holomorphic function L(x,x∗), where x = a+jb
and x∗ = a− jb, we can simplify the complex variable update formula of Eq. (3a) to only refer
to the conjugate Wirtinger derivative ∂L

∂x∗ as xn+1 = xn − τ ∂L
∂x∗ , where ∂L

∂x∗ = 1
2

(
∂
∂a

+ j ∂
∂b

)
is given

by the classic definition of Wirtinger calculus [36].
Automatic calculation of partial derivatives allows us to modify Eq. (2) in a number of

ways without alternating the optimization framework. Instead of having a complex field, x
could alternatively be a composite function of physical properties such as the refractive index;
The misalignment of the illumination angle in optical diffraction tomography [37] or Fourier
ptychography microscopy [38], or any other imaging system with multiple captures, could also
be considered as system parameters of θ; We may also simply incorporate the forward imaging
model of f(·), which is susceptible to multiple scattering and could complicate the inverse
imaging problem [23, 24, 39]; Additionally, the least square data term and regularization can
be tailored domain-specifically without taking optimization into account. In summary, Eq. (2)
can be constructed as a mix-and-match approach, allowing us to concentrate on problem-
solving rather than optimization techniques.

4.3 The ∂H formulation of complex field imaging problem

Solving Eq. (1) can be challenging in general. Instead, it is more desirable to focus on solving
specific scenarios tailored to match the experimental conditions. In inline holography, the
forward imaging model is greatly affected by factors of the distance the wave travels from
the object to the sensor and the intensity of the illumination. Traditionally, autofocusing
techniques [40, 41] have been used before applying inverse optimization solvers, and intensity
compensation has been achieved by utilizing background images. However, it is crucial to
acknowledge that autofocusing and obtaining appropriate background images may not always
be practical or readily accessible, which presents challenges for conventional hand-crafted
optimization and learning-based methods. In the complex field imaging case where x is a
complex transmittance function, denoted as t, the major factors that affect the forward model
are the illumination amplitude a and the object-camera distance z (auto-focusing). Let θ =
{a, z}, the problem rephrases as follows:

minimize
t, a, z

∥f(a · t, z)− y∥2 + β1Rℓ1(t) + β2RTV(t),

subject to |t| ≤ 1, a > 0, z > 0,
(4)

where f(·) is essentially the free-space wave propagator with a subsequent interference oper-
ator, as defined in Appendix A. The constraint |t| ≤ 1 enforces sparse energy conservation in
the imaging process [42]. The regularizations of ℓ1 normRℓ1(t) and total variation normRTV(t)
are used to favor a sparse and spatially smooth transmittance function. In this specific case,
we devised intricate regularization techniques, detailed in Appendix B.

By implementing the technique mentioned in the previously discussed sections, specifically
from Section 4.1 to Section 4.2, we can successfully tackle the challenging field imaging prob-
lem. However, it is crucial to acknowledge that in addition to the factors depicted in Figure 7,
θ might encompass additional elements to achieve a more realistic imaging formation model
for various imaging objectives.
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Appendices

Appendix A Forward model of inline holography

Let r = (x, y, z) be a three-dimensional vector in space. An illumination reference beam ti(r)
propagates from the light source to the detector camera plane located at the original coor-
dinates. In general, the penetration of a wave through an object is described by a complex
transmission function that consists of amplitude and phase to(r) = e−ao(r)ejϕo(r), where ao(r) de-
scribes object’s absorption property, and ϕo(r) is the phase delay introduced by the object into
the incident reference beam. Suppose ts(r) = e−as(r)ejϕs(r) is the complex transmission function
of the surrounding medium (when there is no object that exists), the transmission function
with the object in the surrounding medium is t(r) = e−(as(r)+ao(r))ej(ϕs(r)+ϕo(r)) = ts(r)to(r), and
t(r) = ti(r)to(r) if the surrounding medium is a vacuum, i.e., ts(r) = ti(r). We assume the
change in irradiance caused by the object is significantly smaller than the illumination of
the beam, and the transmission function of the object can be expressed as 1 + to(r), where 1
corresponds to the transmittance in the absence of the object and to(r) is a complex function
caused by the presence of the object, so we have t(r) = ti(r)(1+ to(r)). The captured hologram,
i.e., the output of the forward model f(·) in Eq. (1), thus is f(·) = |t(r)⊗ h(r)|2, which is a
self-interference of the propagated two-dimensional scalar field t(r) at z = 0, ⊗ is the convolu-
tion operator, and h(r) = 1

