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ABSTRACT OF THE DISSERTATION

Strong correlation with symmetry, topology and anomaly

by

Meng Zeng

Doctor of Philosophy in Physics

University of California San Diego, 2024

Professor Yi-Zhuang You, Chair

In this thesis, I will present mainly three directions of research: symmetric mass genera-

tion (SMG), anomaly-constrained gapless quantum phases, and unconventional superconductivity.
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SMG is a new mass generation mechanism through strong interactions that preserve the symme-

tries, different from the conventional Yukawa-Higgs mechanism. I will discuss its applications

in chiral lattice gauge theory, symmetric gapping of Fermi liquids, Green’s function properties

and the corresponding optical responses of SMG insulators. Then I will discuss about emergent

anomalies in many-body systems, and its implications for low-energy phases. In particular, we

will see how gapless symmetry protected topological phases and symmetry-enriched topological

ordered phases can arise through through effective partial gauging. Last but not least, for the un-

conventional superconductivity part, I will focus on the exotic time-reversal symmetry breaking

normal state of multi-gap superconductors, and the stabilization and topology of superconductors

with pairings involving multiple orbitals.
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Introduction

One of the most fascinating and fundamental questions in physics is the origin of mass.

In the Standard Model of elementary particles, that question has been convincingly answered

by the Higgs mechanism, which involves symmetry breaking. For the past 15 years or so, it

has been realized there is another mass generation mechanism through symmetry-preserving

strong interactions, named symmetric mass generation (SMG). SMG has numerous applications

in both high-energy physics and condensed matter physics, and it will be the topic of the first

four chapters of the thesis. The first application of SMG we will be looking at is the lattice

regularization of chiral fermions, which is a long-standing problem in high-energy physics due to

the fermion doubling problem. In Chapter 1 of the thesis we provided a valid lattice regularization

scheme in 1d chiral gauge theory by studying the anomaly-free 3-4-5-0 chiral fermion model

based on the mirror fermion approach, first proposed almost 40 years ago. We realized the 1d

chiral fermion theory on the edges of a 2d Chern insulator, with one edge called the chiral light

sector and the opposite edge called the mirror sector. Using the density matrix renormalization

group numerical method, we successfully demonstrated that the mirror sector can be gapped

through the SMG mechanism by introducing strong symmetry-preserving interactions, while

the chiral light sector remains gapless. Our work represents an important step towards the full

resolution of the long-standing chiral fermion problem in the Standard Model. Furthermore, the

important role played by Chern insulators in the process is another nice example showcasing

the synergistic relation between condensed matter physics and high-energy physics, which

contributes even more to my fascination in this area.

As a followup work detailed in Chapter 2, we found the exact 1d lattice regularization of

1
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the 3-4-5-0 chiral fermion model, where there are two bands of lattice fermions with the four

Fermi points representing the four fermion flavors at low energy. This way, SMG is generalized

to systems at finite density, i.e. with Fermi surfaces. The Fermi surfaces can be symmetrically

gapped as long as the Fermi surface anomaly vanishes. We also studied a concrete lattice model

in 2d, where there are two species of fermions whose fillings have to satisfy certain relations

in order to cancel the anomaly, similar to the Lieb-Shultz-Mattis anomaly. The existence of a

symmetrically gapped phase is also numerically verified.

In another followup work, we investigate in Chapter 3 the Green’s function zeros of the

SMG phase, after the anomaly-free Fermi surface is symmetrically gapped out. We found that

after the Fermi surface, which is a surface of Green’s function poles, is gapped, a surface of

Green’s function zeros, called the Luttinger surface, appears. We verified both analytically and

numerically that the volume enclosed by the Luttinger surface is the same with that enclosed by

the Fermi surface. Therefore, in the gapped SMG phase, the Luttinger theorem still holds, where

the Luttinger volume is now determined by the Luttinger surface instead of the Fermi surface.

This is in stark contrast with gapping the Fermi surface by symmetry breaking orders, which do

not have a Luttinger surface in the gapped phase. We also discussed the possible experimental

detection of Green’s function zeros using spectroscopy.

In Chapter 4, inspired by a recent work claiming non-trivial electromagnetic response

using an effective field theory constructed from SMG Green’s function in relativistic setting, we

investigate further this counter-intuitive result using concrete but general lattice models. Our

results, in contrast, show that in the well-regularized lattice models, the SMG insulator does

not have low-energy electromagnetic responses. We claim the discrepancy comes from their

incorrect definition of current operator in the constructed effective theory. In particular, in the

presence of Green’s function zeros, their current operator turns out to be unbounded.

Chapter 5 switches gear to my other current interest involves the role of quantum anomaly

and topology in many-body physics. These non-perturbative measures are extremely powerful

and elegant, and can often provide important insight on the possible phases and the transitions

2
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between them. In a recent work, we look at a system in d-dimensions with a continuous global

symmetry G, where one of its finite normal subgroup N is gauged by coupling to discrete gauge

degrees of freedom. After the gauging, there will be a dual (d �1)-form symmetry , giving rise

to the new global symmetry G/N ⇥ N̂. Under certain conditions G/N and N̂ can have a mixed

anomaly, which implies the ground state cannot be trivially gapped. In the specific example of

Z2-gauged boson-Hubbard model in two spatial dimensions, the symmetry is U(1) and a 1-form

Ẑ2, with a mixed anomaly between them. The ground state is either a U(1)-enriched topological

order (with 1-form Ẑ2 broken) or a superfluid (U(1) broken) with the 1-form Ẑ2 preserved. We

also showed that the superfluid phase is also a gapless symmetry-protected topological phase

with symmetry protected edge modes when there is an open boundary. The transition between

the two exotic phases is a generalized deconfined critical point.

Another important part of my research is concerned with the intriguing world of un-

conventional SC, whose pairings are different from the ordinary BCS type. After decades of

development, unconventional SC still remains one of the most active and exciting areas of

research. Many unconventional SCs feature intriguing interplay between multiple gap functions.

In Chapter 6 we explore a generic subclass of systems with two gaps that belong to different sym-

metry representations and therefore the lowest order of coupling is of the second order Josephson

type. The second order coupling could lead to Ising symmetry breaking, resulting in a time-

reversal symmetry breaking phase or nematic phase. By doing loop-level renormalization group

analysis, we discovered that Ising symmetry breaking can occur at a temperature higher than

the superconducting transition, indicating that the normal state can exhibit symmetry-breaking

phases due to Josephson coupling before transitioning to the superconducting state. Surprisingly,

we also observed the emergence of the elusive charge-4e state as another possible intermediate

phase, where not Cooper pair but pairs of Cooper pairs, four electrons each in total, condense.

As of now, both of the two exotic phases have been observed in recent experiments.

Another large class of unconventional superconductors happens in materials involving

multiple orbitals. However, orbital-dependent pairings have been under explored due to the

3
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conventional belief that such pairings are energetically unfavorable because the degeneracy of the

two orbitals is lifted by orbital hybridization or crystal field splitting. In Chapter 7, by solving the

weak-coupling linearized gap equation, we showed that orbital-dependent pairing can actually

be stabilized as long as the pairing satisfies certain condition determined by the effective orbital

hybridization in the system. This opened up a plethora of new possibilities for systems consisting

of multiple orbitals, for example valley or sublattice degrees of freedom. With this general result

established, we further considered the mixing of even parity spin-singlet orbital triplet pairing

with spin-singlet orbital independent pairing. The mixing is allowed since they belong to the

same symmetry representation. We showed that such mixing can give rise to either nodal or fully

gapped SCs, which can be used to explain the gap features in certain Fe-based SCs.

Building on the results in Chapter 7, we explore in Chapter 8 various interesting properties

of orbital-dependent pairings. One fascinating phenomenon is Pauli limit violation, i.e. the

large in-plane upper critical field, due to the existence of atomic SOC, which has different

mechanism from that of a type II Ising SC. Another interesting result is the onset of time-reversal

invariant/breaking topological SCs with helical/chiral Majorana edge states, in the absence of

external applied magnetic field or Zeeman field. Furthermore, when the orbital-dependent pairing

spontaneously breaks time-reversal symmetry, the resultant orbital polarization will induce spin

polarization due to the SOC even though the pairing is spin-singlet. The spin-resolved density of

states has asymmetrical gap, in contrast to that of a spin-triplet SC.

As another followup, in Chapter 9 we look at the possibility of higher-order topology

in multi-orbital systems. In contrast to the usual 1st-order topology with gapless surface states,

higher-order topological phases have gapped surface and only have zero modes at the kinks

(corners, hinges, etc) of the surface. In particular we considered the time-reversal breaking

d + id-wave SC in 2d, where one of the d-wave gaps is orbital-independent and the other is

orbital-dependent. We demonstrated that this fully gapped SC can have Majorana zero modes at

the corners but not on the edges, due to the non-trivial 2nd-order topology protected by rotation,

in stark contrast with the conventional chiral d-wave SC with chiral edge states.

