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Abstract

During electrostatic chucking of a reticle, non-flatness features of the clamped backside
surface are flattened out and transmitted to the frontside. To predict the reticle deformation
one could use the finite element method. However these computations are time consuming,
especially when a fine mesh is needed to account for sharp changes in surface shapes. So far
no analytical description has been carried out on the behavior of how backside non-flatness
features are transmitted to the frontside. It is the purpose of this thesis to develop a theory
in two and three dimensions that allows to estimate the magnitude of the transferred spectral
components of a regular backsurface shape. Mainly two observations have been made. First,
the reticle itself is acting as a low-pass filter: Components of high spatial frequencies in the
backside non-flatness are damped out and cannot be seen at the frontside after chucking.
Second, the applied voltage on an electrostatic chuck imposes a limit on the backside non-
flatness magnitude that can be flattened out, depending on its wavelength. Results are
compared to finite element calculations and show good agreement.



1 Introduction

In semiconductor fabrication an important process is the pattern transfer from a mask to
the waver by electromagnetic waves. The schematic of this called lithography can be seen
in Figure 1. Next generation extreme ultraviolet lithography requires a very low image
placement error and hence a strict error tolerance in mask flatness and in-plane distortion.
Magnitudes of typical distortions are in a micrometer to nanometer range. Due to these error
tolerances and the small wavelength of the light used to write the wafer, the whole process
takes place in vacuum. Typically the mask is held by an electrostatic chuck which implies a
clamping pressure due to the electrical field between chuck electrodes and conducting reticle
back side. In Figure 2 we see a schematic of a bipolar chuck with the reticle below. Without
loss of generality, one can assume a perfectly flat chuck and reticle frontside surface. The
question in this report is, how a regular backsurface shape gets flattened out at a certain
voltage applied on the chuck, and what the frontside look like after electrostatic chucking
(called e-chucking from now on). This allows one to predict the frontside displacement of the
chucked reticle at a certain voltage, given the backside surface shape before the e-chucking
process.

Outline of the Report

At first we focus on the two dimensional case. To predict the removal of a periodic non-
flatness on the backside, we deal with the reverse case where we apply a periodic boundary
condition on a perfectly flat backside surface and ask how much of this displacement is
transferred to the frontside. This is possible due to the small displacements/strains which
allows us to treat the system as linear elastic. Solving this problem is called ideal flattening
in this context. Here we already observe the two main properties of feature transfers. Namely
the frequency dependance of the transmitted waves’ amplitudes as well as the correlation
between the magnitude of loading and resulting displacement.

Knowing the exact solution of ideal flattening in two dimensions, we can compare it to
the result of an asymptotic approximation method. As expected this leads to the same
solution when using proper ansatz functions. The three dimensional case of ideal flattening
will be solved by applying this same approximation technique.

In order to understand the behavior of real e-chucking, we introduce the ideal e-chucking
model. This allows us to define a connection between the boundary conditions of ideal
flattening and those resulting from a two body chuck-reticle contact problem when applying
a certain voltage on a bipolar chuck. As a result we get the so called coefficient of transmission
and an estimate on the maximum allowable amplitude of a harmonic backside displacement
that can be flattened at a certain voltage. Both depend on the wavelength of the backside
perturbation. This defines a filter for the transmission of spectral components of a regular
backsurface shape. After performing a discrete cosine transformation of an exemplary reticle
backsurface shape and applying the derived filter method, the inverse transformation gives
the actual frontside surface shape at a certain voltage.

In the end we test and compare this theory in two and three dimensions to a finite element

2
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Figure 1: Schematic of lithography.

analysis of a real e-chucking model. There is a good agreement between the analytical and
finite element calculation observed, especially for higher spatial frequency perturbations.

Used Software

Analytical computations have been carried out partly as hand-calculations, partly using the
Mathematica ® software. Numerical computations and resulting plots have been done in
Matlab ®. For the finite element analysis the software FEAP ® is used which is licensed
and distributed by the University of California.

Terminology

There is a glossary appended where the most important terms used are defined.

Numerical Data

For the illustration of the derived theoretical results and a verification by finite element
analysis, typical reticle geometries and material properties are used as found in literature
(e.g. [3]). To give an example of an arbitrary reticle backsurface shape in the end of Chapter
3 and 4, we apply a spline approximation of random numbers generated by Matlab. The
implementation of the spline routine, which is also used for the mesh generation in FEAP,
is based on the algorithm as outlined in Appendix A.



1 Introduction

Chuck
Reticle —,'/
ov
_+_
(il
|
Electrod |
roces N Chuck
Dielectric
. Reticle
COHdl}Ctlng Reticle Backside
Backside . Non-flatness
E-Chucking Before E-Chucking

Reticle Frontside

T S——
AVATATSTATAY Non-flatness
at Voltage U

Figure 2: Overview e-chucking process.




Reticle Backside

/ Displacement

\

Y
]

Ideal Flattening
(unbounded x-domain)

Figure 3: Two dimensional idealization of reticle geometry before and after ideal flattening
(unbounded z-domain).

2 Two Dimensional Ideal Flattening

Consider the reticle geometry shown in Figure 3, where the length L will later be taken as
152 mm and the reticle thickness h will later be taken as 6.35 mm. In a first step we will
treat the reticle as unbounded in the z-direction and only bounded in y-direction by h. This
allows us to initially avoid edge effects which are analyzed in the end of this chapter. As ideal
flattening we refer to the model, where we apply a harmonic pressure on the reticle backside
and ask for the resulting deformation. After developing the analytical exact solution of this
problem, we test an approximation method which is used for the three dimensional analysis
as well. As one result we get the transmission coefficient, which is defined to be the ratio
ufs/ups (see Figure 3).

2.1 Analytical Solution (Unbounded z-Domain)

Let us begin with an infinitely large reticle in the z-direction and thickness h in y-direction.
On the backside, y = —h/2, we will assume a friction free clamping with n waves over the
span L. This corresponds to assuming a feature wavelength A = L/n. Although L does not
bound our domain of interest yet, we introduce it here as a periodic domain of the infinitely

5



6 2 Two Dimensional Ideal Flattening

large reticle. Due to linearity, we know that we will have to impose a (self-equilibrated)
normal traction on this surface with the same wavelength. Given that all the other surfaces
are traction free, we find that we need to solve the classical elasticity problem with the
following boundary conditions:

oy (x,h/2) = 0 (2.1)

oz, h/2) = 0 (2.2)

oz, —h/2) = Acos(az) (2.3)

oye(,—h/2) = 0 (2.4)

where o = 2nm/L and n = 1,2,... is called the wavenumber in this context. A is the

unknown magnitude of the surface traction needed to effect the imposed displacement.

