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Abstract: CVX based numerical algorithms are widely and freely available for solving convex optimization
problems but their applications to solve optimal design problems are limited. Using the CVX programs in
MATLAB, we demonstrate their utility and flexibility over traditional algorithms in statistics for finding
different types of optimal approximate designs under a convex criterion for nonlinear models. They are
generally fast and easy to implement for any model and any convex optimality criterion. We derive
theoretical properties of the algorithms and use them to generate new A-, c-, D- and E-optimal designs for
various nonlinear models, including multi-stage and multi-objective optimal designs. We report properties
of the optimal designs and provide sample CVX program codes for some of our examples that users can
amend to find tailored optimal designs for their problems. The Canadian Journal of Statistics 00: 000–000;
2019 © 2019 Statistical Society of Canada
Résumé: Des algorithmes numériques basés sur CVX gratuits et largement répandus sont disponibles pour
résoudre des problèmes d’optimisation convexe, mais leur application pour trouver un plan d’expérience
optimal est limitée. Les auteurs démontrent l’utilité et la flexibilité des programmes CVX par rapport aux
algorithmes traditionnels de statistique pour trouver différents types de plans approximativement optimaux
sous un critère convexe pour les modèles non linéaires. Ces programmes sont généralement rapides et faciles
à implémenter, quel que soit le modèle et le critère d’optimalité. Les auteurs déterminent les propriétés
théoriques des algorithmes et les exploitent pour générer des nouveaux plans A-, c-, D- et E-optimaux pour
différents modèles non linéaires, y compris des plans optimaux multi-stades et multi-objectifs. Ils décrivent
les propriétés des plans optimaux et fournissent des exemples de code CVX pour certains de leurs exemples
qu’un usager pourrait modifier afin de l’adapter à son problème d’optimisation d’un plan d’expérience. La
revue canadienne de statistique 00: 000–000; 2019 © 2019 Société statistique du Canada

1. INTRODUCTION

An algorithmic approach is a practical way to find optimal designs. There are many types of
algorithms for computing optimal designs and they come with different assumptions. Historically,
many of the algorithms are deterministic, meaning that repeated runs of the algorithm with the
same input produce the same design when it stops using the same stopping criterion. Some
algorithms have a proof of convergence to the optimum and others are ad-hoc or based
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on heuristics. The former includes traditional ones, like Fedorov-type and exchange-type of
algorithms, developed mainly for linear models and more than 40 years ago. They are well
described in several design monographs, such as Fedorov (1972) and Silvey (1980).

The traditional algorithms generally work well but can be problematic when there are
many variables to optimize and the model is nonlinear. They may stall or break down because
of the huge computational burden. For instance, Broudiscou, Leardi & Phan-Tan-Luu (1996)
claimed that traditional algorithms in statistics for finding optimal designs cannot be used to
find non-standard designs, such as asymmetrical D-optimal designs. They found the algorithms
performed poorly, were difficult to handle and ultimately abandoned them for genetic algorithms.
Similarly, Royle (2002) reported that the traditional exchange algorithms are not practical for
finding large spatial designs because they can be computationally prohibitive when the criterion
is computationally expensive to evaluate or the design space is too large. More recent algorithms
include multiplicative algorithms, cocktail algorithm (Yu, 2011) and an algorithm proposed by
Yang, Biedermann & Tang (2013), where they showed their algorithms outperformed several
traditional algorithms for finding optimal designs in several ways. Mandal, Wong & Yu (2015)
provides a brief review of current numerical approaches for finding optimal designs, including
metaheuristic algorithms.

Apart from the above mentioned deterministic algorithms, there are also mathematical
programming methods that seem highly appropriate for finding optimal designs. For reasons
that are not very clear, these tools are considerably less used in statistics for finding optimal
designs, until recently. Papp (2012) reviewed semi-definite programming as a tool for finding
optimal designs and noted its stability and theoretical guarantee of the efficiency. Using mainly
polynomial models, he showed that running times required for finding various optimal designs
are negligible. Additionally, Duarte & Wong (2014) and Duarte, Wong & Atkinson (2015) used
semi-infinite programming tools to find optimal designs, and Cuervo, Goos & Sorensen (2016)
employed a programming method to find D-optimal designs for linear models with multiple
constraints on the design space. Ye, Zhou & Zhou (2017) and Wong, Yin & Zhou (2017) further
demonstrated the utility of semi-definite programming to find various types of optimal designs
for linear models, and Wong, Yin & Zhou (2018) found various types of optimal designs for
multi-response multi-factor experiments for nonlinear models (NMs) using theory along with
semi-definite programming tools.

CVX based numerical algorithms are widely used in engineering and available in MATLAB
for solving convex optimization problems. However, their applications to solve optimal design
problems are limited. Gao & Zhou (2017) was probably the first to apply a CVX program to find
optimal moments of D-optimal designs for polynomial and trigonometric regression models. Our
main goal in this article is to demonstrate key advantages CVX programs have over traditional
methods in statistics for finding optimal designs, including two-stage designs or multi-objective
optimal designs for any model. Additionally, we derive theoretical results helpful for studying
properties of the optimal designs and the algorithms. In particular, we show a generalization
of the scale invariance property of D-optimal designs and how the choice of the discretized
points in the design space affect the quality of the generated design. We provide new optimal
designs and also show CVX based algorithms can find multi-stage or multi-objective optimal
designs.

Section 2 describes statistical background and Section 3 studies CVX based algorithms for
constructing optimal designs, including conditions for checking whether a design is optimal
among all designs on the selected design space. In Section 4 we derive several properties of the
algorithms and the generated optimal designs, and in Section 5 we present various applications.
Section 6 proposes another CVX based algorithm for finding optimal designs for large design
space and models with several covariates. Section 7 concludes with proofs in the Appendix.
MATLAB codes for four examples are given in the Supplementary Material.
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2. BACKGROUND

Suppose we have a statistical model for studying the relationship between a response variable Y
and a set of independent variables x from a known compact set S ⊂ Rk, where k is the dimension
of x. Design issues concern selecting points from S in some optimal way to observe the responses.
We assume there are resources to take n independent observations and the mean response at x is
𝑓 (x,𝜽), where 𝜽 is a q-dimensional vector of unknown parameters in the model.

