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ABSTRACT

This report is concerned with the problem of elastic-plastic bending of
circular plates with axi-symmetric loading and support conditions. Incremental
theory of plasticity with von Mises yield condition, and associated flow rule
together with the Kirchhoffean small deformation theory of plates have been
adopted. Finite element type of approach using direct stiffness method of
matrix analysis of structures was employed. An annular plate is taken as the
primary element which is subdivided along its depth into a2 number of layers.
The material properties are assigned to each laver, and stiffness matrix of
the element has been established. Loadings are applied in increments.
Examples of simply supported and clamped circular plates made of elastic-
perfectly plastic as well as elastic-plastic with isotropic strain hardening
materials are given. Other support conditions and material properties can
be treated. The effect of change of material properties within each increment

of loading, number of elements, and number of layers have been studied.



INTRODUCTION

The application of the incremental (flow).theory of plasticity in the
solution of structural problems, particularly those related to plates and
shells, has caused many mathematical difficulties. The closed form solutions
have been obtained for a very few simple problems such as thick wall cylinder,
wedge, and torsional shaft* made of nonhardening materials with one or at
most two parameter loading. Further restrictions, such as incompressibility,
have been occasionally imposed to simplify the solution. No general approach
to the solution of this class of problems exists so far. Each solution re-
quires a special mathematical treatment and researcher’s ingenuity.

A significant amount of literature is devoted to the development of the
constitutive laws of plasticity both in micro and macro scales. The foundation
of the theory is not as yet firmly established and further research will be
needed in the future.

However, due to the great demand in the design of lightweight structures
to achieve economical designs and the most realisitic appraisal of the
behavior, the best available theories have been semployed in the analysis.
Several approaches have been pursued.

During the last decade considerable attention has been given to the so-
called limit analysis approach. The bounds of the collapse load, in the sense

of small deflection theory, have been obtained for a number of problems.

* See for example: Prager and Hodge, "Theory of Perfectly Plastic Solidsy"
John Wiley, N.Y., 1951.



Lower and upper bound theorems were employed in attaining the collapse load.
In order to apply these theorems, the materials should exhibit considerable
deformation under constant load such as in the case of mild steel. Although
1imit analysis turned out to be fruitful in the analysis of rigidly connected
frames where strength is the controlling factor in the design, it generally
does not lead to any physically significant results in plates and shells. This
is essentially so because of a favorable change in geometrical configuration
during loading which brings the membrane forces into action.

A number of solutions are also available for large deformation, for which
the elasgtic deformation is quite negligible compared to the unrecoverable
component of deformation. These are particularly applicable in the metal
processing.

The attempt to solve the problems, utilizing the total or deformation
theory of plasticity has not yet been completely abandoned. In spite of its
mathematical incomsistency and physical unsoundness, in general, it can be
used satisfactorily if the stress path in the process of loading can be
predicted beforehand.

For those problems where the plastic deformation sets in with a small
change in geometry a more realistic solution which takes elastic as well as
plastic deformation into account should be sought. This will enable a better
prediction of deflection and stress distribution than the one using elastic

theory.



At the present time, the use of digital computer in the solution of plas-—
ticity problems appears to be very fruitful. It is quite feasible to antici-
pate that in near future many important problems will be solved with the aid
of a computer. The improvement of numerical techniques reduces the numerical
errors and thus inpreases the reliability of the results.

This report is concerned with the analysis of circular plates under arbit-
rary axisymmetric loading. The support conditions are axially symmetric, but,
otherwise, they can be specified arbitrarily. The examples are given for
clamped and simply supported solid plates. By the proposed approach, the
problem of overhanging or annular plates also can be handled without much
difficulty. The plate may be connected with other structures such as circular
cylinders or rotational shells, and the developed method can be used to
determine the redistribution of stresses at junctures due to plastic deformation.
The material properties used in the proposed analysis can be completely arbit-
rary. This can be specified from experimental data or any valid analytical
expressions. To illustrate the method, elastic-perfectly plastic and elastic~
plastic isotropic strain hardening materials were employed. Any other laws or
experimental data can be specified as desired.

The procedures discussed here make use of incremental law which enables
one to trace the loading history. The internal forces and deflections can
be determined at any stage of loading. The solution is restricted to small
deformation so that deflection remains small in comparison to the thickness.

In other words, the influence of membrane stresses which may be developed as



the result of deformation is not accounted for. Shear distortion is also
neglected in conformity with the conventional Kirchhoff's hypothesis which
asserts that a straight fiber perpendicular to the middle plsne remzains
straight, unstretched, and perpendicular to the deflected state of the middle
surface after deformation.

The plate is divided into a number of annular elements. Each element is
further sub~-divided into a number of layers along its depth. The material
properties were assigned to each layer at every stage of loading. Direct
stiffness method of matrix analysis of structures was used.

The effect of the change of number of elements and layers as well as the
influence of variation of material properties within each increment of loading
were studied.

All computations were carried out by IBM 7090-7094 digital computer
available at the Computer Center of the University of California, Berkeley,

using FORTRAN IV language.



I. REVIEW OF PREVIOUS WORK

The problem of behavior of axi-symmetrically loaded and supported circular
plates loaded beyond elastic limit has attracted the attention of a number of
investigators, because of the apparent simplicity of the problem and the vast
number of applications. A brief review of some of the work; utilizing
deformation theory of plasticity, limit analysis, and incremental theory of
plasticity together with the results of some of the experimental investigations

which have been published so far follows.,

1.1 Plate Bending Using Deformation Theory of Plasticity

The Heneky type deformation theory of plasticity together with Huber-
Mises yield condition was used by Sokolovsky 1944 [1,2] in the solution of
bending of circular plates. Kirchhoff's hypothesis and small deflection
theory were employed. The problem of simply supported plate under uniform
and axisymmetrical partial uniform load which contains as its extreme case
concentrated load at the center was solved. The material is considered to be
elastic-perfectly plastic and the scheme to solve for material with strain
hardening was also indicated.

Bending of circular and annular plates with variable thickness have
been discussed by Grigoriev [3]. Dvorak 1959 [4] discussed an annular plate
which is subjected to a ring load at outer boundary and has a simply supported

inner boundary.



The problem of circular plates clamped around the boundary and subjected
to uniform and partial circulsr uniform load was solved by Ohashi and Murakami
[5] 1964. The material is considered to be non~hardening and obeys von Mises'

yield condition.

1.2 Limit Analysis

The extension of the theorems of 1limit analysis* encouraged many authors
to apply them to the problems of plates and shells.

The early attempt to apply limit analysis theorems to obtain the collapse
load of circular plates was made by Pell and Prager in 1951 [6]. The materials
were considered to obey von Mises' yield condition. A simply supported plate
subjected to uniformly distributed load was discussed, the bounds of the collapse
load were established, and an approximate value for the load-carrying capacity
was suggested. Hopkins and Prager in 1953 [7] discussed the problem for
materials obeying Tresca's yield condition. Simply supported and clamped
plates subjected to certain simple types of axially symmetric loading were
treated. The exact collapse loads were obtained. Drucker and Hopkins in 1954
[8] extended the work to the case of large and small overhang. Hopkins and
Wang in 1955 [9] compared the collapse loads obtained by utilizing Mises,
Tresca, and parabolic yield conditions for both simply and built-in supports.

It is interesting to note that the ultimate load derived by Sokolovsky in

1944 [1] using deformation theory of plasticity agrees closely with the collapse

*Drucker, D.C., Prager, W., and Greenberg, H.J., "Extended Limit Design
Theorems for Continuous Media.'' Quart. Applied Math. Vol. 9, No. 4, Jan.
1952, pp. 381-389.



load obtained using limit analysis theorems. Finally, a set of charts for the
design of circular plates under axially symmetric loading was compiled by Hu
in 1960 [11].

The generalization of the collapse load of circular plate under con-
centrated load for plates of arbitrary shape was made by Schumann in 1953 [12]
and also for variable fixity by Zaid in 1958 [13]. It was found that for
materials obeying Tresca's yield condition (regardless of shape and end fixity)
the limit load is equal to 2xn times the unit yield moment.

The load carrying capacities of annular plates with either fixed or
simply supported edge conditions were discussed by Chernina in 1958 [14].
Tresca's yield condition was utilized. The case of simply supported edge
conditions was later corrected by Hodge in 1959 [15].

Attention was also directed towards the minimum weight design of circular
plates, utilizing limit analysis methed. References [16] through [20] can be
cited here. 1In 1964 an analog model was devised by Marcal and Prager [21]
and applied to a c¢ircular plate problem.

Limit analysis was also employed to obtain tke collapse load of cir-
cular plates made of initially anisotropic materials., Iun 1956 Sawczuk [22]
discussed a solid plate with either simple or fixed boundary subjected to
uniform load. The materials of plates were considered to be cylindrically
orthotropic, obeying the modified Tresca’'s yield condition which has
different platic ;oduli in two perpendicular directions. Non-homogeneity has

also been discussed in this paper. Hu 1953 [23] studied the similar problem;



and a series of design charts were constructed for ultimate design of circular
plates under axisymmetric loading by Markowitz and Hu in 1964 [24]. Mura et
al (1964) [25] extended the work for materials obeying the yield criterion
suggested by Hill, which reduces to the Mises yield criterion for isotropic
materials.

The problem of interaction of in plane tension and bending in annular
plates was discussed in 1960 by Hodge et al [26], and bounds on the interaction
curve were established for various inner edge support conditions.

In 1963 Sawczuk et al [27] studied the effect of transverse shear on
the plastic bending of simply supported circular plates. Kirchhoff's hypothesis
was modified to allow for transverse shear deformation. Both Tresca’'s and
Mises' yield conditions and their associated flow rules were employed. Collapse
loads were calculated for plates under uniform load over central area.

Finally, linear programming was also used to obtain the collapse load
of plate problems [28]. Examples of simply supported and clamped circular
plates under uniform load are given.

Detailed discussions of some of the above solutions can be found in books

by Hodge, 1961 [29], and 1963 [30], and Sawczuk and Jaeger, 1963, [31].

