
Lawrence Berkeley National Laboratory
LBL Publications

Title
Bky Programming Systems Bulletin #1

Permalink
https://escholarship.org/uc/item/3kg5926s

Authors
Friedman, R
Control Data Corp.

Publication Date
1979-08-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3kg5926s
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

L:

LBID-086/1 c.l

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA, BERKELEY

Engineering & Technical
Services Division

BKY PROGRAMMING SYSTEMS BULLETIN #1

R. Friedman and Control Data Corp.

August 1979

For Reference
Not to be taken from this room

RECEIVED
ii.AWRENCE

BERKS-lEV LABORATORY

OCT 4\979

LIBRARY AND
OOCUMENT_S SECTION.

Prepared for the U. S. Department of Energy
under Contract W-7405-ENG-48

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Lawrence Berkeley Laboratory Computer Center
Systems Programming Group
University of California

Berkeley, CA. 94720

BKY Programming ~terns Bulletin #l

1st Edition (August 79)

Guidelines for Converting FTN4 Programs to FTN5
and the New FORTRAN-77 Standard

R.Friedman (LBL),
and- CONTROL DATACORP.

CONTROL DATA will be releasing their FORTRAN 77 compiler,
FTN5, by September, 1979. It is anticipated that FTNS will be
made available on the BKY 7600 system by mi.d-1980.

This Bulletin is based on technical material prepared by
CONTROL DATA detailing those FORTRAN language features that are
changing as a result of the new FORTRAN-77 standard and their
implementation of the FTN5 compiler. Suggestions to minimize
conversion problems are offered here, as well as strategies to
make programs FTN4/FTN5 compatible. Actions taken by the FTN4 to
FTN5 conversion program F45 are described in each instance.

lst Edition (August 79) LBID #086/1

Prog. Systems Bulletin #1: FTN5 Conversion 1-2.

INTRODUCTION:

The major change between FTN4 and FTN5 is the implementation
of the new ANSI FORTRAN 77 standard. The new standard provides a
variety of extensions to the existing FORTRAN language. Some of
these -- IF-THEN-ELSE structures, a PARAMETER statement, a CHAR­
ACTER data and variable type -- are completely new to FORTRAN,
but should be familiar constructs to users of other high level
languages. Features in this category should not affect the wor­
kability of existing FTN4 programs, but should add considerably
to readability and ease of coding for programs developed under
F'fN5.

A few features in FORTRAN change functionally with the new
standard,· though not syntactically. These features are espe­
cially worth noting, since FTN5 will compile them without error,
though program actions may be altered. These include the com­
puted GOTO and the DO-loop:

GOTO (•.•) , IV

D019J=JO,JF

Under FTN5, the computed
to the next statement
smaller or larger than
labels specified in the
this situation causes
abort.

GOTO will "fall through"
if the control variable is
the number of statement

GOTO statement. With FTN4,
a fatal error diagnostic

DO-loops will execute a minimum of 0 times, rather
than 1 time. Thus, if JO is greater than JF in
this example, the loop will be skipped over. With
FTN4, the loop would be executed once, with J=JO.
An FTN5 control card option will be available to
defeat this.

In addition to these changes, some obsolete or little used
features will be eliminated and additional special features will
be added. New and more powerful compiler control directives will
be available, including directives which allow conditional compi­
lation of sections of source code. The C$DEBUG package will be
discontinued, though its array checking capability will be avail­
able through a global parameter on the FTN5 control card.

This bulletin details the FTN4 features that will be modi­
fied or discontinued under FTN5. Alternative coding procedures
are suggested that may be used to minimize or eliminate the need
for conversion. Where possible, coding practices common to both
FTN4 and FTNS are suggested. Programmers are encouraged to use
these simple equivalents.

A FORTRAN Conversion Program, F45, will be made available
soon (Fall '79 on BKY 7600). It will handle a substantial por­
tion of the required changes automatically as indicated below,
and will flag for manual changing those conversions that may have
side-effects or require reprogramming. Use of F45 is described

1st Edition (August 79) LBID #086/1

Prog. Systems Bulletin #1: FTN5 Conversion 1-3.

in a subsequent Programming Systems Bulletin, available through
the LBL Computer Center Library.

Exponentiation:

FTN5 will evaluate successive exponentiation right to left.
FTN4 performs such evaluations from left to right.

E.g.: A**B**C = A**(B**C} with FTN5, = (A**B)**C with
FTN4.

===>>: Use parentheses to explicitly specify the desired order of
evaluation. In the example, write A**B**C explicitly as
(A**B}**C to get the same result as FTN4.

