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The effects of the electron-phonon interaction on optical excitations can be understood in terms of exciton-
phonon coupling and require a careful treatment in low-dimensional materials with strongly bound excitons or
strong electron-hole interaction in general. Through phonon absorption and emission processes, the optically
accessible excitons are scattered into otherwise optically dark finite-momentum exciton states. We derive a
practical expression for the phonon-induced term of the exciton self-energy (denoted as the exciton-phonon
self-energy) that gives the temperature dependence of the optical transition energies and their lifetime broadening
resulting from the exciton’s interaction with the phonons. We illustrate this theory on a two-dimensional model
and show that our expression for the exciton-phonon self-energy differs qualitatively from previous expressions
found in the literature that neglect the exciton binding or electron-hole correlations.

DOI: 10.1103/PhysRevB.105.085111

I. INTRODUCTION

A wealth of two-dimensional and nanocrystalline mate-
rials with interesting optical properties have been studied
in recent years, including transition-metal dichalcogenides,
layered heterostructures, and halide perovskites [1–7] . In
these systems, the optical excitations lead to the formation of
strongly bound electron-hole pair states known as excitons.
Many of their useful opto-electronic properties (e.g., pho-
tocurrent generation, single-photon emission, etc.) depend on
the scattering dynamics and diffusion of the excitons [8–14] .
This dynamics is governed by several processes: the interac-
tion of excitons with defects, the exciton-exciton interaction,
and the exciton-phonon interaction. In particular, exciton-
phonon coupling effects can be identified by their distinctive
temperature dependence, whether in the exciton mean free
path, lifetimes, or emission spectra [15–17] .

The exciton-phonon coupling mechanism originates from
a combined action of the electron-hole and the electron-
phonon interactions, both of which can be described from
first principles. On the one hand, the electron-hole interaction
underlies the formation of excitons, and can be addressed
with the Bethe-Salpeter equation (BSE) within the ab initio
GW -BSE method [18–25]. This method solves the interact-
ing two-particle problem for an electron and a hole, and
yields the exciton energies and wave functions, which allow
to predict the optical absorption spectra of materials The
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electron-phonon interaction, on the other hand, has largely
been studied within density functional perturbation theory
(DFPT) [26–28], which provides an ab initio description of
the phonon energy spectrum and coupling potential. This
framework has been used to study the effect of phonons
on the band structure and carrier mobility as a function of
temperature [29–31] . Going beyond DFT, electron-electron
correlation effects to the electron self-energy may further be
included at the GW level from ab initio [32] using the GW PT
method [33] in computing the electron-phonon interaction.

Describing the dynamics of photoexcited states from first
principles is a challenging task. Simulations of hot electrons
were achieved by retaining the electron-phonon interaction
only, with the rationale that electrons far from the band edges
would scatter freely without forming bound excitons [34–36]
. It is necessary, however, to include the electron-hole interac-
tion to predict the lifetime of absorption and emission states
when they originate from bound excitons.

An early attempt to compute the temperature-dependent
broadening and renormalization of exciton states was based
on a one-particle picture of the electron-phonon coupling [37].
This scheme has been used to compute the absorption spec-
trum of h-BN and MoS2 at finite temperature [37–39]. In this
approach, the electron-phonon renormalization and broaden-
ing of the band structure is computed before solving the BSE.
This method does not, however, describe correctly the process
where excitons scatter into finite-momentum bound states,
which is necessary to enforce energy conservation. Alterna-
tively, the supercell BSE technique [40–42] does account for
the phonon-mediated interaction between optical excitons and
a limited number of finite-momentum excitons commensurate
to the supercell size. It does so only within a static approxi-
mations, which is valid for nonpolar materials. This approach
predicts the exciton energy renormalization as a function
of temperature, but makes no prediction on the scattering
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lifetime of the excitons. Recent methods formally achieved a
proper description of exciton dynamics with exciton-phonon
scattering amplitude deduced from Fermi’s golden rule using
exciton-phonon coupling matrix elements [43–46] . This ap-
proach enforces energy conservation, and is consistent with
the theory presented in this paper, as well as other methods
derived from many-body perturbation theory [47]. Another
effect of phonons on the exciton binding energies comes from
the lattice screening, and this has been recently computed
from first principles [48,49]

In this work, we develop a general theory of the
exciton-phonon coupling that is amenable to first-principles
calculation. The central object is the exciton-phonon self-
energy (i.e., the contribution to the exciton self-energy due
to exciton-phonon interaction; there are of course contribu-
tions due to other excitations in a system), which yields the
energy renormalization of the exciton states, as well as their
scattering lifetime due to phonons. We apply this theory to
a tight-binding model in two dimensions and discuss how
it differs from other methods. This paper is organized as
follows. Section II reviews the theory of electron-hole and
electron-phonon interactions. Section III presents the exten-
sion of the one-particle theory to the exciton-phonon coupling,
and the main equations for the phonon-induced temperature-
dependent exciton lifetimes and energies. In Sec. IV, we apply
this scheme to a 2D tight-binding model and discuss the
consequences of electron-hole interactions on the scattering
dynamics of two-dimensional systems. The main findings are
summarized in Sec. V. Several mathematical details of the
derivation can be found in Ref. [50].

II. ELECTRON-HOLE AND ELECTRON-PHONON
INTERACTIONS

As a starting point for the treatment of electron-hole and
electron-phonon interactions, we consider a mean-field fixed-
ion Hamiltonian for the electrons H0 = T̂k + V SCF(r), where
T̂k is the kinetic energy operator and V SCF(r) is the self-
consistent field potential. Within the density functional theory
(DFT) framework, V SCF includes the potential of the ions,
the Hartree potential and the exchange-correlation potential.
Solving the one-particle Hamiltonian yields the set of unper-
turbed wave functions φi(r) and energies εi, where the label i
comprises a band index (ni), a wave vector (ki), and eventually
a spin index (σi).

These quantities are used to construct the time-ordered
Green’s function, defined in the one-particle basis and in time
as G0

ii′ (t ) = −i 〈T̂t ci(t )c†
i′ (0)〉0, where c†

i and ci are the electron
creation and annihilation operators, T̂t is Wick’s time-ordering
operator, and “0” indicates here that the expectation value is
taken over a ground state that is not perturbed by the phonons.
The creation and annihilation operators follow the commuta-
tion relations

{ci, c†
i′ } = cic

†
i′ + c†

i′ci = δii′ (1)

and {ci, ci′ } = {c†
i , c†

i′ } = 0. In terms of frequencies, the one-
particle Green’s function writes as

G0
ii′ (ω) = 1

ω − εi ± iη
δii′ , (2)

FIG. 1. Diagramatic representation of the Bethe-Salpeter equa-
tion. The BSE Kernel is expressed as the sum of the bare exchange
Coulomb repulsion (single line) and the screened Coulomb attraction
(double line) between the electron and the hole.

where ±η is an real infinitesimal number with the same sign
as εi, the eigenvalue measured with respect to the chemical
potential.

