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Abstract: Structural brain abnormalities, including those in white matter (WM), remain common
in people with HIV (PWH). Their pathogenesis is uncertain and may reflect multiple etiologies.
Oxidative stress is associated with inflammation, HIV, and its comorbidities. The post-translational
carbonylation of proteins results from oxidative stress, and circulating protein carbonyls may reflect
this. In this cross-sectional analysis, we evaluated the associations between protein carbonyls and a
panel of soluble biomarkers of neuronal injury and inflammation in plasma (N = 45) and cerebrospinal
fluid (CSF, n = 32) with structural brain MRI. The volume of abnormal WM was normalized for
the total WM volume (nAWM). In this multisite project, all regression models were adjusted for
the scanner. The candidate covariates included demographics, HIV disease characteristics, and
comorbidities. Participants were PWH on virally suppressive antiretroviral therapy (ART) and were
mostly white (64.4%) men (88.9%), with a mean age of 56.8 years. In unadjusted analyses, more
nAWM was associated with higher plasma protein carbonyls (p = 0.002) and higher CCL2 (p = 0.045).
In the adjusted regression models for nAWM, the association with plasma protein carbonyls remained
significant (FDR p = 0.018). Protein carbonyls in plasma may be a valuable biomarker of oxidative
stress and its associated adverse health effects, including within the central nervous system. If
confirmed, these findings would support the hypothesis that reducing oxidative stress could treat or
prevent WM injury in PWH.

Keywords: HIV; oxidative stress; brain; magnetic resonance imaging; white matter

1. Introduction

Neuropsychiatric complications remain common among people with HIV (PWH)
who are taking effective antiretroviral therapy (ART) [1,2]. Neuroimaging provides a win-
dow into brain health in PWH. With virologic control during ART, the changes seen on
macrostructural magnetic resonance imaging (MRI) have become more subtle and localized,
especially gray matter volume loss [3]. Increased white matter (WM) abnormalities (e.g.,
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hyperintense regions on T2-weighted images) persist in PWH relative to sociodemographi-
cally similar people without HIV, and these progress despite ART [4–7]. WM abnormalities
are associated with aging, cognitive impairment, depression, and worse daily functioning in
the general population [8–13] and in PWH [14–19]. As PWH age, more research is needed
to understand the risk factors and biological mechanisms of WM abnormalities. Such
information should support efforts to prevent and treat neuropsychiatric complications in
PWH. Further, diagnostic or prognostic biomarkers in blood would be particularly helpful
in the clinic.

In the general population, WM abnormalities are typically attributed to cerebral small
vessel disease (CSVD). While PWH have a higher burden of cerebrovascular disease than peo-
ple without HIV [20], this does not fully explain the increase in WM abnormalities [6,17,20,21].
Additionally, debate continues with respect to whether HIV itself or HIV-associated comor-
bid conditions are the principal cause [4,18,22–25]. Prior studies have linked WM disease
to both HIV disease-related factors (e.g., lower CD4+ T-cell nadir, longer duration of HIV
infection, as well as CD4+ T-cell recovery) and comorbidities (e.g., hepatitis C virus (HCV)
seropositivity, diabetes, and cerebrovascular risk factors) [4,23,24,26,27]. In sum, current
data support a multifactorial etiology of WM abnormalities in PWH, even in the setting of
effective ART.

Oxidative stress is one mechanism by which the brain can be damaged in the setting
of HIV—and a pathway shared by many of the other risk factors for WM disease (e.g.,
aging, diabetes, and cardiovascular disease). PWH, including those on virally suppressive
ART, exhibit elevated oxidative stress which has been implicated in neuropsychiatric
complications [28–33]. Oxidative stress occurs when the production of oxidants exceeds
antioxidant capacity. Therefore, increased oxidation, decreased antioxidant quantity or
function, or impaired repair and removal of end products of oxidation can lead to oxidative
stress. HIV may affect each of these factors [31,33–37], although the strongest evidence is
for increased oxidant production [38]. HIV proteins, including gp120 and Tat, can induce
the intracellular production of reactive oxygen species, including in microglia, neurons, and
astrocytes [31,39,40]. The production of reactive oxygen species is especially pronounced
with the depletion of CD4+ T-cells [36]. Oxidative stress biomarkers are also elevated in
post-mortem brain tissue from PWH [33,41]. More recently, transcriptomic analysis of
monocytes and metabolomics analysis of serum demonstrated that increased oxidative
stress may be a key driver of increased inflammasome activation, specifically in PWH on
suppressive ART [37]. Additionally, ART itself may cause oxidative stress [31,34,35,42].