1.3 Rigid~-Work Hardening Materials

The use of piece-wise linear yield conditions and associated flow rules

were suggested by Prager 1955 [34] and Hodge* for the solution of work-

*Hodge, Jr., P.G., "The Theory of Piecewise Linear Isotropic Plasticityy"
Deformation and Flow of Solids, Collog. Madrid, Sept. 1955, Edited by
R. Grammel, Springer.
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hardening problems. It allows total stress-strain laws to be used in the small,
at the same time rétaining the characteristic features of incremental laws in
the large. As indicated by Hodge [35], the plastic flow rules can be explicitly
integrated under restrictive conditions, defined as a "regular progression."
That is, the stress point may not move from one side to another, from one
corner to a side, or back into the elastic zone. This imposes a serious re-
striction which does not allow it to be used for problems such as clamped
plates.

As an example Prager [34] presented the analysis of a simply supported
circular plate subjected to a uniformly distributed transverse load. Tresca
yield condition together with the linear kinematic hardening was used. The
same problem was discussed by Boyce 1956 [32] using a piecewise yield condition
which approximates that of Mises'. Later he extended the solution to a
partially clamped plate [36]. 1In 1955 Fason {[33] discussed the problem of
plates under a concentrated load.

The concept of linear, isotropic strain hardening was employed by Hodge
(1957) {35] in the solution of an infinite annular plate. Tresca yield
condition was employed and the annulus was assumed to be simply supported at
its inner edge and free at infinity. It was subjected to a slowly incressing
moment applied to its inner edge. The loading process was divided into four

stages, of which the fourth stage deviates from the regular progression,.
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Perrone and Hodge (1959) [37] derived two sets of strain hardening flow
laws based on kinematic hardening for circular plates made of an initially
Tresca material. These laws, called complete and direct hardening, differ in
the point where the plane stress assumption is introduced. The solutions of
finite as well as infinite annular plates and simply supported circular plates,
using the derived laws, are reported. The results were compared for complete,
direct, and isotropic hardening.

Hwang (1959) [38] treated the problem of simply supported circular
plates under uniform load. Mises yield condition and associated flow rule
together with the isotropic strain hardening were employed. Numerical inte-
gration was used to solve the set of non-linear differential equations.

Finally, in 1963, Chzhu-Khua [39] wusing Trescs yield condition and
linear strain hardening , presented the solution of plate under partially

uniform load.

1.4 Elastic-Plastic Analysis Utilizing Incremental Theory of Plasticity

An early attempt to estimate the deflections of circular plates made
of elastic-plastic materials using incremental theory of plasticity was
made by Haythornthwaite in 1954 [40]. The yield condition of Tresca and
associated flow rule were employed. The key assumption was made that at any
point on the plate the entire thickness was either fully elastic or fully
plastic. An annular plate simply supported at the outer edge and clamped
to a centrally loaded rigid disc at the inner edge was analyzed. The

results obtained were compared with experiment.
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Gaydon et al (1956) [41] discussed the problem of circular plate under
a uniform moment around its edge. Mises yield condition and its associated
flow rule were assumed to be valid.

Olszak et al (1957) [42], 1958 [44], [45] treated the elastic-plastic
bending of non-homogeneous orthotropic circular plates. The material was
assumed to exhibit no strain hardening and to obey the generalized Mises'
yvield condition. The general moment-curvature relations were derived by
ordinary plate theory. A restriction that the principal curvatures progress
proportionally was later introduced to make the expressions more tractable.
Limitation is similar to that of "proportional loading.' The authors report
that if we require the continuity of stress at the elastic-plastic boundary,
it is not possible, in general, to satisfy the normality rule which is a
consequence of Drucker's postulate of stability. On the other hand, utilizing
the associated flow rule, it is not possible, in general, to attain the
continuity of stresses.

The analysis of a clamped circular plate made of incompressible elastic-
perfectly plastic materials obeying Tresca's yield condition and the associated
flow rule was discussed in 1957 by Tekinalp [43]. An assumption that any
plate element is either entirely elastic or entirely plastic was made. This
is strictly valid for a sandwich plate.

Eason (1961) [46] discussed the problem of simply supported plate under
partial uniform load. The von Mises yield condition and the corresponding

flow rule were assumed for the elastic-perfectly plastic material of the plate.
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The stress field was obtained, but the velocity field was derived for the
limiting case of concentrated load. A comparison has been made with solutions
obtained utilizing the Tresca yield condition. 1t is reported that the stress
distribution is relatively insensitive to the change of yield condition, but
the plastic zone is expected to be sensitive to the yield condition. Moreover,
the behavior of uniformly loaded plate is more sensitive to the variation of
yield condition than that subjected to concentrated load.

Analysis of centrally clamped annular sandwich plates under uniform loads
was made by French in 1964 [47], utilizing Tresca's yield condition. The plate
behavior has been traced from zero to the collapse load, and three phases of
loading are considered after initial yield. Collapse pressure is given
graphically as a function of the ratio of inner to outer radii.

In 1964, Lackman [48] presented az method for the analysis of axi-
symmetrically loaded circular plates. The method makes use of an analogy
between plastic strain gradients and transverse loads. The Prandtl-Reuss
equations together with the von Mises' yield condition and isotropic hardening
were employed. An example is given for a simply supported circular plate

under uniform load.

1.5 Experiments on Circular Plates

Experiments other than the ones mentioned earlier to check the
theoretical results have also been published. In 1954 Cooper and Shifrin

[49] presented the results of nine simply supported mild steel circular plates
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under concentric uniformly distributed load. Comparison was made with limit
loads obtained by Hopkins and Prager [7]. Similar kinds of tests were per-
formed by Dyrbye et al (1954) [50], Haythornthwaite (1954) [51], and Foulkes
et al (1955) [52] on either clamped or simply supported plates.

Correlation of experimentsl evidence with collapse load using limit
analysis turned out to be unsatisfactory.

Haythornthwaite and Onat 1955 [53] reported the test results of steel
plates undexr reversed loading. It was observed that although the limit load

is often of little physical significance for a monotonically increasing load,

it becomes a measure of the minimum load carrying capacity in reversed loading.

This question still needs further investigation.

Lance and Onat 1962 [54] reported additional experiments on mild steel
plates under uniform and partial load over a small circular central region.
Comparison with collapse load in the sense of limit analysis re-affirmed the
previous results. Etching patterns and mill-scale flaking patterns were also

studied in this report.
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I1. ELASTIC-PLASTIC ANALYSIS OF CIRCULAR PLATES

2.1 Foreword

For the purpose of analysis, the plate is divided into a number of
annular elements, which are further subdivided into a number of layers along
their depths. The primary objective is to establish the stiffness matrix of
an annular element for a typical increment of loading. The assemblage of these
annuli can be eas%}y accomplished using direct stiffness method of matrix
analysis of structures. A modified analysis will also be given for a central
circular disc element for solutions of solid plates. Loadings are applied at
circular nodes where two consecutive elements meet. Both tributary area
approach and consistent equivalent nodal ring load method were employed to
convert the transverse load applied within the elements to the nodal ring
loads. Possibility of loading as well as unloading is included in the
analysis of each load increment.

The following relations were established for a typical loading increment.
Notations will be described as they first appear, and they are also collected

at the end for reference.

2.2 Equilibrium Equations

By adopting the sign convention for positive quantities as shown in

Fig. 1, the eguilibrium of the increments of moments and transverse forces for



16

3k
the case of axisymmetric loading are as follows

d A Mr 1
I —_— M o V =
—— s S (AM -AM) +AQ=0 (2.1)
d A 1 .
SEL L1 aq=apin (2.2)

Eliminating AQ between equations (2.1) and (2.2), we get

d2 A M d A M d A M
r g

1
+ 7 ( 2 a7 - Jr ) + Ap(r) =0 {(2.3)

Note that the symbol A indicates a finite increment.

AMr, and AMQ are increments of radial and tangential moments per unit
length.

MNQ 1is increment of radial transverse shear per unit length.

2.3 Strain-Displacement Relations

In accordance with small deformation theory and the assumption that
plane section normal to refsrence plane before deformaticn remains so after,
the strain-displacement relations in the absence of in-plasne forces ars

expressed as follows

* See for example, Timoshenko and Wolnowsky-Kriegsr, “Theory of Plates and
Shells," 2nd Edition, pp. 51-53, McGraw-Hill, 1959.
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where:
Aer, AEQ are radial and tangential strain increments, respectively.
Akr, Akg are measures of radial and tangential deformations which are
only functions of r. =z is a coordinate distance measured positive downward

from the reference plane.
For axi-symmetric deformation, and neglecting shear distortion, that is
assuming plane section normal to the reference plane before deformation remains

normal to its deformed state, the following relations hold¥*

2
d Aw
[A k. T 2 (2.5)
= { ar >
Nk 1 d2ow
e —
r dr

where A kr' VAN ke are now the increments of curvature of the reference surface,
and A w is transyerse deflection increment which is taken to be positive in

the direction of transverse load application.

2.4 Stress-Strain Relations

A constitutive relation for an elastic-plastic solid should include the
state of stress and strain as well as their rates in order to account for the
history dependence. As has been mentioned by some authors, an attempt to

express the various properties of elastic-plastic solids by mesns of a single

* Ibid
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mathematical model can be hardly achieved. Within the framework of a
phenomenological approach, the attempt has been made both to construct the
general theories to be adequate for describing the phenomena occurring beyond
the elastic limit, and to formulate it in a manner suitable for practical
applications. Because of non-linearity and irreversibility of the deformation
processes, even fhe simplest model is generally too complicated to apply.

In order to establish constitutive relations for plastic solids three
ingredients -- yield condition, flow law, and hardening rule ~-- must be
defined. A number of surveys regarding the constitutive laws of plasticity
have been published. The discussion here will be limited to those which are
closely related to the laws chosen to demonstrate the proposed method of plate
analysis. The general theories will not be discussed. The reader, however,
is referred to references [55] through [62] for details of recent progress in
this area.

Prandtl-Reuss theory is most widely used to describe elastic-plastic
deformation. The materials, here, are considered to be time independent and
initially free from residual stresses. 1In addition, the process is considered
to be isothermal and the deformation small. Following Prandtl-Reuss theory,
strain tensor 1is assumed to consist of two components: elastic or recoverable
and plastic or permanent.