4
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Chapter 1

Symmetric mass generation in the 1 + 1
dimensional chiral fermion 3-4-5-0 Model
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Symmetric Mass Generation in the 1 + 1 Dimensional Chiral Fermion 3-4-5-0 Model

Meng Zeng ,1 Zheng Zhu ,2,3 Juven Wang ,4 and Yi-Zhuang You 1

1Department of Physics, University of California San Diego, La Jolla, California 92093, USA
2Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

3CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
4Center of Mathematical Sciences and Applications, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 25 February 2022; revised 7 April 2022; accepted 13 April 2022; published 5 May 2022)

Lattice regularization of chiral fermions has been a long-standing problem in physics. In this Letter, we
present the density matrix renormalization group simulation of the 3-4-5-0 model of ð1þ 1ÞD chiral
fermions with an anomaly-free chiral U(1) symmetry, which contains two left-moving and two right-
moving fermions carrying U(1) charges 3,4 and 5,0, respectively. Following the Wang-Wen chiral fermion
model, we realize the chiral fermions and their mirror partners on the opposite boundaries of a thin strip of
ð2þ 1ÞD lattice model of multilayer Chern insulator, whose finite width implies the quantum system is
effectively ð1þ 1ÞD. By introducing two sets of carefully designed six-fermion local interactions to the
mirror sector only, we demonstrate that the mirror fermions can be gapped out by the interaction beyond a
critical strength without breaking the chiral U(1) symmetry, via the symmetric mass generation mechanism.
We show that the interaction-driven gapping transition is in the Berezinskii-Kosterlitz-Thouless
universality class. We determine the evolution of Luttinger parameters before the transition, which
confirms that the transition happens exactly at the point when the interaction term becomes marginal. As
the mirror sector is gapped after the transition, we check that the fermions in the light chiral fermion sector
remain gapless, which provides the desired lattice regularization of chiral fermions.

DOI: 10.1103/PhysRevLett.128.185301

Introduction.—It has been a long-standing issue to
regularize chiral gauge theories (e.g., the weak interaction
in the standard model) on the lattice due to the Nielsen-
Ninomiya no-go theorem [1], which asserts that any free
fermion lattice model in even-dimensional spacetime with
locally realized chiral symmetry will necessarily give rise
to equal numbers of left-handed and right-handed fermion
fields at low energy, hence rendering the theory vectorlike.
Over the past few decades, much effort [2–7] has been
devoted to circumventing the fermion doubling problem by
lifting different assumptions of the no-go theorem.
In particular, the no-go theorem assumes the fermion

theory to be infrared free, i.e., fermion interactions, if there
are any, must be perturbatively irrelevant under the
renormalization group (RG) flow. Lifting this assumption
by introducing nonperturbative (strong enough) fermion
interactions could potentially circumvent the problem.
Efforts along this line are generally referred to as the
mirror fermion approach, which dates back to Eichten and
Preskill [8]. The basic idea is to start with a vectorlike
theory containing both chiral fermions and their mirror
fermion partners, which can be put on a lattice without any
issue. Then one attempts to generate a mass gap in the
mirror sector by introducing interactions among mirror
fermions, such that the remaining light (chiral fermion)
sector survives in the low-energy spectrum, providing the
basis for lattice realizations of chiral gauge theories.

However, early numerical tests [9–18] appeared to invali-
date the mirror fermion approach, as strong fermion
interactions typically result in the condensation of fermion
bilinear mass at low energy, which spontaneously breaks
the chiral symmetry and gaps out the light sector together
with the mirror sector.
In recent years, a series of developments [19–34] in the

many-body quantum matter community have significantly
deepened our understanding. It is realized that in order to
gap out the mirror sector by interactions without breaking
the chiral symmetry, two conditions must be satisfied:
(i) the mirror fermions must be anomaly free under the full
spacetime-internal symmetry, (ii) the interaction must be
appropriately designed to satisfy certain consistent gapping
conditions [26,33]. Along this line, recent numerical
studies [35–51] have successfully demonstrated examples
of interaction-driven fermion mass generation without
spontaneous symmetry breaking in various spacetime
dimensions. The phenomenon is known as the symmetric
mass generation (SMG) [52–56]. Therefore, solving the
chiral fermion problem boils down to achieving the SMG
for mirror fermions in even spacetime dimensions.
Nevertheless, most numerical works realizing SMG in

even spacetime dimensions have been focused on vector-
like lattice models [39–41,44,45,48,49,51], which still have
some distance from the goal of regularizing chiral fermions.
Recently, Catterall [50] studied the SMG of a chiral
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fermion lattice model with a chiral discrete Z4 symmetry.
In this work, we demonstrate the SMG in the 3-4-5-0 model
of ð1þ 1ÞD chiral fermions that cancels the Z-class
perturbative local anomaly of the chiral continuous U(1)
symmetry, which is closer to the situation of perturbative
chiral anomaly cancellation in the 3þ 1D standard model
[such as the chiral Uð1ÞY electroweak hypercharge]. We
propose a lattice model of interacting fermions, and
investigate the model using the density matrix renorma-
lization group (DMRG) numerical method [57,58]. Our
numerical results provide clear evidence for the SMG in the
mirror sector, successfully achieving our goal of regula-
rizing chiral fermions in the 3-4-5-0 model on a lattice.
The 3-4-5-0 model.—The 3-4-5-0 model describes four

gapless complex fermions in ð1þ 1ÞD,

S ¼
Z

dt dx
X4

I¼1

ψ†
I ði∂t þ ivI∂xÞψ I; ð1Þ

with two left-moving modes ψ1, ψ2 (of v1 ¼ v2 ¼ þ1) and
two right-moving modes ψ3, ψ4 (of v3 ¼ v4 ¼ −1). The
fermions are charged under a chiral U(1) symmetry:
ψ I → eiqIθψ I , with the charge assignment ðq1; q2; q3; q4Þ ¼
ð3; 4; 5; 0Þ (hence the name “3-4-5-0”). This seemingly
peculiar charge assignment is designed to cancel the U(1)
symmetry’s ’t Hooft anomaly,which is aZ-class perturbative
local anomaly. The anomaly index is given by

P
I vIq

2
I ¼

32 þ 44 − 52 − 02 ¼ 0, which vanishes for the charge
assignment of the 3-4-5-0 model. The model is also free
of the gravitational anomaly. As the field theory is anomaly-
free, it should admit a lattice regularization in ð1þ 1ÞD
spacetime.
Following Wang-Wen’s chiral fermion model [26,33],

the ð1þ 1ÞD chiral fermions and their mirror partners can
be viewed as the chiral edge modes on the opposite
boundaries of a ð2þ 1ÞD multilayer Chern insulator
[59], each layer with a Chern number %1. To construct
the chiral fermions on a lattice, we start with four layers of
Chern insulators on a two-leg ladder as shown in Fig. 1(a).
On each lattice site i, we introduce four complex fermions,
described by the annihilation operators ψ i;I (with I ¼ 1, 2,
3, 4 being the layer or flavor index). The fermion hopping is
governed by the lattice Hamiltonian

Hfree ¼
X4

I¼1

X

i;j

ðtI;ijψ†
I;iψ I;j þ H:c:Þ; ð2Þ

where the hopping parameters tI;ij are nonzero only on the
nearest and next-nearest-neighbor links. For the first two
layers I ¼ 1, 2, the nearest neighbor hoppings are purely
imaginary with tI;ij ¼ eiπ=4t1 if j → i follows the link
direction, and the next-nearest neighbor hoppings are real
with tI;ij ¼ t2 (or −t2) on the solid (or dashed) links, as
shown in Fig. 1(a). We fix t1 ¼ 1 and t2 ¼ 0.5. This

hopping pattern ensures a π Berry flux through each square
plaquette, realizing a minimal model of Chern insulator in
each layer. For the last two layers I ¼ 3, 4, the hopping
parameters are complex conjugated, such that the band
Chern numbers in the last two layers are opposite to those
of the first two layers.
The lattice model has a four-site unit cell that repeats

along the ladder direction, hence the lattice momentum k
along the ladder direction is a good quantum number, and
the system is effectively ð1þ 1ÞD. In each layer, the single-
particle energy dispersion (band structure) is shown in
Fig. 1(b), which includes two gapped bulk bands together
and two gapless edge modes of opposite velocities (local-
ized separately on the two boundaries). Stacking all layers
together, the lattice model realizes four chiral fermions (as
two pairs of counterpropagating modes) on each edge, as
illustrated in Fig. 1(c). Since the four layers of fermions are
decoupled at the free fermion level, we are free to assign
them with the 3,4,5,0 chiral U(1) charges, respectively,
such that the low-energy edge modes realize the 3-4-5-0
chiral fermions and their mirror partners. We treat the edge
A as the light (chiral fermion) sector, and the edge B as the
mirror sector (to be gapped out). If we can generate a mass
gap for the edge B fermions only without breaking the
chiral U(1) symmetry, we will succeed in achieving a lattice
regularization of the 3-4-5-0 field theory Eq. (1) in this
ð1þ 1ÞD system in terms of the gapless edge A fermions.
The fact that the U(1) ’t Hooft anomaly vanishes for the

3-4-5-0 model indicates that it should be possible to gap out
the edge B fermions trivially without breaking the chiral
U(1) symmetry. However, the chiral U(1) symmetry is
restrictive enough to prevent the gapping to happen on the
free-fermion level, because any fermion bilinear term that
produces a gap must take the form of ψ†

IψJ (Dirac mass) or
ψ IψJ (Majorana mass), with I ∈ f1; 2g and J ∈ f3; 4g, that

(a) (b) (c)