Abbreviations:

FTN5 will not allow the abbreviations for logical operators
and truth values { .A., .o., .N., .X., .T., .F. } which are
presently allowed in FTN4.

===>>: Use full keywords { .AND., .OR., .NOT., .XOR.,
.FALSE. } F45 will expand all such abbreviations.

Numbered Common Blocks:

.TRUE.,

FTN5 will not allow numbered common blocks. F45 conversion
program will rename numbered common blocks with unique names of
the form Znnnnn, where nnnnn is derived from the common block
number taken to the base 36, using the digit 0, letters A thru z,
and the digits 1 thru 9.

===>>: Use symbolic names for all labeled common blocks.

END Statements:

FTN5 will consider ommision of an END statement to be a
fatal error. Continuation of END statements will not be allowed.

===>>: Include an END statement on a single line in each program
unit.

Array Reference Subscripts:

FTN4 allows an unsubscripted array reference to designate
the first element of the array in contexts where such a reference
cannot be interpreted as a reference to the entire array, as in:

1st Edition (August 79) LBID #086/1

Prog. Systems Bulletin #1:

DIMENSION A(S)
B=A

is considered equivalent to:

DIMENSION A(S)
B=A(l)

FTNS Conversion 1-4.

FTN4 also allows trailing subscript values to be omitted and they
are assumed to be one. For example:

DIMENSION A(lO,lO,lO)
B=A(4,3)

is considered equivalent to:

B=A(4,3,1)

FTNS wi~l consider such references to
scripted array references will be
which the whole array is referred to:
data statements, etc.

be fatal errors. Unsub­
allowed only in contexts in
parameter lists, common,

===>>: Specify all subscripts explicitly whenever such a refer­
ence is intended. F45 will supply the implied subscripts
to any array name in contexts not referring to the entire
array.

Continuation Lines:

FTN5 requires that continuation lines have blanks in columns
1-5, though FTN4 presently allows other characters to appear in
those positions.

===>>: Begin all continuation lines with blanks in columns 1-5.
F45 will blank these columns.

In FTN5, a blank line will be considered a comment, but will
not break a continuation sequence. FTN4 considers such a line to
break continuation sequences.

===>>: Avoid blank lines with respect to continuation sequences.
F45 converts a continuation line preceded by a blank line
into an initial line.

1st Edition (August 79) LBID #086/1

•

Prog. Systems Bulletin #1: FTNS Conversion 1-5.

Comment Lines:

FTNS will not recognize a comment line denoted by the char­
acter $ in column 1. Only C or * are valid .

===>>: Use the character Cor * in column 1 to denote comment
lines. F45 will convert $ to either * or C depending on
the F45 control statement CC parameter.

Multiple Statements ~er ~ine:

FTNS will not permit multiple statements to appear on a sin­
gle line. FTN4 allows this construct, using the character $ as a
statement separator, as in:

A = B $ C = D

===>>: Avoid multiple statements on a line. Write each statement
on a separate line:

A = B
C = D

F45 will convert multiple statements into separate lines.

IF Statements:

FTNS will not permit 2-branch IF statements, either logical
or arithmetic.

===>>: Replace 2-branch arithmetic IF's with 3-branch IF's:

IF (e) sl, s2
becomes:

IF (e) sl,s2,sl

Replace 2-branch logical IF's with a 2-statement IF-GOTO
sequence:

IF (e) sl,s2
becomes:

IF (e) GO TO sl
GO TO s2

F45 will do these conversions automatically.

lst Edition (August 79) LBID #086/1

Prog. Systems Bulletin #1: FTNS Conversion 1-6.

Octal Constants:

FTNS will require that octal constants take the form

O"nnnn"

rather than the

nnnnB

form presently allowed by FTN4.

In addition, FTN5 interprets an octal constant as an unsigned,
typeless operand. A unary plus or minus preceding an octal con­
stant is prohibited in a DATA statement in FTN5. If used in an
executable statement it has the effect of causing an implicit
type conversion from octal to integer which may result in other
unexpected type conversions.

The FTN4 statements:

DATA M /238/
DATA N /-3338/
I = -30B
J = 27B + 158

would require conversion to:

DATA M /0"23"/
DATA N /0"77777777777777777444"/
I = .NOT. 0"30"
J = 0"27" + 0"15"

Note that the second DATA statement uses the 60-bit one's comple­
ment value for -3338 in order to avoid the use of an operator in
a DATA statement.

The third assignment statement uses the logical operator for
one's complement, .NOT., which would not be allowed in a DATA
statement. Likewise, the statement could have been written:

I = 0"77777777777777777747"

The final assignment statement uses an operator, since a unary
operation is not involved.