The electronic energies and wave functions that define the
starting point need not be obtained from DFT; they may also
be obtained from a model hamiltonian or from a many-body
scheme. It is required however to have an effective Hamil-
tonian that depends implicitly on the atomic coordinates and
that can be differentiated with respect to these coordinates to
obtain the dynamical matrix and the electron-phonon coupling
elements. Such a Hamiltonian, for example, may be con-
structed from the self-energy computed in the GW formalism
[33,51,52].

A. Electron-hole interaction

A class of neutral excitations of an insulating system is
composed of an electron being promoted into the conduction
bands and leaving a hole in the valence bands. If the Coulomb
attraction between the electron and the hole is sufficiently
strong, they may form a bound exciton, that is, a bound state
whose excitation energy is smaller than the fundamental band
gap. The procedure to compute the exciton spectrum from the
BSE is described in Ref. [24].

The starting point to describe excitons is the set of inde-
pendent (or noninteracting) electron-hole pairs, typically with
quasiparticle energies from a GW calculation in the ab initio
GW -BSE approach. The corresponding propagator for these
fictitious excitations is

L0
vcv′c′ (ω) = 1

ω − (εc − εv ) + iη
δcc′δvv′ , (3)

where v and c refer to the labeling of occupied (valence band)
and unoccupied (conduction band) states which involve both
band and k-point indices. We call L0 the bare electron-hole
propagator. It is computed with the fixed-ions Hamiltonian,
but the superscript “0” refers to the fact that the electron and
hole propagate freely without interacting with one another.

The BSE relates the bare exciton propagator L to the bare
electron-hole propagator L0 through the kernel K , as depicted
in Fig. 1. The BSE kernel K is composed of an attractive
screened Coulomb interaction between the electron and the
hole, and a repulsive Coulomb exchange term. In practice,
the BSE is solved by diagonalizing an effective two-particle
Hamiltonian:

H2p
vc,v′c′ = (εc − εv )δcc′δvv′ + Kvc,v′c′, (4)
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where Kvc,v′c′ is the static version of the BSE kernel, and
the first term is the sum of the quasiparticle energies of the
electron and hole. This Hamiltonian yields the exciton ener-
gies �S and electron-hole coefficients AS

vc for each exciton
S. The resonant part of the bare exciton propagator in the
quasiparticle basis can thus be written as

Lvcv′c′ (ω) =
∑

S

AS
vcAS∗

v′c′

ω − �S + iη
. (5)

Like the one-particle state indices, the label S comprises a set
of discrete quantum numbers as well as the center-of-mass
momentum of the exciton (qS), which is the wave vector
difference (kc − kv) between the unoccupied and occupied
single-particle orbitals that form the exciton. (The periodicity
of the crystal dictates that all free electron-hole pairs forming
the exciton have the same wave vector difference modulo a
reciprocal lattice vector.) Because of the small momentum
carried by photons, only excitons with qS ≈ 0 are optically ac-
cessible. We will see that finite-momentum excitons (qS �= 0)
are important to describe scattering events by phonons.

Since the AS
vc are eigenfunctions of the two-particle Hamil-

tonian, they form a complete orthonormal basis for the space
spanned by the set of valence and conduction bands used
to construct H2p. We can use these coefficients to transfer
between the vc basis and the S basis. For example, the bare
exciton propagator writes

LSS′ (ω) =
∑

vc,v′c′
AS∗

vc AS′
v′c′Lvcv′c′ (ω) = 1

ω − �S + iη
δSS′ . (6)

The absorption spectrum at zero temperature without
electron-phonon interaction can be constructed from the ex-
citon energies and electron-hole coefficients. It takes the form

ε′′(ω) = 4π2e2

ω2

∑
S

∣∣∣∣∣
∑
vc

AS
vc 〈v| e · v |c〉

∣∣∣∣∣
2

δ(ω − �S ), (7)

where v is the velocity operator, e is the photon’s polarization
vector, and the summation over exciton states is restricted
to zero-momentum excitons. The delta function in Eq. (7) is
typically represented as a Lorentzian function with a certain
broadening. In most past calculations, this broadening was
chosen empirically to reproduce the available experimental
data. The absorption line broadening is in fact related to the
lifetime of the excitons and, as we show, can be computed
from first principles.

B. Lattice dynamics and electron-phonon interaction

The lattice dynamics can be obtained from a self-consistent
calculation of the dynamical matrix of the crystal (�), as
detailed in Ref. [27]. In real space, the dynamical matrix (or
force matrix) corresponds to the second-order derivative of the
total energy with respect to the displacement of two atoms:
�κκ ′

j j′ (Rl − Rl ′ ) = ∇lκ j∇l ′κ ′ j′E , where l labels a unit cell of the
crystal with lattice vector Rl , κ labels an atom in the unit cell,
and j labels a Cartesian direction. The phonon frequencies ωλ

and polarization vectors U λ
κ j , are obtained by diagonalizing

the Fourier transform of � as

Mκω
2
λU λ

κ j =
∑
κ ′, j′

�κκ ′
j j′ (q)U λ

κ ′ j′ (8)

where Mκ is the mass of an atom. The label λ for a phonon
mode comprises a branch index and a wave vector (q or
qλ). The DFPT method allows for the self-consistent calcu-
lation of the first-order derivative of the local potential with
respect to atomic displacements, ∇lκ jV SCF(r). Thanks to the
Hellman-Feynman theorem and the 2n + 1 theorem, only the
first-order derivatives of the potential and density need to be
computed self-consistently in order to construct the dynamical
matrix [53].

The phonon propagator is defined in time as Dqλ(t ) =
−i 〈T̂t Aqλ(t )A−qλ(0)〉0, where Aqλ = a†

qλ + aqλ is the sum of a
phonon creation and annihilation operator. In frequency space,
the phonon propagator writes as

Dλ(ω) = 1

ω − ωλ + iη
− 1

ω + ωλ + iη
. (9)

The electron-phonon interaction stems from the perturba-
tion to the fixed-atoms Hamiltonian created by the phonons. A
thorough discussion of the electron-phonon interaction in the
context of DFT is presented in Refs. [29,54]. Expanding the
Hamiltonian up to second order in the atomic displacements,
the electron-phonon coupling potential writes as

Vep = V (1)
ep + V (2)

ep =
∑
ii′λ

gii′λAλc†
i ci′ +

∑
ii′λλ′

g(2)
ii′λλ′AλAλ′c†

i ci′

(10)

with the first-order electron-phonon coupling matrix elements

gii′λ(k, q) =
√

h̄

2Mωqλ

〈φik+q|∇qλV SCF(r)|φki′ 〉 (11)

and the second-order matrix elements

g(2)
ii′λλ′ (k, q, q′) = h̄

2M
√

ωqλωq′λ′

× 〈φik+q+q′ |1

2
∇qλ∇q′λ′V SCF(r)|φi′k〉. (12)

The derivative of the potential with respect to a phonon mode
is defined as

∇qλV SCF(r) =
∑
lκ j

U λ
κ j (q)eiq·Rl ∇lκ jV

SCF(r). (13)