Oxidative stress can be measured in several ways, including by end products of ox-
idation (e.g., oxidized proteins, lipids, or nucleic acids). Protein carbonyls are created
by post-translational modification via oxidation of amino acid residues, and they are one
biomarker of oxidative stress. Proteins can be carbonylated by reactive oxygen species
directly or by-products of lipid oxidation. This irreversible modification can alter pro-
tein function and requires degradation to avoid accumulation and further toxicity and
inflammation [43–45]. Few studies report data on protein carbonyl concentrations in PWH.
One of these found increased protein carbonyls in CSF in PWH with dementia [46]. In
the general population, higher plasma protein carbonyls are associated with Alzheimer’s
disease [47,48] and schizophrenia [49] as well as non-neurologic conditions characterized
by chronic inflammation, including rheumatoid arthritis, diabetes mellitus, and vascular
disease [28,44,50]. While oxidative stress is not specific to HIV, assessing it can expand
understanding of biological mechanisms underlying comorbid conditions in PWH and
may have implications for therapeutics [51–54].

In the present study, we examined the relationship of soluble biomarkers of oxidative
stress, neurodegeneration, and immune activation in plasma and CSF with global measures
of brain structure using MRI in PWH. We hypothesized that the concentrations of these
biomarkers would be more abnormal in individuals with more abnormal WM.



Viruses 2023, 15, 2410 3 of 15

2. Materials and Methods

Participants. We analyzed cross-sectional data from 45 PWH who had a structural
brain MRI and a panel of biomarkers measured in plasma, in addition to a standardized
battery of neuromedical and laboratory assessments in the CHARTER (CNS HIV ART
Effects Research) Aging project between 2016 and 2019 [55]. All participants were taking
ART and had plasma HIV RNA below 200 copies/mL. A subgroup of 32 participants also
underwent lumbar puncture and had biomarkers measured in CSF. CHARTER is a prospec-
tive, observational study and five CHARTER sites contributed MRI data (Baltimore, n = 8;
Galveston, n = 11; New York, n = 9; San Diego, n = 13; and Seattle, n = 4). In the CHARTER
cohort, prospective participants were excluded for active opportunistic infections, severe
psychiatric disorders (e.g., untreated schizophrenia), drug use that would interfere with
participation, or for inability to complete the assessments [1]. All procedures were approved
by an Institutional Review Board. All participants provided written informed consent.

Laboratory Assessments. All participants had a diagnosis of HIV at enrollment
that was confirmed with an enzyme-linked immunosorbent assay. HIV RNA in plasma
was quantified using a commercial assay with a lower limit of quantification (LLOQ) of
20 copies/mL; clinical viral suppression was defined as less than 200 copies/mL as per
United States Department of Health and Human Services guidelines [56]. Peripheral blood
T cell subsets were measured using flow cytometry performed by a Clinical Laboratory
Improvement Amendments (CLIA)-certified laboratory.