This classical problem can be solved by using a Levy expansion of the Airy stress function
as outlined in [5, Art. 24]. For the problem at hand, we can assume that the Airy stress
function has the following form:

$(x,y) = cos(ax) f(y), (2.5)

where f(y) is unknown. The stress function must satisfy the bi-harmonic equation V*¢ = 0.
This implies that the function f(-) satisfies the ordinary differential equation

f//// _ 2a,2f// + ().’4]0 — 0 ] (26)
Using variation of parameters, it can be shown that
f(y) = C cosh(y) + Casinh(y) + Csy cosh(y) + Cyy sinh(y), (2.7)

where C; are constants of integration which are determined from the stress boundary con-
ditions by noting that o,. = ¢4y, 0yy = ¢wr, and 0.y = —¢,,. Applying our boundary
conditions and the relations between the stress function and the stresses, allows us to write
the stress field as
0z = Acos(az) {cosh(ay) [K; + yK3] — sinh(ay) [K2 + y K4} (2.8)
oy = Acos(aw){—cosh(ay) [K; + yKs] + sinh(ay) [Ka + yK4) } (2.9)

oy = Asin(az){—cosh(ay) [Ks + yKi] + sinh(ay) [Ke + y K3}, (2.10)
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where the constants K; are given as

a sinh(%2) — % cosh(32)
o )
K Sinh(ah) + ah (2.11)

cosh(%) — % sinh(42)

Ky, = 2.12

2 sinh(ah) — ah (2.12)
o cosh ()

Ky = ————2" 2.

3 sinh(ah) — ah (2.13)
o sinh(e)

Ry = et 914
H sinh(ah) + ah (2.14)
- . 2
- 2

Ky, = Ko+ 51\"3 (2.16)

1 _
Ky = §(K2 + K>) (2.17)
1 _

Note that this stress field exactly satisfies the given boundary conditions.
With the stress field known we can find the strain field using the linear elastic constitutive
relation. For isotropic materials we have that

1

Cpp = E—(JM — Vo) (2.19)
1
Eyy = E(Uyy - IJO'M,) (2.20)
2(1
251’-1/ = _(—%L)O'ry ) (221)

where E is the Young’s modulus and v Poisson’s ratio. If one wishes to examine a plane
strain model as opposed to a generalized plane stress model, then one needs to replace £ by

E=E/(1-1 (2.22)

and v by
v=v/(l-v); (2.23)

i.e. one needs to use the plane strain moduli. The strains are the symmetric gradient
components of the displacement field; thus the displacement field can be found by integrating
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the strain expressions. Upon integration and removal of the rigid body modes one finds

A _
Uy = — sin(ax) {cosh(ay) [Ki + 7K1 + y(1 + v) Ky

b i} (2.24)
— sinh(ay) [Ks + 7Ks +y(1 + 7) K4] }
£ 1 = _
= o cos(a?) {COSh(a'y) [ Z UKy + 0Ky + Ko + (1 + r/)m}
| (2.25)

. 147 ; _ i
- smh(ay) [%K; + K+ K+ y(l + P)hg} } .

Note that these equations are found by integration of the normal strain relations in the
x- and y-directions and they are fully consistent with the shear strain equation. For later
analysis we define the amplitudes

ups = |uy(x =0,y =—h/2)| (2.26)
ups = |yy(ex=0y=nhn/2)|. (2.27)

Of primal interest to us is the transmission coefficient ¢r = wss/ups. From our solution

we find that
uy(x,h/2)  2(ahcosh(ah) + sinh(ah))
CT2d = = _ . (2.28)
uy(x, —h/2) 2ah + sinh(2ah)

By setting d = h/L the trend for varying wavenumbers and thickness-to-length ratios can
be seen in Figure 4. The case where d = 0.0418 corresponds to a reticle length of 152 mm
and 6.35 mm thickness.

2.2 Asymptotic Approximation via Minimization of Potential En-
ergy

In the three dimensional case we will derive the solution via energy minimization. To test this
method we apply it here in two dimensions where we know the exact solution. A comparison
will show that this approximation gives the exact solution when choosing appropriate ansatz
functions.

First one needs to choose the ansatz functions for the displacement field. Let us assume:

u, = cos(ax) - (C1 cosh(ay) + Casinh(ay) + Csy cosh(ay) + Cyy sinh(ay)) (2.29)
U, = sin(az) - (Cs cosh(ay) + Cg sinh(ay) + Cry cosh(ay) + Csy sinh(ay)) . (2.30)

The strain tensor field € is then given by

1
€5 = §(ui,j +Uji) (2.31)
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Figure 4: Analytical transmission coefficient in two dimensions.

where i,j € (z,y). The Lame-parameters for the plane strain case are given by

E

o= gy 9.3
AT (2.32)

X vE
A ' ' 2.33
(1-20)(1+Dp) (2.33)

Then the stress field o can be computed by

Jij = ‘)[1,61',]' + ;\61‘]'51:}: R (234)

where §;; is the Kronecker-Delta and equals one if i = j and zero else. Let us focus on the
periodic domain  from the infinitely large reticle domain; i.e. x € (—%, 15) and y € (—!2'-‘, g— .
The internal potential energy is given by

1
Uine = / 505645 - (2.35)
Ja 2

The contribution of external loads is

Ut = — / tou, (2.36)
J O
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where t is the traction vector given by t = —o,,e, at y = -—% andt =0at y = % At
x = £L/2 there is no contribution since there is only a normal traction on surfaces with
normal n = +e, and the displacement w, equals zero. The potential energy in this domain
is then

Upot, = Uint. + U, ext - (237)

Due to periodicity, it can be shown that minimizing the overall (infinitely large) potential
energy is equivalent to minimizing this partial potential energy of this domain. Thus, to find
the parameters C;, one needs to solve the linear equation system
A(‘)
'a—(f[]pot = 07 (238)
q

fori = (1,2,..,8). As expected, the resulting u, ¢y and ¢ match the exact solution as derived
in the previous section.

2.3 Edge Effects: Bounded z-Domain

In this section we want to deal with the case where the reticle has finite dimension in the
z-direction. This can be illustrated by looking at Figure 3 and imagine the dashed lines at
@ = +1/2 as solid boundary of the reticle geometry.