The wave vectors (k, q) are written explicitly in Eqs. (11)
and (12), but will be omitted in the remainder of the paper
to lighten the notation. Also, to make the units explicit, we
use h̄ = 1 and the mass M, which normalizes the phonon
eigenvectors according to

∑
κ Mκ |U λ

κ |2 = M. It is useful to
assign M the value of the average mass of the atoms of the
unit cell, so that the phonon eigenvectors are on the order of
unity, and the factor 1/M serves as an expansion parameter.
Note that each summation over phonon modes in Eq. (10)
is implicitly normalized by

√
Nq, where Nq is the number of

wave vectors used to sample the Brillouin zone.
The quantity gii′λ is the electron-phonon coupling matrix

element between the one-particle states i and i′ via the phonon
mode λ. Because of crystal momentum selection rule, for gii′λ
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FIG. 2. Dyson equation for the one-particle propagator and the
electron-phonon self-energy, expressed as the sum of the Fan-Migdal
term and the Debye-Waller term.

to be nonzero, we must have ki = ki′ + qλ + G where G is a
reciprocal lattice vector that is nonzero for an Umklapp pro-
cess. For g(2)

ii′λλ′ , at the lowest order of perturbation theory, we
must have ki = ki′ and qλ′ = −qλ for the wave vectors, and
λ′ = λ for the branch indices. In practice, the second-order
electron-phonon coupling matrix elements g(2)

ii′λλ are never
computed explicitly. Their contribution to the self-energy is
approximated in terms of the first-order electron-phonon cou-
pling matrix elements by making use of the acoustic sum rule
and the rigid-ion approximation [55,56].

C. One-particle propagators

We employ the Matsubara formalism to treat the propaga-
tors and self-energies at finite temperature. The propagators
are defined on the imaginary time axis τ = it in the interval
[−β, β] with β = 1/kBT , and are made periodic outside of
this range. The one-particle propagator G is composed of
odd (fermionic) Matsubara frequencies, while the even fre-
quencies compose all bosonic propagators: electron-hole (L0),
exciton (L), and phonon (D).

The interacting Green’s function G can be expanded in
powers of the perturbation as

Gii′ (τ ) = −
∞∑

n=0

(−1)n
∫ β

0
dτ1· · ·

∫ β

0
dτn

× 〈Tτ ci(τ )c†
i′ (0)Vep(τ1) . . .Vep(τn)〉0 (14)

and we adopt the convention that in each expectation value
〈. . . 〉, only distinct and connected diagrams should be retained
[57]. The time-dependent operators are expressed in the inter-
action picture, that is,

ci(τ ) = eτ Ĥ0 ci(0)e−τ Ĥ0 (15)

with the mean field Hamiltonian Ĥ0 = ∑
i εic

†
i ci.

Equation (14) can be cast into a Dyson equation for G,
depicted in Fig. 2, as

Gii′ (ω, T ) = G0
ii′ (ω) +

∑
i1i2

G0
ii1 (ω)�i1i2 (ω, T )Gi2i′ (ω, T )

(16)

which defines the one-particle electron-phonon self-energy �.
The perturbative expansion of G with Eq. (14) yields pow-

ers of V (1)
ep and V (2)

ep , where V (1)
ep appears an even number

of times in each term. The Migdal theorem states that this
expansion can be truncated to the lowest power of 1/M. Since
V (1)

ep is proportional to 1/
√

M and V (2)
ep is proportional to 1/M,

two terms remain in the self-energy after truncation: the Fan-
Migdal (FM) term and the Debye-Waller (DW) term, written
as

�ii′ (ω, T ) = �FM
ii′ (ω, T ) + �DW

ii′ (T ). (17)

The FM term is dynamic (i.e., complex and frequency-
dependent) and stems from the first-order electron-phonon
coupling potential. Its analytic expression is

�FM
ii′ (iωn) =

∑
i′′λ

gii′′λg∗
i′i′′λ

×
[

NB(ωλ)+ f (εi′′ )

iωn − εi′′+ωλ

+NB(ωλ) + 1 − f (εi′′ )

iωn − εi′′ − ωλ

]
,

(18)

where NB(ω) is the Bose-Einstein distribution, and f (ω) is
the Fermi-Dirac distribution, both of which depend implic-
itly on temperature. The self-energy is evaluated on the real
frequency axis with the analytic continuation iωn → ω + iη
where η is an infinitesimal real number that is taken positive
for the retarded Green’s function (for unoccupied states or
electrons) and negative for the advanced Green’s function (for
occupied states or holes).

The Debye-Waller term is static (real and frequency-
independent), and it stems from the second-order electron-
phonon coupling potential. It writes

�DW
ii′ =

∑
λ

g(2)
ii′λλ[2NB(ωλ) + 1]. (19)

The self-energy allows for the mixing of electronic states
through the off-diagonal components of the self-energy (i �=
i′). This mixing is only possible among states with the same
crystal momentum (ki = ki′ ). If the bands are well-separated
in energy, one may use only the diagonal elements of the self-
energy to obtain the renormalization of the bands as

εi + �εi(T ) = εi + Re�ii(εi, T ) (20)

and in general, �εi(0) �= 0. Correspondingly, the inverse life-
time of the electronic state is

τ−1
i (T ) = 2|Im�ii(εi, T )|. (21)

In Eqs. (20) and (21), the temperature renormalization and
lifetime is computed in the on-the-mass-shell limit, that is,
by evaluating the self-energy at the bare energy, rather than
the renormalized energy. This is the preferred approach for
phonon perturbations, as it gives results in good agreement
with a self-consistent calculation of the self-energy [58].

III. EXCITON-PHONON SELF-ENERGY: SELF-ENERGY
OF EXCITONS FROM COUPLING TO PHONONS

We seek similar expressions for the exciton energy (�S)
and lifetime (τS) due to coupling to phonons that would allow
one to compute absorption spectra at zero and finite temper-
ature through Eq. (7). The phonon-induced corrections will
be given by the diagonal components of the exciton-phonon
self-energy (�SS) to be discussed below, namely,

�S + ��S (T ) = �S + Re�SS (�S, T ) (22)
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for the exciton energies, and

τ−1
S (T ) = 2|Im�SS (�S, T )| (23)

for the inverse lifetime of the excitons, that is, the absorption
line broadening.

The expression for the exciton-phonon self-energy is ob-
tained by considering the interacting exciton propagator (�)
defined as

�vc,v′c′ (τ ) = −
∞∑

n=0

(−1)n
∫ β

0
dτ1· · ·

∫ β

0
dτn × 〈Tτ cc(τ+)

× c†
v (τ )cv′ (0+)c†

c′ (0)Ĥ1(τ1) . . . Ĥ1(τn)〉0, (24)

where τ+ is a time infinitesimally larger than τ , and the
interaction term Ĥ1(τ ) is the sum of the static electron-hole

interaction kernel K̂ and the electron-phonon coupling poten-
tial V̂ep. Equation (24) reduces to the BSE if V̂ep = 0.