There are two types of designs: approximate and exact. We focus on approximate designs
and denote such a design with m points by 𝜉 = {(xi,wi), i = 1,… ,m}, where x1,… , xm ∈ S,
w1,… ,wm are the corresponding weights that sum to unity. The implemented design takes
roughly nwi observations at xi, i = 1,… ,m, subject to nw1 + · · · + nwm = n after rounding each
nwi to a positive integer. Approximate designs are easier to study and find because there is a
unified theory for finding them and confirming their optimality using equivalence theorems.

Following convention, the worth of a design is measured by its Fisher information matrix. We
denote this matrix by I𝜉(𝜽) =

∑m
i=1 wiIxi

(𝜽), where Ixi
(𝜽) is the information from an observation at

xi. The asymptotic covariance matrix of the maximum likelihood estimator �̂� of 𝜽 is proportional
to the inverse matrix of I𝜉(𝜽). Many optimality criteria are formulated as a convex function Φ(⋅)
and the design sought is 𝜉∗ = arg min𝜉Φ(I−1

𝜉
(𝜽)), and the minimization is over all designs on S.

Examples of Φ are the determinant and the trace functions. For NMs, I𝜉(𝜽) depends on the true
value 𝜽 and 𝜉∗ is called a locally optimal design, or simply an optimal design.

Finding analytical solutions to optimal design problems for NMs and generalized linear
models (GLMs) is challenging unless the model is simple. The problem is compounded when
the model has several factors or the design space has complicated constraints or errors have a
complex correlation structure. We believe this in part explains why the bulk of design work
concerns models with one or two factors; see for example, Dassel & Rawlings (1988), Dette
& Biedermann (2003), Biedermann, Dette & Zhu (2006), and Fang, Wiens & Wu (2006). This
suggests that relying solely on an analytical approach to find optimal designs can be limiting,
when we have a high dimensional NM. More effective and powerful algorithms are needed
to find optimal designs for more complicated design problems. The next section presents our
algorithms for finding various types of optimal designs and how they can be programmed to
generate tailor made designs for the user.

3. CVX BASED ALGORITHMS

CVX is a modelling system, developed for solving disciplined convex optimization problems
(Grant & Boyd, 2013), and it is available in MATLAB. CVX can solve several types of optimiza-
tion problems, including linear and quadratic programming, second-order cone programming,
semi-definite programming, and other complex convex optimization problems. There are various
algorithms to solve convex optimization problems (Boyd & Vandenberghe, 2004), including
steepest descent method and Newton’s method for unconstrained minimization problems, New-
ton’s method for minimization problems with equality constraints, and interior point methods for
inequality constrained minimization problems. Here we briefly discuss interior point methods.
Consider a minimization problem with two inequality constraints,

min
v

g0(v), subject to: g1(v) ≤ 0, g2(v) ≤ 0, Av = b, (1)

where v = (v1,… , vk0
)⊤, A is a l0 × k0 constant matrix with rank l0, b is a constant vector, and

g0, g1 and g2 are convex and twice continuously differentiable functions from Rk0 to R.
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There are two key steps in interior point methods. The first step transforms the problem in
(1) into an equality constrained problem by a logarithmic barrier function as follows,

min
v

g0(v) −
1
𝛾

2∑
i=1

log(−gi(v)) (2)

subject to: Av = b,

where −
∑2

i=1 log(−gi(v)) is called a barrier function, and 𝛾 is a positive parameter. As 𝛾 → ∞,
the solution of Equation (2) converges to that of Equation (1).

The second step solves a sequence of problems in Equation (2) defined by an increasing
sequence of 𝛾 , say 0 < 𝛾 (0) < 𝛾 (1) < 𝛾 (2) < …. For a fixed 𝛾 , Newton’s method or other methods
can be applied to find a solution for Equation (2). A barrier approach or path-following approach
is then applied to solve the sequence of problems, using the solution for Equation (2) with
𝛾 = 𝛾 (𝑗) as the starting point for (2) with 𝛾 = 𝛾 (𝑗+1), 𝑗 = 0, 1, 2,…., Boyd & Vandenberghe
(2004, Chapter 11) provide a detailed discussion about the choice of 𝛾 (𝑗), stopping criteria
and convergence analysis, which are carefully implemented in CVX. Other techniques such as
solving dual problems and using sparsity features are also discussed to speed up the methods by
reducing the number of variables. The dual problems for optimal design problems also provide
interesting geometric interpretations for optimal designs and there are a few examples in Boyd &
Vandenberghe (2004, Section 7.5). In summary the CVX system contains various optimization
methods that are fully supported by theory.

The convex optimization problems need to be written in certain forms before they can be
solved by CVX. The next subsection describes a few commonly used optimal design criteria
and how they may be formulated in ways that CVX can optimize directly after the design space
is discretized by the user into a set SN of N grid points from which optimal design points are
selected by CVX. The number N is also user-selected and can be very large. Frequently, the N
grid points are equally spaced throughout the set S and there is a new proposal to use grid set
that adapts after each iteration (Duarte, Wong & Dette, 2018). In Section 3.2 we present CVX
algorithms and conditions for checking whether the CVX-generated designs are optimal.

3.1. Optimality Criteria
Given a statistical model, the error distribution, and a discretized design space, SN = {x1,… , xN},
we denote an approximate design on SN by 𝜉N = {(xi,wi), i = 1,… ,N} where the weight vector
at these points, w = (w1,… ,wN)⊤, satisfies

wi ≥ 0, i = 1,… ,N,

N∑
i=1

wi = 1. (3)

Given a design criterion, the optimization problem is to determine points in SN that receive a
positive weight and become support points of the optimal design. Berger & Wong (2009) provide
details for several optimality criteria. For D-optimality, which is the most widely used criterion,
we minimize the objective function

D(𝜉N) = − log
(

det(I𝜉N
(𝜽))

)
, (4)

or

′
D(𝜉N) = −

(
det(I𝜉N

(𝜽))
)1∕q

, (5)

over all vectors w satisfying Equation (3).
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Other criteria include A-, As-, c-, I- and L-optimality. Like D-optimality, each of these criteria
can be formulated as a convex function of w. Collectively, these criteria are embedded in the
following class of objective functions and our goal then is to find a weight distribution on SN
that optimizes the criterion,

