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PHYSICAL REVIEW E JANUARY 1999VOLUME 59, NUMBER 1
Thermodynamic depth of causal states: Objective complexity via minimal representations

James P. Crutchfield*
Physics Department, University of California, Berkeley, California 94720-7300

and the Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501

Cosma Rohilla Shalizi†

Physics Department, University of Wisconsin, Madison, Wisconsin 53706
and the Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501

~Received 17 August 1998!

Thermodynamic depth is an appealing but flawed structural complexity measure. It depends on a set of
macroscopic states for a system, but neither its original introduction by Lloyd and Pagels nor any follow-up
work has considered how to select these states. Depth, therefore, is at root arbitrary. Computational mechanics,
an alternative approach to structural complexity, provides a definition for a system’s minimal, necessary causal
states and a procedure for finding them. We show that the rate of increase in thermodynamic depth, ordive, is
the system’s reverse-time Shannon entropy rate, and so depth only measures degrees of macroscopic random-
ness, not structure. To fix this, we redefine the depth in terms of the causal state representation—e-machines—
and show that this representation gives the minimum dive consistent with accurate prediction. Thus,
e-machines are optimally shallow.@S1063-651X~99!12401-2#

PACS number~s!: 05.20.2y, 05.45.2a, 05.70.Ce
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I. NATURAL COMPLEXITY

Dissipative dynamics, symmetry breaking, phase tra
tions, bifurcations, and pattern formation, acting over diff
ent temporal and spatial scales, at different levels and
different substrates, are presumably responsible for ass
bling and freezing in the wide diversity of structures o
served in the natural world. Each of these processes ha
more-or-less well-developed foundations. But where are
principles that define and describe their products? Wha
structure itself? Does each and every particular combina
of forces lead to a different and unique class of natural str
ture, requiring its own vocabulary and theory? And, how
we detect that some new structure has emerged in the
place?

These and related questions about nature’s comple
have engaged a large number of researchers for severa
cades now; for a sampling see, e.g., Refs.@1–5# and refer-
ences therein. One focus has been on quantitative mea
of the complexity of natural objects and of the processes
bring them into existence—measures that capture prope
more interesting than mere randomness and disorder. E
ing theory, such as is found in statistical mechanics, provi
relatively well-understood measures of disorder in~say! tem-
perature and thermodynamic entropy, and of the flow of
ergy that can do work in the various free energies. Wh
many applications and problems remain, there is little pre
ing need for new conceptual approaches to randomness
energy transduction. However, when it comes to struct
something is missing—something else must be invented
then added to physical theory to account for, work with, a
quantify different kinds of structure.

*Electronic address: chaos@santafe.edu
†Electronic address: shalizi@santafe.edu
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One class of approaches to natural complexity is based
the theory of sequential discrete computation@6,7#—the
theory of how sundry sorts of discrete-state devices proc
information at varying levels of sophistication. The resulti
measures of complexity ultimately express structural prop
ties in terms of universal Turing machines. Unfortunate
almost all interesting mathematical and quantitative qu
tions about these measures of structure inherit the uncom
ability associated with those all-powerful machines. Mo
fundamentally, though, the idea that everything in the wo
is really a discrete-state computer strikes one as inadequ
at a minimum nature is parallel, continuous, spatially e
tended, noisy, and quantum mechanical.

Fortunately, in the thermodynamic depth of Lloyd an
Pagels @8# we have a proposal for a noncomputatio
theoretic, empirically calculable measure of the complex
of processes. One central motivation for defining the therm
dynamic depth is that it is small both for regular and f
random processes. Thus, one of its appealing features is
depth measures something other than randomness—a p
erty already well-captured by both Kolmogorov-Chait
complexity @9–11# and Shannon entropy rate@12–15#.

In this paper we introduce the required background
thermodynamic depth@8# and for an alternative approach t
natural complexity, called computational mechanics@16,17#,
that extends statistical mechanics to address issues of s
ture in a direct way. We review the definition of thermod
namic depth and apply it to several simple Markov pr
cesses, revealing several ambiguities. To remove them
redefine the depth in terms of a representation based
causal states, those states through which computational
chanics views the minimal structure of a system@16,17#. We
then prove our main results on the predictive optimality a
minimality of the causal state representation. Finally,
draw a number of conclusions about using thermodyna
275 ©1999 The American Physical Society
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276 PRE 59JAMES P. CRUTCHFIELD AND COSMA ROHILLA SHALIZI
depth as a measure of structural complexity in natural p
cesses.