===>>: Programs which use octal constants will require conver­
sion. F45 will convert octal values as illustrated. To
avoid the necessity for conversion, use decimal
equivalents of octal values wherever possible:

1st Edition (August 79) L8ID #086/1

•

Prog. Systems Bulletin #1:

DATA M /19/
DATA N /-219/
I = -24
J = 23 + 13

Siqned !YPeless Constants and Operands:

FTNS Conversion 1-7.

In an assignment statement or statement function definition,
F45 will interpret a unary plus or minus operator followed by a
typeless operand as an unsigned constant prefixed by an operator,
and converts the constant as indicated by the context. The
statements:

WORDl = +222B
~vORD2 = -3HXYZ
WORD3 = -333B
WORD4 = -SHIFT(STRING,24)

are translated to:

WORDl = 0"222"
WORD2 = (.NOT.3HXYZ)
WORD3 = (.NOT.0"333")
WORD4 = (.NOT.SHIFT(STRING,24))

F45 replaces the unary minus with .NOT. and encloses the negated
operand with parentheses. F45 deletes unary plus.

Hollerith Constants:

FTNS will not permit Hollerith constants that exceed 10
characters in length. (A new data type, CHARACTER, is provided
to handle longer strings.) In addition, Hollerith constants will
be treated as unsigned, typeless operands, prohibiting the use of
a unary plus or minus with such constants. (This restriction is
similar to that described above for octal constants.) Thus,

I = -3HABC

should be rewritten as:

I = .NOT. 3HABC

The four forms of Hollerith constants:

1st Edition (August 79) LBID 41086/l

Prog. Systems Bulletin #1:

II II

nH •••••
nR •••••
nL •••••

FTNS Conversion 1-8.

will continue to be allowed in FTNS, subject to the restriction
that n < 10

===>>: Restrict Hollerith constants to a maximum of 10 characters
in length. Constructs of the form:

DIMENSION I (2)
DATA I ll6H THIS IS TOO LONG I

CALL SUB(J,K,"THIS IS EVEN LONGER")

should be rewritten as:

DIMENSION I(2) ,L(2)
DATA I llOHTHIS IS TO, 6HO LONG I

L(l)="THIS IS EV"
L(2)="EN LONGER"
CALL SUB(J,K,L)

F45 will handle these modifications. Hollerith constants can
appear in three contexts: in an expression, in a DATA statement,
or as an actual argument in a subprogram call. F45 treats these
three cases differently.

In an expression, FTN4 ignores all characters after the leftmost
ten characters. F45 truncates to ten characters any long Holler­
ith constant in an expression. The resulting constant produces
the same result under FTNS as the original under FTN4.

In DATA statements, FTN4 allows a long constant to initialize
successive elements of an array. If a long Hollerith constant is
the last item in a data list, F45 breaks the long constant into a
series of ten-character constants, possibly followed by one
shorter constant. If the long constant is not the last constant
in the data list, F45 truncates the long constant to ten charac­
ters. The user should check that the code generated by F45 pro­
duces the same results as the original code, especially if the
program depends on trailing zeroes.

When used as an actual argument, a long Hollerith constant is not
shortened. For the Hollerith forms nH or" ••• ", F45 converts the
constant to a type CHARACTER constant with the form' ... ' • For
a long constant of the form nR or nL, F45 replaces the constant

1st Edition (August 79) LBID #08611

Prog. Systems Bulletin #1: FTN5 Conversion 1-9.

with an integer array name that it creates. The
Znnnnn, where nnnnn is a unique combination
letters.

DATA Statements:

array name is
of digits and

FTN5 will not permit the non-ANSI "alternate" DATA statement
which is presently accepted by FTN4:

DATA (I=5), (J,K=6,7)
DATA (X=3. 25)

===>>: Use the standard form of the DATA statement:

DATA I /5/, J,K /6,7/
DATA X /3.25/

FTN4 presently allows 3 non-standard forms of the constant list
in a DATA statement:

(constant list)
rf*(constant list)
rf(constant list)

where rf represents a repetition count.

The first two forms result in syntactic ambiguity, since con­
structs such as:

(1.2,3.4)
10*(5.6,7.8)

may be interpreted as containing either a single COMPLEX constant
or a list of two REAL constants. Accordingly for FTN5, the form
rf*(constant list) specifies a repeated series of complex con­
stants, while the form rf(constant list) specifies a repeated
series of real constants.

Also, FTN5 will not allow signed octal or Hollerith constants in
DATA statements, as described earlier.

===>>: Eliminate all redundant parentheses from DATA statements.
Omit the * when using a repetition factor with a constant
list. Thus,

REAL A,B,C,D,E,F
DATA A,B /(1.2,3.4)/
DATA C,D,E,F, /2*(5.6,7.8)/

should be rewritten as:

1st Edition (August 79) LBID #086/1

Prog. Systems Bulletin #1: FTN5 Conversion 1-10.