FIG. 1. (a) The fermion hopping pattern on the two-leg ladder
lattice for the first layer. Arrow link: t1eiπ=4 (along the arrow
direction); solid link: t2; dashed link: −t2. This ð2þ 1ÞD thin
strip is effectively the same as ð1þ 1ÞD by regarding the finite-
width dimension as internal degrees of freedom of the ð1þ 1ÞD
system. (b) Energy dispersion for t1 ¼ 1, t2 ¼ 0.5. Gapless edge
modes are strictly localized on the two boundaries of the ladder.
(c) Schematic diagram showing the configuration of the four
flavors of chiral fermions on the edges.
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mixes the left- and right-moving fermions. Since the four
layers of fermions all carry distinct chiral U(1) charges that do
not add or subtract to zero, any layer-mixing fermion bilinear
term necessarily breaks the chiral U(1) symmetry explicitly.
The symmetry breaking mass on the B edge will also induce
similar bilinear mass for the edgeA fermion by the proximity
effect, thereby gapping out all fermions together.
Therefore, we resort to the idea of gapping out the mirror

fermions by interactions, which has been previously
explored by Chen, Giedt, and Poppitz (CGP) [18] in the
3-4-5-0 lattice model, where all U(1) symmetry allowed
interactions are included. Unfortunately, the CGP result
shows a singular nonlocal behavior for the gauge field
polarization tensor in the mirror sector, which indicates
the mirror sector still has surviving gapless modes charged
under the gauge field. The reason could be that the CGP
approach introduces toomany interaction terms, and some of
them are harmful. In order to achieve the SMG, the fermion
interaction must be carefully selected to satisfy the gapping
condition (i.e., the interaction operators must be self-bosonic
and mutual-bosonic in terms of the operator braiding
statistics [60–63]), as elaborated in recent works [26,33].
It turns out that the lowest order interactions that satisfy the
gapping condition are the following six-fermion local
interactions [26],

Hint ¼
X

i∈B
g1ðψ1;iψ

†
2;iψ

†
2;iþ1ψ3;iψ4;iψ4;iþ1 þ H:c:Þ

þ g2ðψ1;iψ1;iþ1ψ2;iψ
†
3;iψ

†
3;iþ1ψ4;i þ H:c:Þ: ð3Þ

These are seemingly irrelevant dimension-five operators in
the perturbative RG around the gapless free fermion fixed
point. The interaction respects the chiral U(1) symmetry, and
is only applied to sites on theB edge (denoted as i ∈ B), with
iþ 1 being the next site of i along theB edge. The interaction
looks highly irrelevant in the free-fermion limit. However,
strong enough interaction (strong in the sense that the
interaction energy scale Eint is large but still in the same
order of magnitude as the kinetic energy Efree, thus
Eint=Efree ≃Oð1Þ is nonperturbative) may still generate
nonperturbative effect that gaps out the edge B fermions.
Our central goal is to numerically verify that the proposed
interaction Eq. (3) indeed drives the SMG in and only in the
mirror sector.
DMRG results.—We study the lattice model H ¼

Hfree þHint by the DMRG method [57] using the
ITensor software library [64]. For simplicity, we set g1 ¼
g2 ¼ g as the only interaction parameter. The simulation is
performed on a two-leg ladder of 20 unit cells, where three
different matrix product state bond dimensions D ¼ 6000,
7000, and 8000 are used [65]. Computed physical quan-
tities are then extrapolated to the D → ∞ limit assuming a
1=D scaling. Figure 2 shows the ground state energy EGS
(of the full HamiltonianH) per unit cell as a function of the
interaction strength g, where the inset shows its first-order

derivative ∂gEGS. The onset of a nonzero ∂gEGS ¼
g−1hHinti around gc ≈ 5.7 signifies the development of
the hHinti ≠ 0 condensation across the SMG transition. The
smooth kink of ∂gEGS indicates a (high-order) continuous
transition.
To further confirm the existence of the critical point gc,

we calculate the fermion correlation functions Cψ ðrÞ≡
hψ†

I;iþrψ I;ii on both edge A and edge B across the
transition. It turns out that the behavior of Cψ is the same
for all I ¼ 1, 2, 3, 4, such that it is sufficient to show one of
the four flavors. Figures 3(a), 3(c) and Figs. 3(b), 3(d) show

FIG. 2. Ground state (GS) energy per unit cell as a function of
interaction strength g. The inset shows the first-order derivative of
the GS energy with respect to g. The features around g ≈ 5.7
(indicated by the gray dashed line) signal a quantum phase
transition.

FIG. 3. Correlations on both edges before and after transition.
Linear fit (red line) is performed for intermediate distances from
r ¼ 2 to r ¼ 6 in each case, in order to faithfully extract the low
energy physics while avoiding the artifacts due to the gap caused
by finite bond dimension in the matrix product state representa-
tion. (a) g ¼ 5.0 < gc for edge A. The log-log plot shows a
power-law decay for intermediate distances. (b) g ¼ 7.0 > gc for
edge A. The log-log plot again shows a power-law decay.
(c) g ¼ 5.0 < gc for edge B. The log-log plot shows a power-
law decay. (d) g ¼ 7.0 > gc for edge B. The semilog plot
indicates an exponential decay, i.e., edge B becomes gapped.
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the correlation functions for each edge before and after the
transition, respectively. We observe that edge A is always
gapless with power-law correlations. In contrast, edge B is
gapless when g < gc but becomes gapped with an expo-
nential-decay correlation when g > gc. The two qualita-
tively different behaviors must be separated by a quantum
phase transition.
By fitting the power-law correlation function Cψ ðrÞ ∼

1=r2Δψ before the transition, we can extract the fermion
scaling dimensionΔψ on both edges. The result is shown in
Fig. 4(a). In the free-fermion limit (g ¼ 0), the fermion
scaling dimension is Δψ ¼ 1

2 on both edges. The finite-size
effect tends to reduce the scaling dimension slightly. A
finite-size scaling of the scaling dimension in the free
fermion limit is performed in Supplemental Material (SM),
Sec. I [66], confirming that our result converges to the long-
distance limit correctly. As g increases toward gc, the
fermion scaling dimension on the edge B increases con-
tinuously from 1

2 to about 0.67 (near gc), indicating that
fermion operators get renormalized by the interaction
significantly. For g > gc, the correlation on the edge B
becomes short-ranged, such that the fermion scaling
dimension is no longer defined (although the power-law
fitting on the finite-size data will continue give some
estimated exponent that extrapolates beyond the critical

point before the correlation length shrinks below the system
size). However, on the edge A, the fermion scaling
dimension, while experiencing some fluctuations near
the critical point, generally stays close to the free fermion
limit regardless of the interaction strength. The scaling
dimension remains stable even after g goes across the
transition point gc by a significant amount. This implies
that the edge A remains gapless and almost free, as the edge
B interaction can only induce a perturbative interaction on
the edge A through the proximity effect.
To verify that the chiral U(1) symmetry is not broken

spontaneously by the condensation of fermion bilinear
masses, we measure correlation functions of Dirac and
Majorana mass operators on the B edge, i.e., Cψ†

IψJ
ðrÞ≡

hψ†
J;iþrψ I;iþrψ

†
I;iψJ;ii andCψ IψJ

ðrÞ≡ hψ†
J;iþrψ

†
I;iþrψ I;iψJ;ii.

Figure 2 in SM, Sec. II [66] shows the correlations for all the
eight mass terms are short-ranged (exponential decay) along
the B edge in the strong coupling gapped phase (g > gc),
which confirms that the mirror fermions on the B edge are
gapped by the SMGmechanismwithout long-range ordering
of bilinear masses. Therefore, the remaining gapless fer-
mions on the A edge successfully realize the lattice regu-
larization of chiral fermions in the 3-4-5-0 model preserving
the chiral U(1) symmetry.
Luttinger liquid RG analysis.—To better understand the

nature of the SMG transition at gc, we perform the
Luttinger liquid RG analysis for the edge B fermions.
We first bosonize the mirror fermions by ψ I ∼ eiϕI. Then
the ð1þ 1ÞD interacting mirror fermions can be described
by the Luttinger liquid effective field theory in terms of the
ϕ ¼ ðϕ1;ϕ2;ϕ3;ϕ4Þ⊺ fields

L¼ 1

4π
ð∂tϕ⊺K∂xϕþ ∂xϕ⊺V∂xϕÞþ

X

α¼1;2

gα cosðl
⊺
αϕÞ; ð4Þ

where K ¼ σ30 and V ¼ σ00 (in the uv limit) are 4 × 4
matrixes (where σμν ¼ σμ ⊗ σν denotes the tensor product
of Pauli matrices). The two interaction terms g1, g2 in
Eq. (3) correspond to the cosine terms in Eq. (4) specified
by the vectors l1 ¼ ð1;−2; 1; 2Þ⊺ and l2 ¼ ð2; 1;−2; 1Þ⊺,
respectively. The RG flow with respect to the log-energy-
scale l ¼ − lnΛ is given by [67]

dgα
dl

¼ ð2 − ΔlαÞgα −
1

2

X

lβ%lγ¼lα

gβgγ;

dV−1

dl
¼ 1

2

X

α

g2αðK−1lαl
⊺
αK−1 − V−1lαl

⊺
αV−1Þ; ð5Þ

where Δl ¼ 1
2 l

⊺V−1l denotes the scaling dimension of the
vertex operator eil

⊺ϕ. Under the RG flow, the V matrix gets
renormalized to the general form

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y21 þ y22

q
σ00 − y1σ10 − y2σ22; ð6Þ

FIG. 4. (a) The evolution of fermion scaling dimension Δψ on
both edges as the interaction strength g approaches the critical
point. The scaling dimension is obtained from the power-law
fitting as in Fig. 3. The horizontal dashed line indicates the free
fermion limit. The gray stripe shows the estimated critical
interaction strength gc with some uncertainty. (b) The solved
scaling dimension for the interaction terms on edge B based on
the scaling dimensions of multiple operators (refer to SM, Sec. III
[66] for details). The horizontal dashed line indicates the marginal
value 2 of Δint, across which the phase transition is expected to
happen.
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where y1, y2 are Luttinger parameters that depend on the
RG scale l. Table I concludes the scaling dimensions of the
fermion, Dirac mass, and Majorana mass operators. We
numerically determine the scaling dimensions of these
operators before the transition (g < gc), by fitting the
power-law exponents of their correlation functions (see
SM Sec. III [66] for details).
From the scaling dimensions, we infer the Luttinger