The exciton-phonon self-energy connects the interacting
exciton propagator � to the bare exciton propagator L (with-
out electron-phonon interaction) in the Dyson-like equation:

�SS′ (ω, T ) = LSS′ (ω) +
∑
S1S2

LSS1 (ω)�S1S2 (ω, T )�S2S′ (ω, T ).

(25)
In order to express the exciton-phonon self-energy in an an-
alytic form, it is useful to first consider the case without the
electron-hole interaction.

A. Independent electron-hole-pair-phonon self-energy

We define �0 as the electron-hole propagator with the
electron-phonon interaction, but without the electron-hole in-
teraction, calling it the independent electron-hole-pair-phonon
(IEHPP) propagator, given by

�0
vc,v′c′ (τ ) = −

∞∑
n=0

(−1)n
∫ β

0
dτ1· · ·

∫ β

0
dτn〈Tτ cc(τ+)c†

v (τ )cv′ (0+)c†
c′ (0)V̂ep(τ1) . . . V̂ep(τn)〉0. (26)

The corresponding IEHPP self-energy �0 is defined through
the Dyson equation

�0
vc,v′c′ (ω, T ) = L0

vc,v′c′ (ω) +
∑

v1c1v2c2

× L0
vc,v1c1

(ω)�0
v1c1v2c2

(ω, T )�0
v2c2,v′c′ (ω, T ),

(27)

which is depicted in Fig. 3.
A detailed derivation of �0 is provided in Ref. [50].

Throughout this derivation, we assume the existence of a band
gap that does not allow for a significant density of thermal
carriers at the temperature of interest, which is typically room
temperature, where Eg � kBT .

The different contributions to the IEHPP self-energy are
grouped in three terms, according to the topology of the dia-
grams depicted in Fig. 4

�0
vcv′c′ (ω, T ) = �0FM

vcv′c′ (ω, T ) + �0X

vcv′c′ (ω, T ) + �0DW

vcv′c′ (T ).
(28)

FIG. 3. The Dyson equation for the IEHPP �0 involving the
IEHPP self-energy �0 (without electron-hole interactions), and the
Dyson equation for the interacting exciton propagator � involving
the exciton-phonon self-energy �.

The Fan-Migdal term is further split in two contributions: the
dynamic term (FMd) and the static term (FMs),

�0FM

vcv′c′ (ω, T ) = �0FMd

vcv′c′ (ω, T ) + �0FMs

vcv′c′ (T ). (29)

The dynamic FM term describes the propagation of an
electron-hole pair being temporarily knocked into a different
electron-hole state while absorbing/emitting a phonon. Either
the hole scatters into another valence state of different mo-
mentum, or the electron scatters into another conduction state.

FIG. 4. The different contributions to the IEHPP self-energy �0,
corresponding to a free electron-hole pair interacting with phonons.
Contributions on the right-hand side of the equation are the Fan-
Migdal terms (first line), the phonon exchange terms (second line),
and the Debye-Waller terms (third line).
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Its diagrammatic expression is given by

�0FMd

vcv′c′ (iωn) = − 1

β

∑
m

∑
λ

∑
v′′c′′

Dλ(iωm)L0
v′′c′′v′′c′′ (iωm + iωn)[gv′v′′λg∗

vv′′λδcc′′δc′′c′ + gcc′′λg∗
c′c′′λδvv′′δv′′v′]. (30)

Performing the convolution of the bare electron-hole propagator L0 with the phonon propagator D, we obtain the analytic
expression

�0FMd

vcv′c′ (iωn) =
∑

λ

∑
c′′

gcc′′λg∗
c′c′′λδvv′

[
NB(ωλ) − NB(εc′′ − εv )

iωn − (εc′′ − εv ) + ωλ

+ NB(ωλ) + 1 + NB(εc′′ − εv )

iωn − (εc′′ − εv ) − ωλ

]

+
∑
v′′

gv′v′′λg∗
vv′′λδcc′

[
NB(ωλ) − NB(εc − εv′′ )

iωn − (εc − εv′′ ) + ωλ

+ NB(ωλ) + 1 + NB(εc − εv′′ )

iωn − (εc − εv′′ ) − ωλ

]
(31)

and one can safely assume that NB(εc − εv, T )  NB(ωλ, T ). The static FM term has the same topology as the dynamic FM
term. It is given by

�0FMs

vcv′c′ = 1

β

∑
m

∑
λ

∑
v′′c′′

Dλ(iωm)L0
v′′c′′v′′c′′ (iωm)

[
gv′c′′λg∗

vc′′λδcc′
1

2
(δvv′′ + δv′′v′ ) + gcv′′λg∗

c′v′′λδvv′
1

2
(δcc′′ + δc′′c′ )

]
(32)

and its analytic expression is

�0FMs

vcv′c′ =
∑

λ

δvv′
∑
v′′

gcv′′λg∗
c′v′′λS

[
NB(ωλ) + 1 + NB(εc − εv′′ )

(εc − εv′′ ) + ωλ

+ NB(ωλ) − NB(εc − εv′′ )

(εc − εv′′ ) − ωλ

]

+ δcc′
∑

c′′
gv′c′′λg∗

vc′′λS

[
NB(ωλ) + 1 + NB(εc′′ − εv )

(εc′′ − εv ) + ωλ

+ NB(ωλ) − NB(εc′′ − εv )

(εc′′ − εv ) − ωλ

]
, (33)

where the symbol S means that the terms in brackets should be symmetrized with the substitution v, c ↔ v′, c′ and a factor
of 1/2. The static FM term includes transitions that cannot be described as an intermediate electron-hole pair, such as the hole
being coupled to a conduction band state or the electron being coupled to a valence band state. These transitions are only virtual,
in the sense that they do not conserve energy and do not contribute to the imaginary part of the self-energy.

The next set of diagrams are the phonon exchange (X) term, defined as

�0X

vcv′c′ (iωn) =
∑

λ

gc′cλg∗
v′vλ

1

β

∑
m

[
L0

vc′,vc′ (iωn + iωm) + L0
v′c,v′c(iωn + iωm)

]
Dλ(iωm). (34)

The analytic expression for this term is

�0X

vcv′c′ (iωn) = −
∑

λ

gcc′λg∗
vv′λ

{[
NB(ωλ) − NB(εc − εv′ )

iωn − (εc − εv′ ) + ωλ

+ NB(ωλ) + 1 + NB(εc − εv′ )

iωn − (εc − εv′ ) − ωλ

]

+
[

NB(ωλ) − NB(εc′ − εv )

iωn − (εc′ − εv ) + ωλ

+ NB(ωλ) + 1 + NB(εc′ − εv )

iωn − (εc′ − εv ) − ωλ

]}
. (35)

In this process, the electron emits a phonon that is being
absorbed later on by the hole, or vice-versa. This term is
exclusively off-diagonal, since the electron and the hole ex-
change momentum and are being scattered into different
states. It will be nonzero only when kv′ = kv + qλ + G and
kc′ = kc + qλ + G.