DATA A,B /1.2,3.4/
DATA C,D,E,F, /2(5.6,7.8)/

Selection of the appropriate forms should be sufficient to
avoid conversion except in the case where a single COMPLEX
constant is used with a repetition factor in FTN4:

DATA A,B /2*((3.4,5.6))/

The double parenthesis required to indicate
of a COMPLEX constant rather than a list of
will generate an error in FTN5. Avoid this
listing COMPLEX values in full:

DATA A,B /(3.4,5.6) ,(3.4,5.6)/

the presence
REAL constants
construct by

F45 removes redundant parentheses automatically, and con­
verts the forms:

rf*(real,real)
r f * ((real, real))
rf*(constl,const2,const3)

to the forms:

rf(real,real)
rf*(real,real)
rf(constl,const2,const3)

C01-!PLEX Numbers:

FTN4 allows the use of COMPLEX expressions in arithmetic IF
statements, whereas FTN5 does not. FTN4 permits either or both
operands in a relational expression to be of type COMPLEX, though
when the operator is other than .EQ. or .NE. it compares only the
REAL parts of the operands. FTNS allows relational expressions
containing COMPLEX operands only when the operator is .EQ. or
.NE.

===>>: Use the REAL function to convert COMPLEX numbers to type
REAL when they appear in arithmetic IF statements or in
relational expressions with operators other than .EQ. or
.NE.

COMPLEX C,CC

IF (C) 10,20,30
IF (C.GT.CC) GOTO 100

should be re-ceded as:

1st Edition (August 79) I.BID #086/1

Prog. Systems Bulletin tl: FTNS Conversion 1-11.

IF (REAL(C)) 10,20,30
IF (REAL(C) .GT.REAL(CC)) GOTO 100

F45 will convert these expressions automatically.

STOP and PAUSE Statements:

FTN4 allows a STOP or PAUSE statement to include a quote­
delimited Hollerith string. (The string is sent to the job's
DAYFILE.) FTNS will require that such Holleriths be converted to
apostrophe-delimited character constants (strings). Thus,

STOP "THATS ALL FOLKS"

becomes:

STOP 'THATS ALL FOLKS'

===>>: Since the apostrophe (single-quote) delimited character
type does not exist in FTN4, programs using quote delim­
ited strings on STOP or PAUSE statements are incompati­
ble. F45 will convert these statements automatic~lly.

TYPE Statements:

FTN5 will not allow the optional keyword TYPE presently
accepted by FTN4, as in:

TYPE INTEGER A,B
TYPE REAL I,J,K

FTNS will also not accept the abbreviation DOUBLE for DOUBLE PRE­
CISION, as in:

DOUBLE DD
or TYPE DOUBLE DD

And, FTNS will not accept the declaratives:

ECS
or TYPE ECS

===>>: Omit the word TYPE from any such statements. Use the full
keyword DOUBLE PRECISION. Use LEVEL 3 statements to indi­
cate ECS memory storage. These will be convert~d automat­
ically by F45.

1st Edition (August 79) LBID #086/1

Prog. Systems Bulletin #1: FTNS Conversion 1-12.

LEVEL Statement:

FTN4 allows a LEVEL statement, which contains names of vari­
ables, arrays, and dummy arguments, though variables and arrays
so used must be contained in COMMON blocks.

FTN5 will require COMMON block names to be listed in LEVEL state­
ments, rather than array or variable names. Dummy arguments will
continue to be accepted. Thus:

becomes:

COMMON /LCMB/ X,Y,Z
LEVEL 2, X,Y,Z

COM~ON /LCMB/X,Y,Z
LEVEL 2,/LCMB/

===>>: Use F45 to convert LEVEL statements automatically. FTN4
programs with LEVEL statements will be incompatible with
FTNS ..

ENTRY Statements:

FTNS permits a dummy argument list with each ENTRY statement
and will require that an external reference to an ENTRY use an
actual argument list that agrees in order, number and type with
the dummy list.

FTN4 does not allow dummy argument lists other than in a header
statement and uses the list specified in the header as the dummy
list for all EN'fRY points in the program unit.

===>>: Routines using ENTRY statements will be incompatible and
require conversion. F45 will add a dummy argument list
identical to that specified in the header to each ENTRY
statement. Note that program units containing EN'rRY
statements will appear to compile correctly under FTNS
without conversion, though run-time errors will result.