E P .
=€ .+ e, i j =1,2,3 (2.6)

or

d €., =d €, + d €, (2.7)
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where superscripts E and P designate elastic and plastic components, respect-
ively. Some authors, instead, have preferred to use the rate of strain
d e

. i3
€5 Ta¢

and similarly rates of stress and displacement. Since,
however, it has been already assumed that the material behavior, and con-
sequently its constitutive relations, are time independent, the latter notation
seems to be unnecessary. This avoids a possible confusion with viscosity, and
its use is abandoned here.

The elastic component of strain is related to stress through the

generalized Hooke's law

= i,J = 2.3 2.8
d Eij Cijkﬁ d Tkz i,j,k,4 1,2, ( )

which in the case of isotropic materials becomes

dik 6ij (2.8b)

o
m
1l
Q.
=3
1
=<

Here, the repeated indices imply summstion.

In order to establish relations between the plastic component of strain,
and the state of stress; the existence of the plastic potential, and the
validity of normality rule at a regular point on the yield surface are

generally assumed, that is

de..p=d€,‘ = d¢ ST ;€. = 0 (2.9)
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where,

is the yield condition, and

e =c . -~
- 3

ij 1j “kk %ij

is the deviatoric strain tensor.
¢ is a non-negative function which may depend on stress, stress rate,
strain, and history of loading.

K is a work-hardening parameter.

The condition of loading, neutral loading, or unloading is distinguished

by whether, %% d Ti, is greater, equal, or smaller than zero, respectively.
ij J

Drucker* suggested
of ; . (2.10)

d® = G d
STkZ ki
where G is independent of the stress rate.

2.4.1 Elastic~Perfectly Plastic Solids

Since the plastic deformation can be assumed to occur without a change

p

of volume, i.e., Eii = 0 , expression (2.7) can be re-written as follows
E p © K
dE..=de..+de,,=de,h+d¢é£———
1] 1] 1] ij OTij'

*Drucker, D.C., 'A Definition of Stable Inelastic Material,” J. Appl.
Mech., Vol. 26, pp. 101-161, 1959.
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Assuming the materials obey the Mises yield condition

2
f=J,-% =0 (2.12)
where
1
J_ = = s
2 2 SlJ ij
is the second invariant of stress deviator, and
1
= - - 7T
S5 %53 T3 Txk Pij
where k, the yield stress in simple shear is k = j:—-ay, where Oy is yield
3
stress in uniaxial tension. Using these definitions,
of
= 8 2.13
o1, . ij ¢ )
1)
For isotropic elasstic material the Hooke's law in terms of stress and
strain deviators is expressed as
E 1
= = . 2.14
eij 2p SiJ ( )
or
E
de. . = L d s, . (2.15)
ij 21 ij

Where, p is the shear modulus.

Substitutions of (2.13) and (2.15) into (2.11) yields

. L ds, + s . do (2.16)
ij 21 ij ij
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Considering that

df =s,.ds,, =20 (2.17)
1] 1

multiplying (2.18) by Sij’ and summing, we obtain

s de. . == W.+s.‘s..d¢:2k2d¢
ij ij 2u i ij ij ij
s, d elJ (2.18)
d¢ = 5
2 k
Substituting (2.18) into (2.186) and traunsposing, we get
d s =2u (de - s s de (2.19)
ij = ¢ 13 75 2 ke i L :

The hydrostatic state of stress, of the order of yield stress, does not

produce yielding; and it is related to volumetric strain through elastic law

Tkk = (3xn + 2w €1k (2.20)

or

d Tkk = (3 n + 2u) d ekk (2.21)

where ) and p are Lamé constants.
1
Multiplying (2.21) by 3 aij and adding it to (2.19), and by considering
the relations between stress or strain tensor with its deviatoric components,

we obtain

: 2
d = 2 d - e 2.22
Tij udeij + A ok Bij 2k2 Sip Sij d€kg ( )
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Note that:
s. de =s (de. -~ 1 oge 5 )y = s de
ks k4 kf kg 3 mm kg kg kg (2.23)
Finally,
d 1., = E,, .de ; idr} = [E] {de} (2.24)
+d 13kt Tkl 9x1 9x9 9x1
where
E =210 5. & iaB LB - s (2.25)
ijke = “* Pik 5 1 ke T o2 Si3 ke :

» and u can be expressed in terms of Young's modulus E and Poisson's ratio as

VE S :

» (1xv) (1-2v) * * 7 2+ (2.26)
Substitution of (2.26) into (2.25), gives
E v 1
e 5 . o+ - R 2.27
Biske = Tov ik %5 " Tav Pig Cws RS Sy (2.27)

Generalized Plane Stress

The general expression (2.24) can be specialized for the state of plane

stress. For this purpose assume that T13=0, dTiB:O, where i = 1,2,3 and
further that d€13 = d€23=0, and
dT de + E de, =0, Y,b= 1,2.

33 = Bazvs 9%ys 3333 " °33
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Then
-~ E
d €33 = - EBBY6 de s (2.28)
3333
= a:‘:

d Tag ECM6 d €y ¥ EaBBS d €,, where ,B= 1,2 (2.29

Substitution of (2.28) into (2.29) gives

d T, =E d a ,5 = 1,2 2.30

ag = Taprs ¢ Srs BT (2.30)

and

= Eoprs Bazzs ~ Zopas Piars

prs = E (2.31)

3333

For the principal directions of stress increment, where the principal
directions of stresses do not change during loading, the basic relation for

the generalized plane stress can be written down as

d 7y, Bl Bil122 €
J f _ ) _ < f (2.32)
d Ty Eoan1 Eoona d €59
or symbolically as {dT} = [E] id e}

2x1 2x2 2x1
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Where

s 2
- 22
Ellll - s 2 + 8 2 + 2V s s

11 22 11 22
: _ 3 . °11 "2z
1122 ~ 2211 2 i s 2 L oV
®11 22 ®11 S22

2 (2.33)
- 11
E = E

2

2222 s + 8 + 2V s 8

11 22 11 22

In this case,

T..) (2.34)

(Tyy - 11

(T - 92

11

—
'
w
|
wibko
Dt

n
!
Wik
DOt~
N
o

11~

Note that the [E] matrix in (2.32) is singular. This is also true in the
general case of (2.24). This follows from the fact that the stress increments

d Tij are linearly dependent as can be seen from (2.17), since

s..ds,. =s,.,dT, ,6 =20 (2.35)
1] 1] 1] 1]

Therefore, we can only specify strain increments and solve for the
stress increments; however, the reverse is not possible. This is obvious
for a uniaxial stress condition for a perfectly plastic solid by noting its

stress-strain diagram.
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The expression (2.24) is valid for loading when

of
d = d = 0 2.
5‘{_; Tij Sij Tij ( 36)

That is when the point in the stress space moves on the yield surface

or stays on it. Stated otherwise,

(L (2) (2.37)

But, if

of
B—'L‘-:;dTJ‘J <0

unloading takes place, and instead of (2.24) the Hooke's law must be used, i.e.,

/

1 v d
47 €11

= (2.38)

22 22

It is interesting to note, that for a strain increment vector, which
is in the direction of normal to the yield surface, the stress increment
vector vanishes. Therefore, if for a stress point located on the yield
surface, we resolve the strain increment vector into two components -- tangent
and perpendicular to the yield surface, see Fig. 2 ~- it is only necessary to

retain the tangential component in the computation of stress increment. Hence,
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oy

ﬁ\d T} = [E] ide} = [E] {deT} + [E) §deN}

{a 7} =[8] {ac'} (2:39)

This property is preserved for the generalized plane stress case dis-
cussed earlier. In this case both {d1} and {deT} are tangent to the
yield curve. This indicates that the transformation [E] only stretches

adET} with a proper scale.

The stress-strain relations (2.32) are strictly true for infinitesimal
increments. Here i1t is necessary to establish relations for finite increments.
Thus, the infinitesimal increments are to be integrated within a small interval.
Prager [34] and Hodge* suggested the concept of piecewise linear yield condition.
It enables one to integrate stress-strain relations locally while preserving
the incremental characteristics in the total. Another approach has been
employed here.

The equations (2.32) essentially specify an initial value problem. For
a finite increment of strain, the stress increment should move along the yield
curve as from A to C shown in Fig. 3. By following a tangent at A, one reaches
an incorrect point B. However, by projecting point B back to the yield curve
point C is located. This point C is taken as the new state of stress from
which the next step in calculations is made. 1In Fig. 3 the locations of points
B and C are greatly exaggerated and the result of example I, Fig. 14 indicates

that for a relatively small increment of stress the distance between such

*See footnote on pp. 9.
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points are small. Therefore the error committed in this process is not very
significant. As the first approximation the initial state of stress in each
increment can be used to determine the [E] matrix. Iteration procedures or
the techniques of numerical integration such as the Runge-Kutia or Euler's
modified method*was employed to compare the results found with the first
approximation,

A difficulty arises in the transition zone, when the point initially
located inside the yield surface reaches the surface during the increment of
loading. In this process the associated deformaticn contains a purely elastic
part. During deformastion the point moves elastically within the yield surface
until it just touches the surface. When the point reaches the yield surface
the plastic part of the deformation occurs. If the total defcrmation produced
during an increment of loading is given, equation {(2.38) can be used to
determine the corresponding stress increment. Depending on the relative dis-
tance of the initial and final state of stress with respect to the yield
curve, point D and E, of Fig. 3, the point closer to the vield surface, point
E in this figure, is chosen for a radial approximation. The intersection of
the radius vectorﬂwith the yvield surface, F in Fig. 3 is taken as the point
of the initiation of yielding. Strain increment associated with DF is obtained
using (2.38). It is subtracted from the given strain increment to find the

strain associated with the elastic-plastic deformation. The remainder of

the procedure fcllows as before.

* See for example Collatz, L., "The Numerical Treatment of Differential
Equations." pp. 53-61, Springer-Verlag, 1960.
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2.4.2 Elastic-Plastic Strain Hardening Solids

From the observations of the behavior of hardening materials in uni-
axial and biaxial tests, it is known that during plastic deformation the
yield surface is continuously changing in size and shape.