AC(𝜉N) = trace
(

C⊤ I−1
𝜉N
(𝜽) C

)
, (6)

where the choice of the q × l matrix C with l ≤ q determines the optimality criterion. For singular
I𝜉N

(𝜽), D(𝜉N) and AC(𝜉N) are defined to be +∞.
It is important that I𝜉N

(𝜽) is linear in w, so D(𝜉N), ′
D(𝜉N) and AC(𝜉N) are convex functions

of w (Boyd & Vandenberghe, 2004; Bose & Mukerjee, 2015). We then apply CVX to find
optimal designs after writing the convex optimization problem in a general form:

min
w

(𝜉N), subject to: wi ≥ 0, i = 1,… ,N,

N∑
i=1

wi = 1, (7)

where (𝜉N) can be D(𝜉N), ′
D(𝜉N), AC(𝜉N), or other convex functions of w discussed later in

Section 4.4.

3.2. Algorithm I
We propose an algorithm to construct optimal designs via CVX as follows.

Algorithm 1 (Computing optimal designs via CVX in MATLAB).
Step (i): Input parameter value for 𝜽 and design points x1,… , xN .
Step (ii): Compute the q × q information matrices Ixi

(𝜽) at each xi for i = 1,… ,N.
Step (iii): Use CVX to solve Equation (7) for w and denote the solution by ŵ.
Step (iv): Check optimality of ŵ.

This algorithm is simple and can be applied to any model and various optimality criteria.
Steps (i) and (ii) depend on the model and design space, while the design criterion is specified
in Step (iii) through the objective function (𝜉N) in problem (7). In Step (iv), we verify if the
numerical result ŵ is an optimal design.

Similar to Bose & Mukerjee (2015) and Wong, Yin & Zhou (2017), the optimality conditions
are stated in Lemma 1. Let 𝜉∗N be the optimal design with weight vector ŵ, let hTi(ŵ) =

trace
(

C⊤
(

I−1
𝜉∗N
(𝜽) Ixi

(𝜽)I−1
𝜉∗N
(𝜽) − I−1

𝜉∗N
(𝜽)

)
C
)

, and let hDi(ŵ) = trace
(

I−1
𝜉∗N
(𝜽) Ixi

(𝜽)
)
− q, i =

1,… ,N. The latter two functions represent the negative directional derivative of the criterion
evaluated at 𝜉∗N in the direction of the degenerate design at xi.

Lemma 1. The optimality conditions are:

(i) 𝜉∗N is a D-optimal design on SN if and only if it satisfies hDi(ŵ) ≤ 0, for all i = 1,… ,N;
(ii) 𝜉∗N is an optimal design that minimizes AC(𝜉N) on SN if and only it satisfies hTi(ŵ) ≤
0, for all i = 1,… ,N.

The proof of Lemma 1 is omitted; it is similar to the proof of Lemma 2 in Wong, Yin &
Zhou (2017). In practice, conditions in Lemma 1 are replaced by

hDi(ŵ) ≤ 𝛿 or hTi(ŵ) ≤ 𝛿, for all i = 1,… ,N, (8)

where 𝛿 is a small positive number, say 10−4; see Bose & Mukerjee (2015).
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To compare two designs 𝜉1 and 𝜉2, we use two efficiency measures: EffD(𝜉1, 𝜉2) =
′

D(𝜉
1)∕′

D(𝜉
2) for D-optimality, and EffAC(𝜉1, 𝜉2) = AC(𝜉2)∕AC(𝜉1) for AC-optimality. If

EffD(𝜉1, 𝜉2) < 1, 𝜉2 is more D-efficient than 𝜉1. Likewise if EffAC(𝜉1, 𝜉2) < 1, 𝜉2 is more

AC-efficient than 𝜉1.

3.3. Programming in MATLAB
Example 1 illustrates how we implement Algorithm 1 in MATLAB to find optimal designs for
a model frequently used in biological sciences. All computation times reported in the article are
from a PC equipped with an Intel(R) Core(TM)2 Quad CPU Q9550@2.83 GHz.

Example 1. Consider the K-compartmental model given by

E(Y) = 𝑓 (x,𝜽) =
K∑
𝑗=1

𝜃𝑗 exp(−𝜃K+𝑗x), x ≥ 0, 0 < 𝜃K+1 < 𝜃K+2 < · · · < 𝜃2K .

Our goal is to compute D-optimal designs for the model on a user-selected discrete
design space SN ⊂ [a, b]. Here we use N equally spaced points, given by xi = a + (b −
a)(i − 1)∕(N − 1), i = 1,… ,N, which is commonly used. For this model, we have Ix(𝜽) =
(𝜕𝑓 (x,𝜽)∕𝜕𝜽) (𝜕𝑓 (x,𝜽)∕𝜕𝜽)⊤. Earlier results for this model include those from Dette, Melas
& Wong (2006), who noted that the D-optimal designs do not depend on the true values of
𝜃1,… , 𝜃K and found the number of the support points in the D-optimal designs when K ≤ 3.
The derivation of the optimal design becomes very challenging when K ≥ 4, as the information
matrix approaches singularity.

Our MATLAB program that implements Algorithm 1 for this problem is given in the
Supplementary Material, and it can find D-optimal designs for K ≥ 4. The output of the program
gives the support points of the D-optimal design and their positive weights, the value of the
function −′

D(𝜉N), the computation time and the maximum value of hDi(ŵ) in Equation (8). For
K ≤ 3, our results are consistent with those in Dette, Melas & Wong (2006). Our results for K = 4
are new, and Figure 1 shows the D-optimal designs when (𝜃5,… , 𝜃8) = (0.1, 0.6, 2.3, 5.5) and
SN ⊂ [0, 10] for different values of N. As N gets large, the support points are clustered around

8 points including the two boundary points 0 and 10. Let d(x,𝜽) = trace
(

I−1
𝜉∗N
(𝜽) Ix(𝜽)

)
− q

and Figure 2 checks the conditions in Equation (8) by the plot of d(x,𝜽) versus x for N = 801.
We observe that d(x,𝜽) ≤ 0 for all x ∈ [0, 10], so the design found by our MATLAB program
is D-optimal. Table 1 presents the computation time, objective function, D-efficiency and the
optimal design for N = 801. These results indicate that Algorithm 1 is fast and effective for
finding optimal designs, and the optimal designs are highly efficient for a moderate value of N.