SLITE and SLITET:

FTNS will not support the sense light facility CALL SLITE
and CALL SLITET. This feature is considered archaic and its ori­
ginal purpose of program-to-console-operator communication has
never been supported.

1st Edition (August 79) LBID #086/1

Prog. Systems Bulletin #1: FTNS Conversion 1-13.

===>>: Use logical variables instead, or write your
subroutines to perform a similar function.
such useages as requiring manual conversion.

own FORTRAN
F45 will flag

READEC and WRITEC:

FTNS will not support the library utility subprograms READEC
and WRITEC.

===>>: Use the preferred MOVLEV library utility, as in:

CALL READEC(A,B,lO)
CALL WRITEC(C,D,l5)

becomes CALL MOVLEV(B,A,lO)
becomes CALL MOVLEV(C,D,l5)

·p45 will handle this translation automatically. However,
users of READEC and WRITEC should be aware that a serious
problem will develop if these routines are being used via
an indirect scr1 variable pointer into the LCM array. F45
will not detect this useage. E.g., WRITEC permits

LCMP = 40001B
CALL WRITEC(SORES(l) ,LCMP,lOOO)

where LCMP and SORES are both SCM resident. LCMP is
recognized by WRITEC to be SCM resident, and its value, in
thjs case 40001, is taken as the destination address in
LCM to be used to transfer 1000 words from SORES(l). Pro­
grammers must inspect their use of READEC and WRITEC to
avoid this situation. Reprogramming may be necessary (or,
possibly, READEC and WRITEC may be made available for FTNS
users).

Computed GOTO:

Under FTN4, execution of a computed GOTO statement results
in a run-time error when the value of the index variable is less
than or equal to 0, or is greater than the number of labels
specified in the statement. FTNS specifies that a computed GOTO
"falls through" and continues execution in such a case.

The code shown will generate an error in FTN4, but will proceed
to statement 5 under FTNS:

J = 5

GOTO (10,20,30) ,J
5 X = Y
10 X = X * X

etc

lst Edition (August 79) LBID #086/1

Prog. Systems Bulletin #1: FTN5 Conversion 1-14.

===>>: Programs coded to insure that computed GOTO indices are
within range of the GOTO statement will not require
conversion. However, programs which rely on FTN4 run-time
diagnostics to detect out-of-range indices should be
receded to handle these errors, as in:

GOTO(l0,20,30) ,J
P~INT 50

50 FORMAT (" ERROR IN COHPUTED GOTO ")
CALL ABORT

5 X = Y
10 X = X * Y etc.

Inclusion of such additional code will cause non-fatal
informative diagnostics under FTN4 since FTN4 will assume
that the lines following the GOTO cannot be reached during
execution.

F45 conversion program will add the statement CALL GOTOERR
under each computed GOTO statement to make the resultant
processing identical to FTN4.

DO-Loops:

FTN4 executes the range of a DO-loop at least 1 time. FTN5
will skip execution of the loop if the iteration count is ini­
tially 0. An option on the FTN5 control card will allow the user
to specify a minimum 1-time execution of DO loops if desired.

===>>: Specifying DO=OT on the FTNS control card will compile
programs that are guaranteed to behave identically un~er
FTN4 as far as one-trip DO loops are concerned. A more
effective procedure would be to design code in such a way
that minimum loop behavior is explicitly specified, as in:

DO 10 I = J,K

10 CONTINUE

can be written for 0-trip execution:

IF (J.GT.K) GOTO 20
DO 10 I=J,K

•.. etc
10 CONTINUE
20 •.. etc

F45 will take no action which will affect the minimum loop
execution. Programs which will be affected by the change
to FTNS will require use of the DO=OT option at compile
time.

1st Edition (August 79) LBID #086/1

,.

i.

'' '!

. !

I
' i i

i!

Prog. Systems Bulletin #1: F'rNS Conversion 1-15.

Alternate RETURNS:

The syntax of the alternate RETURNS feature in FTN4 will be
modified considerably under FTNS. The keyword RETURNS will be
eliminated and the statement labels for alternate return points
will be included in the parameter list in both CALL statements
and SUBROUTINE header statements. Such labels will be preceded
by a * to distinguish them from items in the parameter list.

In addition, the statement

RETURN v

where v indicates the value of the dummy parameter which ~esig­
nates the return point, will be replaced by

RE'rURN i

where i is an integer variable referencing the i-th item in the
alternite returns list. Thus, the FTN4 code:

CALL SUB(X,Y) , RETURNS(l0,20,30)

SUBROUTINE SUB(A,B) , RETURNS(I,J,K)

RETURN I

RETURN J

RE'rURN K

would have as its F'rNS equivalent: (as converted by F4 5)

CALL SUB(X,Y,*l0,*20,*30)

SUBROUTINE SUB(A,B,*,*,*)

RETURN 1

RETURN 2

RETURN 3
etc.