Isotropic hardening (see Fig. 4a), which at higher stresses exhibits
uniform expansion of the initial yield surface, is the most widely used law
to describe hardening. Thus, the yield surface for initiaslly isotropic

materials depends on a single parameter K and may be written as

£=g(J,, J) -k=0 (2.40)

where J2, J3 are the second and third invariants of stress deviator, and K
is the hardening parameter which describes the strain history. Two measures
of hardening for K are frequently used. The first approach suggests that

the degree of hardening is a function only of the total plastic work, and is

otherwise independent of the strain path.

NI A [r..d¢€ F (2.41)

p ij iJ
where Wp is positive definite, since plastic deformation is an irreversible

process. The second approach states that the so~-called eguivalent plastic

strain increment

d e P (2.42)

3
i
o
L
O,
M
e
Q.
(M

* Hill, R., 'The Mathematical Theory of Plasticity,’ pp. 23-33, Oxford,
Clarendon Press, 1950.
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sk
integrated over the strain path provides 3 measure of the plastic deformation .

That is
K:ﬁ(fd%p),

3
As pointed out by Hill the above two concepts are equivalent for the

materials obeying'von Mises yield condition. Hill's remark was later

sk
generalized by Bland , showing that for any g to be a homogeneous polynomial
of degree n, and have regular regimes of yield surface, the above property
holds true, if, and only if, g is linear or quadratic function in the
principal components of stress. Certain restrictions on the coefficients are
imposed in the quadratic case.

For proportional loading, if the strasin ratios remain constant, (2.43)

can be integrated

1/2
eP-f gecP - V2 [P <Py (2.442)
3 ij ij
K=k (€D (2.44b)
*okok
Expression (2.44b) was checked by some investigators , with the experimental
results, where the stress ratios were not constant. In the tests on mild

steel and annealed copper, agreements to within 5 percent are reported.

* ibid
**Bland, D.R., ''The Two Measures of Work-Hardening," Proc. 9th Int. Congr.
Appl. Mech. (Brussels, 1956), Vol. 8, pp. 45-50, 1957,

¥**See Hill, R., footnote on pp. 29.



The concept of isotropic hardening does not account for Bauschinger
effect. Actually, it predicts a negative Bauschinger effect. Therefore,
isotropic hardening would predict erroneous results in problems involving
unloading followed by reloading along some new path. To include the
Bauschinger effect, a hardening rule was suggested by Prager*, which assumes
a rigid translation of the initial yield surface (see Fig. 4b). Prager
employed a kinematicl model to describe this hardening rule. For this reason
it is termed "kinematic hardening.' This hardening rule can be represented

mathematically by

f(r,, - ) =F(1,. -C ) -k =0 (2.45)
ij B ij ij

where f (Tij) = 0 is the initial yield surfgce, and aij is a tensor represent-
ing the total translation of the center of the initial yield surface. Prager
suggested that the yield surface be translated in the direction of the normal

to the yield surface for any increment of strain.

d¢, =cdel? (2.46)

where ¢ 1is generally assumed to be constant. In such a case the process is
called linear hardening. Shortly after Prager's proposal it was recognized

that the properties of preserving the shape, and of pure translation of the

*Prager, W., 'The Theory of Plasticity: A Survey of Recent Achievements,"
(Jame Clayton Lecture) Proc. Inst. Mech. Eng. Vol. 169, pp. 41-57, 1955,
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vield surface along a normal, do not generally remain invariant if the nine
dimensional stress space is degenerated into subspaces. To resolve this incon-

sistency Ziegler* suggested to replace (2.46) by

aa, = (t,, -« ) dn (2.47)
iJ ij iJ

Further suggestions such as piecewise linear yield conditions, which
accomodate both translation and expansion of the yield surface (see Fig. 4d),
and the concept of yield corner stating that the yield surface changes only
locally (see Fig. 4c), have also been advanced. Numerous tests have been
conducted to check these theories, but no definite conclusions have been
reached so far.

After considering the several possibilities of a constitutive law,
isotropic hardening was adopted in this report. The material is assumed to
obey von Mises' yield condition. Then, in equation (2.40) the function g

becomes

g =J (2.48)

Assuming the validity of (2.44b) for non-radial loading; and sub-

stituting (2.44b) and (2.48) into (2.40), we obtain

f=J2~K(Ep)=O (2.49)

* '
Ziegler, H., ""A Modification of Prager's Hardening Rule,” Quant. Appl.
Math. Vol. 17, pp. 55-65, 1959.
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The unknown function K can be determined from a simple experiment;

namely, uniaxial tension or simple shear. The expression (2.49) has been

sometimes called the J2 -~ theory and is frequency expressed as
G =H (¢ 7) (2.50)
where,
_ Jr 1/2
g = 3 =~
5 [ sij Sij ] 3J2 (2.51)

is the so-called effective stress.

Now, recall (2.9) and (2.13) which gives

de® =4gos, . (2.52)
1] 1]
To determine d¢ multiply (2.52) by 3 d ei? and sum, then note (2.42)
and (2.51) to obtain
- 2 2 2 2 2 2
@eP =2 @e® aelfHr=2 @ s, s, . .=(Ea4de
3 ij ij 3 ij "ij 3
(2.53)
3 acé’
d ¢ = 5 -
o}
If the curve of 0 - € P is -given as in (2.50), then
- g
, ao . .
where H' = — is the slope of J2 curve. Whence upon substituting (2.54)
d ¢

into (2.53), we obtain
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i
i

4do. 3 L do 3 1 1 og q
= T =5 ov T
2 H 5 2 H 5 Srkﬂ ki
Also note that
< _an_E’:a 30
ij = ot.. ~ 3 o1 . .
ij ij

Substitute (2.55) and (2.56) into (2.52) to cobtain

.
[
T

da g g
! o1 . . o1 Tkz
ij ke

(2.

(2.

(2.

This relation is similar to expression (2.10) proposed by Drucker.

can be re-cast into another form:

1% ke
H s s k4
mmn mn

Q.
m

]
N W

If the data for uniaxial tension test are used to define H',

seen that

i _ L _ 1
H' — E E
t
where Et is the tangent modulus, and E the Young's modulus. If the data

from pure shear test are used, then to define H' we have

lH

(

jas

Wi

i
Nows’

.
i

(2.

it is easily

(2.

(2.

55)

56)

57)

It

58)

59)

60)
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where Mt is the tangent modulus in shear for T -Y diagram, and 4 is the elastic
shear modulus.
For H' to be invariant, the comparison of (2.59) and (2.60) leads to the

following requirement:

3 1
L S 2.6
E L ( 1)

Expression (2.61) imposes a restriction on Et and [ which generally does

t ?

not hold true for all materials.

Now, returning to Prandtl-Reuss equation (2.7) and substituting for
deig from (2.58), and considering the uniaxial tension test as the basis, we
obtain

s s
1+V vV 3 1 1 ij "k
= =L 4q - = S (= - d 2.62
4 €55 E 5 TF Yk i3tz @ TE) 5 s Ty (2:62)
t mn - mn
or
d = d ' 2.63
€15 7 Sijks ¢ kg (2.63)
where
: s s
1+V v 3 1 1 ij "k
= == - = 8 + 2 (=—-z) = 2% 2.64
Sijks = F Pix %y "E %43 %s*2CE TE’s s ( )
t mn - mn
Symbolically we can express (2.63) in matrix form as
{ae } = [s] {adr} (2.65)

o9x1 9x9 9x1
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Specializing (2.63) for the case of plane stress in principal stresses

and following the similar procedures for elastic-perfectly plastic solids,

we obtain

dey

d 622

Where,

= 1
S1111 T B
S =8
1122 S
- 1
Sp022 T &
Inversion
d Tll

d T

22

<

Ellll

E

esH oy

2211

of (2.66) gives

51122 d
Sp022 d
1
(117 = 5 Ta9)
=2
1 1
1 1 (117 =5 Tag) (Tgp =5 Tqy
B E)
t -2
1 2
(Toy =3 T17)
-2
o
El122 d
Eoa00 d

(2.66)

(2.68)
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Where
2
52
é i 4 s 2 - 8 5 + 8 2
E - E 1 1 2 2
1111 2 P
s + 2V 8. s+ s
(1v2) & 4+ 3 1 52 2
‘ i 3 2
S]_ - Sl 52 + 52
3 51 % (2.69)
vE -3
4 s 2 - 8 S + 8 2
1-:] _ E - E 1 1 2 2
1122 2211 R
(102 & 4 3 1 %2 2
4 s 2 - 8 8 + 8 2
1 1 %2 2
.2
1
g ' 4 s 2 - 8 8 + 8 2
- - 1 1 %2 2
2222 s 2 + 2V 5. 8+ 8 2
v?) &4 3 1 1 52 2
z 3 3
Sl - Sl 52 -+ 52
where
6 - E, _2 1 2 1 )
T EE, s; =3 (79175 Tgp)r 53 =3 (Tho7 5 7y
- 2 2 2
¢ =T T T T o Ta2 (2.70)

It is easily seen that if E_ tends. to zero expressions (2.69) will be
reduced to (2.33).
Stress-strain relations (2.32) and (2.68) will be employed to describe

the material properties of any annular layer during loading. During unloading,
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apply relations (2.38). Since in the computation processes we are dealing
with finite increment of loading, (2.32) and (2.68) are not strictly valid.
As mentioned earlier, however, the errors introduced are not very significant
for small increments.

Although the examples which are given in this report have been based
on (2.32) and (2.68) the developed procedures are perfectly general and any
other constitutive relations can be employed by properly defining the [E]

matrix. Should necessity arise, experimental data may be used directly.