2π
z
r
1−jkr
r2

exp(jkr) is the point spread function of the free-space wave
propagation [43]. In the case of ti(r) = Ai(r)e

−jkz being a plane wave, the free-space wave prop-
agation is implemented by the hybrid Taylor-Rayleigh-Sommerfeld diffraction [44], while for
the spherical illumination of ti(r) = Ai(r)

e−jkr

r
, there is a magnification of the hologram defined

by M = zls
zlo

, where zls is the light source to camera sensor distance and zlo is the light source
to object distance [45]. Notably, in contrast to compressive holography [5, 6, 22], despite the
fact that there is no linear approximation in the forward imaging model f(·), we could also
adopt inline holography systems with plane and spherical wave illuminations.

Appendix B Regularization for complex numbers

In section 4.2, we introduced a real-valued loss function with complex variables that we aimed
to optimize. Typically, complex numbers are split into real and imaginary components to
fit into the traditional regularization techniques used for real-only numbers [46]. However,
because the amplitude and phase of the complex field are internally related, we developed a
regularization method that applies to both the amplitude and phase of the complex numbers.
Specifically, we utilized the ℓ1 normRℓ1(t) and total variation normRTV(t) for a complex number
t, as follows:

Rℓ1(t) = Rℓ1(|t|) +Rℓ1(∠t)

= ∥1− |t|∥1 + ∥ sin t∥1,
where Im(·) is the imaginary operator and ∠(·) is the argument of a complex number. For the
amplitude component, we apply the ℓ1 norm to 1 − |t| rather than |t| due to the fact that the
illumination beam is significantly larger than the object area in inline holography systems.
While for the phase component, we apply it to | sin t|, since sin t = Im(exp(j∠t)) contains the
phase component ∠t. Similarly, the isotropic total variant is defined as

RTV(t) = RTV(|t|) +RTV(∠t)

=
∑
k

√
∇k

x|t|2 +∇k
y|t|2 + ϵ2 +

∑
k

√
∇k

x| sin t|2 +∇k
y| sin t|2 + ϵ2, (5)
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where ϵ > 0 is a small number that is used to avoid a staircase effect, ∇k
x,y(·) is a linear operator

that performs the finite difference operator along the x, y directions at the kth pixel location.

Appendix C Numerical verification
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(a) Ground truth complex field (b) The hologram

Figure 8. The complex object (a) and the hologram (b) used in the simulations.

To assess the performance of our approach, we conducted numerical simulations. In these
simulations, we created an image resembling a cell with a specific refractive index. Figure 8(a)
illustrates the amplitude and phase resulting from the object immediately after it. We then
simulated the inline hologram of the cell-like image with a plane wave illumination of a wave-
length centered at 532 nm, and the corresponding holograms located at z =100µm are shown
in Figure 8(b). The camera sensor pixel size was 8µm.
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Figure 9. ∂H reconstruction of the hologram in Figure 8(b).

SSIM NRMSE PSNR

Amplitude 0.9514 0.0330 30.2607

Phase 0.8290 0.1504 29.6130

Table 2. Measurement of the reconstructed images in Fig. 9.

The reconstructed image in Figure 9 faithfully represents the complex field, including both
the amplitude and phase components. To evaluate the quality of this reconstruction, we
analyze the structural similarity index (SSIM), normalized root mean square error (NRMSE),
and peak signal-to-noise ratio (PSNR) values, which are provided in Table 2. These metrics,
computed using the scikit-image library [47], enable a comprehensive comparison between
the reconstructed image and the ground truth.

To showcase the effectiveness of complex regularizations, we perform a reconstruction of
the hologram depicted in Figure 8(b) using real-valued regularizations while maintaining the
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same weights. The reconstructions obtained using Rℓ1 and RTV in the real domain are shown
in Figure 10, and the assessment metrics are presented in Table 3.

Comparing Figure 9 and Table 2 with Figure 10 and Table 3, it is evident that the conven-
tional real-valued regularizations exhibit lower performance when contrasted with the com-
plex regularizations.
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(a) Real Rℓ1
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(b) Real RTV

Figure 10. Simulation with real-valued regularizations.

SSIM NRMSE PSNR

Real Rℓ1

Amplitude 0.6873 0.1719 15.9293

Phase 0.0703 1.2183 11.4466

Real RTV
Amplitude 0.6667 0.1148 19.4327

Phase 0.1070 0.9347 13.7488

Table 3. Measurement of the image reconstructed with real regulations in Fig. 10.
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