Soluble biomarkers were measured using either a commercial immunoassay or bead
suspension array (Millipore, Burlington, MA, USA for CD40L only). Protein carbonyls (Cell
Biolabs, San Diego, CA, USA, LLOQ 0.375 nmol/ng), 8-hydroxydeoxyguanosine [8-OHdG]
(Trevigen, Gaithersburg, Maryland, USA; LLOQ 3.13 nM), neopterin (ALPCO, Salem,
NH, USA; LLOQ 6.4 nmol/L), amyloid β 1–42[Aβ 1–42] (MSD, Rahway, NJ, USA; LLOQ
0.168 pg/mL), soluble amyloid precursor protein-α [sAPPα] (MSD, LLOQ 0.01 ng/mL),
interleukin-6 [IL-6] (MSD, LLOQ 0.17 pg/mL), CCL2 (MSD; LLOQ 0.129 pg/mL), soluble
tumor necrosis factor receptor II [sTNFR-II] (MSD; LLOQ 0.61pg/mL), and soluble CD14
[sCD14] (R&D Systems, Minneapolis, MN, USA; LLOQ 250 pg/mL) were measured in both
plasma and CSF; C-reactive protein [CRP] (MSD; LLOQ 12.5 pg/mL), D-dimer (BioMedica,
Vienna, Austria; LLOQ 12 ng/mL), and soluble CD40 ligand [sCD40L] (bead suspension
array, Millipore; LLOQ 3.2 pg/mL) were measured in plasma only; neurofilament light
chain [NfL] (TECAN, Männedorf, Switzerland; LLOQ 100 pg/mL) and total Tau (MSD;
LLOQ 14.7 pg/mL), were measured in CSF only. All results were reviewed for quality
assurance and assays were repeated when coefficients of variation exceeded 20% or if con-
centration distributions revealed possible batch effects. This list of biomarkers represents
a select list of biomarkers of inflammation, oxidative stress, cardiovascular disease, and
neurodegeneration. Plasma and CSF 8-OhdG, protein carbonyls, plasma CRP, d-dimer,
sCD40L, sAPP, and Amyloid β 1–42 were analyzed given their associations with aging,
inflammation, dementia, AD, and neurocognitive impairment [28,57–63]. sCD14, neopterin
and sTNFRII were analyzed for their role in microglial signaling and response to neuronal
injury [64,65]. Amyloid β 1–42 and NfL were analyzed in CSF due to previous findings by
our group and others demonstrating an association between CSF oxidative damage and
these two biomarkers in the CSF, but not in the plasma [38,66].

Magnetic Resonance Imaging. T1-, T2-, and proton density-weighted volumes were
acquired at each site using a standardized protocol, all image processing was conducted at
one location, and differences associated with scanner vendor hardware were addressed
within statistical analyses as in prior work (see below and references [12,26,67]). All data
were processed with a multichannel segmentation approach for volumetric measurement
of abnormal WM (AWM), total WM, GM, CSF, and intracranial vault volume (ICV), as
previously described [12]. This approach leverages complementary information in three
volumes to increase measurement sensitivity while reducing the impact of acquisition noise.
The primary AWM measure includes areas within the white matter that are hypointense on
T1 and hyperintense on T2 and PD images; this is comparable to the measure commonly
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referred to as ‘white matter hyperintensities (WMH)’ that refer to the signal value on the T2.
Steps include standard alignment of the T1-weighted image (i.e., 6 degrees-of-freedom and
rigid transformation to an anterior/posterior commissure-aligned space), co-registration of
the T1-, T2-, and proton density-weighted volumes using a mutual information method [68],
intensity non-uniformity correction using N3 [69], and a three-class tissue segmentation
using Scott’s L2E method [70] to determine robust means and covariances for WM, GM,
and CSF. AWM was classified using morphological operators [71] to identify voxel clusters
originally segmented as GM that fell within anatomically defined WM regions. Results
were visually reviewed and manually edited when necessary to correct misclassifications.
Since partial voluming of CSF and WM along the edges of ventricles results in voxels with
AWM-like signals, even in healthy individuals, we did not allow any voxels that touched
(i.e., shared a common face, edge, or vertex) a ventricular fluid voxel to be classified as
AWM; such voxels were excluded from the estimated volumes.

Statistical Analyses. Demographics, HIV disease characteristics, and comorbidities
were summarized with mean and standard deviation or median and interquartile range for
continuous variables, and numbers and percentages for categorical variables. Volumetric
imaging data were normalized for analysis to account for individual differences in head
size. Specifically, normalized AWM (nAWM) is the total abnormal WM volume normalized
for total WM volume and normalized GM (nGM) is the total GM volume normalized for
intracranial volume. To account for differences driven by scanner-related factors (e.g.,
vendor-related hardware), all regression analyses include the scanner [26,67]. MRI outcome
variables (e.g., nAWM) and biomarker measurements were transformed to reduce skewness
and stabilize distributions.