2.5 Stress Resultants

To determine stress-resultant increments, we proceed as follows:
Take the middle plane as the plane of reference, and divide the plate

into a number of layers symmetrically arranged with respect to the middle

plane (Fig. 5). Then upon assigning the material properties to each layer,
we can formulate the expression for {AM} as
n
{AM} = 2 Z _[ 1&:} zdz = 2 ZJ_[ [E ] {Ae} zdz (2.71)
k=1 k-1 k=1 k-1

where iéMk contains both the radial and the tangential moments, i.e.,

r

o]~ Lo

]

AM
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Upon substituting from (2.4), and integrating, we obtain

&AM} - - [D] %Aﬁ} (2.72)
where, with h = o,
O
1’_1__‘
[D] = g 24 [E(k)] (hRB - hiwl) (2.73)
k=1

If the layers are taken of equal thickness

hk kh ; h1 o (2.74)
and
n
Ry (%) 2
D] = L z (Y] (3 k% - 3 k1) (2.75)
12
2x2
k=1
here,
D D
11 12
[D] = , where D12 = D21 (2.76)
D
21 D22

This equation together with (2.72) yields the following results:

(2.77)
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2.6 Governing Differential Equation

Substitute (2.77) into the differential equation of equilibrium (2.3),
and define curvatures as given by (2.5). Then the governing differential

equation becomes

1)

1v 2 11T 1 1 .
D11 pa\'l + 3 D11 w -5 D22 AW + 3 D22 ow' o= A p(r) (2.78)
r r
Dividing by Dll’ and letting
D
_/\? = _DZE (2.79)
11
IV 2 "
T
AW + 2 AMII‘ - (é) (Aw -k Aw') op(x) (2.80)
r r r D11

where primes denote differentiation with respect to r.
The solution of part of homogeneous (2.80) has three different forms

depending on the value of /\.

(a) For JAg: 1

2 2
W = al + a2 r o+ a3 in r + a, r in r (2.81)
(b) A\.=0
DW= + a rz +a_. r+a, r 4nr (2.82)
=% 2 3 4 :

(0 N#1,N#o
1+/\ rl_'/\" 2 (2.83)

Case (b) is not frequently encountered.
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2.7 Stiffness Matrix For an Annular Element

In this section the relations between nodal ring forces applied st the
edges of an annular element, and their corresponding nodal ring displacement
are established. Here the term 'nodal ring force” includes both transverse
force and moment. Similarly, the "nodsl ring displacement' implies both
displacement and rotation.

In order to set up the element stiffness matrix, two frequencly en-
countered cases j\; 1 and_/\# 1, /\f 0O will be considered.

Case I./\: 1

From expression (2.81) we can obtain all nodal forces and displacements

in terms of ai , 1 =1,2,3,4.
Thus,

Increment of rotation:

Aw=24Aw =2 azr + aSr—l + a,r (2 4nr + 1) (2.84)

Increment of radial curvature:

" -2
AN Kr = AW = 232 - ag r + g, (2 nr + 3) (2.85)

1
AKy=— Aw' =2a,+a, 1" +a, (2/nr+1) (2.86)
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having positive sense.

where

Substitution of (2.85) and (2.86) into

A M

Fin

r = 7283 (D + D) - Ay (5D 4

- a, (D11 (3 +2 4n 1) + D12 (1

g = " 23y (D + D)+ ag (=D 4

- a8, [Dl1 (1+2 4n 1) + D12 (3 +

ally, substitution of (2.87) and (2.
=4 a, D r-l

4 11

(2.77) yields moments

-2
Dig) r

2 4nr) |

88) into (2.1) gives

(2.87)

(2.88)

(2.89)

Next, consider the annular element shown in Fig. 6 with all quantities

=1,

2,3,4, as
{2s} = (8] {a}
4x1 4x4 4x1
)
A QT
AwM
fosf = ¢ 7% oA
A QY
j
L an

i

=)

Nodal ring forces A S can be defined in terms of

(2.90)

(2.91)
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The elements of [BS] are given in Appendix A. Note that because of
the change of sign convention from that of strength of material shown in Fig.

1, to the one shown in Fig. 6, the following modification should be made :

MM (r) = -oawm)
r J T
(2.92)
2Q (x) =-AQ
Similarly, nodal ring displacements can be expressed in terms of
a,, 1 =1,2,3,4, as
i
= B
{a v} (e {a (2.93)
4x1 4x4 4x1
where, ia% is defined as before in (2.91), and
VAN wh
B i L i,
tav) = ﬂﬂw S Al —awn (2.94)
VAN w‘-J
NS
\ /

The matrix [BU] is given in Appendix A. To evaluate the stiffness matrix,

solve (2.93) for ﬁa} , and substitute in (2.90). Thus

it

=1
%a} [B,] iA V} (2.95)
4x1 4x4 4x1
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-1
vast = (8] (8] fav] =[xl §av (2.96)
4x1 4x4 4x4 4x1

where [k] 1is the element stiffness matrix, and

-1
[k] = [BS] [BV] (2.97)

4x4 4x4 4x4

Case II,JAL# 0, 1

In this case nodal forces and displacements can be derived from
expression (2.83), similar to that of Case I:

Increment of rotation:

-A
Aw=AWw = al (1 +j\_) rJAL+ a, (1 —./\) r + 2 agr (2.98)

Increments of curvatures

AK =0ow" =a (1 +3/\) f/\rl - aszk(l-JAk) r~JA'~l + 2a,

T 1

1 , A-1 -\ 1
A Ka = : Aw' o= a, (1 +jN_) r +a, (10_/\) r + 233
(2.99)
Moments -- Substitute (2.99) into (2.77) to get

A1 A1
AM_ = -a (1+/\) (/\pllmlz) r -a_ (1-/V (—_/\D11+D12) r

1 2

—233 (D11+D12) (2.100)
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and

—/\"1
A MQ = -8, (1+/\) (D22+_/\_D12) r/\:1 + 8

1/ p,,+Ap ) =

2

—233 (D12+D22) (2.101)

Utilizing the equilibrium equation (2.1), upon substitution into it of

(2.100) and (2.101), we obtain

AQ=2a, (D;,-D,,) _- (2.102)

3 22

Following the same steps as shown in (2.90) through (2.96), we obtain

the stiffness matrix for Case I1II. Formally, the equations are the same &s

before,
fast = [x] QLA"} (2.96)
4x1 4x4 4x1
and
-1
(k] = [B,] [B] (2.97)
4x4 4x4 4x4

However, the matrices [BS] and [Bv] for this case are different as can be

seen in Appendix B.

2.8 Stiffness Matrix for a Disc Element

The condition of axial symmetry, and the requirement that the load is

applied only at nodal rings require that A Q for a disc element should vanish
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throughout (see Fig. 7). For such an element two cases of different JAL'S

must again be recognized.

Case I_/\: 1

(1) Since A w must be finite, a; = 0
(2) Since A Q= 0, a, = 0
Therefore, as before,
2
A w o= a1 + az r
Aw=~Aw =2 a_r
2
. 2
JAN wJ 1 T a
— J 1
favd = s (al
A wJ 0 2r a
J 2 2x1 2x2 2x1
1 e 2
B = J
0 2r .
J
1
1 - -
-1 2 7
B _
B, ] ) L4
2 ]
Also
AM =-2a_ (D, _+D._ ) =AM

(2.

(2.

(2.

(2.

(2.

(2.

103)

104)

105)

106)

107)

108)
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AQ =0 (2.109)

Hence,

. = (2.110)
N 0 2 (D, +D ) 2

That is

[Bs] = (2.111)

2% 0 2(D11+D )

Therefore

(k] = [B,] B, ] =
2 v el
2x2 2x2  2x2 0 (DD ) xy (2.112)

The Case I1, ./\# 1,/\,# 0 1is not encountered in this problem since
the ratio of radial to tangential moment increment remains constant (i.e.,
unity). Therefore, this case will not be discussed here.

Note that stiffness matrices developed for annular and disc elements

are singular. This condition is due to the fact that the elements of vector

§Z§S’§ must satisfy the condition of equilibrium, and are therefore not

linearly independent.
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2.9 Plate Stiffness Matrix

The element stiffness matrices developed in Articles 2.7 and 2.8 can be
easily assembled to obtain the plate stiffness matrix, by considering the
conditions of equilibrium, and compatibility at nodal rings.

Consider the n~-th element, and partition its stiffness matrix as shown

7 / I
AS N A v
ii iy
]
"""""" - TTTTTYTTTTTIYTTTTTT (2.111)
|
A sd ko U og" A vd
\ : SR N B
4x1 4x4 To4ax1

At a nodal ring, where the nth and the (n+l)-th elements meet, the

equilibrium equations are

j [ i
R =
{A n} {A Sh * {A She1 (2.112)

2x1 2x1 2x1

Compatibility of deflection and slope at the same nodal ring require

that

{4\ r } = {A v = la (2.113)
n Il n+
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where

{A Rn} is plate (external) nodal ring force.

{A rn} is plate nodal ring displacement

From (2.111) it is seen that

{A snj} = [kgi] {Asvi} + [kﬁj] {A vi} (2.114)

Similarly, for (n+l)-th element

{A st } = ™ {s v } + [P {A;vj } (2.115)

n+1 ii n+1l ij n+1

Substitution of (2.114) and (2.115) into (2.112), and consideration of

(2.113), yields

{A Rn} = [k3i] {_A rn—l}+‘[k?j * kzzl]‘{ o rn} * {kzglJ {.A rn+1}

2x1 2x2 2x1 2x2 2x1 2x2 2x1
(2.116)
repeating the above procedure for all the elements, we obtain stiffness matrix

for the entire plate, which is a tri-diagonalized matrix of the assemblage.

This matrix can be schematically represented as follows:

(a) (K] = N (b) {A R} = (k] {2 r}
2Nx2N " 2Nx1 2Nx2N  2Nx1

(2.117)
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where N is the number of elements. Note that the stiffness matrix [K]
established here is singular. It is necessary, at this point, to impose the
boundary conditions, and to make the proper deletions in [K] in order to make
this matrix non-singular. Then, the remaining set of equations (2.117 b) can
be solved for {A;r} . Having obtained {A r} , moments, curvatures,
and stresses can be found using appropriate expressions established before.

Since, in this report, nodal ring forces per unit length were taken,
the stiffness matrices developed here are not symmetric. It is easy to show,
however, that they satisfy Betti's law.

2.10 Transformation of Distributed Transverse Loads on the Element to Nodal
Ring Forces

Both tributary area and consistent equivalent nodal ring forces were
used in the solution of problems.

The tributary area approach simply concentrates the distributed loads
at nodal ring junctures. The distributed loads extending half-way between the
neighboring elements are included in the nodal load.

Consistent equivalent nodal ring forces* are derived by equating the
virtual work of transverse loads on the element through the given displacement
pattern to virtual work of their corresponding nodal ring forces. This is
briefly explained below.