Finally, the Debye-Waller contribution to �0 is simply the
second-order interaction of the electron and the hole with the
phonon modes, giving

�0DW

vcv′c′ =
∑

λ

(2NB(ωλ) + 1)
[
g(2)

cc′λλδvv′ − g(2)
v′vλλδcc′

]
. (36)

Consider a noninteracting electron-hole excited state with
energy εc − εv . We can show that the diagonal component of
the IEHPP self-energy for this state is

�0
vcvc(εc − εv ) =�cc(εc) − �vv (εv ). (37)

This is the expected result. Without the electron-hole inter-
action, the corrections to the optical excitations are simply

given by the electron-phonon interaction corrections to the
one-particle energies that make up the transitions. Since the
imaginary part of the self-energy has opposite signs for elec-
trons and holes, we also have that∣∣Im�0

vcvc(εc − εv )
∣∣ =|Im�cc(εc)| + |Im�vv (εv )|. (38)

The broadening of a noninteracting electron-hole transition is
thus the sum of the broadenings of the one-particle states.

B. Exciton-phonon self-energy

The exciton-phonon self-energy � is obtained by expand-
ing the interacting exciton propagator � in the bare exciton
basis as

�SS′ (τ ) = −
∞∑

n=0

(−1)n
∫ β

0
dτ1· · ·

∫ β

0
dτn

× 〈Tτ cS (τ )c†
S′ (0)V̂ep(τ1) . . . V̂ep(τn)〉0

+ �nonexcitonic
SS′ (τ ), (39)
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where the last term regroups all the “nonexcitonic” diagrams
and will be discussed further below. In this formulation, the
electron-hole interaction is already included in L (the bare
exciton propagator without considering coupling of the exci-
ton to phonons), and one needs to expand the perturbation in
powers of Vep only. The solution is thus analogous to the one-
particle case, i.e., considering an exciton as a single particle
interacting with the phonons. The physical motivation for this
formulation is that the two kind of processes occur on different
time scales. The electron-hole interaction is much faster than
the electron-phonon interaction, since the plasmon frequency
is much larger than the typical phonon frequency.

We define the exciton annihilation operator as

cS =
∑
vc

AS∗
vc c†

vcc (40)

with the coefficient AS from solving the BSE, and we treat
these excitations as bosons. This treatment is not exact, since
the Bose commutation relations are not exactly fulfilled by
the operators in Eq. (40). However, in the low exciton density
limit [59], we can take

[cS, c†
S′ ] = cSc†

S′ − c†
S′cS = δSS′ . (41)

The bare exciton propagator is diagonal in the exciton basis
and is formally defined as

LSS′ (τ ) = −〈cS (τ )c†
S′ (0)〉2p0 (42)

where the subscript 2p0 refers to the ground state of a Hamil-
tonian that includes electron-hole interactions through the
BSE kernel but does not include electron-phonon interactions.
In this picture, the time dependence of the operators is given
by

cS (τ ) = eτ Ĥ2p
cS (0)e−τ Ĥ2p

(43)

with the two-particle Hamiltonian Ĥ2p = ∑
S �Sc†

ScS . The
perturbation terms Vep = V (1)

ep + V (2)
ep appearing in Eq. (39)

may be expressed in the exciton basis as

V (1)
ep =

∑
SS′λ

gSS′λAλc†
ScS′ (44)

and

V (2)
ep =

∑
SS′λλ′

g(2)
SS′λλ′AλAλ′c†

ScS′ . (45)

Here, as defined above, Aλ is a sum of a phonon cre-
ation and annihilation operator, (not to be confused with the
electron-hole coefficients AS

vc). The first- and second-order
exciton-phonon coupling matrix elements are the transi-
tion amplitude between two exciton states mediated by the
electron-phonon coupling potential, e.g.,

gSS′λ = 〈S|
(∑

ii′
gii′λc†

i ci′

)
|S′〉 =

∑
ii′

gii′λ 〈cSc†
i ci′c

†
S′ 〉 . (46)

Using Eqs. (40) and (1) to simplify the expectation values and
discarding terms like δSS′

∑
gvvλ which produce disconnected

diagrams, we arrive at the expressions

gSS′λ =
∑

vc,v′c′
AS∗

vc AS′
v′c′[gcc′λδvv′ − gv′vλδcc′] (47)

and

g(2)
SS′λλ =

∑
vc,v′c′

AS∗
vc AS′

v′c′
[
g(2)

cc′λλδvv′ − g(2)
v′vλλδcc′

]
. (48)

Momentum conservation dictates that qS = qS′ + qλ for gSS′λ
to be nonzero, while qS′ = qS for g(2)

SS′λλ. It is worth writing
explicitly all the wave vectors in these expressions. For an
exciton S′ with center-of-mass momentum qS′ = Q and an
exciton S with center-of-mass momentum qS = Q + q, the
first-order matrix element writes as

gSS′λ(Q, q) =
∑
vcc′k

ASQ+q∗
vck AS′Q

vc′kgcc′λ(k + Q, q)

−
∑
vv′ck

ASQ+q∗
vck AS′Q

v′ck+qgv′vλ(k, q), (49)

where ASQ
vck is the coefficient of the exciton envelope function

in k space for a hole at k and an electron at k + Q. We note
that (Q, q) are not Fourier components of the matrix element;
they are momentum information in fact that is contained in
the quantum numbers S and S′. Here we use a somewhat
redundant notations to draw out the physics of center-of-mass
momentum conservation of the excitons. The second-order
matrix elements between two exciton states with the same
momentum Q are

g(2)
SS′λλ(Q, q) =

∑
vcv′c′k

ASQ∗
vck AS′Q

v′c′k

× [
g(2)

cc′λλ(k, q,−q)δvv′−g(2)
v′vλλ(k, q,−q)δcc′

]
.

(50)

Note that the second-order matrix elements do not transfer
momentum between the exciton states, even when q �= 0.

We may now compute the self-energy from Eq. (39). Some
of the diagrams using quasiparticle (electron/hole) basis for
the exciton-phonon self-energy up to second order in electron-
phonon coupling are illustrated in Fig. 5. The Debye-Waller
diagram coming from the second-order matrix element is

�DW
SS′ =

∑
λ

g(2)
SS′λλ[2NB(ωλ) + 1]. (51)

This is the same result as for the case without electron-hole
interactions, meaning that, using the basis transformation rule
of Eq. (6), we find �DW

SS′ = �0DW

SS′ .
The first-order coupling matrix elements yield the Fan-

Migdal term. In the perturbative expansion of �, the first term
of Eq. (39) produces only the dynamic part of the FM term,
since only this part can be expressed in terms of gSS′λ. It is
given by

�FMd
SS′ (iωn) = − 1

β

∑
mλS′′

gSS′′λg∗
S′S′′λDλ(iωm)LS′′S′′ (iωm + iωn)

(52)

with the analytic expression

�FMd
SS′ (iωn) =

∑
λ

∑
S′′

gSS′′λg∗
S′S′′λ

[
NB(ωλ) − NB(�S′′ )

iωn − �S′′+ωλ

+ NB(ωλ) + 1 + NB(�S′′ )

iωn − �S′′ − ωλ

]
. (53)
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FIG. 5. Some of the diagrams contributing to the exciton-phonon
self-energy (�) in the quasiparticle basis. This series contains all
the diagrams with one or many Coulomb interaction lines (wavy
lines) between the phonon vertices, in addition to the diagrams of the
IEHPP self-energy (�0). Diagrams consisting of a phonon exchange
line and Coulomb interaction lines are present in this series, but are
not depicted.