4. PROPERTIES OF ALGORITHM 1 AND OPTIMAL DESIGNS

We provide more details and discuss several important issues related to the computation using
Algorithm 1, including a convergence result, scale transformation of design space, transformation
of the information matrix, and multi-stage and multi-objective designs.

4.1. Convergence Result
Let S be a given compact set. The set SN (⊂ S) is formed by Cartesian product of equally spaced
points in each design variable. Let 𝜉c be the optimal design on S and let 𝜉∗N be the optimal design
on SN , found by solving Equation (7). Yang, Biedermann & Tang (2013, Theorem 5) derived an
efficiency lower bound for any continuous design on a discretized design space SN . We have the
following result for 𝜉∗N as N → ∞.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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FIGURE 1: Support points of the D-optimal designs for various values of grid size N.
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FIGURE 2: Plot of d(x,𝜽) versus x for the CVX-generated design with N = 801.

Theorem 1. If all the elements of Ix(𝜽) are bounded and continuous functions of x ∈ S, then
(𝜉∗N) → (𝜉c) as N → ∞.

The proof of Theorem 1 is in the Appendix. The sequence of designs 𝜉∗N may also converge
to 𝜉c in distribution. In Example 1, (𝜉∗N) converges as N gets large, and the support points
shown in Figure 1 seem to converge to the 8 points in 𝜉∗801.

4.2. Scale Transformation of Design Space
D-Optimal designs for NMs and GLMs are usually not scale invariant. We derive a general
relationship between D-optimal designs and the design spaces for various models. To fix
ideas, let 𝜉∗(SN ,𝜽) be the D-optimal design on the design space SN with true model parameter
value 𝜽. Let V = diag(s1,… , sk) be a k × k diagonal matrix with s𝑗 > 0 (𝑗 = 1,… , k) and let
SV

N = {Vx1,… ,VxN} be the transformed design space. This transformation scales each design
variable x𝑗 by a factor s𝑗 , for 𝑗 = 1,… , k.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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TABLE 1: Results for Example 1 with K = 4 and S = [0, 10].

Algorithm 1 N = 51 N = 101 N = 201 N = 501 N = 801

Time (s) 0.8892 1.1388 1.7784 1.9188 3.2292

−′
D(𝜉

∗
N) 0.0034 0.0037 0.0037 0.0037 0.0037

EffD(𝜉∗N , 𝜉
∗
801) 0.9295 0.9973 0.9973 1.0000 1.0000

𝜉∗801

Support points 0.0000 0.1000 0.1125 0.3875 0.8875 0.9000 1.7875 1.8000 3.4250 6.3750 10.0000

Weights 0.1250 0.0032 0.1218 0.1250 0.0369 0.0881 0.0854 0.0396 0.1250 0.1250 0.1250

Theorem 2. Suppose 𝜉∗(SN ,𝜽) = {(x∗i ,w
∗
i ), i = 1,… ,m} is a D-optimal design for a model

with parameter value 𝜽 on SN. If there exists a constant q × q non-singular matrix T (not
depending on x and 𝜽) and parameter value 𝜽

V such that

IVx(𝜽V ) = T Ix(𝜽) T⊤, for all x ∈ SN , (9)

then 𝜉∗(SV
N ,𝜽

V ) = {(Vx∗i ,w
∗
i ), i = 1,… ,m} is a D-optimal design for the model with parameter

value 𝜽
V on design space SV

N.

The proof of Theorem 2 is in the Appendix. The result is a generalization of the scale
invariance property in linear models and can be applied to any model. For linear models, Ix(𝜽)
does not depend on parameter 𝜽, so the condition in Equation (9) becomes IVx(𝜽) = T Ix(𝜽) T⊤

and the result in Theorem2 becomes a scale invariance property of D-optimal designs. For NMs
and GLMs, the D-optimal designs on SN and SV

N are related through different parameter values:
𝜽 and 𝜽

V . Our experience is that Equation (9) holds for many models and matrix T is usually
diagonal and depends on the scale matrix V. Example 2 illustrates some of these ideas. In Section
4.3 and Example 3 we use Theorem 2 to handle the situation when we have an ill-conditioned
information matrix.

Example 2. Consider the logistic model with two variables and an interaction term, and the
probability of a response is

P(x,𝜽) =
exp(𝜃0 + 𝜃1x1 + 𝜃2x2 + 𝜃3x1x2)

1 + exp(𝜃0 + 𝜃1x1 + 𝜃2x2 + 𝜃3x1x2)
, 0 ≤ x1 ≤ b1, 0 ≤ x2 ≤ b2,

where 𝜽 = (𝜃0,… , 𝜃3)⊤ is the parameter vector. We use N1 and N2 equally spaced grid points
from [0, b1] and [0, b2], respectively, to form SN with N = N1N2. A direct calculation shows the
information matrix for this model at a single observation is

Ix(𝜽) =
exp(z⊤𝜽)

(1 + exp(z⊤𝜽))2
z z⊤, with z = (1, x1, x2, x1x2)⊤.

Let V = diag(s1, s2), 𝜽V = (𝜃0, 𝜃1∕s1, 𝜃2∕s2, 𝜃3∕s1s2)⊤ and let T = diag(1, s1, s2, s1s2). It is easy
to verify that Equation (9) holds, and the same is true when k > 2 and there are several interaction
terms in the model.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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4.3. Transformation on the Information Matrix
Sometimes the information matrix is ill-conditioned and computational problems can arise.
Consequently, the optimal design problem in Equation (7) with objective function involving
I−1
𝜉N
(𝜽) may not be easy to solve. For such situations, we suggest to decompose the infor-

mation matrix and write it as I𝜉N
(𝜽) = D B D⊤ before feeding it into Algorithm 1, where B

and D are q × q non-singular matrices. This strategy is especially helpful if it is easier to
find D−1 and B−1 numerically than I−1

𝜉N
(𝜽). For many models, scaling the design space can

result in a different form of I𝜉N
(𝜽), and by Equation (9) we have Ix(𝜽) = T−1IVx(𝜽V ) T−⊤,

which leads to I𝜉N
(𝜽) = T−1

(∑N
i=1 wiIVxi

(𝜽V )
)

T−⊤. Our strategy is to work with the inverse

of
(∑N

i=1 wiIVxi
(𝜽V )

)
in Algorithm 1. There are other transformations that can be used, such

as a simple one that scales I𝜉N
(𝜽) by a constant factor for all the elements in the matrix.