parameters y1, y2, and calculate the scaling dimen-
sion of the interaction operator Δint ≔ Δl1 ¼ Δl2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y21 þ y22

p
− 3y1 − 4y2. The evolution of Δint is shown

in Fig. 4(b), which drops continuously from Δint ¼ 5 at the
free-fermion limit (g ¼ 0) to 2.17% 0.27 at the SMG
transition (g ¼ gc). Although the interaction is perturba-
tively irrelevant at the free-fermion fixed point, finite
strength of the interaction can renormalize the Luttinger
parameter, which reduces its own scaling dimension. Our
numerical result indicates that the SMG transition is
triggered exactly when the interaction scaling dimension
is reduced to marginal Δint ¼ 2, which matches the
mechanism of the Berezinskii-Kosterlitz-Thouless (BKT)
transition. This scenario was also proposed by Tong in a
recent theoretical study [55]. Our numerical study provides
more detailed RG analysis and more solid evidence in
support of the BKT transition scenario.
Conclusion and discussions.—We numerically demon-

strate the lattice regularization of ð1þ 1ÞD chiral fermions
in the 3-4-5-0 model. This is achieved by gapping out the
anomaly-free mirror sector using properly designed inter-
actions via the SMG mechanism, leaving the light sector
gapless. By simulating the lattice model with the DMRG
method, we identify the SMG transition point gc. In the
strong coupling phase (g > gc), we show that the mirror
fermions are gapped without breaking the chiral symmetry,
and the light fermions remain gapless. We numerically
determine the scaling dimension of the interaction operator
before the transition, which evolves continuously from
irrelevant to marginal. This behavior clearly indicates the
BKT nature of the SMG transition in our model. Once the
anomaly-free U(1) symmetry is dynamically gauged, we
expect to obtain a ð1þ 1ÞD lattice chiral gauge theory
coupled to chiral fermions, which could potentially be
simulated by the quantumMonte Carlo method [68], as our

proposed six-fermion interaction in Eq. (3) admits the
following Yukawa decomposition (with site indices omitted
for brevity)

HYuk ¼ ðϕ2
1ψ1ψ3 þ ϕ†

1ψ
†
2ψ4 þ H:c:Þ þ 1

g̃1
ϕ†
1ϕ1

þ ðϕ2
2ψ2ψ4 þ ϕ†

2ψ1ψ
†
3 þ H:c:Þ þ 1

g̃2
ϕ†
2ϕ2; ð7Þ

such that integrating out the Yukawa bosons ϕα reproduces
our interaction at the leading order of gα ∼ g̃2α. Based on the
equivalence between the U(1) anomaly-free and gapping
conditions in ð1þ 1ÞD [26,33], hopefully our work can
prompt future simulations on other ð1þ 1ÞD lattice chiral
fermion–gauge theory models.
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I. SCALING DIMENSIONS IN FREE FERMION
LIMIT

In the free fermion limit, correlation functions and con-
sequently scaling dimensions can be calculated analyti-
cally. Here we work out the free fermion case on the lat-
tice as a benchmark to the DMRG calculation at g = 0.

A. Fermion scaling dimension

For the free fermion-fermion correlation, we can just
pick the fermion flavor f3 without loss of generality. The
two-point correlation is given by (with the flavor index
ignored)

C�(r) = ��†
i+r�i� � r�� . (1)

On a finite lattice with real space Hamiltonian H, we can
do a change basis from the fermionic operators in real
space fermionic operators in energy eigenspace, so that
the correlation at half-filling can be more conveniently
calculated. Assuming H has eigenstates |�n� with cor-
responding eigenenergies �n, then the change of basis is
given by �†(i) =

�
n��n|i��†

n. Eventually the correlation
becomes

C�(r) =
�

n,m

��n|i��j|�m���†
n�m�. (2)

Since the ground state is half-filled, the above summation
in n or m is only over the lower half of the energy spec-
trum. The system we have in the main text consists of 20
unit cells. Exact diagonalization can be done in the free
fermion limit and the correlation can then be calculated
using Eq. (2). With open boundary condition (same as
the DMRG setup), the correlation with log-log scale is
plotted in Fig. 1(a) together with a linear fit. The power
law exponent obtained is less than 1, which explains the
deviation of the scaling dimension �� from 0.5 for g = 0
in Fig. 4(a) in the main text. This deviation is mainly a
finite-size e�ect, demonstrated in Fig. 1(b). In the large-
system-size limit, the free fermion scaling dimension of
0.5 is recovered.
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FIG. 1. (a) Linear fit for the correlation function on a log-
log scale when the system has 20 unit cells. The power law
exponent obtained is around 0.936, which is smaller than 1.
(b) Finite-size scaling for the exponent using a polynomial
function for system sizes L = 20, 40, 80, 160, 320. The extrap-
olation to L = � recovers the ideal � = 1 limit.

B. Mass term scaling dimensions

Other than the fermion-fermion correlation, correla-
tions of various mass terms on a finite lattice can also
be calculated analytically in the free fermion limit. In
this case, the expected scaling dimension for a bilinear in
the large-system-size limit is 1. Taking the fermion bilin-
ear �1�

†
3 as an example, the correlation on the lattice is

given by (using Wick’s theorem)

C�†
1�3

(r) = ��†
1,i+r�3,i+r�

†
3,i�1,i�

= ��†
1,i+r�1,i���3,i+r�

†
3,i�

� r�2� ,

(3)
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FIG. 2. Semi-log correlations for the various mass terms in
the gapped phase. (a) Dirac masses �I�†

J . The interaction

strengths chosen for the four mass terms �1�
†
3, �1�

†
4, �2�

†
3

and �2�
†
4 in the gapped phase are 6.5, 6.5, 6.6 and 6.4 respec-

tively. (b) Majorana masses �I�J . The interaction strengths
chosen for the four mass terms �1�3, �1�4, �2�3 and �2�4

in the gapped phase are 6.4, 6.3, 6.3 and 7.2 respectively.

i.e., the fermion bilinear exponent is simply double of
that for the single fermion, as expected. Therefore, the
finite-size behavior should also be the same.

II. MASS TERM CORRELATIONS IN THE
GAPPED PHASE FOR EDGE B

In this section, we present the correlations for the mass
terms on edge B after the gapping transition to demon-
strate that the U(1) chiral symmetry is preserved in the
gapped phase. The correlations for the Dirac masses are
shown in Fig. 2(a) and the correlations for the Majorana
masses are shown in Fig. 2(b). We see clear evidence for
exponential decays for all the eight di�erent mass terms
at relatively shorter length scales r � 5, where the cor-
relation is expected to be dominated by the SMG gap.
The non-monotonic behavior of the correlation function
for larger distance r � 5 is an artifact arising from the
finite MPS bond dimension, and should not be trusted.
Di�erent interaction strengths are chosen for the di�erent
mass terms in order to better demonstrate the exponen-
tial decay features. Thus, we conclude that the chiral
U(1) symmetry is preserved in the gapped phase on edge
B.
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FIG. 3. Evolution of scaling dimensions for some of the mass
terms under RG on edge B. The fermion scaling dimension
�� is also shown for comparison.

III. SCALING DIMENSIONS UNDER RG

The scaling dimensions of some of the interesting op-
erators are summarized in Table I.

Operators l �l

�1 (1, 0, 0, 0) 1
2

�
1 + y2

1 + y2
2

�1�
†
3 (1, 0, �1, 0) �y1 +

�
1 + y2

1 + y2
2

�1�
†
4 (1, 0, 0, �1) y2 +

�
1 + y2

1 + y2
2

�2�
†
3 (0, 1, �1, 0) �y2 +

�
1 + y2

1 + y2
2

�2�
†
4 (0, 1, 0, �1) �y1 +

�
1 + y2

1 + y2
2

�1�3 (1, 0, 1, 0) y1 +
�

1 + y2
1 + y2

2

�1�4 (1, 0, 0, 1) �y2 +
�

1 + y2
1 + y2

2

�2�3 (0, 1, 1, 0) y2 +
�

1 + y2
1 + y2

2

�2�4 (0, 1, 0, 1) y1 +
�

1 + y2
1 + y2

2

�1�3�
†
2�x�†

2�4�x�4 (1, �2, 1, 2) �3y1 � 4y2 + 5
�

1 + y2
1 + y2

2

�1�x�1�
†
3�x�†

3�2�4 (2, 1, �2, 1) �3y1 � 4y2 + 5
�

1 + y2
1 + y2

2

TABLE I. Scaling dimensions of the various operators, some
of which are used to solve the two parameters y1 and y2.

These scaling dimensions can in principle be measured
by calculating the power-law correlation using DMRG.
Here we are interested in the scaling dimensions of the
gapping terms under RG before the Luttinger liquid be-
comes gapped. However, for large scaling dimensions, the
power-law decay is too fast to be measured accurately.
Therefore, in order to solve for the parameters y1 and y2,
we only use the correlations for operators with relatively
smaller scaling dimensions, which, based on Table I, in-
clude �1, �1�

†
3, �2�

†
3, �2�

†
4 and �1�4. Fig. 3 shows the

evolution of the scaling dimensions for some of the mass
terms under RG flow.