Let us consider the same loading at y = +1/2 as in the previous section. As we can see
in Equation (2.8) and (2.10), 0., vanishes at © = £L/2 whereas 0,,(z = £L/2) # 0. This
normal stress is related to bending of the reticle. In real e-chucking there is a traction free
surface at © = £L/2. To get the solution to this boundary condition one can assume in a
first step the boundary conditions at z = +L/2 to be given as

022(L/2,y) = A(=1)" {cosh(ay) [K1 + yKj]
— sinh(ay) [K + y K]}
Ol(L/28) =0 (2.40)

Ope(—L/2,y) = A(—1)" {cosh(ay) [K; + y K]

(2.39)

— sinh(ay) [K2 + yKi)} (2.41)
Ouy(—L/2,y) =0 (2.42)
oy(T,h/2) =0 (2.43)
oy(z,h/2) =0 (2.44)
oyy(z,—h/2) = Acos(azx) (2.45)
ya(,—h/2) =0, (2.46)

where n = 1,2, ... and we made use of Equation (2.8). This gives the same solution for the
displacement field u in the bounded z-domain as in the previous section.
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In a second step one needs to find the solution to the following boundary conditions:
02x(L/2,y) = A(=1)""" {cosh(ay) [K; + y K] (2.47)
—sinh(ay) [K2 + yK4)} '
Omy(L/Q: .U) =0 (248)
Ora(—L/2,y) = A(=1)""! {cosh(ay) [K; + y K] (2.49)
—sinh(ay) [K2 + y K4} ’
Oay(—L/2,y) =0 (2.50)
oy, h/2) =0 (2.51)
oz, h/2) =0 (2.52)
oyy(r,—h/2) =0 (2.53)
oy(x, —h/2) =0. (2.54)

The resulting displacement field is called w in this context. It can be estimated by modeling

the boundary conditions as:

(2.55)

such that the statically equivalent normal force and bending moment remain the same; i.e.

demanding

/2 h/2
/ 022(L/2,y)dy = / Gua(L/2,y)dy = ks - b,
~h/2 ~h/2

—h/2 —h/2
Solving this gives us
12A al 3AL?

L 2 g2y = 28 1y —
ko= a?h? cos( 2 ) 7r2n2h3( =ik,
ke = 0.
Then we know from linear, isotropic elasticity that
1. 1

7 17k
= ¢, = _T"O.TT = — = "y,
YE E

Wy y

h/2 ' h/2 _ _ k?lhr:g
/ Y- oee(L/2,y)dy = / Y- Gee(L/2,y)dy = ST

(2.56)

(2.57)

(2.58)
(2.59)

(2.60)

(2.61)

Upon integration and demanding that the reticle is fixed at the origin and no rotation occurs

we get
Wy = =1
pe I y
kv 5 ko,
w = —— - —=X".
v 2EY T 3F




12 2 Two Dimensional Ideal Flattening

Applying the superposition principle, u and w give the solution

Uzp,tot = Uy + Wy (264)
Uyt = Uy + Wy (2.65)

to the mechanical boundary value problem on a finite domain with boundary conditions

0re(L/2,y) 0 (2.66)
o2y (L/2,y) 0 (2.67)
0ex(—L/2,y) = 0 (2.68)
Oy (=1/2,y) 0 (2.69)
oyy(2,h/2) 0 (2.70)
oy(2,h/2) = 0 (2.71)
oyy(x, —h/2) A cos(ax) (2.72)
oy, —h/2) 0. (2.73)

It has been observed that the influence of w is not negligible. To illustrate this we define
wes = |wy(x = L/2,y = —h/2)|. (2.74)

Let us assume the numerical values v = 0.17, £ = 67.6 GPa, which correspond to plane-
strain-moduli 7 = 0.2 and £ = 69.6 GPa, a pressure amplitude of A = 15 kPa and geometric
properties h = 6.35 mm, L = 152 mm. The resulting displacement amplitudes up, and uy,
for the unbounded z-domain solution can be seen in Figure 5 (see also Section 3.2 for a more
detailed discussion). The influence of edge effects is determined by the magnitude of wps. In
Figure 5 a clear dominance of wys can be observed.

2.4 How to Deal with Cosine Warped Surfaces in a Bounded z-
Domain

As we have seen in the last section, applying a cosine-pressure-profile on the backside surface
does not result in a cosine warped backsurface when the z-domain is bounded. The aim is
however to predict the transmission of cosine-like features, which would allow for using
Fourier or Cosine transformations to deal with regular surface shapes. Hence we would need
to search for appropriate stress boundary conditions on the backsurface which would result
in a cosine-like u, displacement on the backside. Knowing this solution we would then be
able to predict the result on the frontside. Or, vice versa, one needs to find a solution of
the mixed boundary value problem related to displacements at the backside and stress free
boundaries elsewhere.

Finding an analytical solution to this problem is however not trivial and the question is
whether there exists a solution at all (think of uniqueness of solutions and the fact that only
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Figure 5: Displacement contributions at ideal flattening with A = 15 kPa. Amplitudes wups
and ug, of the solution in an unbounded z-domain. Influence of edge effects in a bounded
z-domain (wps).

a non-zero stress boundary condition at boundary edges x = £ /2 resulted in a cosine like
displacement on the reticle backside). Finite element simulations, however, have shown, that
at real e-chucking of a cosine warped reticle backside also a cosine-like feature is transmitted
to the frontside. This is especially true for higher wavenumbers. Hence, in the following
analytical considerations of the transmitted amplitude, we will only take the solution of an
infinitely large reticle into account, keeping possible edge effects in mind.



3 Two Dimensional E-Chucking

We now take a closer look at the real e-chucking process. At first we regard the reticle
as infinitely large in the z-direction. As ideal e-chucking we refer to an analytical solution
in an unbounded 2-domain and a special assumption on the contact forces acting on a
cosine-warped backsurface when brought into contact with a flat chuck. We will see how a
maximum value on removable backside non-flatness is imposed by the applied voltage on a
bipolar chuck. The discrete cosine transformation allows us to define an algorithm, which
makes use of the derived theoretical results and predicts the reticle frontside shape after ideal
e-chucking. We illustrate this method with a numerical example of a randomly chosen spline
surface. Later in this chapter we perform a finite element calculation of a more realistic
chuck-reticle model with finite z-dimensions and compare both results.

3.1 Ideal, Complete E-Chucking

The model of ideal, complete e-chucking is illustrated in Figure 6. A cosine warped backsur-
face is brought into contact with a rigid flat chuck surface. In the case of an infinitely large
reticle one can assume that such a surface could be flattened out completely. The question
is then, what forces are acting on the boundary, which would us allow to define a connection
to the solution of the ideal flattening model.

The pressure on the reticle backside results from an electrostatic field. When applying
the voltage U on a bipolar e-chuck, the pressure acting on the conducting reticle’s backside
respectively the chuck’s electrodes can be approximated by

ege2lU?