Expressions (2.81) or (2.83) can be written as follows:

T
Aw = { 5} {-®m(r)} ,m=1,2,3,4 (2.118)
1x4 4x1

*Archer, J.S., "Consistent Matrix Formulations for Structural Analysis Using
Finite-Element Techniques.'' AIAA Jour. Vol. 3, No. 10, pp. 1910-1918, Oct., 1965.
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Recalling (2.93), we also have

&A G} = [B_] {5} (2.93)
Note that a bar over the symbols in the above equations is used to

designate the quantities associated with the virtual displacements.

The work of a distributed transverse load A p(r) on the element through

the virtual displacement A W is

r, T
A Wp = L/‘ I A p(r) & w (r) 27rdr = 2n {a} { A p*m} (2.119)
T3
where
* 5
{A p m} = A p(r) ¢ (r) rdr 9 m=1,2,3,4 (2.120)
T,
i

On the other hand, the work of equivalent (consistent) nodal ring forces

{AP} through the virtual displacement {A ;} is given as

Equating (2.119) and (2.121), and considering that the generalized

coordinates {5} are linearly independent, we get

r, AP -1
EEE! T *
{ _____ ;} = [, {A pm} (2.122)

4x1 4x4 4x1



where {A P} are the forces per unit length.
Having established (2.122), the nodal ring forces are obtained from the

following relation

: N SR

{AR } = - {A Pr_l} + {g P?+1}
n T J i

2

x1 2x1 2x1

where,

In (2.120) any distribution of A p(r) over the element can be specified.
It is also possible to develop expressions for linear or parabolic distribution
of transverse load acting on the element, and any distribution can then be
approximated by a linear or a parabolic curve. The linear approximation was
used in this investigation, and the appropriate expressions for {A p*} are
given in Appendix C.

The above procedure can be used to transform transverse ring load on an
element to nodal ring force as well. Perhaps, however, it is preferrable in
such cases to take the applied ring load as the nodal ring load.

A comparison of the results using the two approaches discussed above
of transforming the transverse distributed forces to nodal ring forces shows

that the difference is not very significant for the small size element.
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2.11 General Remarks

The procedure employed in the analysis of plates described in this
report can be outlined as follows: The plate is assumed to be initially free
from residual stresses. The first increment of loading is applied and the
magnitude of the load increased so that yielding just begins at some points
within the plate. The loadings is then continued in small load increments.

For each increment, after the Egqns. (2.117b) have been solved for { VAN r} ,
curvatures, strain increments, and stress increments are determined successively.
The new state of stress is found, and [E]O matrices are computed. For the

first approximation [E]O are taken to be the material properties for the next
increment. In a more refined procedure, Euler's modified method is utilized.
That is, the [E]O is utilized to calculate {fﬁ r} for the same increment.

The new [E]‘ matrices are established, and the average of these two is taken

to be representative of the material properties for the increment in questions.

Depending on the magnitude of the load increment, this modification was
relatively of more significance for perfectly plastic materials than those
exhibiting hardening. It was observed that the first approximation was satis-
factory for a relatively small loading increment and hardening materials.

The influence of the magnitude of the loading increments was studied, and some
results are shown in the next chapter.

A computational difficulty arises at the instant of initiation of the
plastification of an element. If the radial and tangentisl stress increments

differ slightly, the material exhibits a slight anisotropy after exceeding the
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elastic limit. The corresponding ./\ changes from unity to a value very

clese to unity. Therefore, the matrices [ij_l and [k] become ill-conditioned.
To overcome this difficulty two approaches have been used. The first makes

use of double precision computation procedure, which retains 16 significant
digits in the analysis. The second consisted of expanding the elements of
[BV]“l and [k] matrices in terms of (1-/\ ), clearing fractions, and treating
the ill-conditioning factors separately. The expanded forms of elements of

these matrices are given in Appendix D.
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III. APPLICATIONS

This chapter consists of two parts. In the first part several examples

are presented; in the second, a description of computer programs is given.

3.1 Examples

Eleven examples have been prepared to illustrate the main fesatures, and
to test the accuracy of the method of solution developed for circular plates
in Chapter I1.

Except for Example 11, the same size plate is used throughout to
facilitate comparisons for different boundary conditions and also for different
material properties. The total magnitude of load applied to the plate was
controlled by the deflection of the plate. It is believed that in using the
small deformation theory of plates a total central deflection of up to 0.3
the plate thickness does not induce appreciable membrane action. The developed

solution is applicable to relatively thick circular plates.
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Example 1

The behavior of the simply supported plate shown in Fig. 8 under uniformly

distributed load is analyzed.

d=20 0 in

h=1.0Qin.

Fig. 8
The material properties are: E = 107 psi, V = 0.24. The yield stress
in uniaxial tension ¢ = 16 ksi. The material is elastic perfectly plastic.
The number of elements and layers is 20 and 40, respectively. Load
increments of 5 and 4 psi are used.
The results are plotted in Fig. 9 to 14. Comparison with a solution due

to V.V. Sokolovskii who used the deformation law of plasticity is given in Fig.

15,

Example 2

The same plate as in example 1 but with clamped outer support is
studied.

The numbers of elements and layers are 20 and 40, respectively. Load
increments of 10 psi are used.

Results are plotted in Fig. 16 to 19.
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Example 3

The purpose of this example is to study the effect of history of external
loading on the behavior of the simply supported elastic-perfectly plastic plate.

The plate is exactly the same as in Example 1 except that V = 0.3.

First the plate is loaded as shown in Fig. 20-a to obtain the maximum
possible elastic deformation. Thereafter, two different schemes of loading are
used: In the loading sequence 1, triangular increments of load are added to
reach the final load of Fig. 20-d. 1In the loading sequence 2, load increments
are added fromr = 3.75 in. to the outer edge of the plate until the final load
of Fig. 20-d is achieved.

Results are plotted in Figs. 21 and 22,

&
(375"
20 psi
p=33Cpsi 4%
L ' A
Fig. 20-a Fig. 20-b
First Loading Step for Increments of load in Loading
both schemes of loading Sequence 1
7.561
P
1 AN
! l ™ =
- | | S p=330psi
/ ‘ \\
! | :
( . 1 ]
Fig. 20-c Fig. 20-d
Typical Load Increment in Final Load

Loading Sequence 2
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Example 4

The purpose of this example is to study the effect of load history on
the behavior of clamped elastic-perfectly plastic plate.

The plate is exactly the same as in Example 1 except that VvV = 0.3

After the first step of loading (Fig. 23-a) two different loading
schemes are used to reach finally the load in Fig. 23-d. 1In loading sequence
1, typical load increments are as in Fig. 23-b. 1In the loading sequence 2
load increments are added from r = 4.75 in. to the boundary of the plate
(Fig. 23-c).

The results are plotted in Fig. 24 to 26.

S5in
9.5 in.
460ps) | —p
20 in. ‘
1
Fig., 23-a Fig. 23-b
First Loading Step Increment of Load in
Loading Sequence 1
[
460 psi
/
3
1
Fig. 23-c Fig. 23-d
Increment of Load in Final Load

Loading Sequence 2
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Example 5

The purpose of this example is to show the effect of the magnitude of
load increments on the moments and deflections. The numerical experiments are
on 0.75 x 16 in. Simply supported elastic-perfectly plastic plates with 7 =
10.6 psi and Uy = 16,000 psi. The numbers of elements and layers are 20 =and
40, respectively. It should be noted that these results were obtained Lwiore
including the Euler modification to take into account the varistion of material

properties within a loading step.
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Example 6

A 1x20 in. simply supported plate is subjected to uniformly distributed

load. The material property of the plate is shown in Fig. 30. V = 0.33.

T (psi)
g 2@ 10in

j10in| | ]
s 2

E=107psi
Fig. 29
4
Fig. 30
Uniaxial Stress-Strain
diagram

18 elements are used as indicated in Fig. 29. The thickness is
divided into 40 layers. Load increments of 15 and 10 psi are used.

The results are plotted in Figs. 31 to 35.
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Example 7
\ ¢clamped plate of the same size and material property as in Example

6 is subjected to uniformly distributed load.
|

¢

[ 10 n 10(@® 05in | 10in.; 6@0.5in|
2

Fig. 36

There are 40 layers; and 18 elements which are distributed as shown
in Fig. 36. Load increments of 25 and 20 psi are used.

Results are plotted in Figs. 37 to 40.
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Example 8

A simply supported plate exactly the same as that in Example 6 except
with the uniaxial stress-strain diagram shown in Fig. 46 is subjected to
uniformly distributed load.

The Et~0 diagram of the stress-strain curve is shown in Fig. 41. The
reason for using such a stress-strain curve is that it has an initial linear
elastic part and also it is gquite easy to modify the two other linear parts

of the Et-O diagram to obtain different shapes of the stress strain diagram.

The results are plotted in Figs. 42 to 46.

€
leKFpa'
ax10® L
08 - | ] I
16 19 28 T (Ksi)
Fig. 41

Example 9
A clamped plate of same geometrical and material properties as that
in Example 8 is subjected to uniformly distributed load.

Results are plotted in Fig. 47 to 50,
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Example 10
The purpose of this example is to compare the results of the elastic-
perfectly plastic plate solution of Example 1 with a solution for a plate
with hardening material having uniaxial stress-strain diagram of Fig. 51.
Such a diagram closely approximates that of elastic-perfectly plastic material.

The number of elements, layers and magnitude of load increments are

the same as in Example 1.

Results are plotted in Fig. 52 to 55.

G (Ksi)

16 [~ =T, -2 x10° psi

E=107ps

m

Fig., 51
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Example 11
The simply supported plate shown in Fig. 56 is subjected to uniformly

distributed load.

O075in

T——

16in 4’

¢

f‘
Fig. 56

The material properties are tabulated in Table 1 (from Ref. 48 )
The plate is divided into 16 elements and 40 layers. Load increments
of 40, 20, and 10 psi are used.

. The results are compared with V. Lackman's solution in Fig. 57 and 58.