II. PROCESSES

Following Lloyd and Pagels, we focus on discrete-tim
processes and consider a given process as a joint proba
distribution Pr(. . . ,X21 ,X0 ,X1 , . . . ) over random~‘‘mi-
croscopic’’! variablesXt at each timet that take valuesxt in
a continuous state spaceX. In accord with experimental con
straints, we assume that the process is not observed dire
but states are in fact measured via a finite-precision ins
ment. The result is that our description of the proce
is in all practicality a joint distribution over a chai

SJ[•••S22S21S0S1••• of discrete-valued random variable
St that range over a finite setA of observed states.~Although
our notation differs, this setup follows the account in R
@8#, p. 194, of ‘‘macroscopic,’’ ‘‘measured,’’ or ‘‘coarse
grained’’ states as partitions of the underlying microsco
state space.!

We divide the chain into two semi-infinite halves b
choosing a timet as the dividing point. Denote the past b

SQ t[•••St23St22St21 ~1!

and the future by

SW t[StSt11St12St13•••. ~2!

We will assume that the observed process is described
temporal shift-invariant measurem on bi-infinite realizations
•••s22s21s0s1s2 . . . ,siPA. The measurem induces a fam-
ily of distributions. Let Pr(st) denote the probability that a
time t the random variableSt takes on the particular valu
stPA and Pr(st11 ,•••,st1L) the joint probability over se-
quences ofL consecutive measurements. Consistent w
Ref. @8#, we assume time-translation symmetry@18# and so
Pr(st11 , . . . ,st1L)5Pr(s1 , . . . ,sL). We denote a sequenc
of L consecutive measurements bySL[S1 . . . SL ; when
looking to the future~past! the sequence is denotedSW L (SQ L).
@In dropping the time index from Eqs.~1! and~2! we implic-
itly take t50.# We shall follow the convention that a capit
letter refers to a random variable, while a lowercase le
denotes a particular value of that variable. Hence,sL will
denote a particular measurement sequence of lengthL.

III. ENTROPY AND RANDOMNESS

The average uncertainty of anL sequenceSL is given by
the Shannon entropy of the joint distribution Pr(SL) @14#:

H@SL#[2 (
sLPA L

Pr~sL!log2Pr~sL!. ~3!

Looking forward in time, the rate of increase of this unce
tainty is defined by the entropy rate

hW m[ lim
L→`

H@SW L#

L
, ~4!
-
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wherem denotes the above-mentioned measure. The qua
hW m measures the irreducible randomness in the generatio
future behavior: the randomness that remains after the co
lations over longer and longer futures are taken into acco
The reverse-time entropy ratehQ m is defined similarly in
terms ofSQ L and measures historical randomness. Both can
expressed in terms of a conditional entropy: given kno
edge of the measurement history, the uncertainty in the n
measurementS0 is

hW m5H@S0uSQ #; ~5!

and similarly, given the future, we have

hQ m5H@S21uSW #, ~6!

where the entropy of a random variableX conditioned on the
value of another random variableY is defined asH@XuY#
[H@X,Y#2H@Y#.

IV. THERMODYNAMIC DEPTH

Lloyd and Pagels propose that the complexity of a m
roscopic statesPA is determined by the history that led tos.
The motivation for this is that ‘‘complexity must be a func
tion of theprocess—the assembly routine—that brought th
object into existence’’~emphasis theirs! ~@8#, p. 187!; in par-
ticular, it is a ‘‘measure of how hard it is to put somethin
together’’ ~@8#, p. 189!. Starting from a distribution over
macroscopic state sequences, one first finds the probabili
length-L histories that end in states:

Pr~S2L11 , . . . ,S21 ,S05sus! ~7!

[
Pr~S2L11 , . . . ,S21 ,S05s!

Pr~s!
. ~8!

Then the thermodynamicL-depthDL(s) of states is defined
by the conditional entropy

DL~s![H@S2L11 , . . . ,S21 ,S05sus#. ~9!

~From here on we ignore the distinction in Ref.@8# between
‘‘depth’’ and ‘‘thermodynamic depth’’ by, in effect, setting
Boltzmann’s constant to 1/ln 2.) Averaging over all su
states gives one theL-depthDL of the system as a whole:

DL[ (
sPA

Pr~s!DL~s!, ~10!

or

DL5H@S2L11 , . . . ,S21uS0#, ~11!

where we have used the identityH@X,YuX#5H@YuX#. We
defineD050.

The backstage intuition motivating thermodynamic dep
is the following: if there is little uncertainty about how t
attain a macroscopic state and if trajectories are confi
within narrow bounds, then the macroscopic state is eas
assemble. In this case the process leading to that state
generating those trajectories is simple and the state is s
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PRE 59 277THERMODYNAMIC DEPTH OF CAUSAL STATES
low. If the historical uncertainty is large and if a wide ran
of historical alternatives has been excluded, then the pro
is complex and the macroscopic state is deep. ‘‘The ther
dynamic depth of a stateb is proportional to the amount o
information ~in bits! needed to identify the trajectory tha
leads tob given the information that the system is inb’’ ~@8#,
p. 196!.