Relationships between soluble biomarkers and MRI outcome measures were first
assessed with Pearson’s correlation analysis. Next, associations between nAWM and
individual variables of interest were evaluated using regression, adjusting for the scan-
ner only. The variables were selected based on a literature review and prior work by
our group to include factors previously associated with AWM, protein carbonyls, or
oxidative stress. These variables included demographic characteristics, HIV disease
characteristics (CD4+ T-cell count, CD4+ T-cell nadir, and estimated duration of HIV
infection) [4,23,24,26,27], HCV serostatus [4,26], diabetes [25], hypertension [4,14,18], body
mass index (BMI) [72], hyperlipidemia [73], Framingham cardiovascular risk score [74],
and current and lifetime tobacco use [4,75,76]. Variables predictive of nAWM with p < 0.2
on regression, adjusting for the scanner, were then evaluated using multivariable regres-
sion modeling. The final, reduced model that predicted nAWM was determined using
backward stepwise elimination using Akaike Information Criterion (AIC) as the selection
criterion. In addition, we identified associations between plasma protein carbonyls and
other biomarkers in plasma and CSF using simple linear regression. A significance level
α was set to 0.05. Analyses were performed using R software (version 4.2.1) and JMP Pro
(version 16.0.0). The false discovery rate (FDR) method was used to reduce type I errors in
multivariable models.

3. Results

Participant characteristics. Table 1 summarizes the characteristics of the 45 participants,
who were majority white (64.4%) men (88.9%) with a median age of 55 years and had HIV
for a median of 24.2 years. The median nadir CD4+ T-cell count was under 200 cells/µL
and the median count at the time of the assessment was over 500 cells/µL. More than half
of the participants were HCV seropositive. Most participants (78.8%) had smoked tobacco
in their life, but only seven (15.6%) reported tobacco use at the time of the assessment.
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Table 1. Demographic, HIV disease, and comorbidity characteristics. Values reported are either
number (%) or median [IQR]. N = 45. All participants were taking ART and had plasma HIV
RNA ≤ 200 copies/mL.

Demographic Characteristics

Age (years) 55 [52, 63]

Sex (male) 40 (88.9%)

Race

White 29 (64.4%)

Black 16 (35.6%)

Ethnicity (Hispanic) 6 (13.3%)

Education (years) 13 [12, 15.5]

HIV Disease Characteristics

CD4+ T Cell Count (cells/µL) 527 [387, 810]

CD4+ T Cell Nadir (cells/µL) 104 [19.5, 190]

AIDS Diagnosis 40 (88.9%)

Estimated Duration of HIV (years) 24.2 [17.0, 29.5]

Duration of Current Regimen (months) 25.3 [8.2, 72.0]

Duration of All ART (months) 188 [150, 239]

ART Regimen Class

Integrase Inhibitor Use 27 (60.0%)

Protease Inhibitor Use 13 (28.9%)

Non-nucleoside Reverse Transcriptase Inhibitor Use 11 (24.4%)

Comorbid Conditions

Body Mass Index (kg/m2) 25.7 [23.3, 29.8]

HCV Seropositive 24 (53.3%)

Diabetes Mellitus 8 (17.8%)

Hypertension 25 (55.6%)

Hyperlipidemia 19 (42.2%)

Framingham 10-year Risk Score 15.7% [8.9, 24.0]

Chronic Pulmonary Disease 8 (17.8%)

Current Substance Use Disorder 2 (4.6%)

Lifetime Substance Use Disorder 37 (82.2%)

Current Tobacco Use 7 (15.6%)

Lifetime Tobacco Use 35 (77.8%)

Current Major Depression 2 (4.6%)

Lifetime Major Depression 31 (68.9%)

Neurocognitive Impairment (global deficit score ≥ 0.5) 17 (37.8%)

Relationships between biomarkers and imaging. Pearson’s correlation analysis iden-
tified that higher nAWM was correlated with higher plasma protein carbonyls (r = 0.45,
p = 0.002) and plasma CCL2 (r = 0.30, p = 0.045), as shown in Figure 1. There were non-
significant trends between nGM and higher plasma sCD40L (r = −0.29, p = 0.051) and lower
CSF NFL (r = −0.32, p = 0.079).
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Figure 1. Scatter plots for significant correlations between normalized abnormal white matter
and soluble biomarkers. Log transformed values of normalized AWM (abnormal white matter
volume/total white matter volume) by (A) plasma protein carbonyl concentration and (B) plasma
CCL2 levels. Shaded bands represent 95% confidence intervals.