Instead of using two of the di�erent scaling dimen-
sions to solve for the two parameters, we try to make use
of all the five aforementioned operators to have a faith-
ful representation of the available DMRG data. For a
particular interaction strength g, denote the five scaling
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FIG. 4. Solutions to the Luttinger parameters (y1, y2) based
on RG equation and some of the measured scaling dimensions
using DMRG.

dimensions from RG calculation by �(RG)
i (y1(g), y2(g))

and the DMRG counterparts by �(DMRG)
i (g) with errors

��(DMRG)
i (g). Then y1 and y2 are solved by minimizing

the following error function at each g:

ferror(g) =
�

i

�
�(RG)

i (y1(g), y2(g)) � �(DMRG)
i (g)

�2

��(DMRG)
i (g)2

,

(4)
where 1

��(DMRG)
i (g)2

can be considered as the weight of

each contribution to the total error function. The solu-
tions (y1, y2) with error bars are obtained in the follow-
ing way. At each g, a numerical value for the DMRG
scaling dimension is randomly drawn from the interval

[�(DMRG)
i � ��(DMRG)

i , �(DMRG)
i + ��(DMRG)

i ], then the
error function ferror is minimized to find (y1, y2), with the
weight of this particular solution given by 1

f2
error

. This

process is repeated 100 times for each g, after which
weighted average is taken to obtain the mean of (y1, y2)
with the errors given by the weighted uncertainty. The
evolution of the two parameters with RG flow is shown
in Fig. 4. The solved y1 and y2 can then be used to cal-
culate the scaling dimension of the gapping terms �int

plotted in Fig. 4(b) in the main text.
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Symmetric mass generation (SMG) is a mechanism to give gapless fermions a mass gap by nonperturbative
interactions without generating any fermion bilinear condensation. The previous studies of SMG have been
limited to Dirac/Weyl/Majorana fermions with zero Fermi volume in the free fermion limit. In this paper, we
generalize the concept of SMG to Fermi liquid (FL) with a finite Fermi volume and discuss how to gap out the
Fermi surfaces (FSs) by interactions without breaking the U(1) loop group symmetry or developing topological
orders. We provide examples of FS SMG in both (1+1)-dimensional [(1+1)D] and (2+1)-dimensional FL
systems when several FSs together cancel the FS anomaly. However, the U(1) loop group symmetry in these
cases is still restrictive enough to rule out all possible fermion bilinear gapping terms, such that a nonperturbative
interaction mechanism is the only way to gap out the FSs. This symmetric FS reconstruction is in contrast to
the conventional symmetry-breaking gapping mechanism in the FL. As a side product, our model provides a
pristine one-dimensional lattice regularization for the (1+1)D U(1) symmetric chiral fermion model (e.g., the
3-4-5-0 model) by utilizing a lattice translation symmetry as an emergent U(1) symmetry at low energy. This
opens up the opportunity for efficient numerical simulations of chiral fermions in their own dimensions without
introducing mirror fermions under the domain wall fermion construction.

DOI: 10.1103/PhysRevB.107.195133

I. INTRODUCTION

Fermi liquids (FLs) are gapless quantum many-body sys-
tems of fermions that possess Fermi surfaces (FSs) and
well-defined quasiparticle excitations at low energy. They are
the models for the most commonly seen metallic materials
in nature. They are probably also some of the most studied
quantum phases of matter in condensed matter physics since
Landau [1,2]. However, there are still many aspects of FLs
that might not have been well recognized. In this paper, we
explore one such aspect: the phenomenon of symmetric mass
generation (SMG, see a recent overview [3] and references
therein) in FLs.

One intriguing property of the FL is the surprising stability
of the FS under generic local interactions of fermions. Al-
though the system is gapless with vastly degenerated ground
states, local interactions often do not immediately lift the
ground state degeneracy and destabilize the FL toward gapped
phases. Early understanding of this property came from the
perturbative renormalization group (RG) analysis, as the FL
theory can emerge as a stable RG fixed point of interacting
fermion systems [4–10].

Recently, a modern understanding arose under the name
of a FS anomaly [11–13], which states that the stability of
the FS can be viewed as protected by the quantum anomaly
of an emergent LU(1) loop group symmetry at low energy,
extending and unifying many related discussions [14–29]
about Luttinger’s theorem [30] and the Lieb-Schultz-Mattis

*yzyou@physics.ucsd.edu

(LSM) theorem [31] in fermionic systems. Loosely speak-
ing, the LU(1) symmetry corresponds to the fermion number
nk conservation at each momentum point k on the FS,
which is preserved by the Landau FL Hamiltonian HFL =∑

k∈FS εknk +
∑

k,k′∈FS fkk′nknk′ + · · · . In the presence of the
FS anomaly, the FL can only be gapped by either (i) sponta-
neously breaking the LU(1) symmetry or (ii) spontaneously
developing anomalous topological orders (or other non-FL
exotic states) that saturate the FS anomaly. The anomaly
matching is a kinematic constraint, which is nonperturbative
and more robust than the perturbative RG analysis of the FL
low-energy dynamics.

Over the past decade, the quantum anomaly [32–35] has
been realized as an important theoretical tool in analyzing
the protected gapless boundary states of interacting topolog-
ical insulators/superconductors, which belong to symmetry-
protected topological (SPT) phases in a grand scope (see
overviews [36–38] and references therein). An interesting
phenomenon, known as SMG [39–51], was discovered in
the study of interacting fermionic SPT states. It was re-
alized that certain SPT states might look nontrivial at the
free-fermion (noninteracting) level but can be smoothly de-
formed into a trivial gapped phase with a unique ground
state by fermion interactions. This implies some integer Z
classification of noninteracting SPT states can be reduced to
a finite Abelian elementary order-n group Zn classification
for some interacting SPT states, emphasized by Fidkowski
and Kitaev [39,40]. Correspondingly, their gapless boundary
states can be gapped out by (and only by) interaction without
breaking the symmetry or developing the topological order
(breaking emergent higher-form symmetry). This provides a

2469-9950/2023/107(19)/195133(15) 195133-1 ©2023 American Physical Society16
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mechanism to generate a mass for zero-density relativistic
gapless fermions (e.g., Dirac/Weyl/Majorana fermions occu-
pying only Fermi points with zero Fermi volumes at the Fermi
level, colloquially known as Dirac/Weyl/Majorana cones)
without symmetry breaking, which has been proposed to pro-
vide lattice regularization for the standard model and grand
unified theories [45,52–56]. This mechanism is called SMG,
or a mass-without-mass term [57,58], which is distinct from
the conventional Higgs mechanism that relies on symmetry
breaking for fermion mass generation.

However, the SMG mechanism has not yet been extended
to fermion systems at a finite filling (with a finite density). The
FL is the most notable examples of such, which possesses a FS
enclosing a finite Fermi volume. It is natural to ask: Can SMG
happen on the FS as well, gapping out the FS by interaction
without breaking the loop group symmetry of interest? As we
will demonstrate in this paper, the answer is yes.

Given the spacetime-internal symmetry G of a fermion
system, the conditions [3] for SMG to happen are (i) the
system must be free from G anomaly such that symmetric
gapping (without topological order) becomes possible, and
(ii) the symmetry G must be restricted enough to rule out
any symmetric fermion bilinear gapping term such that the
gapping can only be achieved by interaction. These defining
conditions of SMG can be applied to the FL system by con-
sidering G as the emergent loop group symmetry on the FS.
Based on this understanding, we will investigate the FS SMG
in the presence of the LU(1) symmetry. The general feature
is that, even though a single FS is anomalous, it is possible
to cancel the FS anomaly among multiple FSs (or FSs with
multiple fermion flavors), such that interactions can drive the
transition from the FL phase to a symmetric gapped phase. We
shall name this phenomenon as the FS SMG.

The FS SMG provides us a different possibility to cre-
ate a gap to all excitations on the FS without condensing
any fermion bilinear order parameter, which makes it distinct
from the superconducting gap (i.e., condensing Cooper pairs)
or the density wave gap (i.e., condensing excitons) that are
more familiar in condensed matter physics. Nevertheless, it
does involve condensing some multifermion bound states that
transform trivially under the symmetry transformation. The
simplest example is the charge-4e superconductor [59–66],
which condenses fermion quartets (four-fermion bound states)
that preserve at least the Z4 subgroup of the charge U(1)
symmetry. In this paper, we provide more carefully designed
examples preserving the full U(1) symmetry (and other lattice
symmetries), but the essential idea of condensing symmetric
multifermion operators to generate a many-body excitation
gap is the same. Therefore, the FS SMG is intrinsically a
strong nonperturbative interaction effect of fermions. The in-
teraction may look irrelevant at the free-fermion (or the FL)
fixed point. However, strong enough interaction can still drive
the gap-opening transition through nonperturbative effects.

This paper is organized as follows. In Sec. II, we present a
lattice model of FS SMG in (1+1) dimensions [(1+1)D], as
the pristine lattice regularization of the 3-4-5-0 chiral fermion
model, whose phase diagram can be reliably analyzed by the
RG approach. In Sec. III, we extend the discussion of FS SMG
to (2+1) dimensions [(2+1)D] in a concrete lattice model,
which can be exactly solved in both the weak and strong

FIG. 1. (a) A typical single-band Fermi liquid (FL) with Fermi
surface (FS) anomaly. (b) Two-band model of a FL with the
FS anomaly canceled. Chiral fermions with linearized dispersions
around different Fermi points emerge at low energy.

interaction limits. Through these examples, we establish the
FS SMG as a general mechanism to gap out anomaly-free FSs
in different dimensions. We summarize our result and discuss
its connection to future directions in Sec. IV.