===>>: Conversion will. be necessary for any program using the
alternative RETURNS feature. Users desiring to avoid
conversion completely may consider using some other method
of effecting the desired control flow. For example, the
code below produces the same flow control as the example
above, but is acceptable to both FTN4 ana FTNS:

lst Edition (August 79) LBID #086/1

Prog. Systems Bulletin #1:

CALL SUB (X, y I I)
GOTO (10,20,30) ,I

SUBROUTINE SUB(A,B,I)

I=l
RETURN

I=2
RETURN

I=3
RE'rURN

Hollerith* * in FORMAT:

·etc.

FTNS Conversion 1-16.

FTNS will not accept asterisk-delimited Hollerith strings in
FORMAT statements presently allowed by FTN4. A new apostrophe­
delimited string will be provided. Also, the FTN4 accepted
quote-delimited string will be retained.

===>>: Use the quote delimited form of Hollerith strings
MAT statements to avoid the need for conversion.

in FOR­
Thus:

FORMAT(* A MESSAGE*) becomes FORMAT(' A MESSAGE ')

F45 will change both quote ano asterisk forms to the new
single-quote (apostrophe) form.

X FORMAT Descriptor:

FTNS will require that the X FORMAT descriptor be prefixed
always with a non-zero, unsigned integer constant.

===>>: Avoid use of the form OX, and replace X with lX wherever
it occurs. Use the T edit descriptor in place of the -nx
form. F45 will handle these changes, but will replace
occurances of the -nx with TLn, where the TL oescriptor is
a new feature of the FORTRAN 77 standaro which moves the
indicated number of spaces left.

H FORMAT Descriptor on Input:

FTNS will not permit the use of the H format descriptor on
input operations.

lst Edition (August 79) LBID #086/l

' ;

i
.,

i I I ·! !

Prog. Systems Bulletin #1: FTN5 Conversion 1-17.

===>>: Use arrays read and written in A format in place of H for­
mat. Thus,

READ(l,30)
PRINT 30

30 FORMAT(20H

can be replaced with

INTEGER MESS(2)
READ(l,30)MESS
PRINT30,MESS

30 FORMAT (2Al0}

F45 will flag occurrences of this construct, but a manual
change will be required by the user. The use of CHARACTER
data is recommended in FTN5.

TO FORMAT Descriptor:

FTN5 will not allow the TO specification in FORMAT state­
ments. FTN4 considers this equivalent to Tl.

===>>: Use the Tl specification instead of TO. F45 will convert
TO to Tl, ~ut TO in variable format cannot be detected.

Commas in FORMAT Statements:

FTN5 requires that commas be used to separate list items in
a FORMAT statement after an X, nH, or quote-delimited edit
descriptor. Such commas are optional under FTN4.

===> >: Include commas as separators in FOffi.1AT statements. F4 5
will supply missing commas.

Variable FORMAT:

FTNS will not permit a variable format specification to be
in a simple non-character variable.

===>>: Convert simple variables to arrays if used as variable
format:

1st Edition (August 79) LBID #086/1

Prog. Systems Bulletin #1:

DATA M I4H(I6) I
READ (l,M) I

becomes:

INTEGER M(l)
DATA M(l) I4H(I6) I
READ (1, M (1)) I

FTNS Conversion 1-18.

F45 will flag each appearance of a simple variable name
used as a format specification but manual conversion will
be required.

y_ and = Edit Descriptors:

FTNS will not allow the v and = edit descriptors allowed in
FTN4.

===>>: There is no direct equivalent of the V edit descriptor and
its Use should be avoided. The= edit~descriptor is also
witbout a direct FTNS equivalent, though there are
features for handling CHARACTER data output that should
prove to be an effective substitute in some cases. F45
will flag each use. of such a descriptor for manual conver~
sion.

~ Format Exponent Length:

FTN4 allows Ew.dDe where De indicates an explicitly speci­
fied exponent length. FTN5 disallows De but allows Ew.dEe.

===>>: Use E rather than D to specify the length of the exponent
field. F45 will do the conversion automatically.

Double Precision Format Descriptors:

FTNS will require that each Double Precision IIO list item
correspond to exactly one repeatable format descriptor. FTN4
permits Double Precision items to correspond to two format
descriptors.

The conversion program F45 will not recognize the use of two for­
mat descriptors (e.g. 2E20.10) for one Double Precision list
item, so particular care should be taken to avoid such usage.