Like all statistical complexity measures, thermodynam
depth has forsworn awarding high complexities to mere r
domness. Reference@8# states that it vanishes for complete
random processes, as well as for totally ordered ones~@8#,
pp. 187, 190, and 191!. For systems satisfying the microca
nonical assumption of statistical mechanics, Lloyd and
gels ~@8# pp. 190, 194, and 195! provide another expressio
for the depth, as the difference between a coarse-grained
a fine-grained thermodynamic entropy. Using this altern
expression, they argue that black holes~@8#, p. 191!, gases at
thermal equilibrium~@8#, p. 191!, and salt crystals~@8#, p.
191! are shallow and the self-assembly of protein comple
~@8#, p. 196! is deep. While it is sometimes easier to evalu
the alternate expression than Eq.~11!, it is strictly equivalent
to the latter in the cases where the necessary~restrictive!
conditions behind the former hold, so we shall confine o
selves to Eq.~11! in what follows.

The total depth, limL→`DL , of a process might as well b
bottomless. LikeL-depth, it depends on a baseline. That is
depends on the time when we judge the process to h
started and on the depth accumulated from the beginnin
time until then. At best, these choices can be a bit tricky
figure out. Of greater physical significance, therefore, is
asymptotic ratev at which the depth increases, which we c
dive:

v[ lim
L→`

@DL2DL21#. ~12!

The benefit of looking at a rate which is not considered
Ref. @8# is thatv is independent of the origin of time and s
allows one to more fairly compare processes by their rate
depth generation.

We now show thatv is the reverse-time entropy rate
Recalling the definition of conditional entropy,H@YuX#
5H@X,Y#2H@X#, Eq. ~12! becomes

v5 lim
L→`

$H@S2L11 , . . . ,S0#2H@S0#

2H@S2L12 , . . . ,S0#1H@S0#% ~13!

5 lim
L→`

$H@S2L11 , . . . ,S0#

2H@S2L12 , . . . ,S0#% ~14!

5 lim
L→`

H@S2L11uS2L12 , . . . ,S0# ~15!

5H@S2L11uSW 2L12#5H@S21uSW # ~16!

5hQ m , ~17!

where the next-to-last step follows from time-translation
variance.
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For later use note that, sinceH@Y#>H@YuX#, it follows
from Eq. ~16! and from translation invariance that

v<H@S0#. ~18!

For stationary or asymptotically stationary processes,
haveH@S2L12 , . . . ,S0#5H@S2L11 , . . . ,S21#. Thus, start-
ing from Eq.~14! we also conclude that

lim
L→`

$H@S2L11 , . . . ,S0#2H@S2L11 , . . . ,S21#% ~19!

5 lim
L→`

H@S0uS2L11 , . . . ,S21# ~20!

5H@S0uSQ # ~21!

5hW m . ~22!

From this we see that~i! the forward-time and reverse-tim
entropy rates are equal,hQ m5hW m , and ~ii ! they are the same
as the dive:v5hm . ~From here on we drop the time arrow
and denote a process’s entropy rate byhm .)

To summarize, we have shown that the Shannon entr
rate controls the average rate of increase in the thermo
namic depth and that the dive is invariant under time rev
sal. Recall thathm also controls the average rate of increa
of Kolmogorov-Chaitin complexity@14#. These aspects o
depth are not a surprise and are in accord with the claim
‘‘the average complexity of a state must be proportional
the Shannon entropy of the set of trajectories that experim
determines can lead to that state’’~@8#, p. 190!. From these
elementary uses of information-theoretic identities, it is cle
at this point that thermodynamic depth measures noth
other than the macroscopic randomness generated by a
tem.

V. SOMETHING ROTTEN IN THE STATES

The analysis of the preceding section leaves us wit
puzzle: How is it that Lloyd and Pagels can state—e.g.,
each of the first six pages of Ref.@8#—that depth discounts
for disorder and so captures something other than rand
ness?

The problem, we claim, lies in their choice of states.
the illustrative examples in Ref.@8# macroscopic states ar
selected that support the desired properties of depth. Tha
the results and interpretations do not follow from a dire
application of the given definition of thermodynamic dep
alone; biases external to the definition are invoked.