The transformations discussed here can be applied to all optimality criteria, even though
Equation (9) is developed to show a property of D-optimal designs. We now show that an appro-
priate transformation on the information matrix can help find c-optimal designs effectively in
Example 3.

Example 3. Guess, Crump & Peto (1977) proposed a Probit like dose response model to
ascertain the probability that an animal will have a type of cancer tumour as the dose of a compound
varies. This postulated probability as a function of the dose x assumes all the coefficients in the
model are non-negative and is given by P(x,𝜽) = 1 − exp(−(𝜃0 + 𝜃1x + 𝜃2x2 + 𝜃3x3)), x ∈ [0, b].
Hoel & Jennrich (1979) used theory and found c-optimal designs for estimating the excess
probability P(t,𝜽) − P(0,𝜽) of an animal developing cancer if it is continuously exposed to a
carcinogenic compound at dose t, and P(0,𝜽) is the probability due to background sources. We
applied Algorithm 1 and were able to confirm the results in Hoel & Jennrich (1979) for the
case when t = 0.5 by computing the c-optimal for estimating g1(𝜽) = P(0.5,𝜽) − P(0,𝜽) when
b = 500. Frequently, differences between scalar quantities are measured by their difference or
their ratio and usually the former is simpler to estimate and draw inference. Our CVX based
program is flexible in that if we wish to estimate the ratio of the two quantities, Algorithm 1
can directly find the optimal design for estimating g2(𝜽) = P(0.5,𝜽)∕P(0,𝜽) with the same set
of nominal values. Table 2 shows selected optimal designs for these two objectives for various
values of N. The optimal designs for estimating g2(𝜽) are new. All the optimal designs have 4
support points with unequal weights. Algorithm 1 is fast, taking about 11 s when N = 5,001. The
efficiency is very high for small value of N; EffAC(𝜉∗6 , 𝜉

∗
5,001) is 0.9190 for estimating g1(𝜽) and

0.9416 for estimating g2(𝜽). For this problem, we transformed the objective function by rescaling
the variable x appropriately using x′ = x∕b. The detailed transformation and the MATLAB codes
are given in the Supplementary Material.

4.4. Two-stage Designs and Multi-objective Designs
Algorithm 1 can also be used to find other types of optimal designs, including multi-stage
and multi-objective designs. In multi-stage design, let 𝜉0 be the first stage design, let 𝜉N be
the design at the next stage, and let n0 and n1 be the number of observations to be taken at
the first and second stages, respectively. The combined design is denoted by 𝜉0 + 𝜉N , which is
defined in Yang, Biedermann & Tang (2013). The information matrix of the combined design is
I𝜉0+𝜉N

(𝜽) = n0
n0+n1

I𝜉0
(𝜽) + n1

n0+n1
I𝜉N

(𝜽). The commonly used criteria can be formed similarly as
in (4), (5), or (6) by replacing the information matrix I𝜉N

(𝜽) by I𝜉0+𝜉N
(𝜽) to find an one-stage

design.
An alternative is that, given the first stage design, we want to improve it in the second

stage design by minimizing the objective function over all second-stage designs 𝜉N to find the
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TABLE 2: c-Optimal designs for Example 3 with 𝜽 = (0.01, 0.000267377, 0, 0)⊤.

N Time (s) Optimal design AC(𝜉∗N)

Estimating g1(𝜽)

6 0.9828 Support points 0.0000 100.0000 300.0000 500.0000 1.1142 × 10−5

Weights 0.2315 0.5364 0.1887 0.0434

51 0.5928 Support points 0.0000 80.0000 340.0000 500.0000 1.0252 × 10−5

Weights 0.2739 0.5359 0.1414 0.0488

501 1.6068 Support points 0.0000 83.0000 342.0000 500.0000 1.0240 × 10−5

Weights 0.2668 0.5324 0.1488 0.0520

5,001 11.5288 Support points 0.0000 82.6000 342.4000 500.0000 1.0240 × 10−5

Weights 0.2677 0.5325 0.1479 0.0519

Estimating g2(𝜽)

6 1.2168 Support points 0.0000 100.0000 300.0000 500.0000 0.2192

Weights 0.4493 0.3844 0.1352 0.0311

51 1.0764 Support points 0.0000 80.0000 340.0000 500.0000 0.2065

Weights 0.4859 0.3794 0.1001 0.0346

501 1.7316 Support points 0.0000 83.0000 342.0000 500.0000 0.2064

Weights 0.4810 0.3769 0.1053 0.0368

5,001 11.8561 Support points 0.0000 82.6000 342.4000 500.0000 0.2064

Weights 0.4815 0.3770 0.1048 0.0367

optimal designs. For fixed sample sizes n0 and n1 in the multi-stage design problem, we note
that I𝜉0+𝜉N

(𝜽) is still linear in w and Algorithm 1 can be directly applied for finding multi-stage
optimal designs. In addition, this two-stage design approach can be easily extended to construct
sequential designs.