We then further evaluated predictors of nAWM with limited regression models that
included a single variable of interest and a scanner. When adjusting for the scanner,
the association between nAWM and plasma protein carbonyls remained significant (std
β = 0.423, p = 0.0016). The weaker correlation between nAWM and plasma CCL2 was no
longer significant in regression analysis when accounting for the scanner (std β = 0.174,
p = 0.274). Individual variables predictive of nAWM with a p-value < 0.2 included tobacco
use, race, HCV serostatus, plasma D-Dimer, plasma CRP, and age, as shown in Table 2.
These variables were included in the backward stepwise regression for model selection and
only plasma protein carbonyls, age, lifetime tobacco use, and plasma CRP remained in the
model as significant predictors of nAWM. This model had an R2 = 0.51 and p < 0.0001.

Table 2. Regression table of normalized abnormal white matter. Scanner only refers to nAWM re-
gressed on the scanner and listed variables. Variables with p < 0.2 were then included in multivariable
linear regression modeling. Multivariable model selection was performed using the Akaike Informa-
tion Criterion (AIC) and backward elimination. Model R2 for the best fit is 0.51, model p < 0.0001.

Scanner Only Multivariable

Std β p Value Std β p Value FDR
p Value

Risk
Direction

Plasma Protein
Carbonyls a 0.423 0.002 0.340 0.006 0.018 Higher

Lifetime Tobacco Use 0.378 0.016 0.276 0.028 0.042 Present

Race 0.404 0.035 Black

HCV Serostatus 0.286 0.074 Positive

Plasma D-Dimer a 0.252 0.097 Higher

Current Tobacco
Smoking 0.226 0.116 Present

Plasma C-Reactive
Protein a 0.225 0.123 0.239 0.049 0.059 Higher

Age 0.213 0.176 0.312 0.023 0.042 Older
CI—confidence interval; Std β—Standardized βeta; FDR—False Discovery Rate. a log10 transformed.

Other variables of interest which were not associated with nAWM included the other
soluble plasma biomarkers, HIV disease characteristics (current CD4, CD4 nadir, history
of AIDS diagnosis, estimated duration of HIV, and duration of current ART regimen) and
other clinical characteristics and comorbid conditions (HCV, diabetes, hemoglobin A1c,
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hypertension, hyperlipidemia, BMI, and Framingham cardiovascular risk score). Female
sex was originally identified as a candidate for multivariable analysis for predicting nAWM
with a p = 0.104 in regression adjusting for the scanner. However, there were only five
women at only two of the five sites included in this cohort. Univariable regression without
correcting for the scanner did not find any association between nAWM and sex. CSF-
soluble biomarkers were available for a subset (n = 32) and none of these were associated
with nAWM.

Relationships between plasma protein carbonyls and other biomarkers. Based on
these observations, we assessed the relationships between plasma protein carbonyls and
the other biomarkers (Figure 2). The plasma concentration of protein carbonyls was not
associated with concentrations of other plasma biomarkers (Figure 2A), but a higher plasma
concentration of protein carbonyls was associated with higher CSF concentrations of total
Tau [standardized β = 1.07, p = 0.004] and CSF neopterin [standardized β = 1.50, p = 0.004],
and a lower CSF concentration of Aβ-42 [standardized β= −1.23, p = 0.018] (Figure 2B).
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Figure 2. The effect of biomarkers in plasma and CSF on plasma protein carbonyl concentrations.
Univariable analyses were carried out with regressing plasma protein carbonyl on plasma biomarkers
with N = 45 (A) and CSF biomarkers with N = 32 (B).

4. Discussion

The principal finding of these analyses of the soluble biomarkers and structural
brain MRIs of 45 PWH on virally suppressive ART is that greater circulating protein
oxidation was associated with more abnormal WM. Protein carbonylation is one of several
nonenzymatic post-translational modifications that are caused by oxidation, and increases
in their concentration in plasma are seen in aging and aging-related diseases, including
vascular disease, diabetes mellitus, and Alzheimer’s disease [43,47,77–79]. Similarly, WM
abnormalities are associated with aging and aging-related diseases, which supports the
validity of the current findings [5,9,12,13] although the cross-sectional design does not
allow causal inference. An increase in plasma protein carbonyl concentration has been
associated with abnormal white matter in people with schizophrenia [49] and elevated
tissue concentrations of protein carbonyls have been found in the white matter plaques
of individuals with multiple sclerosis [80]. The findings from the current study therefore
provide validation of a link between protein carbonylation and white matter disease, but
this is the first study to our knowledge in linking oxidative stress, specifically plasma
protein carbonyls, to white matter abnormalities in PWH.