P S o

where ¢ = 8.85 %’% is the vacuum permittivity, ¢ the relative dielectric constant of the
chuck, 84 the thickness of the dielectric and d, the air gap. For numerical illustration we
will assume later € = 8 and 64 = 150 um. Let us assume the state where complete chucking
occurs but a small reduction in the voltage would result in a non-complete chucking state.
This would mean that the air gap d, = 0 and hence

eoe2lU?

Pehuck = ‘ggg—— . (32)

In order to get the overall pressure acting on the reticle backsurface one needs to take the
contact forces into account. Motivated by the solution of the Hertz contact problem and due
to small deformations, one can assume that

Peontact = —Pchuck * (1 - COS(O&.’L‘)) . (33)
The overall normal stress on the reticle backside surface is thus

Oyy,real = Dehuck + Deontact = Dehuck * COS(Q’.’L‘) . (34)

14
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A comparison with Equation (2.3) gives

€oe2l?

W ) (3.5)

A= Dchuck =

the connection between ideal flattening with pressure magnitude A and ideal e-chucking at
voltage U.

3.2 Maximum Allowable Backside Amplitude

Knowing this pressure-to-voltage connection allows us to ask for the maximum allowable
amplitude for a given wavelength, that could be flattened when applying a voltage U/. Let
us first return to the ideal flattening case. By evaluating Equation (2.25) at y = —h/2 the
amplitude of the backside displacement for a given pressure amplitude A is given by

- = 24 - (1 - P?) - (2ath + sinh(2a:h))
7 a-E-(1+2(ah)? — cosh(2ah))

(3.6)

As observed for the transmission coeflicient, there is a dependancy on the wavenumber n
and the dimensionless parameter d. In addition the Poisson ratio v, the E-modulus of
the reticle as well as the reticle length L do influence the amplitude. To give a numerical
example we set v = 0.17, F = 67.6 GPa, which corresponds to plane-strain-moduli 7 = 0.2
and £ = 69.6 GPa. Let us assume a pressure amplitude of A = 15 kPa. The resulting
displacement amplitude wu, for varying d and L is plotted in Figure 7 and Figure 8. In
both plots the general trend is observed that at a fixed pressure/voltage higher backside
amplitudes occur for lower wavenumbers.

At ideal e-chucking the maximum allowable backside amplitude s 24 Which is transferred
to the frontside, depending on the applied voltage and chuck properties, can be computed
by the use of Equation (3.6) and (3.5):

€0€2U? - (1 — 7?) - (2ach + sinh(2ach))

o = PV _ 3.7
Ups,2d 482 - a - E - (1 + 2(ah)? — cosh(2ah)) 37

The result for ¢ =8, §g = 150 pm and U/ = 1000, 2000, 3000 V is shown in Figure 9.

3.3 Ideal, Non-Complete E-chucking in 2D

In order to compute the transmitted frontside amplitude uy, one can assume that when 1,
exceeds Tps 24 only the fraction s 24 is transmitted to the frontside. Therefore we propose:

Ufps = CT.2d + MAN(Ups, Ubs,24) (3.8)

as an analytical estimate of the resulting frontside non-smoothness due to backside cosine
perturbations. A verification of this estimate is given in the end of Section 3.5.
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Figure 7: Amplitude of backside displacement for varying d (A = 15 kPa, L = 152 mm).

3.4 General Surface Shapes, One Dimensional DCT

Next we wish to develop a method to compute the transmission of a general reticle backside
surface shape.
The discrete cosine transform X of a vector z is given by

. 9 ™ 1
)(kzNin-cos(ﬁ(z—ka)k),k=0,1,...,]\/—l, (3.9)

i==0)

where N is the length of the vector x. The inverse cosine transform is then given by

N-1
1 s 1
€Ti = = 4—,' “—, =K ,: ,1,.”,]\7—1. A
v 2}((]-{-3:1 Xk COb(N(Z+2)k) i=0 : (3.10)

The scaling has been chosen such that |X)| measures the amplitude of the corresponding
wave for k # 0 and | Xo|/2 the mean value. Odd k = 1,3,5,... relate to sin(%%z)-waves and
k=24,6,... relate to cos(’%”a:)-waves in the surface shape in our coordinate system; i.e.
k=2,4,6,... correspond to wavenumbers n = 1,2,3, ... according to the previous section.
If one has an even-symmetrical shape around the origin, one can just replace k — 2k in
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Figure 8: Amplitude of backside displacement for varying L (A = 15 kPa, d = 0.0418).

2nm,

Equation (3.9) and (3.10). This means choosing as basis functions only cos(Z}~z)-waves.
Then one can directly apply Equation (3.8), where w,(n) would correspond to | X (k)|, and
the inverse transformation of u(n) would give the frontside surface shape after chucking.

In order to handle non-even-symmetrical surface shapes we also allow for basis functions
with £ = 1,3,5,.... In the analytical description so far they have been omitted since we
only considered a self-equilibrated pressure profile with zero resulting moment. In the real
e-chucking case these moments would need to be compensated for by (edge) contact forces.

In the following we denote as y,s the general backside perturbation before chucking and
yys the frontside displacement after chucking. The spectral counterparts are defined as Y,
and Y},. To compute the frontside surface shape yy, after chucking one needs to apply the
following procedure:

- Given data vector yps: compute discrete cosine transform Yie(k) according to Equa-
tion (3.9).

- Given voltage U: compute allowable backside amplitude @y, 2q4(n) according to Equa-
tion (3.7).

- Set Y, = Y. For k = 1,2,.., N — 1 check wether |Y,(k)| exceeds iips2q(n = k/2). If
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Figure 9: Maximum allowed backside amplitude for complete ideal e-chucking of a bipolar
chuck-reticle system.

yes, set

Yo (k) = sign(Ya(k)) - Gps0a(n = k/2) . (3.11)

- Set Yy =Y,. For k=1,2,..., N — 1 compute
Yis(k) = croa(n = k/2) - Yyo(k), (3.12)
cr24 according to Equation (2.28).
- Compute the inverse discrete cosine transform y, of Y}, according to Equation (3.10).
- To get the final frontside surface shape set yss = —yys.
To illustrate this we show an example in Figures 11 and 12. In the spectral decomposition
one can see how the maximum allowed amplitude @ys0q cuts off the high frequencies at

U = 2000 V. Increasing the voltage would allow for smaller wavelengths to be chucked.
However, the transmission coefficient ¢y 24 would then damp these higher wavenumbers.