Our optimal designs depend on the true value of 𝜽, which is frequently unknown in practice.
Nominal values are needed and even though they can come from previous studies, they may
not agree. Because a wrong set of nominal values can produce very inefficient designs, a
multiple-objective optimal design is helpful to incorporate the uncertainty in each set of the
nominal values. To fix ideas, suppose there are two possible nominal values, 𝜽∗ and 𝜽

∗∗ for 𝜽 and
we wish to design a study so that the implemented design is efficient regardless which of the two
sets of nominal values is valid. One approach is to modify objective functions in Equations (4)
and (6) as follows:


𝛼
D(𝜉N) = −(1 − 𝛼) log

(
det(I𝜉N

(𝜽∗))
)
− 𝛼 log

(
det(I𝜉N

(𝜽∗∗))
)
,


𝛼
AC(𝜉N) = (1 − 𝛼) trace

(
C⊤ I−1

𝜉N
(𝜽∗) C

)
+ 𝛼 trace

(
C⊤ I−1

𝜉N
(𝜽∗∗) C

)
,

where 𝛼 is a user-selected number in [0, 1] and reflects the strength of belief which set is closer
to the truth.

When 𝛼 = 0 we only use the information obtained from assuming 𝜽
∗, and when 𝛼 = 1

we only use the information from 𝜽
∗∗. If there are more than two possible values of 𝜽 to be
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considered, weighted average objective functions can be defined similarly. Since 𝛼
D(𝜉N) and

𝛼
AC(𝜉N) are still convex functions of w, we modify Algorithm 1 slightly for finding optimal

designs: in Step (i) we input two parameter values 𝜽
∗ and 𝜽

∗∗ and design points x1,… , xN , in
Step (ii) we compute Ixi

(𝜽∗) and Ixi
(𝜽∗∗) for each i, and Steps (iii) and (iv) are the same. The

conditions in Lemma 1 are now changed to verify if a design is a multi-objective optimal design
as follows.

Theorem 3. For a user-selected choice of N, SN ⊂ S and 𝛼 in [0, 1],

(i) the design 𝜉∗N is optimal for minimizing 𝛼
D(𝜉N) on SN, if and only if it satisfies, for all

i = 1,… ,N,

(1 − 𝛼) trace
(

I−1
𝜉∗N
(𝜽∗) Ixi

(𝜽∗)
)
+ 𝛼 trace

(
I−1
𝜉∗N
(𝜽∗∗) Ixi

(𝜽∗∗)
)
− q ≤ 0;

(ii) the design 𝜉∗N is optimal for minimizing 𝛼
AC(𝜉N) on SN, if and only if it satisfies, for all

i = 1,… ,N,

(1 − 𝛼) trace
(

C⊤
[
I−1
𝜉∗N
(𝜽∗) Ixi

(𝜽∗)I−1
𝜉∗N
(𝜽∗) − I−1

𝜉∗N
(𝜽∗)

]
C
)
+

𝛼 trace
(

C⊤
[
I−1
𝜉∗N
(𝜽∗∗) Ixi

(𝜽∗∗)I−1
𝜉∗N
(𝜽∗∗) − I−1

𝜉∗N
(𝜽∗∗)

]
C
)
≤ 0.

The proof of Theorem 3 is deferred to the Appendix. For practical applications, we relax the
conditions in Theorem 3 the same way as we did in Equation (8).

5. APPLICATIONS

We now apply Algorithm 1 to find different types of optimal designs for various models including
situations when the design space is irregularly shaped or models with several design variables.

Much of the design space assumed in the literature is the prototype cuboid or similar form.
Sometimes irregularly shaped design spaces arise in practice. Design problems for an irregularly
shaped design space can pose additional theoretical challenges. Using Example 4 as an example,
we show that Algorithm 1 can find optimal designs for a logistic model with two factors on
various design spaces.

Example 4. We revisit Example 2 with the model now defined on design spaces in Figure 3.
Design spaces in (a) and (b) are regularly shaped and those in (c) and (d) are irregularly shaped.
We discretize interval [0, 1] or [0, 2] with 101 equally spaced points for each factor space, so
SN contains N = 1012, 1012, 9,326, and 5,151 points, respectively, for the design spaces in (a),
(b), (c) and (d). Figure 3 displays the support points and the weights of D-optimal designs. It
shows that the number of support points in the D-optimal designs for this model depends on the
nominal value of 𝜽 and the shape of the design space. For these design spaces the number of
support points is 4, 5, or 6.

Example 5. This is an application with several design variables (large k and q) in Yang, Zhang
& Huang (2011), who studied a logistic model with multiple design variables and no interactions.
A direct calculation shows that the information matrix is

Ix(𝜽) =
exp(𝜃0 + 𝜃1x1 + · · · + 𝜃kxk)(

1 + exp(𝜃0 + 𝜃1x1 + · · · + 𝜃kxk)
)2

(
1
x

)
(1 x⊤), with x⊤ = (x1,… , xk).
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FIGURE 3: D-Optimal designs for Example 4 on various design spaces bounded by the dotted
lines. The support points and weights are indicated by the circles and numbers, respectively. In

(a) and (c), 𝜽 = (−2, 3, 2, 1)⊤; in (b) and (d) 𝜽 = (−2, 3, 4, 1)⊤.

TABLE 3: A- and D-optimal designs for Example 5 found by Algorithm 1.

k = q − 1 N = 2k No. of points in 𝜉∗N Objective function Time (s)

D-Optimality ′
D(𝜉

∗
N)

7 128 8 −0.0200 0.8580

10 1024 22 −0.0176 8.7205

12 4096 33 −0.0383 55.6876

13 8192 45 −0.0465 247.5268

A-Optimality 1
q

trace(I−1
𝜉∗N
(𝜽))

7 128 10 139.0272 1.0296

10 1024 31 173.9662 8.9233

12 4096 43 77.8354 54.2804

13 8192 57 63.7061 251.7388
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TABLE 4: D- and E-optimal designs for the logistic model with k = 7, q = 12 and
𝜽 = (1.0,−6.0, 5.79, 0.25, 3.15,−0.9,−1.2, 2.06,−0.5,−1.08, 0.65, 0.01)⊤. The notation 𝜆min denotes the

smallest eigenvalue of the matrix in brackets.