II. FS SMG IN (1+1)D

A. (1+1)D Fermi liquid and Fermi surface anomaly

In the free-fermion limit, the (1+1)D FL can be realized
as a system of fermions occupying a segment of single-
particle momentum eigenstates in the one-dimensional (1D)
momentum space (or Brillouin zone), which can be described
by a Hamiltonian H =

∑
k c†

kεkck , where ck (or c†
k ) is the

fermion annihilation (or creation) operator of the single-
particle mode at momentum k. For now, we only consider
spinless fermions, such that the ck operator does not carry
spin (or any other internal degrees of freedom). As an ex-
ample, suppose the band structure is described by εk = (k2 −
k2

F )/(2m) for nonrelativistic fermions with a finite chemical
potential µ = k2

F /(2m). The ground state of the Hamiltonian
H will have fermions occupying the momentum segment k ∈
[−kF , kF ] bounded by the Fermi momentum kF , as illustrated
in Fig. 1(a).

The low-energy degrees of freedom in the (1+1)D FLs can
be modeled by the chiral fermions near the zero-dimensional
(0D) FSs (namely, Fermi points) at ±kF , which are described
by the following Lagrangian density:

L = c†
L(i∂t − vF i∂x )cL + c†

R(i∂t + vF i∂x )cR, (1)

where vF = kF /m is the Fermi velocity. The operator cL (or
cR) annihilates the left (or right)-moving fermion modes, de-
fined as

cR/L (x) =
∫ #

−#

dκ c±kF +κ exp[i(±kF + κ )x] (2)

around the Fermi points within a small momentum cutoff
# $ kF . The low-energy effective theory L in Eq. (1) has
an emergent U(1)L × U(1)R symmetry (more precisely as an
emanant symmetry [67] since the translation and charge con-
servation symmetry are not the subgroup of U(1)L × U(1)R
symmetry), corresponding to the separate charge conservation
of the left- and right-moving chiral fermions. Under the sym-
metry transformation with the periodic φL and φR in [0, 2π ):

U(1)L : cL → exp(iφL )cL, cR → cR;

U(1)R : cL → cL, cR → exp(iφR)cR. (3)

195133-217
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They can be as well understood as a recombination of the
vector U(1)V and axial U(1)A symmetries by rewriting φL =
φ − kF δx and φR = φ + kF δx:

U(1)V : ck → eiφck ⇒
{

cL → eiφcL,

cR → eiφcR;

U(1)A : ck → eik δxck ⇒
{

cL → exp(−ikF δx)cL,

cR → exp(+ikF δx)cR.
(4)

More precisely, the combined symmetry group should be de-
noted as U(1)V ×ZF

2
U(1)A ≡ U(1)V ×U(1)A

ZF
2

because the U(1)V

and U(1)A symmetries share the fermion parity ZF
2 subgroup

(under which cL,R → −cL,R). The physical meaning of the
vector U(1)V symmetry is the total U(1) charge conservation
of the fermions, and the axial U(1)A symmetry can be consid-
ered an effective representation of the translation symmetry in
the infrared (IR) limit (that translates all fermions by displace-
ment δx along the 1D system). Although translation symmetry
is described by a noncompact symmetry group Z at the lattice
scale, its action on the low-energy chiral fermion fields cL, cR
behaves as a compact U(1)A emergent symmetry [26,68].

The stability of the FL is protected by the FS anomaly,
which can be viewed as the mixed anomaly between the
U(1)V and U(1)A symmetries. The anomaly index is given by
[24,30,31]

1 × kF − 1 × (−kF ) = 2kF = 2πν, (5)

which can be related to the fermion filling fraction ν. The
system is anomalous if the filling ν is not an integer. Without
breaking the charge U(1) and translation symmetries, it is
impossible to drive the FL to a trivial gap phase due to the
nonvanishing FS anomaly. This can be viewed as a conse-
quence of the LSM theorem [31]. The situation is also like
the chiral fermion edge states on the (1+1)D boundary of a
(2+1)D quantum Hall insulator.

B. Two-band model and anomaly cancellation

To generate a gap for these low-energy fermions in (1+1)D
FLs, the FS anomaly must be canceled. Here, we present a
two-band toy model that achieves anomaly cancellation and
enables gapping out the FS without breaking the charge U(1)
and translation symmetries and without generating any Fermi
bilinear condensation. It will provide a concrete example of
SMG in (1+1)D FLs.

Consider a 1D lattice (a chain of sites) with two types of
fermions ciA and ciB per site. The A-type fermion ciA carries
charge qA under a global U(1) symmetry, and the B-type
fermion ciB carries charge qB under the same U(1) symmetry.
The Hamiltonian takes the general form of

H = −
∑

i j

(
tA
i jc

†
iAc jA + tB

i jc
†
iBc jB + H.c.

)

−
∑

i

(µAc†
iAciA + µBc†

iBciB) + Hint, (6)

with Hint being some fermion interactions to be specified later
in Eq. (16). The specific details of the hopping coefficients tA

i j

and tB
i j are not important to our discussion if they produce a

band structure that looks like Fig. 1(b) in the Brillouin zone.

The A-type fermion forms an electronlike band, and the B-
type fermion forms a holelike band. The two bands overlap
in the energy spectrum. This will realize a two-band FL in
general. The Hamiltonian H in Eq. (6) has a U(1) × (Z � Z2)
symmetry (parameterized by a periodic angle φ ∈ [0, 2π ) and
an integer n ∈ Z as follows):

U(1) : ciA → exp(iqAφ)ciA, ciB → exp(iqBφ)ciB;

Z : ciA → c(i+n)A, ciB → c(i+n)B;

Z2 : ciA → c(−i)A, ciB → c(−i)B. (7)

They correspond to the total charge conservation symmetry
U(1), the lattice translation symmetry Z, and the lattice re-
flection symmetry Z2. The question is whether we can gap
the FL without breaking all these symmetries in (1+1)D.

One significant obstruction toward gapping is the FS
anomaly, which can also be interpreted as a mixed anomaly
between the charge U(1) and (the IR correspondence of) the
translation symmetry. To cancel the FS anomaly, we need to
fine-tune the chemical potentials µA and µB such that the
anomaly index vanishes:

qAνA + qBνB = 0 mod 1, (8)

where νA and νB are the filling fractions of the A and B bands
(for the holelike B band, we may assign νB < 0 such that
|νB| corresponds to the hole-filling). This is also known as the
charge compensation condition in semiconductor physics.

If the A- and B-type fermions carry the same charge as
qA = qB = 1, the anomaly cancellation condition in Eq. (8)
simply requires νA = −νB. In this case, the electronlike FS of
the A-type fermion and the holelike FS of the B-type fermion
are perfectly nested (with zero nesting momentum). A gap
can be opened simply by tuning on a fermion bilinear term∑

i(c
†
iAciB + H.c.) in the Hamiltonian, which preserves the

full U(1) × (Z � Z2) symmetry. This is the familiar band
hybridization mechanism to open a band gap in a charge-
compensated FL, which drives a metal to a band insulator
without breaking symmetry.

However, we are more interested in the nontrivial case
when the fermions carry different charges qA )= qB. For ex-
ample, let us consider the case of qA = 1 and qB = 3. Then
the anomaly cancellation condition in Eq. (8) requires νA =
−3νB, i.e., the electronlike Fermi volume in the A band must
be three times as large as the holelike Fermi volume in the B
band to cancel the FS anomaly. Defining the fermion operators
ckA, ckB in the momentum space by the Fourier transforma-
tion:

ckA =
∑

i

ciAe−iki, ckB =
∑

i

ciBe−iki, (9)

the desired band structure can be effectively described by the
following band Hamiltonian (suppressing the interaction for
now):

H =
∑

k

(c†
kAεkAckA + c†

kBεkBckB), (10)

with the band dispersions [see Fig. 1(b)]:

εkA = k2 − (3kF )2

2mA
, εkB = −k2 − k2

F

2mB
. (11)
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TABLE I. Charge assignments of low-energy fermions. See also
the model in Ref. [69] on the same charge assignments.

Fermion Chirality U(1)V U(1)A U(1) 3V +A
2

U(1) 3V −A
2

ca sgn va qV
a qA

a
1
2 (3qV

a + qA
a ) 1

2 (3qV
a − qA

a )

cAR −1 (left) 1 3 3 0
cBR −1 (left) 3 −1 4 5
cBL +1 (right) 3 1 5 4
cAL +1 (right) 1 −3 0 3

Here, we assume mA, mB > 0. The Fermi momentum kF =
|νB|π is set by the filling |νB| which is typically an irrational
number (without fine-tuning). The key feature is that the
Fermi momenta of the A and B energy bands must have a 3 : 1
ratio that matches the inverse charge ratio (qA/qB)−1 precisely.
In this case, the energy band hybridization is forbidden by the
charge U(1) symmetry as the two bands now carry different
charges. Even if the band hybridization is spontaneously gen-
erated at the price of breaking the U(1) symmetry, it does not
gap the FL because the FSs of the two bands are no longer
nested at the Fermi level, such that the band hybridization
will only create some avoided energy band crossing below
the Fermi level. Then the system remains metallic because the
(upper) hybridized band still crosses the Fermi level.

One can show that it is impossible to symmetrically
gap the FL by any fermion bilinear terms in this charge-
compensated two-band system with qA = 1 and qB = 3,
even if the FS anomaly has already been canceled by
the charge-compensated filling νA = −3νB. Although the
anomaly vanishes (i.e., there is no obstruction toward gapping
in principle), the symmetry is still restrictive enough to forbid
any fermion bilinear gapping term, such that the only possible
gapping mechanism rests on nonperturbative fermion interac-
tion effects.