20 3 Two Dimensional E-Chucking

Figure 10: Finite element mesh of reticle (bottom) and chuck (top) for two dimensional
analysis of real e-chucking.

3.5 FEA of 2D Real E-Chucking

To verify the analytical solution of the overall transmission in two dimensions for a fixed
voltage U we perform a finite element calculation with FEAP of a chuck-reticle two-body
contact problem. The properties of such an analysis in three dimensions are discussed in
Section 4.4. In order to do this analysis for a plane strain case in two dimensions, we have
used basically the same model as for the three dimensional case with slight modification of
the chuck and reticle mesh as well as the boundary condition.

The chuck mesh is changed to a simple Cartesian block with 20 x 1 x 5 equi-sized 8-node
hexahedral elements and overall dimension 160 x 1 x 22.6 mm. The reticle mesh is changed
to a Cartesian block with 100 x 1 x 8 equi-sized 8-node hexahedral elements and overall
dimension 152 x 0.1 x 6.35 mm (see Figure 10). The warping of the reticle backside is done
in analogy to the three dimensional case and can be seen on top of Figure 11. In order to
obtain a plane strain simulation, the displacement boundary conditions on the reticle in the
third dimension are set to zero.

The result of the displacement y .., when applying a voltage I/ = 2000 V can be seen at
the bottom of Figure 11. The spectral components Y., are also plotted in Figure 12.

In the spectral perspective we see that the high frequency components of Y;.q, as well as
Y}, are below the estimate of %y, 24. If we had only taken the transmission coefficient into
account, the components of Y, would have been too large in comparison to the FEA result.
This justifies the concept of the maximum allowable amplitude %y;24 and the assumption
made in Equation (3.8).

3.6 Discussion

In order to predict the reticle frontside shape at a certain chucking voltage U/, an analytical
as well as a finite element calculation model have been developed. For illustration we took
as input the spline surface as on top of Figure 11 and assumed a chucking voltage UV =
2000 V. The result of the analytical calculation y;, is plotted as solid line at the bottom
of Figure 11 and the result of the finite element calculation is shown as dashed line. The
spectral components of the input data before chucking Y3, of the analytical prediction Y7,
as well as of the FEAP calculation are shown in Figure 12.

It can be seen that for each method high spatial frequencies (k > 6) are clearly damped
out. This means that backside features with wavenumber greater than n = 3 are not expected
to be observed at the chucked frontside. The cut-off is in good accordance with the theoretical
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Figure 11: Example of two dimensional feature transfer, out-of-plane-distortion. Top: Reticle
backsurface shape y,s before e-chucking. Bottom: frontside shape y;, according to analytical
prediction of ideal e-chucking at voltage U = 2000 V and FEAP simulation output yyeq, of
real e-chucking at voltage U = 2000 V.

prediction of a maximum allowable amplitude s, which is also plotted in Figure 12.

For wavenumbers smaller or equal n = 3, i.e. k < 6, there occurs a deviation between
analytical prediction and finite element calculation, even if the overall shapes match pretty
well.

It is important to note that the analytical calculation is based on the assumption that
the reticle is unbounded in z-direction, whereas the finite element analysis has a bounded
2- and y-domain. This might explain the deviation in the two solutions (see Section 2.4).
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Figure 12: Example of two dimensional feature transfer, spectral perspective. Spectral com-
ponents of reticle backside pertubation Y;s before e-chucking, spectral components of frontside
shape Y}, according to analytical prediction of ideal e-chucking at voltage U = 2000 V, discrete
cosine transform of FEAP simulation output of real e-chucking Yy.q, at voltage U = 2000 V,
maximum allowable amplitude prediction @ 24(k) at U = 2000 V.



Figure 13: Reticle geometry in three dimensions. Unbounded z,2-domain and centered
coordinate system.

4 Three Dimensional Case

In this section we extend the main ideas of the last two sections to the three dimensional
case. At first we derive the transmission coefficient in three dimensions via an approximation,
flollowing the two dimensional ideal flattening case with an unbounded x-domain. As an
output of this calculation we also obtain the maximum allowable amplitude for the ideal
e-chucking case. As was done in the two dimensional case, we will define an algorithm using
discrete cosine transformations to predict the transmission of an arbitrary backside surface
shape to the frontside during ideal e-chucking. An example is shown and compared to a
finite element calculation.

4.1 Transmission Coefficient in 3D

In this section we want to derive the transmission coeflicient for the three dimensional case.
Let us consider the geometry as plotted in Figure 13. We regard the reticle as infinitely large
in z, z-direction. It is difficult to derive a closed form analytical solution for the mechanical
boundary value problem as was done in the two dimensional case. Therefore we make a
guess on the function-space for the displacement field and minimize the resulting potential
energy to find the proper coefficients.

Using this method one first needs to define a basis for the displacement field. In the two
dimensional case it has been observed that choosing the ansatz functions

u, = cos(ax) - (Cy cosh(ay) + Cy sinh(ay) + Csy cosh(ay) + Cyy sinh(ay)) (4.1)
u, = sin(ax) - (Cs cosh(ay) + Cs sinh(ay) + Cry cosh(ay) + Csy sinh(ay)) (4.2)

23
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according to Equations (2.29), (2.30) results in the exact solution when minimizing the
resulting potential energy for the free parameters C;. The z-dependancy of the analytical
solution of wu,, w, is in accordance to the applied external load on the reticle backside.
The y-dependancy is in accordance to assuming an Airy stress function and requiring the
bi-harmonic equation V4® = 0 to be satisfied.
For the three dimensional case we choose the following external load on the reticle’s
backside:
oyy(x,—h/2,2) = Acos(ax) cos(az) . (4.3)

By analogy as in two dimensions we propose that

u, = cos(ax)cos(az)f,(y) (4.4)
uy = sin(az)cos(az)fp(y) (4.5)
u, = cos(ax)sin(az)f.(y). (4.6)

Motivated by [1] we assume the existence of a potential ® such that the compatibility equa-
tions for the mechanical boundary value problem read

Ve =0; (4.7)

i.e., satisfying let’s say a tri-harmonic equation. In analogy to the two dimensional case we
assume

®(2,y, z) = cos(ax) cos(az) f(y). (4.8)
Solving Equations (4.7) and (4.8) without any boundary conditions results in
f(y) ESpan{fl?f?)fibf‘hf&fﬁ}7 (49)
where
fi = cosh(v2ay) (4.10)
f2 = sinh(v2ay) (4.11)
fs = ycosh(V2ay) (4.12)
fi = ysinh(v2ay) (4.13)
fs = y*cosh(v2ay) (4.14)
fo = y*sinh(V2ay). (4.15)
Hence we choose the following ansatz function for the displacement field:
u, = cos(az)cos(az)(Cyfi+ Cafa+ Csfs+ Cyfs + Csfs + Cefe) (4.16)
u, = sin(az)cos(az)(Crfi + Csfe+ Cofs + Crofs + Ciifs + Ciafs) (4.17)