Moreover, employing an appropriate set of macrosco
states is crucial for obtaining a well-defined depth, since
judiciously redefining them one can give the depth any va
from 0 on up. To see this, remember that the depth is
conditional entropy of a sequence of states. If there is o
one state, the depth vanishes. If we make spurious ma
scopic distinctions—e.g., acting as though one state was
ally n degenerate, equiprobable states—we add a contr
tion to the dive that is proportional to logn. And, we can
keep doing this until the depth is as large as we like~cf.
discussion in Ref.@8# leading up to the example on pag
191!.
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The states of whichever dynamical system underlies
observed process are, at least, unambiguous candidate
use in the calculation of depth, but have an unfortunate h
of being unknown, redundant, or excessively fine grain
Lloyd and Pagels considered this problem by implicatio
discussing why, in some particular cases, certain choice
state are better than others. They explain, for instance
page 191 of Ref.@8# how an unfortunate choice of measur
ments can make even systems in thermodynamic equilibr
quite deep. But they neither presented a procedure for p
ing sets of states nor gave general criteria for ranking p
sible alternative selections. This lack has not been reme
by follow-up work on thermodynamic depth, though com
mentary at that time by Landauer~@19#, p. 307! raised related
concerns.

Assuming one wants to use thermodynamic depth to m
sure complexity, Occam’s razor@20# advises us to pick the
simplest representation we can—in this case, whichever
lection of states gives the smallest depth; cf. Ref.@8#, p. 193.
But this can always be trivially achieved by lumping ever
thing into one state, as just noted, which gives a vanish
depth. More confusingly there are even cases, as we’ll s
bit later, where such lumping is entirely appropriate.

Nor can the problem of state choice be reduced to tha
coarse graining the space of observables; as done in Ref@8#,
pp. 194 and 195 and elsewhere, for example in Refs.@21#
and @22#. While this space can be readily represented b
finite alphabet, as done above—indeed, digital measuring
vices so represent it without even asking permission—
problem is that the connection between what we measure
the underlying process is often obscure to the point of to
darkness.~The definitions of ‘‘measurement’’ for Hamil
tonian and quantum mechanical systems in Ref.@8# shed no
light on this point.! It is certainly not desirable to conflate
process’s complexity with the complexity of whatever app
ratus connects the process to the variables we happen to
seized upon as handles.

One helpful step in developing any measure of compl
ity is that it be calculated on simple illustrative examples t
can be thoroughly and unambiguously analyzed. We n
proceed to do this for a series of examples—all of th
based on Markov chains, if only to guarantee that noth
especially tricky or esoteric is at issue. In fact, we can int
pret each example as a type of one-dimensional spin-1
tistical mechanical system; cf. Ref.@23#. ~We emphasize tha
our results in other sections are not restricted to this clas
Markov processes.!

The hidden Markov models we analyze contain a se
‘‘internal’’ states, belonging to a finite alphabetX, which are
not directly observable. At each time step, there is so
probability of moving from the current state to any othe
while ‘‘emitting’’ an observable symbol drawn from anoth
alphabetA. We denote the probability of going from intern
state i to internal statej while emitting the measuremen
values asTi j

(s) . These models thus generate a pair of link
stochastic processes, one over the internal states and
other over the observable values, and only the latter is
rectly detectable. Nonhidden Markov models are tho
where these two processes are one and the same: wheA
5X andTi j

(s)50 unlesss5 j .
Consider first a nonhidden system of three statesX5A
e
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5$A,B,C%, each of which can go to any other, includin
itself, with equal probability; see Fig. 1. Here, according
the prescription of Lloyd and Pagels,DL5L log23, the total
depth is infinite, and the dive is exactly equal to the entro
rate of the observable sequences, i.e.,v5hm

A5 log23 bits per
step. The sequences generated are completely random
neither the depth nor dive vanish.

Next, we hide the internal statesX from observation, but
at each time step a measuring instrument emits one of
observable symbolssPA5$0,1%, as in Fig. 2. In this way
we recover a simple version of the micromacroscopic d
tinction of Ref. @8#. The transition matricesTi j

(s) are, in this
case,

T~0!5F 1/2 0 0

0 1/2 0

0 0 1/2
G ~23!

and

T~1!5F 0 1/2 0

0 0 1/2

1/2 0 0
G . ~24!

That is, each state either loops back on itself, emittings
50, or goes to the next state in the chain, emittings51, with
equal probability. The dive, i.e., the entropy ratehm

A of the
observables, isv51 bit per step. The entropy ratehm

X of the

FIG. 1. A simple Markov chain that generates rando
sequences—BBAC•••—with finite dive (v5 log23) and so infinite
total depth (DL→L→``).