To see this, we can single out the low-energy chiral
fermions near the four Fermi points:

cAR = c(3kF )A, cBR = c(−kF )B,

cBL = c(kF )B, cAL = c(−3kF )A, (12)

where A, B label the bands that they originated from and L, R
label their chiralities (i.e., left- or right-moving), according to
Fig. 1(b). Like Eq. (1), the low-energy effective Lagrangian
density reads

L =
∑

a

c†
a(i∂t + vai∂x )ca, (13)

where the index a sums over the four Fermi point labels AR,
BR, BL, and AL. Here, va denotes the Fermi velocity near the
Fermi point a.

The original U(1) × Z symmetry at the lattice fermion
level reduces to the emergent U(1)V ×ZF

2
U(1)A symmetry for

the low-energy chiral fermions ca (see Appendix A for more
explanations):

U(1) ⇒ U(1)V : ca → exp
(
iqV

a φV
)
ca,

Z ⇒ U(1)A : ca → exp
(
iqA

a φA
)
ca. (14)

Table I summarizes their charge assignment under U(1)V
and U(1)A, where the vector U(1)V symmetry is just the
charge U(1) symmetry, and the axial U(1)A symmetry is an
emergent symmetry corresponding to the lattice translation
symmetry Z. Alternatively, they can be recombined into the
U(1) 3V +A

2
× U(1) 3V −A

2
symmetry, such that it becomes obvi-

ous that all fermion bilinear back-scattering terms (either the
Dirac mass c†

acb or the Majorana mass cacb for a )= b and
a, b ∈ {AR, BR, BL, AL}) are forbidden by the symmetry be-
cause they are all charged nontrivially under the U(1) 3V +A

2
×

U(1) 3V −A
2

symmetry due to the distinct charge assignment to
every chiral fermion. Given this situation, the only hope to
gap the FL is to evoke the SMG mechanism that generates the
mass for all chiral fermions by nonperturbative multifermion
interactions.

C. SMG interaction and RG analysis

It is worth mentioning that the charge-compensated two-
band model with qA = 1 and qB = 3 essentially regularizes
the 3-4-5-0 chiral fermion model [70,71] on a pristine 1D lat-
tice (without introducing any compact extra dimensions). The
emergent U(1) 3V ±A

2
symmetries act as the lattice translations

decorated by appropriate internal U(1) rotations, described by
the following Z symmetry groups (parameterized by integer
n ∈ Z) at the lattice level (see Appendix A for derivation):

Z
(

f or
3V ± A

2

)
:

{
ciA → exp(±i3kF n)c(i+n)A,

ciB → exp(±i9kF n)c(i+n)B.
(15)

The 3-4-5-0 model is a toy model for studying the long-
standing problem: the lattice regularization of the chiral
fermion theory in high-energy physics [55,72–79]. Many
variants of the model are studied in the lattice community
(see references therein [80,81]). This model is anomaly-
free—perturbative local gauge anomaly free within any linear
combination of the U(1)V ×ZF

2
U(1)A checked by the Adler-

Bell-Jackiw method [82,83], perturbative local gravitational
anomaly free because of the zero chiral central charge cL −
cR = 0, also nonperturbative global anomaly free from any
gauge or gravitational fields checked by the cobordism [84].
However, it was known much later that symmetric gapping
can only be achieved by minimally six-fermion interactions
among the four flavors of 3-4-5-0 fermions. The SMG inter-
action was proposed by Wang and Wen [46,51], which was
later discussed by Tong [85] and only recently verified by the
density matrix RG (DMRG) [86,87] numerical simulation in
Ref. [88].

Given the existing knowledge about the SMG interaction in
the 3-4-5-0 chiral fermion model, we can map the Wang-Wen
interaction [46,51] back to our lattice model following the
correspondence listed in Table I, which gives us the following
SMG interaction (see Appendix B for more details):

Hint = g
∑

i

c†
(i−1)Bc(i−1)AciBciAc†

(i+1)Bc(i+1)A + H.c. (16)

This is a six-fermion interaction across three adjacent sites on
the 1D lattice. It describes the process that first annihilates
both A- and B-type fermions on the center site (which anni-
hilates four units of charges on the site i) and then separately
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FIG. 2. The renormalization group (RG) flow of the coupling g
and the scaling dimension )int of the SMG interaction. The abbrevi-
ations stand for the following terminology: SMG for symmetric mass
generation, FL for Fermi liquid, EFL for ersatz FL, LL for Luttinger
liquid.

converts A-type fermions to B-type fermions on the two adja-
cent sites (which creates two units of charges on each of the
site i − 1 and i + 1), such that the U(1)V charge is conserved.
The interaction is also manifestly translation and reflection
symmetric, so the full U(1)V × (Z � Z2) symmetry is pre-
served by the interaction as expected. With this interaction, we
claim that the lattice model in Eq. (6) will exhibit an (ersatz)
FL to SMG insulator transition when the interaction strength
g exceeds a finite critical value gc.

To show that the proposed interaction in Eq. (16) in-
deed drives the FL to a gapped interacting insulator, we
bosonize [89,90] the fermion operator ca ∼ : exp(iϕa) : (with
a ∈ {AR, BR, BL, AL}) and cast the lattice model to an effec-
tive Luttinger liquid (LL) theory, described by the following
Lagrangian density:

L = 1
4π

(∂tϕ
�K∂xϕ − ∂xϕ

�V ∂xϕ) +
∑

α=1,2

gα cos
(
l�
α ϕ

)
,

(17)

where ϕ = (ϕAR,ϕBR,ϕBL,ϕAL )� are compact scalar bosons.
The K matrix and the lα vectors are given by

K =





1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



, l1 =





1
−2

1
2



, l2 =





2
1

−2
1



.

(18)

As shown in Appendix B, the six-fermion interaction Hint in
Eq. (16) translates to the cosine terms g1 and g2 in the LL
theory in Eq. (17), with g1 = g2 = g enforced by the Z2 re-
flection symmetry (as the Z2 transformation exchanges the g1
and g2 terms). The RG flow in the log energy scale , = − ln #
is given by [91,92]

dg
d,

= (2 − )int )g,
d)−1

int

d,
= π2g2, (19)

where )int is the scaling dimension of the SMG interaction.
The RG flow diagram is shown in Fig. 2.

At the FL fixed point, we have )int = 1
2 l�

α lα = 5 > 2,
meaning that the SMG interaction is perturbatively irrelevant.
If the bare coupling g (the interaction strength at the lattice
scale) is weak (g < gc), it will just flow to zero and disap-
pear in the IR theory. However, the scaling dimensions of
all operators will be renormalized as the coupling g flows
toward zero. Therefore, the FL fixed point will be deformed
into the LL fixed-line, along which the fermion quasiparticle
is no longer well defined, but the system remains gapless. De-
spite the different dynamical properties, the LL still preserves
all the kinematic properties (e.g., emergent symmetries and
anomalies) as the FL, which can be unified under the concept
of ersatz FL (EFL) [11].

If the bare coupling g is strong enough (g > gc), the scal-
ing dimension )int can be reduced to )int < 2 such that the
SMG interaction becomes relevant and flows strong. As the
cosine term in Eq. (17) gets strong, the corresponding vertex
operators exp(il�

α ϕ) (α = 1, 2) condense. Any other operators
that braid nontrivially with the condensed operators will be
gapped, which includes all the fermion operators. Therefore,
the system enters the SMG insulating phase with all fermion
excitations gapped without breaking the U(1) × (Z � Z2)
symmetry. This has been confirmed by the DMRG simu-
lation in Ref. [88] for a related model using the domain
wall fermion construction, where it has been verified that the
fermion two-point function indeed decays exponentially in the
SMG phase—a direct piece of evidence for the gap genera-
tion. On the lattice level, this corresponds to condensing the
six-fermion bound state by developing the ground state ex-
pectation value of 〈c†

(i−1)Bc(i−1)AciBciAc†
(i+1)Bc(i+1)A〉 )= 0. So

the gapping is achieved by the multifermion condensation
(involving more than two fermions), which is distinct from
the fermion bilinear condensation in the conventional gapping
mechanisms of FLs (such as the band hybridization or Cooper
pairing mechanisms).

The RG analysis also indicates that the EFL-to-SMG
insulator transition (at g = gc) is of the Berezinskii-Kosterlitz-
Thouless (BKT) [93–95] transition universality in (1+1)D.

The above analysis established the FS SMG phenomenon
in the lattice model in Eq. (6) [equipped with the gapping
interaction in Eq. (16)]. The significance of this lattice model
is that it provides a pristine 1D lattice regularization of the
3-4-5-0 chiral fermion model by using lattice translation to
realize the axial U(1)A symmetry at low energy. In contrast
to the domain wall fermion constructions [51,55,88], our con-
struction does not require the introduction of a (2+1)D bulk to
realize the chiral fermions as boundary modes. Such a pristine
1D lattice regularization is advantageous for the numerical
simulation of chiral fermions, as the model contains no redun-
dant bulk (or mirror) fermions, such that the computational
resources can be used more efficiently. We will leave the
numerical exploration of this model to future research.