Viruses 2023, 15, 2410 8 of 15

Proteins can be carbonylated by either reactive oxygen species directly or by-products
of lipid oxidation. This process results in an irreversible modification that can alter protein
function and requires degradation by proteolysis to avoid accumulation and further toxicity
and inflammation [43–45]. Furthermore, the enzymes required for proteolysis may be
carbonylated and inactivated and, in the setting of sustained oxidative stress, this may
lead to further accumulation of abnormal proteins and promotion of inflammation [81,82].
Technically, an increased level of protein carbonylation indicates consequences of oxidative
stress but does not distinguish between increased production of reactive oxygen species,
reduced antioxidant capacity, or impaired proteasomal function. However, a combination
of all three likely contributes [31,33–37]. Additionally, in this cross-sectional study of all
PWH on suppressive ART, we cannot determine the cause(s) of oxidative stress or the
degree to which HIV contributes.

The associations between plasma protein carbonyls with CSF neopterin, Aβ 1–42,
and total Tau in the subgroup of 32 participants with CSF biomarkers further suggest
a role for protein carbonylation in neuroinflammation and injury, but they could also
simply be a convergent indicator of underlying neuropathology. Neopterin is a nonspecific
biomarker of inflammation that is produced in many cell types, especially myeloid cells, in
response to interferon-γ. CSF neopterin has previously been associated with white matter
abnormalities [65] and cognitive impairment in PWH [83,84], as well as with both oxidative
stress and neurodegeneration [85], further supporting the validity of our findings. The
associations with biomarkers of neurodegeneration (higher CSF total Tau, lower CSF Aβ

1–42) are consistent with prior studies linking oxidative stress and Alzheimer’s disease-type
pathology in PWH [38,47,64,81,86–90]. However, from this study, we cannot determine
if this is related to white matter abnormalities or a reflection of the nonspecific nature of
oxidative stress.

Another end product of oxidative stress, 8-OHdG, is a marker of DNA oxidation,
and CSF 8-OHdG has previously been associated with a higher concentration of buccal
mitochondrial DNA, higher CSF NFL, and lower CSF Aβ 1–42 in PWH [38,91]. In the
present analysis, neither plasma nor CSF 8-OHdG was associated with protein carbonyls or
nAWM. This may be because, unlike protein carbonylation, DNA oxidation is a dynamic,
reversible modification; it can be reversed by antioxidants [46,92,93] and repaired by DNA
repair mechanisms [93]. Thus, 8-OHdG may better reflect acute oxidative stress while
protein carbonyls may indicate chronic oxidative stress [44,93,94].

Consistent with prior findings, older age, history of tobacco use, and higher plasma
CRP were also associated with nAWM and were selected in the final multivariable model for
nAWM [4,19]. Plasma protein carbonyl levels remained the strongest predictor of nAWM
in univariable and multivariable analyses. Surprisingly, nAWM was not associated with
other comorbidities and more modifiable risk factors typically associated with small vessel
cerebrovascular disease (hypertension, hyperlipidemia, diabetes mellitus, hemoglobin
A1c, BMI, or Framingham cardiovascular disease risk score). In the context of limited
power due to the small sample size, these factors still likely are associated with AWM
as shown previously [4,12,25,73]. It is possible that with multifactorial etiologies of WM
abnormalities, a nonspecific marker like plasma protein carbonyl levels is an aggregate
measure of several different etiologic factors.

Unlike prior reports from the CHARTER cohort, our analyses did not find associations
between nAWM and the duration of HIV infection, current or nadir CD4+ T-cell count, or
HCV serostatus. One reason may be limited power (N = 45) and the need to account for
the influence of different scanners in analyses. However, there is also increasing evidence
for attenuation of the effect of pretreatment immunocompromise—and the increased role
of comorbid conditions—on neuropsychiatric complications for PWH on ART so this
needs to be evaluated in a larger study [55,95]. HCV seropositivity had a trend level
association with nAWM when adjusting for the scanner alonebut was not significant in
multivariable analyses. As in prior studies, our analyses were based on HCV serostatus,
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without distinguishing between chronic and resolved HCV infection. Future studies would
benefit from HCV RNA measurement which would improve power to detect an HCV effect.