===>>: Use single D, E, F, or G format descriptors to output dou­
ble precision variables. Note that equivalencing may be
needed to print Double Precision variables in 0 format:

1st Edition (August 79) LBID #08611

I

I'
I

I,

'i

Prog. Systems Bulletin #1:

DOUBLE PRECISION X

PRINT 20,X
20 FORMAT(lX,2020)

!/Q Lists:

FTN5 Conversion 1-19.

insert:

change to:

INTEGER A(2)

EQUIVALENCE(A,X)
PRINT 20,A

FTN5 will
input/output
parentheses.
statements.

not permit the use of redundant parentheses in
lists. FTN4 permitted redundant pairs of
Redundant parentheses can result in ambiguous

Consider:

PRINT*, (2.31,8.)

According to the syntax, the I/O list could consist of either a
single complex constant or two real constants. FTN4 will assume
that such a list item is a complex constant. To avoid this ambi­
guity, FTN5 prohibits redundant parentheses, and will always
treat (real,real) as a complex constant. F45 will remove redun­
dant parentheses in I/O lists.

List Directed !/Q:

FTN4 processes list-directed PRINT* and WRITE* statements
differently. For PRINT*, a blank is output as the first charac­
ter of each record and also as the first record of each line when
a long record is conti·nued on additional lines. For WRITE*, a
blank is output only as the first character of each record.
WRITE* also includes the quote symbols with character output.

FTNS will process PRINT* and WRITE* identically, transmitting a
blank for each line of output, but not including the delimiting
symbols with character output.

===>>: Formatted output should be used to handle cases which will
be affected by this change. F45 will not flag or
translate such usage.

FTN4 List-directed READ* statements read enough data from
the input line to satisfy the I/O list of the READ* statement.
Extra data on the line not picked up by the READ* will be read by
the next READ* statement. Under FTN5, list-directed READ* state­
ments will always read dat~ from a new line. Extra data not read
from the line by one READ* is skipped by a subsequent READ*.
This is a significant difference in operation between compilers,
and programs that rely on this situation will have to be repro­
grammed. F45 cannot detect this situation.

1st Edition (August 79) LBID #086/1

Prog. Systems Bulletin #1: FTNS Conversion 1-20.

Hollerith Data in List-Directed l/Q:

FTN4 assum~s that an integer data item in a list-directed
output list is a Hollerith constant if its absolute value exceeds
2**48-1. Such values are transmitted with an AlO specification.
FTN5 will not provide this interpretation.

===>>: Use formatted output for printing Hollerith data. F45
will d~tect the direct use of Hollerith constants in list
directed output statements and will translate such Holler­
iths to Character data. However, F45 cannot detect the
use of variables which have been assigned (via DATA or var
= nH ... assignment statemen~rHollerith values.

Output Statements:

FTN5 does not allow the following forms of output state­
ments, as they are considered redundant and non-standard:

WRITE fmt
WRITE fmt,list
WRITE *,list
PRINT (unit,fmt) list
PRINT (unit,*) list
PUNCH (unit,fmt) list
PUNCH (unit,*) list

F45 will do these conversions.

READ Statements:

use instead:
PRINT fmt
PRINT fmt,list
PRINT*,list
WRITE (unit,fmt) list
WRITE (unit,*) list
WRITE (unit,fmt) list
WRITE (unit,*) list.

With FTN5 additional specifications are allowed on the READ
statement. FTN4 READ statements will continue to behave identi~
cally under FTN5 without the addition of any of these specifica­
tions, unless an end-of-file is encountered during the execution
of a READ. In this case, an error will be generated unless
END=label has been specified, where label is a statement label
contained in the same program unit as the READ statement, which
indicates where control is to be transferred when an end-of-file
is encountered.

Many FTN4 programs will not be affected by ~his change, though
programs using the EOF or IOC~EC fun6tions will require conver­
sion. These functions will continue· to be available under FTN5,
but the END= specification must be added to the associated READ
statements in order to avoid an error during input of an end-of­
file.

lst Edition (August 79) LBID #086/1

Prog. Systems Bulletin #1: FTNS Conversion 1-21.

===>>: F45 will add an END=label specification to all READ state­
ments, where label is the label of the statement following
the READ statement. If no such label exists, one will be
generated.

statement: will be converted to:
READ(u) list
READ(u,fmt) list
READ fmt, list

READ(u,END=label) list
READ(u,fmt,END=label) list
READ(u,fmt,END=label) list

and conversion of other variations on the READ statement
would be similarly made.