FIG. 2. A simple hidden Markov model that generates strin
with finite dive (v5hm

A51 bit per step! and infinite long-run depth.
The edge notationsup denotes that a transition is to be taken wi
probability p, emitting measurement values.
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PRE 59 279THERMODYNAMIC DEPTH OF CAUSAL STATES
internal states is also 1 bit per step, since, given the cur
state, there are two possible, equiprobable successors. M
over, while the system is a quite adequate source of ran
sequences, macroscopic statessPA, as well as the three
hidden states, continue to deepen at the rate of 1 bit per

Note that by inserting additional states betweenA andB,
which are equally likely to either loop back to themselves
s50 or go to the next state in the chain ons51, it is easy to
go from Fig. 2 to ‘‘Rube Goldberg’’ automata. These a
representations with elaborated sets of states with exactly
same observable process and properties~i.e., with the same
Pr( . . . ,s21 ,s0 ,s1 , . . . ), where stP$0,1%), but with in-
creasing internal-state structure. Thus, there are inherent
biguities in using inappropriately baroque sets of states w
describing the structural properties of a process; ambigu
that must be addressed somehow.

Finally, consider the symbolic dynamics of the logis
map of the unit interval:xt115 f (xt)54xt(12xt). Here the
microscopic state space is continuous:xtPX5@0,1#, but we
observe xt with a binary-valued instrumentA5$ ‘‘ a’’
;@0,x̂), ‘‘ b’’ ;@ x̂,1#%, where x̂ is the largest preimage o
1/2. WhenxtP@0,x̂) the instrument emitss5a and when
xtP@ x̂,1# it emitss5b. This ‘‘nongenerating’’ partition ofX
leads to the three hidden states that are coarse graining
X : A;@0,12 x̂), B;@12 x̂,x̂), and C;@ x̂,1#. Recalling
that we can calculate the invariant distribution Pr(x), the
resulting stochastic finite-state model of the symbolic d
namics process is shown in Fig. 3.~See Refs.@17# and @24#
for more discussion of this example.!

The transition matrices for this process are

T~b!5F 0 0 0

0 0 1/2

0 0 0
G ~25!

and

T~a!5F 1/2 1/2 0

0 1/2 0

1/2 1/2 0
G . ~26!

The entropy ratehm
X , measured over the states, is 1 bit p

step, but the divev5hm
A ~of the observables! is lower: v

'0.811 bits per step. The states, in other words, are actu
worse—less predictable, deeper, and more demandin
memory ~in a sense made precise presently!—than the sur-
face phenomena~sequences overA) they are supposed t

FIG. 3. A hidden Markov model of the logistic map symbol
dynamics observed with a nongenerating partition.
nt
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explain. ~Refs. @17# and @25# discuss this curious phenom
enon. A detailed mathematical analysis is found in R
@24#.!

This example illustrates the measurement dependenc
both randomness and complexity. In contrast with the bin
instrument just used, if the logistic map is observed with
generating partition, for which infinitea-b sequences are in
correspondence with the microscopic statesxtP@0,1#, there
is only a single internal state. In this case, the internal s
entropy ratehm

X is zero and the entropy rate of the observ
symbol sequences ishm

A51 bit per symbol. It turns out tha
this is the correct description of the logistic map dynami
see Ref.@26# for an elementary exposition.

Readers will have already noticed, and been troubled
the fact that all our examples are simple sources of rand
strings, but have steep dives. According to the definiti
they are deep, complex processes, despite the explicit s
ment of Lloyd and Pagels that depth is small or vanishes
random processes.

VI. CAUSAL STATES AND e-MACHINES

On the one hand, what these examples make clear is
we generally will not find macroscopic states appropriate
measuring a process’s statistical complexity just by trans
ing observables~via coarse graining! into a finite alphabet.
On the other hand, especially in experimental work, we of
have no source of information other than the sequence
finite-precision discrete-valued observables. There is a f
damental difficulty here. Moreover, part of the attraction
thermodynamic depth, compared to~say! Kolmogorov-
Chaitin complexity @9,10# and logical depth@27#, was its
claimed calculability from empirical data.

There is at least one release from these ambiguities:
found in the use ofcausal states, as they are conceived of b
computational mechanics—an extension of statistical me
chanics that explicitly accounts for a process’s struct
@16,23#. From the viewpoint of an observer, the idea is th
two trajectories leave one in the same causal state if t
leave one equally knowledgeable as to the future. More
mally, a causal stateS is an equivalence class over histori
sQ of observed states, such that all the sequences in the ca
state give the same conditional distribution for the sem
infinite futuresW:

e~sQ !5$sQ8u;sW Pr~sWusQ8!5Pr~sWusQ !%. ~27!

The causal-state equivalence classes form a partition of
set Sª of all histories; see Fig. 4. Thus defined,e(sQ) is a
function from a historysQ to a set of histories, which are th
causal statesSi , i 50,1,2,3, . . . . Wedenote the set$Si% of
all causal states byS. It is convenient sometimes to have
function taking one from a historysQ to the label i of its
equivalence class and, in a slight abuse of notation, we
also call thise(sQ).