The association with plasma protein carbonyl levels, and lack of association with
HIV disease characteristics, provide additional evidence that WM abnormalities reflect an
active process that continues on virally suppressive ART rather than a legacy effect from a
remote, discreet insult during prior severe immunosuppression, opportunistic infections, or
uncontrolled viremia. This distinction emphasizes the potential for therapeutic intervention
in an active pathological process.

It is also important to note a few key differences between this subgroup and the larger
CHARTER aging cohort [55]. Overall, this subset is similar in terms of demographics,
depression history, substance use history, and rate of neurocognitive impairment (defined
as a global deficit score > 0.5) [96,97]. However, this subgroup has a higher percentage of
individuals with a history of severe immunocompromise (89% with a prior AIDS diagnosis),
and half (53%) were HCV seropositive. Thus, our results may not be generalizable to the
entire PWH population and need further study.

Readers should also consider other limitations of this study. It is important to reiterate
that this is a cross-sectional analysis and therefore causality cannot be inferred. We did
not find associations between imaging measures and CSF biomarkers, but these subgroup
analyses were hampered even more by the smaller sample size (n = 32). While we recognize
the importance of sex as a biological variable in research, analyses of sex were not feasible
in this study with only five women at only two of the five sites included in this cohort with
all measures available. This may be particularly relevant, for example, because plasma
protein carbonyls are only associated with Alzheimer’s disease in men [48,98]. Due to
the small sample size and heterogeneity of ART regimens, we were not able to examine
differences in biomarkers or imaging measures by the type of ART, which is an important
gap in the current knowledge [31,34,35]. However, the limitations in power and accounting
for Type 1 errors with false discovery rates in the final multivariable model underscores the
strength of the association between plasma protein carbonyls and nAWM.

Larger studies with both PWH and people without HIV are needed to confirm our
findings, to determine the degree to which HIV modifies the observed relationships, and to
better understand the role of the type of ART, comorbidities, sex, social determinants of
health, exercise, and antioxidant intake. Ongoing efforts for improved standardization and
data harmonization for MR research protocols and the inclusion of more functional and
microstructural assessments will allow for larger studies.

Our findings provide support for measuring protein carbonyl concentration in plasma
in imaging studies, especially in PWH and white matter disease. In addition, broadening
the panel of oxidative stress-related biomarkers and linked ex vivo assessments should also
provide more insight into the precise mechanisms linking end products of oxidative stress
with immune activation and neurotoxicity [47] and help identify potential therapeutic
targets. For example, future directions could include assessments of (1) the mechanisms
leading to the production of reactive oxygen species; (2) measurement of antioxidant
capacity and antioxidant intake; (3) other oxidation-related post-translational modifications
(e.g., glycation); (4) other oxidized molecules (e.g., lipids perioxidation, malondialdehyde,
and 4-Hydroxy-2-nonenal); (5) degradation of modified proteins (e.g., proteasome 20S
function); and (6) comprehensive proteomic analysis to determine if specific proteins are
more prone to carbonylation in PWH. Next steps also include evaluating associations
between clinical neuropsychiatric outcomes (e.g., cognition and depression), AWM, and
oxidative stress in larger groups in CHARTER and other cohorts.

In addition to biological and mechanistic implications, our findings have clinical and
therapeutic implications. The observed associations with protein carbonyls in an easily
accessible body fluid (blood) make the findings more clinically accessible than a biomarker
in CSF or imaging. It is important to recognize that plasma protein carbonyls are not a
specific marker unique to AWM in PWH. However, nonspecific tests provide valuable,
clinically actionable information every day. This study is consistent with the existing
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literature that supports the potential diagnostic value of protein carbonyls measured in
blood [28,43,44,47–50]. Further, protein carbonyls are easily quantified with a simple
immunoassay. While the assay is not approved for clinical use, it is well-suited for high
throughput testing like other clinical immunoassays. A better understanding of oxidation-
related biological mechanisms in PWH could identify new therapeutic targets.

5. Conclusions

In conclusion, protein carbonyls may be a valuable blood biomarker of oxidative stress
and its associated adverse health effects, including neuropathology. Including the measure-
ment of plasma protein carbonyls in future and ongoing neuroimaging studies may provide
important insights into the role of protein oxidation in persistent neuroinflammation and
neurotoxicity, particularly in aging PWH [45,54,79,81,82,99]. Reducing oxidative stress,
regardless of the cause, could potentially mitigate additional damage.
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