We can verify that in the limit where the electron-hole inter-
action vanishes, that is, when each exciton is composed of a
single electronic transition, Eq. (53) reduces to Eq. (31).

In the exciton basis, the phonon exchange term does not
need to be added; it is included in the dynamic FM term. This
term arises from the cross terms between valence-to-valence
and conduction-to-conduction bands coupling when squaring
Eq. (47). Since the exciton states mix several electronic tran-
sitions across the Brillouin zone, the phonon exchange term
does contribute to the diagonal elements of �.

All other diagrams of � in which the scattered state
cannot be projected onto the exciton basis are contained in
�nonexcitonic. One such diagram is obtained from the static FM
term. Therefore we complete the interacting FM self-energy
by adding the static FM term of Eq.(33) so that

�FM
SS′ (iωn) = �FMd

SS′ (iωn) + �FMs
SS′ (54)

with �FMs
SS′ = �0FMs

SS′ . Using the noninteracting static FM term
here is an approximation. Since the static FM term is com-
posed of virtual transitions across the band gap, the relative
error induced by this approximation is at most on the order of
ES

b /Eg, where ES
b is the binding energy of the exciton.

As formulated, in practical implementation, there will be
an additional term in the self-energy, which contributes to
�nonexcitonic. Most of the time, the basis of valence and con-
duction bands used to expand the exciton wave functions is
not complete; only a subset of the bands are used. Moreover,
one typically doesn’t compute all the possible excitons states,
but only the first few solutions of the BSE with the lowest
eigenvalues. Therefore there will be a missing contribution to
�FMd, which we call the completion term, written as �C. Since
the missing contribution involves high-energy states, this term

can be computed by taking these states as free electron-hole
pairs. One can construct �C from the expression of �0, where
the intermediate states v′′ and c′′ are projected outside of the
basis of excitons that were computed. An example of this
procedure is given in Sec. IV.

Collecting all terms, the final expression for the exciton-
phonon self-energy reads

�SS′ (ω, T ) = �FMd
SS′ (ω, T )+�FMs

SS′ (T ) + �DW
SS′ (T )

+�C
SS′ (ω, T ). (55)

Thus, � contains all the diagrams of �0 but with addition
of the electron-hole interaction diagrams, as shown in Fig. 5.
Note that �C

SS′ is complex and frequency-dependent, but its
imaginary part is nonzero only at frequencies far from the
bare exciton energy, and its real part varies smoothly near the
exciton energy. Hence, near the exciton energy (�S) we may
consider that only the dynamic Fan-Migdal term contributes
to the imaginary part of the self-energy, which is

Im�SS′ (ω, T ) = −π
∑

λ

∑
S′′

gSS′′λg∗
S′S′′λ[(NB(ωλ, T )

−NB(�S′′ , T ))δ(ω − �S′′ + ωλ)

+(NB(ωλ, T ) + 1

+NB(�S′′ , T ))δ(ω − �S′′ − ωλ)]. (56)

The temperature renormalization of the exciton energies and
their lifetime can finally be computed according to Eqs. (22)
and (23).

C. Approximate expressions

Since the excitation energies are usually much larger than
the phonon frequencies, it is a safe approximation to use the
fact that NB(�S, T )  NB(ωλ, T ) and write for the diagonal
part of the self energy

�FMd
SS (ω, T ) =

∑
λ

∑
S′′

|gSS′′λ|2
[

NB(ωλ, T )

ω − �S′′ + ωλ + iη

+ NB(ωλ, T ) + 1

ω − �S′′ − ωλ + iη

]
. (57)

Let us compare the full exciton-phonon self-energy with
approximate expressions found in literature. We first de-
fine the “uncorrelated exciton” (UE) approximation to the
exciton-phonon self-energy:

�UE
SS =

∑
vc

∣∣AS
vc

∣∣2
�0

vcvc(εc−εv )=
∑
vc

∣∣AS
vc

∣∣2
[�c(εc)−�v (εv )].

(58)

This approach is equivalent to the one used in previous studies
[37–39]. Several approximations have been made between
Eqs. (55) and (58). First, the UE self-energy is constructed
using the independent electron-hole-pair-phonon propagator
(IEHPP). Then, only the diagonal elements of �0 are used
when transforming from the one-particle basis to the exci-
ton basis. Finally, the self-energy is being evaluated at the
noninteracting transition energies. The uncorrelated exciton
approximation reduces tremendously the computational effort
needed to obtain the self-energy, since the knowledge of the
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finite-momentum exciton states is no longer required. How-
ever, it does not yield accurate results for the lifetime of bound
excitons, as we show in the next section.

In this approximation, the uncorrelated exciton is just a
wave packet composed of electron-hole pairs that do not in-

teract with each other and hence there is no binding energy.
This becomes apparent when looking at the imaginary part
of the self-energy. Using Eq. (31), the imaginary part of �UE

S
writes as

Im�UE
SS = −π

∑
λ

∑
vc

∣∣AS
vc

∣∣2

{∑
c′′

|gcc′′λ|2
[
(NB(ωλ) + f (εc′′ ))δ(εc − εc′′ + ωλ)

+ (NB(ωλ) + 1 − f (εc′′ ))δ(εc − εc′′ − ωλ)
] +

∑
v′′

|gvv′′λ|2
[
(NB(ωλ) + f (εv′′ ))δ(εv − εv′′ + ωλ)

+ (NB(ωλ) + 1 − f (εv′′ ))δ(εv − εv′′ − ωλ)
]}

. (59)

Compare this expression with Eq. (56), where the scattering
occurs between exciton states. This very drastic approxima-
tion in past studies creates a qualitative difference in the
physics of the exciton in the low temperature limit, where
NB(ωλ, T ) → 0. For the lowest bound exciton, from Eq. (56),
no states are available for scattering through phonon emission.
Hence, the electron-phonon interaction does not contribute
to its inverse lifetime. The physical lifetime of this exciton
comes from other processes, such as radiative recombination
or scattering by impurities [60]. In the UE approximation
however, scattering events still occur because the binding
energy of the initial and final states are ignored, and the lowest
bound exciton has an unphysical lifetime at zero temperature.

For the temperature-dependent energy shift of the excitonic
peaks, the accuracy of the UE approximation is unknown at
this point. In the following section, we gain some intuition on
this matter by computing the self-energy in a model system.