Since we needsomechoice of state if we are to appl
depth at all, and if we are not to consign it to the growi
collection of subjective complexity measures~see Ref.@4#!,
we might as well select a process’s causal states. Wha
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notable, though, is that, while causal states were not
signed with this end in mind, they minimize dive.

The representation of a process consisting of the ca
states and their transitions is known as ane-machine. In the
simplest setting, ane-machine is a Markov chain over a finit
number of causal states and so can be compactly desc
by a labeled transition matrixTi j

(s) , notationally similar to
that for the examples above. This matrix can be calcula
~analytically or empirically! from the distribution of ob-
served sequences, a procedure callede-machinereconstruc-
tion.

An e-machine lets us calculate the probability of differe
sequences of observables. It also leads to an invariant p
ability distribution Pr(S) over the causal states. The resulti
complexity measure for a process is thestatistical complexity
Cm that is defined simply as the Shannon entropy of t
distribution @16#: Cm5H@S#. Cm measures the averag
amount of historical information stored in the current sta
Our results in Sec. VII are not, however, restricted to ca
where thee-machine is finite Markovian, merely to one
where there is a probability measure over the causal sta

A process’s thermodynamic depth, and thus its dive,
defined with reference to its macroscopic states, whateve
take those to be. Due to the ambiguities that follow from
prosaic interpretation of depth’s definition we propose to
define depth, and by implication the dive, solely in terms
a process’s causal states. The first result of taking the ‘‘m
roscopic’’ states to be the causal states is that the dive is
entropy rate of thee-machine’s internal-state process:v
[hm

X , whereX5S. The second result is that by Eq.~18! v
<Cm . In fact, v,Cm , if there is any mutual information in
the observed sequencesSJ, by Eq. ~106! in Ref. @23#.

FIG. 5. Thee-machine for the unhidden Markov model of Fig
1. The internal entropy ratehm

X and the statistical complexityCm

vanish since there is a single causal state.

FIG. 4. A schematic representation of partitioning the setSª of
all histories into causal statesSi . Within each causal state all th

individual historiessQ have the same conditional distribution Pr(SW usQ)
for future observables. Note that theSi need not form compact sets
we have simply drawn them that way here for clarity.
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Causal-state equivalence-classing guarantees that
e-machine is as small as it can be and still be an accu
predictor of future observed sequences; see Sec. VII B
low. This makese-machines for both highly ordered an
highly random sequences very simple: a high degree of
domness means that many distinct sequences of observ
leave one equally uncertain about the future and, con
quently, those sequences all leave the system in the s
causal state. In this way onederivesthe desired ‘‘boundary
conditions’’ for statistical complexity measures—low bo
for ordered and for random processes—from the underly
principle of optimal prediction; that is, from Eq.~27!.

These properties of causal states suffice to rescue
complexity analysis of the examples from the confusions
the last section. The first~Fig. 1! corresponds to an
e-machine with a single causal stateS0 that returns to itself
on three separate, equally probable symbolsA5$A,B,C%
~see Fig. 5!. The entropy ratehm

A of the observed sequence
is ~as always! preserved under the change of representa
to causal states, but the entropy ratehm

S of the causal state
process itself, i.e., the now-redefined divev, is, like the sta-
tistical complexity, zero.

A similar fate awaits our second example~Fig. 2!. Under
causal-state equivalence-classing, the three alleged s
collapse into one, yielding an ideal coin-tossing mach
with a single state and two transitions~see Fig. 6!. Here
again the statistical complexity and the new dive vanish. D
fining depth in terms of a process’s causal states leads u
both examples, to recover the intuitively correct notion th
these sources of purely random sequences are neither s
turally complex nor store much information about their h
tory.

In our final example~Fig. 3!, the future conditional distri-
bution of observables depends only on how long it has b
since the lastb, leading to a countable infinity of causa
states~see Fig. 7!. It turns out that the new dive and th
statistical complexity can be analytically calculated; o
finds v'0.677 867 bits per measurement andCm'2.711 47

FIG. 6. Thee-machine for the hidden Markov model of Fig. 2
The internal entropy ratehm

X and the statistical complexityCm again
vanish since there is a single causal state.

FIG. 7. Thee-machine for the hidden Markov model of Fig.
has a countable infinity of causal states. The internal entropy
hm
X and statistical complexityCm are both positive, indicating tha

this is an intrinsically more complex process than the other t
examples.
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bits of historical memory are stored by the process@17,24#. It
is a more complex process than the other two examples

One of the desired properties of thermodynamic de
was that it accounted for the history of the ‘‘assembly p
cess’’ ~@8#, pp. 187–189 andpassim!. We should emphasize
that by definition causal states account for a form of histo
cal memory, though in an importantly different way. Cau
states measure the amount of historical information store
a system.