Uy, = COS(OL’J,‘) Sill((,l’Z)(G]gf] + 014]”2 + Cisfa + 016ﬁ1 + C17f5 + Clgfe). (4.18)
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Having chosen a displacement field we can proceed as for the two dimensional case dis-
cussed in Section 2.2. Assuming linear elasticity the strain tensor field € is computed by

1
€ij = 5(‘11-1‘,,]’ -+ ’LL]',.L') , (419)

where i, 7 € (z,y, 2). The Lame-parameters are given by

Ol e (420
vk
A = . 4.2
(1-2v)(1+v) (4.21)
Then the stress field o can be computed by
Oij = 24u€55 + Adyjenr . (4.22)

Let us again focus on the periodic domain Q from an infinitely large reticle domain; i.e.

Z,2 € (—%, %) and y € (——%, '2—‘) The internal potential energy is given by

1
Uine = / 5035655 - (4.23)
Q2
The contribution of external loads is
Ueat = "‘/ t-u, (424)
o0
where t is the traction vector given by t = —g, e, at y = —% and t = 0 at y = %. There

is no contribution on z,z = +1/2 since there is only a normal traction on surfaces with
normal n = tey, e, and the displacements wu,, u, equal zero.
The potential energy in this domain is then

L[pot = [J'i.nt + [jea:t . (425)

To find the parameters C; one needs to solve the linear equation system

%Up@t =0, (4.26)
fori=(1,2,...,18).

In order to validate the correctness of this approximation we can monitor the stress
components at the boundary. They match exactly the assumed boundary conditions on
the surfaces y = £h/2. Namely, the normal stress oy, (z,—h/2, z) = Acos(ax) cos(az) and
oyy(2, h/2,2) = 0. At the areas z,z = £L/2 we observe a zero shear stress component and
a linear dependancy of the normal stress on y with a zero mean average as observed in the
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two dimensional case. This justifies, though does not prove, the correctness of assuming the
potential function to satisfy Equation (4.7).
Knowing the parameters C;, we can compute the transmission coeflicient

uy(z,y =h/2,2)
CT3d = uy(m, )= -h,-/z., 2 . (4.27)
Since it was not possible to get a nice printable symbolic solution we give here only numerical
results for n = 1,2,...,20 choosing h = 6.35 mm, L = 152 mm which are plotted in
Figure 14. As expected, no dependancy on F, v and A is observed.

To be able to implement a frequency filter via the discrete cosine transform as for the two
dimensional case, one needs to define an analytical approximation to the numerical results.
The two dimensional analytical result for the same geometric properties, i.e. d = 0.0418,
is plotted in Figure 14. A fitting of the three dimensional values can be obtained easily by

calling the function crg4 at a matching parameter d. In our example we find

crad, it (d = 0.0418) = cr24(d = 0.059) . (4.28)
1 C" & O T T T
© o O ¢T.2d
o O CT3d
— 1
08t T,3d,fit
0.6
S
&
0.4r
0.2r
0
0

Figure 14: Transmission coefficient in two and three dimensions for d = 0.418.
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4.2 Maximum Allowable Amplitude

The displacement amplitude on the backside is
Ups3d = |Uy(T,y = —h/2,2)]. (4.29)

It is dependant on n, h, L, E, v and A. In the following we assume h = 6.35 mm, L =
152 mm, E = 67.6 GPa, v = 0.17. Varying only A shows a linear dependancy for each
n. As in the two dimensional case, one can assume that the maximum allowable amplitude
Ups,34, 1.€. the connection to ideal e-chucking at voltage U, is computed by the evaluation
of wps3q at A ~ U? according to Equation (3.5). The numerical results that come out of
the energy minimization method described in the previous section are plotted for varying
[ = 1000, 2000,3000 V and n = 1,...,20 in Figure 15.

As for the transmission coeflicient one needs to define an analytical function for these
values to be able to implement the saturation due to maximum allowable amplitude. Plotting
the ratio Z'};—% for varying U shows about the same exponential growth for low wavenumbers
n, whereas a saturation for higher wavenumbers 7 > 7 in the range of 0.7 occurs. Therefore
we propose the following fitting. Take data of - "“ 3d < at 2000V for n up to 7. Do the least-

square fitting for 3; and (3 of the ansatz functlon

Ubssd _ g ofon. (4.30)
Ups,2d
Then define the fitted @ps34,f:¢ 88
'abs,:}d,fzit = m'zln(ﬂleg'”’, 07) . ﬂbs,Qd . (431)

The result of 81 = 0.2281 and 32 = 0.1012 is plotted in Figure 15.

4.3 General Surface Shapes, Two Dimensional DCT

In order to handle two dimensional surface shapes we need to define the 2D DCT first.

Ni—-1Ny-1

Xy oo = N (‘ (k1) C(kz) Z Z T, - cos( ——(z ) )cos( (j+ ) 2) (4.32)

i=0 j=0

wherek1:0,1,...,N1—1,k2:0,1,...,N2—1, and

1/vV2, ifk=0
C 4.33
(k) {1, ifk=1,23,... (4.33)

The inverse transformation is then given by

Ni—1No—-1
mg= Y Y Clk1)Clk) Xey g, - COb(——(H )k ) cos( N( )kg), (4.34)

k=0 kg=0
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Figure 15: Maximum allowable amplitude in three dimensions. Analytical approximation
and fitting method.

where ¢ = 0,1,...,N; — 1,7 = 0,1,...,Ng — 1. The scaling has been chosen such that
| X, k,| measures the amplitude of the corresponding basis function for ky # ko # 0, | Xop|/2
the mean value and | Xy, x,|/v/2 the amplitude if k; = 0 or ko = 0. In order to handle a
general surface shape one needs to allow for ky # ko. We assume that for the amount that is
transmitted the maximum of k; and k5 is important. Also, as for the two dimensional case,
we allow for k = 1,3,5,... by calling craqi:(n = k/2) and Gy 34,54(n = k/2). The mean
value is not changed. For the cases k; = 0 or ko = 0 we take the functions s 24 and ¢y o4 of
the two dimensional solution. This leads to the following algorithm to compute the chucked
frontside shape in three dimensions.

- Given data matrix y,(7, j): compute discrete cosine transform Y.(ky, k2) according to
Equation (4.32).