IV. APPLICATION TO A MODEL SYSTEM

To illustrate the theory, we present a two-band model in
two dimensions, and compute the energy and lifetime of
optical excitations as a function of temperature. We use the
triangular lattice exciton model proposed by D. Gunlycke
and F. Tseng [61], which mimics the spin-dependent band
dispersion of transition metal dichalcogenides near the K and
K ′ valleys and yields realistic exciton binding energies. The
main equations are reported below, and we refer the reader to
Ref. [61] for further details of this model.

A. One-particle and two-particle Hamiltonians

The one-particle tight-binding Hamiltonian is
H = ∑

nσ Hnσ with

Hnσ =
∑
R,δ

tnσδc
†
nσR+δ

cnσR +
∑

R

εnc†
nσRcnσR, (60)

where c†
nσR and cnσR are creation and destruction operators for

an electron in the nth orbital on the lattice site R with spin σ .
The first term describes the hopping between a site and one

of its six closest neighbours, where δ is the lattice vector from
one site to the other. The hopping amplitude is composed of
a spatial amplitude tn and a spin-orbit coupling parameter t̃n

according to

tnσδ = tn + 4iσ t̃n sin(K · δ), (61)

where σ = ±1/2 and K is one corner of the 2D hexagonal
Brillouin zone. The second term of Eq. (60) is diagonal in
lattice site, with εn being the on-site parameters. The solutions
for the one-particle energies at wave vector k are

εnσk = εn +
∑

δ

tnσδe
−ik·δ. (62)

In order for this Hamiltonian to reproduce the main
features of typical transition metal dichalcogenides for the va-
lence (v) and conduction (c) band, the parameters are chosen
by imposing that the band structure has a band gap Eg located
at the K and K ′ valleys, with band effective masses m∗ and
a splitting � between different spin bands. The on-site and
hopping parameters are thus

εc = 3t + Eg, tc = t, t̃c = 0,

εv = −3t − �/2, tv = −t, t̃v = �/18

with t = 2h̄2/3m∗a2 and a is the lattice constant. The resulting
band structure is shown in Fig. 6(a) with the parameters m∗ =
0.49, a = 3.13 Bohr, Eg = 2.5 eV, and � = 425 meV. Each
spin channel admits one valence band and one conduction
band. The two spin channels are degenerate for the conduction
band, while for the valence band, the splitting of the up and
down spins due to spin-orbit coupling reaches a maximum at
the K and K ′ points in the Brillouin zone.

The BSE Hamiltonian, which yields the exciton bands,
is made of two terms: the kinetic energy, and the Coulomb
interaction between the electron and the hole. Transla-
tional symmetry implies that the exciton states possess a
well-defined center-of-mass momentum Q, and the BSE
Hamiltonian writes

HσQ =
∑
R,δ

TσQδb
†
σR+δ

bσR +
∑

R

(εc − εv − V (R))b†
σRbσR

(63)

where b†
σR creates an electron at Re = R with spin σ , and

a hole at Rh = 0 with spin −σ , meaning that no spin-flip
occurs in this process. The BSE hopping parameter carries the
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FIG. 6. (a) Two-band model electronic structure for the different
spin states |↑〉 (orange) and |↓〉 (blue). (b) Exciton band structure for
the different spin states |↑↓〉 (orange) and |↓↑〉 (blue). The filled
regions represent the continuum of excited states. [(c)–(f)] Real-
space wave function |AS (R, Q)|2 of the first four optically accessible
excitons (S = 1 − 4, Q = �).

information on the exciton momentum, and writes

TσQδ = tcσδe
−iQ·δ/2 − tvσδe

iQ·δ/2. (64)

Together, the on-site terms that involve εc and εv and the hop-
ping term form the kinetic energy component of the excitons.
In this model, the Coulomb interaction term is simply taken to
be

V (R) =
{
�v0 (R = 0)

e2

4πεR (R �= 0)
, (65)

where ε is the dielectric constant of the medium and �v0 is
the difference between the screened Coulomb interaction and
the bare exchange integral at R = 0, which we set to �v0 =
1.6 eV. Note that, for this model, the spin degrees of freedom
do not mix, and at �, both spin channels are equivalent and
can be interpreted as singlet exciton states. In what follows,
we will assume that the phonons are nonmagnetic and cannot
flip the spin. The index σ will thus be omitted.

Due to the sparse nature of a Hamiltonian with nearest-
neighbour hopping, the BSE can be solved efficiently in real
space for all Q vectors. Solving the BSE yields the exciton
energies �QS and wave functions in real space AS (R, Q).
Their Fourier transform give the electron-hole coefficients
AS (k, Q). Note that, within this model, it is not necessary to
specify the one-particle band indices for these coefficients,
since there is only a single valence band and conduction
band.

The exciton band structure is shown in Fig. 6(b). The
binding energy of the first four optical excitons is between 100

and 500 meV, and their wave function in real space is depicted
in Figs. 6(c)–6(f).

B. Exciton-phonon coupling

We model the lattice vibration spectrum as a single
dispersionless phonon band with frequency ω0. The electron-
phonon coupling strength is also taken to be independent of
the phonon wave vector, and we use a single parameter g
to represent intra-band coupling (gcc′ = gvv′ = g; gcv = 0).
For simplicity of notation, we write the intra-band coupling
constants as gc and gv . In the present calculation, we set
ω0 = 50 meV and g = 250 meV.

The IEHPP self-energy for a hole at k and an electron at
k + � is diagonal in k indices and is given by

�0
�k(ω, T ) =

∑
q

�0
�k,q(ω, T ) =

∑
q

×
[ |gc|2P±(T )

ω − (εk+qc − εkv ) ± ω0 + iη

+ |gv|2P±(T )

ω − (εkc − εk−qv ) ± ω0 + iη

]
, (66)

where P+(T ) = NB(ω0, T ) and P−(T ) = NB(ω0, T ) + 1 cor-
respond to phonon absorption and emission channels, respec-
tively, and both channels must be added. In the exciton basis,
�0 is nondiagonal in the indices S, S′, but remains diagonal
in the wave vector Q. Here, we consider only the optical
excitons, and we use ��S to denote the diagonal elements of
�. The IEHPP self-energy in the exciton basis is

�0
�S (ω, T ) =

∑
q

�0
�S,q(ω, T )

=
∑

q

∑
k

|AS (k, �)|2�0
�k,q(ω, T ) (67)

and we have introduced the symbols �0
�k,q and �0

�S,q to
denote an individual q-point’s contribution to the IEHPP self-
energy. The exciton-phonon coupling matrix elements are

gSS′ (Q, q) =
∑

k

AS∗(k, Q + q)AS′
(k, Q)gc

− AS∗(k, Q + q)AS′
(k + q, Q)gv (68)

and the exciton self-energy is given by

��S (ω, T ) =
∑

q

N∑
S′

|gSS′ (�, q)|2P±(T )

ω − �qS′ ± ω0 + iη
. (69)

In general, the completion term for the self-energy contains
the contribution of the valence and conduction bands excluded
from the two-particle basis, as well as the contribution of the
exciton states that are not explicitly computed. Within this
model, all the electron bands are included in the basis, but only
the first N exciton bands are computed. The completion term
thus corresponds to the contribution of the remaining exciton
states (S′ > N). We express the completion term in the form
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FIG. 7. [(a) and (b)] Convergence of the imaginary part of the
self-energy with respect to the number of q-points for the lowest two
excitons (S = 1, 2). q grids are increasing (right to left) from 6 × 6
to 96 × 96, for different broadening parameter η. (c) Temperature
dependence of the optical excitation energies (solid line) and their
line broadening (filled color). The dash lines indicate the bare exciton
energies, without electron-phonon coupling.