VII. OPTIMAL SHALLOWNESS OF e-MACHINES

Working with thee-machine representation forces one
distinguish between~1! sequences over coarse-grained o
servablesA, ~2! sequences over causal statesS, and ~3!
sequences over transitions, the labeled edges$( i , j ,s):Ti j

(s)

.0%. There is a many-to-one relation between edge
quences and causal-state sequences and also between
sequences and observable sequences. But, as we saw
we defined the causal states as equivalence classes, Eq.~27!,
there is a function that takes a history to a causal st
namely,e:Sª°S. One consequence is that one can spec
all of the relevant historical information by noting which o
the causal states the process is in, rather than recounti
possibly infinite amount of information from the historySQ
that led to the current state. That is, causal states provi
compression of a process’s history.

These distinctions and the historical compression
good motivations for deciding which type of state to use
a process. But these alone are not enough, so let us con
alternatives to causal states, namely, another setR of states,
call themR-states, that are determinable from observed
quences and that, like causal states, partitionSª ; see Fig. 8.
We assume that these rivals to thee-machine are, like the
e-machine itself, restricted to using only the past history
observables in their predictions, without any other hints.

As one ranges over alternative choices of state
swimming around in Occam’s pool of possib
partitions—we will show that thee-machine has a threefol
optimality: ~i! no set ofR-states is more informative abou
future observables than the causal states; of those choic
states that are as predictive as the causal states, none h~ii !
a smaller statistical complexity nor~iii ! a smaller entropy
rate over the internal states. We conclude that none of
alternatives, if used to calculate the depth, would give u

FIG. 8. An alternative set$Ri% of states that partitionSª overlaid
on the causal states.~TheRi are delineated by dashed lines.! The
collection of all such alternative partitions form Occam’s ‘‘pool.
Note again that theRi need not be compact.
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shallower dive than the causal states. We will prove thes
order.

A. Nothing forecasts better than ane-machine

Call the sequence of observables up to the present timSQ ,
the random variable that is the next observableS, and the
random variable that is the whole sequence of future obs
ablesSW . Recall that the functione:Sª°S returns the causa
state thee-machine is in after observingSQ and define the
function h:Sª°R similarly for theR-states. We measur
the forecasting ability of a set of states byH@SW uR# @28#, the
uncertainty that remains in the future observables once
know the current state. That is, the better the set of state
at forecasting—the more prescient it is—the smaller this
certainty. From Eq.~27! it follows that

Pr„SW ue~SQ !…5Pr~SW uSQ !, ~28!

and so

H@SW ue~SQ !#5H@SW uSQ #. ~29!

Since, for any random variablesX andY and functionf,

H@Yu f ~X!#>H@YuX#, ~30!

it follows that

H@SW uh~SQ !#>H@SW uSQ # ~31!

5H@SW ue~SQ !# ~32!

and so

H@SW uR#>H@SW uS#. ~33!

Thus, no alternative setR of states sees the future bett
than the causal states.

In what follows, we will put a hat over the name of an
rival set of states that is as predictive as the causal states
we refer to states inR̂ if and only if H@SW uR̂#5H@SW uS#.

B. Nothing as prescient as ane-machine is simpler

Suppose we have a setR̂ of states for whichH@SW uR̂#

5H@SW uS#. Then, because the causal states are equivale
classes with respect to future conditional probabilities,
R̂-states must be refinements of these classes. That is, r
than the situation depicted in Fig. 8, we have t
R̂-partitioning shown in Fig. 9. Otherwise at least oneR̂i ,
considered as a set, would have to include histories that
longed to at least two distinct causal states. Such mixing
causal states can only increase the uncertainty about th
ture sequenceSW of observables. That is, for everyR̂i there is
a Sj such thatR̂i#Sj and so every causal state is a union
R̂-states.

The result is that the causal state is a function of
R̂-state:S5g(R̂). Thus,
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H@S#5H@g~R̂!#<H@R̂#. ~34!

But H@S# is Cm , the statistical complexity of thee-machine,
whereas H@R̂# is the statistical complexity of the
h-machine—the set ofR̂ states and their transitions. Thus,
the optimally predictive alternative representations
e-machine is the smallest, as measured byCm .