- Given voltage U: compute allowable backside amplitude @y 04(1) and tps aq,7:¢(n) ac-
cording to Equation (3.7) and (4.31).

- Set Y, = Yps. For ky =0, ky = 1,2,..., Ny — 1 check whether |Y,(0, k2)|/v/2 exceeds
Ups,2a(n = k2/2). If yes, set

Y, (0, ko) = sign(Ya(0, ko)) - V2 - tpsga(n = ko/2). (4.35)
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- For ky =0, k; =1,2,..., Ny — 1 check whether |Y;(k1,0)|/v/2 exceeds @y 24(n = k1 /2).
If yes, set
Yok, 0) = sign(Ya(ki, 0)) - V2 - Gipg 0a(n = ky/2) . (4.36)

- For ky = 1,2,...,Ny — 1, ko = 1,2,..., Ny — 1 check whether |Y,(ki, k2)| exceeds
Ubs 34, fit(n = max(ky, k2)/2). If yes, set

Yo(ky, ko) = sign(Ya(k, k2)) « Ges 34, pie(n = max(ky, k2)/2) . (4.37)

- Set Yy, =Y, Forky =0, kg =1,2,..., Ny — 1 compute
Y5(0, ko) = croa(n = ko/2) - Y7,(0, ko) , (4.38)
with croq according to Equation (2.28).
- For ky =0,k =1,2,..., N, — 1 compute

k1, 0) = craa(n = k1 /2) - Yyo(ky, 0) . (4.39)

-Forky=1,2,...,Ny—Lko=1,2,..., Ny — 1 compute
Yis(ki, ko) = craapie(n = maz(ki, k2)/2) - Yis(ki, ko), (4.40)
with ¢r 4 rie according to Equation (4.28).
- Compute the inverse discrete cosine transform yy, of Yy, according to Equation (4.34).
- To get the final frontside surface shape set yrs = —y/s.

To illustrate this method with an example we use as input y,s as shown in Figure 17 (a).
The results for ys, and Yy, at U = 2000 V are plotted in Figures 17 (b) and 18 (b). It can
be observed how high spatial frequencies are damped out.

4.4 FEA of 3D Real E-Chucking

In this section we outline the main properties of the finite element calculation of a two body
three dimensional contact problem. It is remarkable that this simulation assumes stress free
boundary edges at z,z = £L/2.

The chuck and reticle mesh is plotted in Figure 16. The properties have been assumed
close to [3]. The chuck mesh is a simple Cartesian block with 20 x 20 x 3 equi-sized 8-
node hexahedral elements and overall dimension 156 x 156 x 22.6 mm. Typical chucks are
made of ceramics with a Poisson ratio ¥ = 0.2 and elastic modulus F = 380 GPa. A finite
deformation elastic Neohookean material model has been applied.

The reticle mesh is basically a Cartesian block with 50 x 50 x 3 equi-sized 8-node hex-
ahedral elements and overall dimension 152 x 152 x 6.35 mm. The backside surface has
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Figure 16: Finite element mesh of reticle (bottom) and chuck (top) for three dimensional
analysis of real e-chucking.

been warped with a cubic B-spline function according to Appendix A. The curvature can
be seen in Figure 17 (a) and is equivalent to the one chosen for the analytical analysis as
discussed above. A finite deformation elastic Neohookean material model has been applied,
with Poisson ratio » = 0.17 and elastic modulus £ = 67.6 GPa.

The resulting flexural bending stiffness D can be estimated by classical plate theory as

En?

P=na-my

(4.41)

For the chuck this results in 380 kNm and for the reticle in 1.5 kNm. Thus, when pressing
the two objects together, the chuck surface can assumed to stay mostly undeformed.

The chuck is fixed in all three coordinate directions at selected points. In a first solution
step the reticle is fixed at the frontside in all three coordinate directions and a displacement
boundary condition on the frontside is applied, such that the contact can be established.
In a second solution step the displacement boundary condition is removed and a pressure
on the chuck surface facing the reticle backside and the reticle backside is applied. This
pressure is computed and established in the contact driver in each solution iteration step as
a function of the gap d, between chuck and reticle according to Equation (3.1). The fixed
parameters €, ¢ and 04 are the same as discussed above and the voltage is set to U = 2000 V.
A standard coulomb friction (u = 0.2) for the contact is chosen.

For the iterative solution of the nonlinear equations, the use of unsymmetric gradients
and a line search is applied (see FEAP manual ‘utan’, [4]).

The result of the frontside displacement yyeq,p, and the spectral components Yy, of the
reticle at chucking with 2000 V is illustrated in Figure 17 (c¢) and 18 (c) respectively.
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4.5 Discussion

In order to predict the reticle frontside shape at a certain chucking voltage U/, an analytical
as well as a finite element calculation model have been developed. For illustration we took
as input the spline surface as in Figure 17 (a) and assumed a chucking voltage U = 2000 V.
Both results are plotted in Figure 17 (b) and (c), as well as in Figure 18 (b) and (c) for the
spectral components.

It can be seen clearly that for each method high spatial frequencies (ky, k2 > 10) are not
transmitted. This means that backside features with wavenumber greater than n = 5 are
not expected to be observed at the chucked frontside for this example set of parameters.

For wavenumbers smaller than n = 5, however, there occurs a deviation between analyt-
ical prediction and finite element calculation (see Figure 18 (d)). Even if the overall shapes
match pretty well (compare Figure 17 (b) and (c)), there is a deviation of average ~ 50 nm
as can be seen in Figure 17 (d).

It is remarkable that the finite element calculation of this example took several hours,
whereas the analytical computation was done in a few seconds. Improvements to the FEA
solve time can possibly be achieved by utilizing a dynamic bandwidth optimizer to reduce
changing fill patterns due to progressive contact. However this is an open question.
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Figure 17: Example of three dimensional feature transfer, out-of-plane-distortion. (a) Ret-
icle backsurface shape s before e-chucking, (b) frontside shape yy, according to analytical
prediction of ideal e-chucking at voltage U = 2000 V, (c) FEAP simulation output y feq) of real
e-chucking at voltage U = 2000 V, (d) absolute deviation between finite element and analytical
computation, average = 51.149 [nm)].
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Figure 18: Example of three dimensional feature transfer, spectral perspective. (a) Spectral
components of reticle backside pertubation Y, before e-chucking, (b) spectral components of
frontside shape Y}, according to analytical prediction of ideal e-chucking at voltage U = 2000 V,
(c) discrete cosine transform of FEAP simulation output of real e-chucking Yy.q, at voltage
U = 2000 V, (d) absolute deviation between finite element and analytical computation.