Table 1

stress (psi) Et X 1O~6(psi)
1 10.600
16,200 10.600
16,250 10.599
17,500 10.550
20,000 10.375
22,500 9.925
25,000 9.000
27,500 7.150
30,000 '3.825
32,500 1.800
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3-2. Description of Programs

Two computer programs have been prepared, in Fortran IV language, for
the solution of clamped and simply-supported circular plates subject to axi-~
symmetric loading. One is for elastic-perfectly plastic material and the
other for hardening material. The general procedure of solution is basically
the same in both cases, although there are differences in details due to
limitations in numerical accuracy of solution and inherent difference in
material properties. A discussion on the computation problems and consideration
of the variation of material property within each step of loading is given in
the appendices E and F. The concise flow diagrams of the main program routines

are presented in Appendix G. A brief description of the program follows.

(1-a) Elastic Perfectly Plastic Analysis of Circular Plates (EPPACP)

This routine is for matrix solution of elastic perfectly plastic
circular plate. Presently a 30 element 60 layer plate can be handled but by
decreasing the number of layers up to 35 elements or more can be used. Nodal

ring loads in this routine are tributary.

(1-b) Formation of Average Material Property Functions (AMAFUN)

The functions of this subroutine is to form the average material property

function within each step of loading.

(1-c¢) Formation of Initial Material Property Functions (IMAFUN)

In this subroutine the initial material properties for the next step

of external load are calculated.
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(2-3) Elastic Plastic Analysis of Circular Plates (EPACP)

This routine is for matrix solution of circular plates of hardening
material, It is a double precision program. The number of elements and
layers which is presently handled by this routine is 20 and 40, respectively.

Other combinations of elements and layers can be used.

(2-b) Equivalent Nodal Ring Load (ENRIL)

This double precision subroutine is used to find the consistent nodal
ring loads assuming linear variation of loads between the nodal rings. If
it is desired to use the program for isolated concentrated ring loads, this

subroutine should be deleted from (EPACP).

(2-c) Formation of Material Property Functions (MATFUN)

In this subroutine both the average material property functions in
each step of load and the initial functions for the next increment of load

are computed. This subroutine is in double precision.
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I1V. CONCLUSIONS

From the study of the examples in Chapter III as well as other observations,
the following conclusions were reached on the calculated behavior of elastic-
plastic circular plates.

The comparison of elastic and inelastic moments in Example 1 indicates
some re-distribution of moments in the inelastic state. This can also be seen
from the distribution of residual moments in all of the examples. The re-
distribution patterns are in general similar for elastic-perfectly plastic
and hardening material.

The stress paths in Fig. 14 indicate that the internal loading does not
progress proportionally once the elastic limit is exceeded. Therefore, the
deformation theory is not strictly applicable. However, results of Examples
3 and 4, which show the influence of different loading histories, indicate
that this effect does not contribute significantly to the general behavior
of the plate.

In Fig. 14 the small variation of the stress paths inside the yield
surface justifies the application of a correction based on a radial approxi-
mation explained in Art. 2.4.1. It can also be observed that when the increments
of external load are small, the distance between consecutive points of stress
paths on the yield surface is small enough to justify the tangential approxi-
mation for neutral loading explained in Art. 2.4.1.

The comparison between the central deflections of the simply supported

elastic-perfectly plastic plate as calculated in the present incremental
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appraoch and the deformation solution due to V.V. Sokolovsky [2], Fig. 15,
indicates the close agreement of the two solutions for loads not far above
elastic limit. However, the incremental solution predicts greater deflections
near collapse load.

The results in Examples 3 and 4 indicate that moments and deflections
in the circular plate are affected very little by different loading histories
for the two different sequences of loading. However, the inelastic zones are
appreciably different near the boundary of the clamped plate.

From the results of Example 5 we conclude that as the magnitude of the
load increments in calculations decreases, the deflections of the elastic-
perfectly plastic plate increases. Figure 28 shows two groups of curves for
the convergence of central moments. The full line was obtained by integrating
the stress distribution across the depth of the plate. These moments, in
general, satisfy the yield condition. The dashed line was determined by
utilizing the stiffness matrix. The moments obtained in this manner satisfy
equilibrium, but may not satisfy the yield conditions. However, as the
magnitude éf the load increments decreases they approach each other. These
results establish bounds on the moments. It appears that the average of the
two solutions is close to the correct one and can be taken as such. The fact
that the variations in moment and deflection in Fig. 27 and 28 are almost
linear can be used to advantage to predict the results when the size of load
increments approaches zero. The dependence of the moments and deflections on
the magnitude of load increments in hardening material varies with the hardening

rate and is relatively less significant.
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A comparison of the input data stress-strain diagrams, 0 , E, for the
hardening materials with the one computed from the calculated state of strain
in the plate is presented in Figs. 35, 46, 55 for Examples 6, 8, 10. A good
agreement between the two curves is evident which indicates good accuracy and
convergence of the developed solution for the hardening material.

The results in Example 10 show that the solution for s hardening material
with very low hardening rate (Fig. 55) agrees well with that for a corresponding
elastic-perfectly plastic material. This is as could be expected intuitively.
Part of the small differences is due to the different level of accuracies in
the computer programs used for the two materials -~ double precision for
hardening material and single precision for elastic-perfectly plastic material.

The comparison of the solution for hardening material presented in
Example 11 with the one published by V. Lackman [48] indicates that for the
uniformly distributed load of 300 psi the deflections and stress distributions
along the depth of the plate are practically the same.

The variation of stresses along the depth of plates indicates that the
behavior of plates is not highly sensitive to the number of layers used in
calculations within a reasonable range. For example, for hardening material
of the type used in Example 11 results using 40 layers agreed well with those

of 20.
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Appendix C

Transformation of distributed load to normal ring forces.

See Article 2.10. |
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B(4.3) = (1-A0 ! 5 {<1~/\.) (D 1] s A Beta}
J
1 r. 1+A
B(4,4) = - (1-A) 5 o | ) -1 + (1+/A) Beta ]
J
Expanded form of [k] matrix, casej“&# 1,0
- ro A .
k(1,1) =2 (1+A)7 8D r 2 rt [ (2 -]
11 i J ri rj
-2 r, 1+A
k(1,2) =2 (1+A) 8D, . r.. [ (= -1+ (1+A) Beta ]
11 i rj
k(1,3) = -k (1,1)
1 r, 1+/\ r. 1-/M
kK(1,4) = 2 (1+A) & D__(r.r)) [ (D -1- (1A (D Beta ]
11741 ri ri
k(2,1) = k(1,2)
1 o rj 1+ A T, 1+ A
k(2,2) = - (D11+D12) T (1+A) 8 D11 . {(;—i-) - (;—j—)

r,
- (1A <;—3—)

1

1-/\

+ 1] Beta}



k(3,1)

k(3,2)

k(3,3)

k(3,4)

k(4,1)

k(4,2)

k(4,3)

k(4,4)

ri 1+ /™
LN L
J

r,
—= k(1,3)
r,

3
I,
= Kk (2,3)
I,

J
-k (3,1)

I,
- =k (1,4)

I,

j

I,
= k(1,4) = -k (3,4)

J
T,
= k (2,4)
.

j
k(3,4) = -k (4,1)

-1
(D);+D1g) T4

- (1+A)
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r, 1-A 3 1+
(;ﬁ) + 1] [ (;f) -1 7+
J J
+ 1] Beta}
r, 1+ r. 1+
= (;f)
1 J
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where,
-1 r, 1+A rl 1A 2 r., 2 9 9 r, 2
57 = (=D 4 (= —2- 1+ Uun L) [ 1+ = A-A° (m D
T, T, T, 4. T,
i J i i
T 4 T 6
s 2 -0 Ay v - um Ly o+ L ]
6. r 8. T,
i i
T, 1 T, 1 2 r, 2
Beta = 4n —2 [ 1 - = (1-A) in 4 = (1-MA)° ( 4n - )
T, 2. r, 3! T,
i i i
r 3 T,
-ra-ntundy Lk amtan 2y L ]

i ’ i
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Appendix E

Consideration of Numerical Errors

The numerical inaccuracies are due to two main causes both of which
exist in matrix [BV}, see Chapter II. It can be observed that the lst and 3rd;
and the 2nd and 4th rows of this matrix respectively are of the same form.

For a ringe element whose inside and outside radii are of nearly the same
magnitude, the matrix becomes ill conditioned for inversion. The other and
more important cause of inaccuracy is due to parameter j\kas it approaches
unity /\_# 1. Then some of the terms in the inversion of the [BV] matrix take
the form of (g) . which lead to computational errors.

In general, these two causes of numerical errors do not occur in the

same element. A graph showing the plot of 11ﬁ/\

vs. ri/rj for the el ements,
and the probable zone of computational error is shown in Fig. 60. This is =
result of many tests on simply supported and clamped plates using the single
precision computer program.

Two measures have been taken to prevent these errors: In the program
for the elastic-perfectly plastic material, the elements of [Bv]—l and [k]
have been expanded in series form as presented in Appendix D ., 1In
calculations enough terms of this expansion have been taken to assure
accuracy of results. This eliminates the inaccuracy due to JA\'but not due
to ri/rj as it approaches unity. The method used to minimize computational
errors for hardening material consisted of using double precision in the

-1

computer program. The results have been checked by testing whether [BV] [Bv]

= [TI.]. This procedure yielded satisfactory results.
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Appendix F

Consideration of Variation of Material Properties Function Within A Step of
External Load

Considering the plate load and the state of stress as the independent

and dependent variables respectively, we can write

dt = F (r) dp (1
L P —
where F(t) represents a function that transforms the external loads into

internal stresses and is expressed as a function of the state of stress.
Equation (1) is solved numerically by replacing d p and gl by finite

increments A p and AT

—

AN = F(1) AP 2>

—— T —— e

To solve Equation (2) with reasonable accuracy, Euler's modified
method* is used where the order of error is O(Ap)S.

Figure (59) is the flow diagram of the substeps taken in the computer
program to complete the (k+1)-th step of calculation represented by Equation
(2) for the hardening material. The procedure is basically the same for the
elastic perfectly plastic material. The notations are the same as in
Chapter II.

Whenever unloading from a plastic state takes place in a layer the new

elastic properties are utilized and this modification is not used.