An argument exactly parallel to the one in the preced
subsection shows, when applied to the equally prescien
ternatives, that

H@SW uR̂#5H@SW uS# ⇒ H@SW LuR̂#5H@SW LuS#, ~35!

for L51,2, . . . ~the opposite implication is not true, how
ever!. Thus, the causal states are also at least as informa
about the next~single! observableSas any rival and, for tha
matter, about any finite subsequenceSW L of the future. How-
ever, in the general case of the previous paragraphs
necessary to consider the whole semi-infinite future beca
potentially, coarser partitions can match these finite-L pre-
dictive powers. If, for instance, two histories have the sa
distribution forS, but different distributions over the whol
future, they belong to different causal states. AnR̂-state that
combined those two causal states, however, would enjoy
same ability to predictS and its h-machine would have a
smaller statistical complexity.

C. Nothing as prescient as ane-machine has a smaller dive

We will now show that thee-machine’s dive (v5hm
S) is

at least as small as that of any equally prescient alterna
This also turns on the fact that suchR̂-states are refinement
of the causal states. Thee-machine is deterministic in the
sense of automata theory@23#; that is, the present stateS and
the next observableS together fix the next stateS 8, and so
H@S 8uS,S#50. Thus, we have

H@SuS#5H@S 8,SuS#. ~36!

The R̂-machine, however, is not necessarily deterministic
this sense, but all entropies are non-negative,
H@R̂8uS,R̂#>0. Since we are considering alternatives w

FIG. 9. Any alternative partition that is as prescient as the ca
states must be a refinement of the causal-state partition. Tha

eachR̂i must be a~possibly improper! subset of someSj . Other-

wise, at least oneR̂i would have to contain parts of at least tw

causal states. And so using thisR̂i to predict the future observable

leads to more uncertainty aboutSW than using the causal states.
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the same predictive power as thee-machine, i.e., alternative
for which H@SW uS#5H@SW uR̂#, then we have H@SuS#

5H@SuR̂#. On the one hand,

H@R̂8,SuR̂#5H@SuR̂#1H@R̂8uS,R̂# ~37!

>H@SuR̂# ~38!

5H@SuS# ~39!

5H@S 8,SuS# ~40!

5H@S 8uS#1H@SuS 8,S#. ~41!

On the other hand,

H@R̂8,SuR̂#5H@R̂8uR̂#1H@SuR̂8,R̂#, ~42!

as well, so

H@R̂8uR̂#1H@SuR̂8,R̂#>H@S 8uS#1H@SuS 8,S#, ~43!

or

H@R̂8uR̂#2H@S 8uS#>H@SuS 8,S#2H@SuR̂8,R̂#. ~44!

Since a causal state is a function of anR̂-state, the transition
pair (S 8,S) is a function of the transition pair (R̂8,R̂), im-
plying that H@SuS 8,S#>H@SuR̂8,R̂#. Thus, the right-hand
side of Eq.~44! is non-negative and this implies that

H@R̂8uR̂#>H@S 8uS#, ~45!

which is the desired result; namely,vR̂>vS. That is, nothing
that predicts as well as thee-machine has a smaller dive tha
the e-machine does.

VIII. CONCLUSION

If one prefers processes over static descriptions and
likes pretending every natural thing is a digital comput
thermodynamic depth seemed to be an attractive comple
measure: ‘‘one of the remarkably few thrusts in this area t
is not conspicuously vacuous,’’ in the words of Landau
@19#. Since total depth most likely shares the incalculabili
though not the formal uncomputability, of Kolmogorov
Chaitin complexity and logical depth, it is not, at face valu
physically significant. Dive, the rate at which depth i
creases, is both calculable and significant. We showed
dive is the reverse-time Shannon entropy rate of the stoc
tic process over the macroscopic states one takes the sy
to be in. With nothing else said or added, however, de
typically measures historical randomness; as
Kolmogorov-Chaitin complexity and the Shannon entro
rate.

Unfortunately, Ref.@8#, which introduced depth, gave n
clue as to how macroscopic states are to be selected; th
it strongly suggested this is simply a matter of coar
graining the space of microscopic states; cf.@8#, pp. 194-195.
As we have shown, this approach produces manifestly
biguous results.
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By way of fixing depth, we highlighted the key role of th
choice of macroscopic states. The causal states of comp
tional mechanics do not suffer from the defects and
definedness that led to trouble with other sorts of states.
procedure that identifies them,e-machine reconstruction
also gives us a way to calculate depth and dive. We remo
depth’s ambiguities and recovered its claimed features
redefining it in terms of the causal states.

We then gave our main results, showing that no alter
tive set of states to the causal states contains more info
tion about the future of observables. Moreover, unless
alternative throws some of that information away it cann
H
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ta-
-
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ed
y

-
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n
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have a smaller statistical complexity or a lower dive. Th
e-machines are optimally shallow.
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