[50]

�C
�S (ω, T ) =

∑
q

(
1 − ζ̃�S (q)

ζ�S (q)

)
�0

�S,q(ω, T ), (70)

where we define the partial sum

ζ̃�S (q) =
N∑

S′=1

|gSS′ (�, q)|2 (71)

and the corresponding summation over all exciton states can
be obtained with the sum rule

ζ�S (q) =
∑

S′
|gSS′ (�, q)|2

= |gc|2 + |gv|2 − 2g∗
vgc

∑
k

AS∗(k + q, �)AS (k, �).

(72)

The ratio ζ̃�S (q)/ζ�S (q) thus describes how much the first N
excitons probe the space of available states at wave vector q
for the exciton �S to couple with.

C. Results and discussion

Figures 7(a) and 7(b) presents the q-space convergence
of the imaginary part of the exciton-phonon self-energy. The
use of a finite value for the infinitesimal parameter η eases

FIG. 8. Real (solid lines) and imaginary part (dashed lines) of the
exciton-phonon self-energy with (black) and without (blue) electron-
hole interaction. The height of the filled region is the contribution of
the completion term to the interacting self-energy.

the convergence with respect to the number of q points, but
also introduces an arbitrarily small error in the lifetimes. For
the first optical exciton (S = 1 in the exciton labeling), the
inverse lifetime due to phonons is known to be zero at T = 0,
since this exciton cannot scatter into a lower energy states by
phonon emission. The finite value obtained for Im�S with a
converged q grid thus indicates the magnitude of the error. A
value of η = 10 meV yields an error smaller than 3 meV for
the self-energy, and we use this value for the following com-
putations of �. For the second optical exciton state (S = 2),
we conclude that a 48 × 48 q grid is well converged. The
temperature-dependent energy shift and the spectral width for
the seven lowest exciton states are presented in Fig. 7(c).
The lowest exciton state, having the largest binding energy,
consequently has a longer lifetime than the others at all tem-
peratures.

Figure 8 presents the frequency-dependent self-energy for
the second lowest bound exciton. The height of the shaded
area represents the completion term, which accounts for a
large fraction of the real part of � at all frequencies. Near
the S = 2 exciton energy (�S = 2.4 eV), the imaginary part
of �0 doesn’t have any structure, since, without electron-hole
interactions, the electron-hole pairs lie above the band gap.
However, the presence of bound excitons with finite crystal
momentum near � and K allow the optical excitons to scatter
and diffuse, confering a finite value to the imaginary part
of �. Just as the electron-hole interaction binds the excitons
below the band gap, it also moves the spectral weight of the
self-energy towards lower frequencies.

Let us now evaluate the accuracy of previously used ap-
proximate expressions for the real and imaginary parts of
the self-energy. The uncorrelated exciton approximation of
Eq. (58) corresponds to writing

�UE
�S =

∑
k

|AS (k, �)|2�0
�k(εkc − εkv ). (73)

Unlike the full exciton-phonon self-energy, this expression
only requires the computation of the exciton’s wave function
for the state �S. Figure 9 compares the real and imagi-
nary parts of �UE to those of �. The uncorrelated exciton
approximation overestimates the inverse lifetime (broaden-
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FIG. 9. Comparison between the exciton-phonon self-energy
(black discs) and an approximate expression (blue circles) for the
first four bright excitons. (a) Energy shift. (b) Inverse lifetime.

ing) by an order or magnitude. For the phonon-induced
energy shift ��S , the overestimation of the negative shift
(renormalization) for theseven lowest optical excitons is about
20% to 40%.

The combined effect of electron-hole and electron-phonon
interactions is summarized in Fig. 10, which shows the
exciton propagator for the lowest bound exciton as the
electron-hole and electron-phonon interactions are switched
on separately (L, �0) or simultaneously (�). In all cases,
the imaginary part of the self-energy of the particles due to
electron-electron interaction is neglected. An artificial broad-
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FIG. 10. Spectral function (imaginary part of the propagator) for
the first bright exciton at T = 0 computed with the model hamilto-
nian at different levels of theory (in all cases, the imaginary part of
the self-energy of the particle due to electron-electron interaction is
neglected): noninteracting (gray), electron-hole interaction only (or-
ange), electron-phonon interaction only (blue), and both interactions
(black).

ening parameter (η = 5 meV) is used to represent the bare
exciton propagator (L), which would otherwise be infinitely
sharp around the exciton energy �S because of the neglect of
the lifetime of the particles due to electron-electron interac-
tion. The function L0(ω) illustrates the spectral decomposition
of L into electron-hole pairs. The spiky features in L0 are an
artifact of the finite k-points sampling used, and the function
can be made smooth by using a larger broadening parameter
η. Turning on the electron-phonon interaction broadens these
features, as can be seen by comparing L0 with �0. The exciton
propagator in the presence of the phonons field (�) is red-
shifted with respect to the bare exciton propagator (L), and a
satellite peak appears above the exciton peak in �.

V. CONCLUSION

In summary, we have derived a rigorous expression for
the exciton-phonon coupling self-energy to lowest order
in the electron-phonon interaction and in the limit of low
exciton density. Through the exciton-phonon coupling ma-
trix elements, the optically accessible excitons may scatter
into optically dark finite-momentum exciton states, resulting
in an energy renormalization and a finite lifetime for the
optical excitations. Our expressions takes into account the
electron-hole interaction, and improve upon approximate ex-
pressions found in the literature by naturally enforcing energy
conservation.

We implemented this theory on a two-dimensional two-
band model and computed the temperature-dependent energy
shift and lifetimes of the optical excitons. This model al-
lowed us to compare our exciton-phonon self-energy with
an approximate expression which we call the uncorrelated
exciton (UE) approximation. We showed that the previously
used approximation overestimates the inverse lifetime by
an order of magnitude, making this approximation unre-
liable. We conclude that, in physical systems with strong
electron-hole interaction such as low-dimensional materials,
it is necessary to use the exact exciton-phonon coupling the-
ory to compute accurately the lifetime of optical excitations.
The UE approximation also overestimates the temperature-
dependent shift of the energy of the excitons by 20%–40%
in our two-band model. We interpret this result as an upper
bound for the error induced by this approximation in realistic
systems.

The scheme developed in this paper readily applies to the
study of exciton diffusion dynamics. A main challenge in
applying this theory is the computation of finite-momentum
excitons energies and wave functions. While such calculation
has been demonstrated, a full sampling of the Brillouin zone
remains computationally expensive and would benefit from
interpolation techniques [62–64].
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