5 Conclusion

This work provides an analytical approach as well as a finite element calculation to predict the
transfer of reticle backside features to the frontside during electrostatic chucking at a certain
voltage in two and three dimensions. The analytical solution is based on the assumption
of an infinitely large reticle and periodic boundary conditions. A transmission coefficient
has been derived which estimates the magnitude of a transmitted wavelength based on the
solution of a linear elastic boundary value problem. A maximum allowable amplitude for
a given wavelength has been calculated, which accounts for real chuck properties such as
dielectric constant and applied voltage. A finite element calculation of real e-chucking with
stress free boundaries has also been carried out.

For both, the two as well as the three dimensional case, an exemplary backsurface shape
with high spatial frequency perturbation is used to illustrate and test the analytical against
the finite element calculation. In order to handle such general surface shapes in the analytical
approach, a discrete cosine transformation is used. For both methods it can be observed that
small wavelengths cannot be seen at the frontside after chucking. This is in good agreement
with the theoretical results. The overall shape can be estimated quite well, however there
is deviation due to differences in low frequency transmission prediction. For our example
set of parameters it has been observed that wavenumbers smaller than five are important to
represent the reticle curvature. This observation might be used in the future to develop finite
element calculations that only account for mesh perturbations with small wavenumbers.
This would allow for a minimum number of elements and thus a remarkable speed-up in
comparison to a one-to-one mesh of a backside surface shape with sharp edges, respectively
high wavenumbers.

It is remarkable that the analytical solution is based on the assumption of an infinitely
large reticle whereas the finite element calculation has stress free boundaries. This might
explain the difference in the prediction of small wavenumber transmission. It has been shown
that edge effects are not negligible for the ideal flattening case where we applied a cosine
load on one reticle side. Future work might therefore bring out a better understanding of an-
alytical real e-chucking, especially an understanding of the coupled contact and electrostatic
forces, as well as the solution to the elasticity problem with stress free boundaries.
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A Cubic B-Splines

In order to construct a random backsurface shape of the reticle we used a spline approxi-
mation of randomly generated numbers in Matlab. We briefly outline in this appendix the
mathematical description of cubic B-splines in one and two dimensions. For the finite ele-
ment analysis done as verification of the analytical prediction, this spline function has been
used to develop a user mesh-manipulation subroutine in FEAP to generate the mesh.

A.1 Cubic B-Splines in 1 D

B-splines of higher order can be derived recursively from B-splines of lower order (see for
example [2]). We first need to define a set of knots ¢; with the help of coordinates ;. Let us
consider the set:

{t(]v t17 t2) t37 t4, t5, ce0y tp) tp+1 ) tp+2a tp+3> t'p+4} =

T e e (A.1)
{Zo, To, To, To, To, T, ..o, Tp—2, Tps Tpy Tp, Tp} -
Then B-splines of order 0 can be defined as
1 ift; <z< tivr1
Bip(x)=< 1 ife=tj1=2p, p,i=0,1,...,p+3 (A.2)
0 else
and B;o(z) =0, if ¢; = t;41. B-splines of higher order are computed recursively: 1
t iR z
o4 K(L) B;x-1(z) + _Jr_“—,'BH»l,K-l(-'L')' (A.3)
1+h - t t2H~.+1 - ti+1

For cubic B-splines one sets the order k = 3.

A.2 Approximation

We now want to approximate a curve from which we know m function values f; at given
points x;, = 1,2,...,m. Let us define the spline approximation

P
s(z) = Z a; B; 3(x) (A4)

i=0
with coefficients «;. This gives us an ansatz with p + 1 degrees of freedom. If m > p+1, we
need to apply the least-square method to compute the coefficients «;.

m

Z( s(z;) f] ‘*n}l{n (A.5)

ITerms with denominator 0 are omitted.
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36 A Cubic B-Splines

A.3 Cubic B-Spline Approximation in 2 D

In order to present a surface in three space dimensions, the starting point of a spline ap-
proximation is a table with data

(@, 25, [3),=1,2,...,m. (A.6)

Then one needs to search for a function

P {
a/s ~ = Z Z Cv;1]3/1 3\ V,3(z) (AT)

v=1 p=1

with pl < m and

m

> (S(aj2) - —£;)* > min . (A.8)

Cy
J=1 s

For implementation, the corresponding equation system can be arranged in the following
way:

Be=f, (A.9)
respectively
C11
C12 \
Bys(x1)Bis(z1) Big(®1)Bas(z) - B, 3(21)Bis(21) (‘:11 fi
Bis(22)Bis(22)  Big(22)Bag(z2) -+ Bya(we)Bis(zs) C,m B b
.81,3(513'171)31,3 (Zm) By ,3(33,,1) Bg}g(zm) . Bp’3 (xm)Bl,:;(zm) f,n
\ ¢ /

The matrix B has dimension (m x pl). The coefficient vector ¢ has dimension (pl x 1) and
the data vector f has dimension (m x 1).

A.4 Example of a Spline Surface in Three Dimensions

In the analytical as well as the finite element calculation we use one and the same numerical
example of a spline surface for comparison. Basically it has been obtained by fitting m = 1012
randomly generated numbers f; between —0.5 and 0.5 in Matlab assuming data location
(z;,72;) at an equidistant mesh in the range [—76,76] x [—76,76]. The spline properties
are as follows: Take p = [ = 17 and choose an equidistant mesh to generate knots as
in Equation (A.1), where &y = —76 and &, = 76. The result evaluated at FEAP nodal
coordinates can be seen in Figure 17 (a).



Glossary

E-Chucking

Ideal E-Chucking

Real E-Chucking

Ideal Flattening

Maximum Allowable Backside Amplitude

Transmission Coefficient
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Electrostatic chucking, the process where the
reticle is clamped on a chuck due to the forces
resulting from an electrical field., 2

The model of electrostatic chucking with the
assumption of an infinitely large reticle and
idealization of contact forces. An analytical
description has been carried out based on the
results of ideal flattening., 16

The more realistic model of a finite reticle,
contact forces resulting from a two-body in-
teraction and effective electrostatic forces. So-
lution has been determined using the finite el-
ement method in two and three dimensions.,
22

The mechanical boundary value problem for
the reticle when applying a cosine load on the
backside surface. An exact analytical solution
in two dimensions as well as an approxima-
tion via energy minimization in two and three
dimensions is derived., 6

The maximum allowable amplitude, s, of a
harmonic backside feature that can be flat-
tened out at ideal e-chucking., 18

The amount of reduction in the frontside
amplitude of a harmonic feature transmitted
from the backside for ideal flattening, respec-
tively ideal e-chucking., 9
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