However, the following:

READ (1,100) CAT
IF (EOF(l) .NE.O) GOTO 800

800

must be converted to:

READ(l,lOO,END=800) CAT

Under FTN4, the IOCHEC function could be used to check
parity and other I/0 errors in the previous I/O operation.
uses the specifiers IOSTAT and ERR for error processing.
specifiers are part of the READ statement itself:

READ(lfn,IOSTAT=var,ERR=n) for example,

for
FTNS

These

specifies that integer variable var is set by the READ operation
to some positive value if a an error has occurred, and that pro­
cessing continues at statement label n on error. If neither !OS­
TAT or ERR has been specified on a READ statement, and an error
in reading occurs, FTNS will terminate the program.

The IOCHEC function will still be available with FTNS to check
for parity errors.

Statement Functions:

FTN4 executes references to statement functions by replacing
each dummy argument with the actual argument, without regard to
type correspondence or side effects.

FTN5 will evaluate and type convert each argument before substi­
tution. Side effects will be prohibited.

lst Edition (August 79) LBID #086/1

Prog. Systems Bulletin #1: FTNS Conversion 1-22.

===>>: Avoid statement functions which depend on side effects or
the avoidance of type conversion.

F45 will flag references to statement functions which con­
tain a type mismatch but dependence on side effects cannot
be detected. Manual conversion will be required.

Intrinsic Functions:

FTN4 allows the following names of intrinsic functions to be
passed as actual arguments in subprogram calls:

AMAXO
A..l'v1AX1
AMINO
AHINl
AND
CMPLX
DBLE

DHAXl
DMINl
FLOAT
I DINT
IFIX
IN'r
MAXO

FTNS disallows this.

MAXl
MINO
MINl
REAL
SNGL
OR
XOR

===>>: Avoid passing the listed functions as actual arguments.
F45 will flag such usage, but manual conversion will be
required.

New Intrins~c.Functions:

FTNS provides the following new intrinsic functions:

ANINT DPROD LGE LOGlO
BOOL EQV LGT MAX
CHAR I CHAR LLE MIN \

DDIM IDNINT LLT NEQV
DINT INDEX LOG NINT
DNIN'J' LEN

===>>: Avoid use of the names listed above in contexts which will
cause them to be interpreted as references to intrinsic
functions. F45 will add EXTERNAL statements wherever one
of these names is used as a function to defeat FTNS's typ­
ing as intrinsic.

RANF:

FTN4 presently requires a dummy parameter for the RANF func­
tion. FTN5 will retain this function, but will require that it
be called with no parameters:

1st Edition (August 79) LBID #086/1

, '

' ..

Prog. Systems Bulletin #1: FTN5 Conversion 1-23.

X = RANF() instead of RANF(DUMMY)

===>>: F45 will convert these usages.

FTN5 will not provide the C$ DEBUG package available with
FTN4. DEBUG directives should be removed from the source code of
programs before compiling with FTNS. (FTNS List directives use
the C$ syntax and if not removed, C$ DEBUG directives will appear
to be erroneous LIST directives).

FTN5 will provide a control card option to select checking of
subscripts in array reference~.

===>>: F45 will delete statements beginning with C$. Also, some
sort of post-mortem dump package has been advertised with
FTN5 though its implementation on BKY may be delaye~.

List Directives:

FTN5 will require minor changes to the syntax of the exist­
ing C/LIST directives for source program listing control:

FTN4
C/ LIST, ALL _
C/ LIST,NONE

change to:
C$ LIS'r(ALL)
C$ LIST(ALL=O)

FTNS will allow a variety of new LIST directives, as well as
additional directives which can be used to specify conditional
compilation of sections of source code, and several other
features no available under FTN4. All these directives begin
with a C$ in columns 1 and 2 and will be treated as comments if
the appropriate FTN5 control card parameter is not specified.

===>>: F45 will make the appropriate conversion of C/LIST direc­
tives.

FURTHER INFORMATION:

The ultimate source of information on FORTRAN-77 is the
standard itself, published by the American National Standards
Institute (ANSI) as: ANSI X3.9-1978, Programming Language FOR­
TRAN.

1st Edition (August 79) LBID #086/1

Prog. Systems Bulletin #1: FTNS Conversion 1-24.

Information on CONTROL DATA's FTNS compiler is found in
their FTNS Reference Manual, soon to be available.

Use of CDC's F45 FTN4 to FTN5 conversion program will soon
be available as a BKY Programming Systems Bulletin.

All these items are or will be available from the Computer
Center Library, Room 1245A/50B, Lawrence Berkeley Lab., Univer­
sity of California, Berkeley, CA. 94720 (415-486-5529).

Publication and/or availability of all documentation is announced
in the BKY Computer Center Newsletter.

lst Edition (August 79) LBID #086/1

*

• 1

.i'

) ,,

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

'~ l.J:!I' ·- ...

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

,;;;·

!/