Design space SN No. of points in 𝜉∗N Objective function Time (s)

N = N1 × N2 × · · · × N7 D-Optimality ′
D(𝜉

∗
N)

N = 27 21 −0.0905 1.5532

N = 37 32 −0.1246 11.7313

N = 5 × 5 × 5 × 2 × 2 × 2 × 3 37 −0.1254 20.8573

N = 5 × 5 × 5 × 5 × 2 × 2 × 3 40 −0.1256 98.1325

E-Optimality 𝜆min

(
I𝜉∗N (𝜽)

)
N = 27 14 0.0036 1.3104

N = 37 16 0.0049 7.2696

N = 5 × 5 × 5 × 2 × 2 × 2 × 3 22 0.0049 19.6093

N = 5 × 5 × 5 × 5 × 2 × 2 × 3 17 0.0049 91.3367

Yang, Zhang & Huang (2011) studied optimal designs based on 2k support points with each
variable taking two points at −1 and +1. In particular, when k + 1 is a multiple of 4, the minimum
number of support points can be as small as k + 1 and a procedure is proposed to construct such
designs. When k + 1 is not a multiple of 4, the minimum number of support points can be much
larger than k + 1. In this case, Algorithm 1 can be directly applied to find optimal designs on SN
including all the 2k points. For k = 7, Algorithm 1 finds a D-optimal design with 8 support points
with equal weight, which is the smallest number of support points to make the information matrix
non-singular. In the Supplementary Material, a 10-point A-optimal design for k = 7 variables is
presented. The computation is very fast for k ≤ 13 even though N = 213 = 8,192 is quite large.
Table 3 lists the number of support points of the A- and D-optimal designs and the computation
time.

Example 6. This example computes D- and E-optimal designs for the logistic model with
7 covariates x1,… , x7 and 4 interaction terms: x1x2, x1x3, x1x4 and x1x5. The design space is
S = [−1,+1]7 and we discretize the design space of each variable x𝑗 by dividing it into N𝑗

equally spaced grid points in [−1,+1], 𝑗 = 1,… , 7, so that SN has N = N1N2 …N7 points. We
have used various combinations of grid points in SN and apply Algorithm 1 for finding optimal
designs. Representative results for D- and E-optimal designs are in Table 4. From Table 4, the
optimal designs on SN with N = 27 are only 72.6% and 72.1% efficient as those with N = 37 for
D- and E-optimality criteria, respectively. When N > 37, the efficiency of the optimal designs
increases very little in this example. We also notice that the number of support points in the
E-optimal designs is smaller than that in the D-optimal designs. When the theoretical results for
optimal designs are extremely hard to derive for the logistic model with several covariates and
interaction terms, Algorithm 1 can easily find the optimal designs on various SN.

6. ANOTHER CVX BASED ALGORITHM

When there are many design variables in the model, the number of grid points needed to cover
the design space can be huge. If N is huge, say N > 10, 000, Algorithm 1 may be slow or fail to
find the optimal designs. For this situation, we recommend modifying Algorithm 1 to speed up
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the algorithm. For given 𝜽 and SN we define function, Δ(x, 𝜉N) = trace
(

I−1
𝜉N
(𝜽) Ix(𝜽)

)
− q for

D-optimality, or

Δ(x, 𝜉N) = trace
(

C⊤ I−1
𝜉N
(𝜽) Ix(𝜽)I−1

𝜉N
(𝜽)C

)
− trace

(
C⊤ I−1

𝜉N
(𝜽)C

)

for the criterion in (6). From Lemma 1, 𝜉∗N is optimal if and only if Δ(xi, 𝜉
∗
N) ≤ 0 for all

i = 1,… ,N.
Yang, Biedermann & Tang (2013) proposed a 3-step general algorithm to find 𝜉∗N with the

following steps:

Step (i): Start with a small subset S(0) ⊂ SN . Usually N0 is much smaller than N, but larger than
k. Set t = 0.
Step (ii): Compute optimal weights for the support points in S(t) and denote the optimal design
on S(t) as 𝜉(t). Update S(t) by removing those points with zero weights.
Step (iii): Find x∗t = arg maxx∈SN

Δ(x, 𝜉(t)). If Δ(x∗t , 𝜉
(t)) < 𝛿 (a pre-specified small positive

number), then 𝜉(t) is the desired optimal design. Otherwise, set t = t + 1 and S(t+1) = S(t)
⋃
{x∗t }

and go to Step (ii).

Step (ii) is accomplished by using Newton’s iterative method to obtain the optimal weights.
There are two practical issues with this algorithm. First, the user needs to feed the first and second
derivatives of (𝜉Nt

) with respect to the vector of weights w = (w1,… ,wNt
)⊤ to the codes for

each iteration. Here Nt is the number of design points in S(t), and w1,… ,wNt
are the weights in

𝜉Nt
. This task can be both laborious and complex, especially when the model is complicated. The

second problem is that the Newton’s iteration procedure does not guarantee to find the optimal
weights and further, sometimes the weights can become negative and violate the conditions in
Equation (3).

To overcome these issues, we develop a fast CVX based algorithm by combining CVX with
the algorithm proposed by Yang, Biedermann & Tang (2013). The key is to recognize that Step
(ii) above is similar to solving an optimization problem in Equation (7). Our experience is that
if we use CVX instead of the Newton’s iterative method in Step (ii), we optimize the weights
effectively without the issues related to Newton iteration procedure. The combined algorithm is
outlined as follows.

Algorithm 2 (Iterative procedure using CVX).

Step (i): It is the same as in Step (i) of Yang, Biedermann & Tang (2013). N0 points in S(0) can
be randomly selected from SN or uniformly distributed on SN .
Step (ii): Use CVX to compute optimal weights for the support points in S(t) and denote the
optimal design on S(t) as 𝜉(t). Update S(t) by removing those points with zero weights.
Step (iii): It is the same as in Step (iii) of Yang, Biedermann & Tang (2013).

We follow Steps (ii) and (iii) of Algorithm 1 to implement Step (ii) of Algorithm 2. Algorithm
2 is very fast and can find optimal designs on SN with huge N. In Algorithm 1 we use CVX
to compute optimal weights for all the points in SN , which can be slow when we have a high
dimensional design problem and N is huge. At each iteration in Algorithm 2, we use CVX to
compute the optimal weights for all the points in S(t). Since S(t) usually has a small number of
points, this is the main reason that Algorithm 2 can handle a large number of grid points. Using
Algorithm 2 we have computed optimal designs on SN with N as large as 106.
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TABLE 5: Computation times of ALGI (Algorithm 1) and ALGII (Algorithm 2).