*Levy, H., and Baggott, E.A., "Numerical Solutions of Differential Equations,"

pp. 92-96, Dover 1950.
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Appendix G
CONCISE FLOW CHARTS OF COMPUTER PROGRAMS

ELASTIC- PLASTIC ANALYSIS OF & CIRCULAR PLATE WITH AXIS-SYMMETRIC LOADING

(EPACP )
Xt

READ INPUT DATA

55

SET UP FLEXURAL RIGIDITY OF EACH ELEMENT

[D"‘ﬁ] oL =1,2 ; DEFINE OR:("DE%\),/Z

€5

SET UR STIFFNESS MATRIX OF

CENTRAL ELEMENT, [SK]
2%X2

NO 1 DR-1 = 0 YES
75 80
SET UP STIFENESS MATRIX OF SET UP STIFFNESS MATRIX OF
RING ELEMENT, [SK] WHEN RING ELEMENT, [5K] WHEN
ax4 ax4
DR¥ | DR=
!
SET UP STIFFNESS MATRIX
oF PLATE Kl
EQUIVALENT NODAL RING
%% LOAD SUBROUTING
/ caue ene feny N\
140 [
READ LOAD INCREMENT
montey [K] AND (PI} FOR O LOAD INCREME l
BOUNDARY CONDITIONS *
FIND EQUIVALENT NODAL
RING iNC. L0AD, {PI}
165

FIND NODAL INCREMENTAL
DISPLACEMENT, {vI]

g =] {rr)
180 i

NO INCREMENT OF EXTERNAL YES
LOAD TEMPORARY ?

185

CALCULATE :
1~ TOTAL NODAL DISPL., {V}
2-TOTAL STRESS RESULT
AT NODAL RINGS, {Q}

I

PRINT: NODAL DISPL., {V]
STRESS RESULT., {0}

l

END

*

¥

THE NUMBERS REFER TO FORTRAN NUMBERS
STATEMENTS IN THE PROGRAM.

IN EPPACP, THE LOAD DISTRIBUTION ON NODAL
RINGS 1S TRIBUTARY HENCE ENRIL IS

NOT USED

%%% IN EPPACAP THERE ARE TwWO SUBROUTINES

FOR CONSTRUCTION OF MATERIAL PROPERTY
FUNCTIONS, AMAFUN AND IMAFUN
WHENEVER THE INCREMENT OF EXTERNAL
LOADING 1S TEMPORARY AMAFUN 15 USED

AND IF NOT IMAFUN.
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SUBROUTINE FOR THE FORMATION OF MATERIAL PROPERTY FUNCTIONS

{ FOR HARDENING MATERIALS)

SUBROUTINE
MATFUN

CALCULATE THE DISTRIBUTION OF CHANGE
OF CURVATURE OF THE PLATE

30
NO i YES
1f TEMPORARY INCREMENT OF EXTERNAL LOAD )—o—
58
EVALUATE THE TANGENTIAL MOMENT '
AT EACH NODAL RING
75

CALCULATE THE STRESS INCREMENT
OF THE LAYERS IN EACH ELEMENT

NO If TEMPORARY INCREMENTS )YES
OF EXTERNAL LOAD

130

CALCULATE THE INITIAL MATERIAL
PROPERTIES FOR THE NEXT STEP
OF EXTERNAL LOAD

161 )

CALCULATE THE VALUE
OF EQUIVALENT STRAIN

163 Y

CALCULATE THE TOTAL CURVATURES

|

85

CALCULATE THE AVERAGE VALUE
‘OF MATER!IAL PROPERTIES IN
THIS STEP OF EXTERNAL LOAD

{. TANGENTIAL MOMENTS
CURVATURES

3. RADIAL AND TANGENTIALS
STRESSES OF EACH LAYER

5. EFFECTIVE STRAIN

4. EFFECTIVE STRESS IN EACH LAYER
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<0 <0
i1f PREVIOUS YIELD FUNCTION

SUBROUTINE FOR THE CALCULATION OF AVERAGE MATERIAL PROPERTY FUNCTIONS

(FOR ELASTIC- PERFECTLY PLASTIC MATERIAL)

SUBROUTINE
AMAFUN

25

CALCULATE THE DISTRIBUTION OF
INCREMENTAL CURVATURE OF THE
PLATE

CALCULATE THE TEMPORARY INCREMENTAL
STRESS, TOTAL STRESS, AND YIELD FUNCTION
FOR EACH LAYER USING HOOK'S LAW

75

r LOADING PLAST!CALLYJ

85

PERFORM RADIAL APPROXIMATION

TO LOCATE INT
STRESS PATH AN

ERSECTION OF
D YIELD SURFACE

115

>0 l <0
{ TEMPORARY YIELD FUNCTION )
=0
>0 !

START OF PLASTIC FLOW ;
OR NEUTRAL LOADING

i

65

(41

ELASTIC LOADING; OR UNLOADING
FROM PLASTIC STATE

C It PREVIOUS YIELD FUNCTION

=0

[ >0

CALCULATE ELASTIC MATERIAL
PROPERTY CONSTANTS TO BE
USED FOR THIS INCREMENT
OF LOAD

N\ <0
=0 (" (iFFERENCE BETWEEN TEMPORARY AND ) SO
PREVIOUS TOTAL RADIAL STRESS

PERFORM TANGENTIAL APPROXIMATION
TO LOCATE THE FINAL POSITION ON
THE YIELD SURFACE

CALCULATE THE PLASTIC
MATERIAL PROPERTY FUNCTIONS

*

CALCULATE THE AVERAGE OF PRESENT AND
PREVIOUS MATERIAL PROPERTY FUNCTIONS
OF THE LAYER TO BE USED FOR

THiS INCREMENT OF LOAD

CALCULATE PLASTIC MATERIAL PROPERTY
FUNCTIONS TO BE USED FOR THIS INCREMENT
OF LOAD

RETURN
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30

SUBROUTINE FOR THE CALCULATION OF INITIAL MATERIAL PROPERTY FUNCTIONS

OF THE NEXT INCREMENT OF LOAD {FOR ELASTIC PERFECTLY PLASTIC MATERIAL)

SUBROUTINE
IMAFUN

25

CALCULATE THE DISTRIBUTION OF
INCREMENTAL AND TOTAL
CURVATURE OF THE PLATE

f

CALCULATE THE TEMPORARY INCREMENTAL
STRESS, TOTAL STRESS, AND YIELD FUNCTION

FOR EACH LAYER USING HOOK'S LAW

>OJ +

75
| LOADING PLASTICALLY J

85

<0 =0
1f PREVIOUS YIELD FUNCTION}T

PERFORM RADIAL APPROXIMATION
TO LOCATE INTERSECTION OF
STRESS PATH AND YIELD SURFACE

1o

\ TEMPORARY Y!ELD FUNCTION J

=0
7Q

START QF PLASTIC FLOW;
OR NEUTRAL LOADING

i

ACTUAL TOTAL STRESS:=TEMPORARY
TOTAL STRESS; FIELD FUNCTION = 0

65

ELASTIC LOADING; OR UNLOADING
FROM PLASTIC STATE

CALCULATE PLASTIC MATERIAL PROPERTY
FUNCTIONS FOR NEXT INCREMENT OF
EXTERNAL LOAD

ACTUAL TOTAL STRESS =
TEMPORARY STRESS;

YIELD FUNCTION = TEMPORARY
YIELD FUNCTION

PERFORM TANGENTIAL APPROXIMATION
TO LOCATE THE FINAL POSITION ON
THE YIELD SURFACE

i

CALCULATE INCREMENT OF STRESS ,
TOTAL STRESS AND PLASTIC MATERIAL
PROPERTY FUNCTIONS.

SET YIELD FUNCTION = 0

CALCULATE ELASTIC MATERIAL
PROPERTY CONSTANTS FOR
NEXT INCREMENT OF
EXTERNAL LOAD.

CALCULATE TANGENTIAL
AND RADIAL  MOMENTS

PRINT
. RADIAL AND TANGENTIAL MOMENTS
2. CURVATURES
3 RADIAL AND TANGENTIAL STRESSES,
AND YIELD FUNCTION FOR
EACH LAYER
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Nomenclature

constants of integration, see (2.81) to (2.83)

as defined in (2.46)

elastic moduli

deviatoric strain tensor

Young's modulus

tangent modulus in uniaxial test
elastic-plastic modulus

yield function or loading function

a function as defined in (2.40)
non-negative function defined in (2.10)

plate thickness

the distance of k-th layer from the reference plane

function of equivalent plastic strain defined in (2.50)

143

second and third invariants of deviatoric stress tensor

yield stress in simple shear

radial and tangential curvatures

radial and tangential moments per unit length
number of elements

transverse load per unit area

radial transverse shear per unit length

coordinate axes of plate, z is measured positive downward

from the reference plane
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iJ

Sijkﬂ

N

11

deviatoric stress tensor
elastic-plastic compliance

vertical displacement of the middle plane, measured positive
downward

total plastic work per unit volume

a tensor representing the total translation of the center of
initial yield surface, see (2.45)

defined in (2.69)
defined in Appendix (D)
as a prefix desiginates finite increment

Kronecker delta

equivalent plastic strain increment defined in (2.42)
radial and tangential strains, respectively

strain tensor

parameter defined in (2.47)

work hardening parameter

rd
L.ame constant

square root of the ratio of tangential to radial flexural
rigidity of plate

shear modulus

tangent modulus in simple shear
Poisson's ratio

defined in (2.69)

yield stress in uniaxial tension

effective stress defined in (2.51)
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T, . stress tensor

1J
9 non-negative function defined in (2.9)
w slope

Vectors and Matrices

{ } column vector

[ ] square matrix

{a} arbitrary constants, see (2.81) to (2.83)
4x1

[BS] as defined in (2.90)
4x4

[BV] displacements transformation matrix, defined in (2.93)
4x4

[D] flexured rigidity <f plate, defined in (2.72)
2x2

[E] elastic-plastic moduli

[E(k)] elastic~plastic moduli associated with k~th layer
2x2

[k] element stiffness matrix
4x4

* . .

{ p } generalized nodal ring load, see (2.120)

{r} displacements and rotations at nodal rings

2Nx1

{ R} nodal ring forces per unit length of plate

2Nx1

{S} nodal ring forces per unit length for an element
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[8] elastic-plastic compliance

9x9

{v} nodal ring displacement for an element see (2.94)
4x1

{de} strain increment vector (2.24)

{gf} stress increment vector (2.24)

Subscripts

x,B,7,8 range 1, 2

i,i,k, 42 range 1, 2, 3