D-Optimal design A-Optimal design

Computation time (s) ALGI ALGII ALGI ALGII

N = 500 1.1312 6.0937 1.3740 3.4109

N = 1,000 2.0932 7.1963 2.1478 3.7916

N = 5,000 10.9751 8.7841 11.0433 4.2915

N = 10,000 33.7330 9.7546 34.1228 5.2793

N = 20,000 123.2608 11.0105 123.3329 5.6068

N = 50,000 16.9809 8.4723

N = 100,000 28.6356 15.3243

N = 1,000,000 203.2512 99.5638

Table 5 compares the computation times required by Algorithms 1 and 2 for finding the
optimal design in Example 1 in Yang, Biedermann & Tang (2013) using various values of N.
When Algorithm 1 takes too long to produce the design, we only report the results for Algorithm
2. From Table 5, we observe that Algorithm 1 is faster than Algorithm 2 when N ≤ 1, 000,
and Algorithm 2 is much faster than Algorithm 1 when N ≥ 10, 000. In addition, the ratio of
computation time of Algorithm 2 to N decreases as N increases, which makes Algorithm 2 very
efficient for large N. We tried to code the algorithm in Yang, Biedermann & Tang (2013) in the
software R and its resulting performance was very slower. We recognize that our codes were
implemented on different platforms and on computers with different capabilities and so it is
problematic to have a truly fair comparison.

7. CONCLUSION

Our article provides theoretical insights into optimal designs found on a discretized design
space and the theoretical optimal designs on the continuous design space. We study invariance
properties of the optimal designs we found for NMs and GLMs, including relationships between
optimal designs found on different design spaces and how an effective transformation of the
information matrix can help us find the optimal design. We also recommend strategies when
scaling issues arise due to either a large design space or wildly varying magnitudes of the
elements in the information matrix that make it ill-conditioned. We emphasize that algorithms
are important tools for finding optimal designs for complex models and they should be fast,
flexible and easy to use.

We show that CVX based algorithms are very useful tools for finding optimal designs. In
particular, they are fast and flexible. Our Algorithms 1 and 2 easily find various types of optimal
designs for any model on a user-selected discretized design space SN . Algorithm 1 is effective
and fast for N < 10,000 and we recommend Algorithm 2 when N ≥ 10,000. Our experience is
that we often do not require a large value of N to obtain a highly efficient design and so we
believe Algorithm 1 suffices in practice. We close by noting that there is a version of CVX in
R called CVXR that solves convex optimization problems. Our experience is that at this time,
this program works very slow compared with the MATLAB codes but we note that CVXR is
currently pending an update.

Four MATLAB programs are provided for computing D-, c-, A- and E-optimal designs in
Examples 1, 3, 5 and 6. We also give the detailed scale transformation of the objective function
in Example 3 and an A-optimal design in Example 5 in Supplementary Material.
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APPENDIX

Proof of Theorem 1. Let xc
1,… , xc

m ∈ S be the support points of 𝜉c and let the optimal weights
be wc

1,… ,wc
m. From the construction of SN (⊂ S), there exists a sequence of distinct points,

u(N)
1 ,… ,u(N)

m in SN , such that limN→∞ u(N)
𝑗

= xc
𝑗

for 𝑗 = 1,… ,m. For each N, define a distribution

𝜉1
N with m support points, u(N)

1 ,… ,u(N)
m , and weights as, wc

1,… ,wc
m, respectively. Then we have,

for each N,
(𝜉c) ≤ (𝜉∗N) ≤ (𝜉1

N),

since 𝜉c is the optimal design on S, 𝜉∗N is the optimal design on SN ⊂ S and 𝜉1
N is a design on SN .

As N → ∞, 𝜉1
N converges to 𝜉c in distribution by the definition of 𝜉1

N . If all the elements of Ix
are bounded and continuous functions of x ∈ S, we have I𝜉1

N
(𝜽) converges to I𝜉c (𝜽) and (𝜉1

N)
converges to (𝜉c), which implies that (𝜉∗N) converges to (𝜉c).

◼

Proof of Theorem 2. From (9) we have

I𝜉(SV
N ,𝜽

V )(𝜽
V ) =

N∑
i=1

wiIVxi
(𝜽V ) = T

(
N∑

i=1

wiIxi
(𝜽)

)
T⊤ = T I𝜉(SN ,𝜽)(𝜽) T⊤,

so minimizing − det
(

I𝜉(SV
N ,𝜽

V )(𝜽
V )
)

over w is equivalent to minimizing − det
(

I𝜉(SN ,𝜽)(𝜽)
)

over
w. This implies that if 𝜉∗(SN ,𝜽) = {(x∗i ,w

∗
i ), i = 1,… ,m} is a D-optimal design for parameter

𝜽 on SN , then 𝜉∗(SV
N ,𝜽

V ) = {(Vx∗i ,w
∗
i ), i = 1,… ,m} is a D-optimal design for parameter 𝜽V on

design space SV
N .

◼

Proof of Theorem 3. (i) By considering the directional derivative of D(𝜉N) in (4) at 𝜉∗N , we

obtain
∑N

i=1 wi trace
(

I−1
𝜉∗N
(𝜽) Ixi

(𝜽) − Iq

)
≤ 0, for all w, where Iq is the q × q identity matrix.

Applying this result to the objective function 𝛼
D(𝜉N), we have, for all w,

(1 − 𝛼)
N∑

i=1

wi trace
(

I−1
𝜉∗N
(𝜽∗) Ixi

(𝜽∗) − Iq

)
+ 𝛼

N∑
i=1

wi trace
(

I−1
𝜉∗N
(𝜽∗∗) Ixi

(𝜽∗∗) − Iq

)
≤ 0,

which leads to

N∑
i=1

wi

[
(1 − 𝛼) trace

(
I−1
𝜉∗N
(𝜽∗) Ixi

(𝜽∗)
)
+ 𝛼 trace

(
I−1
𝜉∗N
(𝜽∗∗) Ixi

(𝜽∗∗)
)
− q

]
≤ 0.

This implies the result in part (i). The proof of part (ii) is similar and is omitted.
◼
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