III. FS SMG IN (2+1)D

A. (2+1)D Fermi liquid and Fermi surface anomaly

Given the example of FS SMG in (1+1)D, we would like
to further explore similar physics in higher dimensions. The
most important low-energy features of a (2+1)D FL are the
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gapless fermions on its 1D FS. Suppose we parametrize the
1D FS kF (θ ) ∈ ∂VF by a continuous and periodic parameter
θ , such that kF (θ + 2π ) = kF (θ ) (where we do not require θ
to literally represent the geometrical angle, as the FS may not
be a perfect circle in general). The fermions cθ on the FS have
an emergent symmetry described by the loop group of U(1)
[11,12], denoted as LU(1), under which

LU(1) : cθ → exp[iφ(θ )]cθ , (20)

where the U(1) phase factor exp[iφ(θ )] is a smooth function
of θ with the periodicity exp[iφ(θ + 2π )] = exp[iφ(θ )]. Both
the (global) charge U(1) and the translation symmetries R2

are subgroups of LU(1):

U(1) : cθ → eiqφcθ , R2 : cθ → exp[i δx · kF (θ )]cθ , (21)

assuming the fermions cθ carry charge q under the global U(1)
symmetry and are translated by the vector δx ∈ R2.

The presence of the FS causes a mixed anomaly between
the U(1) and translation symmetries [96], which is character-
ized by the anomaly index:

q
2(2π )2

∮
dθ (kF × ∂θkF )3 = qVF

(2π )2
= qν, (22)

where VF stands for the Fermi volume in the momentum
space, and ν is the filling factor. If the FS anomaly is non-
vanishing, it is impossible to trivially gap out the FL without
breaking any symmetry or developing any topological order.
The FS SMG is only possible if the FL system contains multi-
ple FSs of opposite anomaly indices, such that their anomalies
cancel as a whole.

B. Kagome-triangular lattice model

We present a concrete lattice model to demonstrate the FS
SMG in (2+1)D. Consider two types of spinless fermions
labeled by A and B that are charged under a global U(1)
symmetry with charges qA = 1 and qB = 3, respectively. The
A-type (or B-type) fermion is defined on a kagome (or trian-
gular) lattice. As depicted in Fig. 3(a), the kagome and the
triangular lattices lie on top of each other, with the site I of
the triangular lattice aligned with the upper triangle -I on the
kagome lattice. We will use the lowercase letters i, j (or the
uppercase letters I, J) to label the kagome (or the triangular)
lattice sites.

The lattice model is described by the following Hamilto-
nian:

H = HA + HB + Hint,CF,

HA = −tA
∑

〈i j〉
(c†

i c j + H.c.) − µA

∑

i

c†
i ci,

HB = −tB
∑

〈IJ〉
(c†

I cJ + H.c.) − µB

∑

I

c†
I cI ,

Hint,CF = −g
∑

I

∑

i jk∈-I

(c†
I cic jck + H.c.), (23)

where 〈i j〉 (or 〈IJ〉) denotes the nearest-neighboring link on
the A (or B) lattices, and i jk ∈ -I stands for the three A-sites
i, j, k at the vertices of the upper triangle surrounding the

FIG. 3. (a) In the real space, we design the overlapping kagome
(A) and triangular (B) lattices. The green triangle marks out the unit
cell. In the momentum k space, we draw many contours to represent
various equal energy curves of the energy band, at different filling
levels (equally spaced by 1

8 filling fraction). We illustrate the A-type
(in blue) and B-type (in red) Fermi surfaces (FSs) (b) at a general
filling such as νA = 3

8 and νB = 7
8 (= − 1

8 ), or (c) at a special filling
νA = νB = 3

4 (= − 1
4 ) where the FSs coincide.

B-site labeled by I . The model has a U(1) symmetry that acts
as

U(1) : ci → eiφci, cI → ei3φcI . (24)

The Hamiltonian in Eq. (23) preserves the internal U(1) sym-
metry and all symmetries of the kagome-triangular lattice
(most importantly, the lattice translation symmetry).

The model in Eq. (23) describes the two types of fermions
hopping separately on their corresponding lattices. Because
every unit cell contains four sites (three from the kagome
lattice and one from the triangle lattice), the hopping model
will give rise to four energy bands (three bands for A-type
fermions and one band for B-type fermions). The chemical
potentials µA and µB are adjusted to ensure the desired filling
of these fermions. We will focus on a simple case when only
the lowest A-type (kagome lattice) bands and the single B-type
(triangular lattice) bands are filled by filling fractions νA and
νB, respectively, such that the FS only involves two of the four
bands.

The A- and B-type fermions are coupled together only
through a four-fermion interaction Hint,CF in Eq. (23) that
fuses three A-type (charge-1) fermions to one B-type (charge-
3) fermions (and vice versa) within each unit cell. We will
call it a charge fusion (CF) interaction. The CF interaction
breaks the separate U(1) charge conservation laws for A- and
B-type fermions in the hopping model to a joint U(1) charge
conservation, associated with the symmetry action in Eq. (24).
Similar interactions also appear in a recent study [97] of
quantum breakdown.

Without interaction (g = 0), the system is in a FL phase.
According to Eq. (22), the FS anomaly cancellation condition
requires

qAνA + qBνB = 0 mod 1. (25)

Given the charge assignment of qA = 1 and qB = 3, it requires
νA = −3νB. There is no further requirement on the choice of
νA itself. With a generic choice of filling (assuming νA < 3/4)
as in Fig. 3(b), the A-type fermions (on the kagome lattice)
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will form an electronlike FS, whose Fermi volume is three
times as large as that of the holelike FSs formed by the
B-type fermions (on the triangular lattice). Although the FL
has a vanishing FS anomaly, the charge U(1) and the lattice
translation symmetries are still restrictive enough to forbid
any gap opening on the free-fermion level. For example, any
pairing (charge-2e superconducting) gap will break the U(1)
symmetry. The only possibility to gap the FL relies on the
multifermion interaction.

We claim that the CF interaction Hint,CF in Eq. (23) is a
valid SMG interaction that drives the FL into a trivially gaped
insulator without breaking symmetry (or developing any topo-
logical order). To see this, we go to the strong coupling limit
by taking g → ∞. Of course, the chemical potentials µA, µB
must increase correspondingly to keep the fermion fillings
fixed. The model Hamiltonian decouples to each unit cell in
the strong coupling limit:

H =
∑

I|i jk∈-I

−µA(ni + n j + nk ) − µBnI − g(c†
I cic jck + H.c.),

(26)

where ni = c†
i ci (and nI = c†

I cI ) denotes the fermion number
operator. Within each unit cell, there are only two relevant
states |1110〉 and |0001〉 (in the Fock state basis |nin jnknI〉)
acted upon by the Hamiltonian. Their hybridization will pro-
duce the ground state in each unit cell. The full-system ground
state will be the following direct product state:

|SMG〉 =
⊗

I

(
√

p|1110〉 +
√

1 − p|0001〉)I , (27)

where p = 1
2 [1 + −3µA+µB√

(−3µA+µB )2+4g2
] is the probability to ob-

serve the |1110〉 state in the unit cell, which is tunable by
adjusting µA, µB relative to g. The fermion fillings (per unit
cell) in the ground state |SMG〉 will be

νA = 3p, νB = 1 − p = −p mod 1, (28)

which automatically satisfies the anomaly cancellation con-
dition νA = −3νB (as it should be). The ground state |SMG〉
is nondegenerated and gapped from all excited states (with a
gap of the order g). It also preserves the charge U(1) and all
the lattice symmetries and does not have topological order.
Therefore, we have explicitly shown that the system ends up
in the SMG insulator phase as g → ∞. As a gapped phase, we
expect it to be stable against perturbations (such as the hop-
ping terms tA, tB) over a finite region in the parameter space.
The SMG phase is a strongly interacting insulating phase,
which has no correspondence in the free-fermion picture.

Having established the FL (metallic) phase at g = 0 and
the SMG insulator phase at g → ∞, there must be an SMG
transition (an interaction-driven metal-insulator transition) at
some intermediate coupling strength gc. However, the nature
of the transition is still an open question, which we will leave
for future numerical study. In the following, we will only
analyze the SMG transition at a special filling: νA = νB = 3

4 ,
where the FSs coincide precisely and take the perfect hexagon
shapes, as shown in Fig. 3(c). This allows us to gain some
analytic control of the problem.

C. RG analysis of the SMG transition

In this subsection, we analyze the interaction effect in
Eq. (23) when the filling is νA = νB = 3

4 . In this case, the FS
of the system contains three Van Hove singularities (VHSs),
also known as hot spots, located at three distinct M points,
as shown in Fig. 3(c). This allows us to study the interac-
tion effects using the hot-spot RG method at the one-loop
level [98–105]. The hot-spot RG approach assumes that the
low-energy physics emerges from the correlated effects of
fermions near the VHSs, where the density of states diverges.
This divergence leads to the a high instability toward gap
opening.

Under RG, the CF interaction Hint,CF will generate two
types of density-density interactions at the one-loop level,
namely, Hint,AA =

∑
i, j nin j and Hint,AB =

∑
i,I ninI , as well

as other (less important) exchange interactions. These density-
density interactions are more important in the sense that they
will in turn contribute to the correction of Hint,CF. Therefore,
we should include Hint,CF, Hint,AA, Hint,AB altogether in the RG
analysis and study the RG flow jointly.

To proceed, we transform the interactions into the momen-
tum space. The fermion operators are labeled by the flavor
index S = A, B and the hot-spot index α,β ∈ {1, 2, 3} (refer-
ring to the three different VHSs). We note that Hint,CF would
vanish if it is naively restricted to the hot spots because the
momentum conservation requires multiple A-type fermion op-
erators to appear on the same hot spot, which violates the Pauli
exclusion principle of fermions. Thus, we need to introduce
point splitting in the momentum space around each hot spot.
Our strategy is to further split the A-type fermion into three
modes As labeled by s = 1, 2, 3, and define the interaction:

Hint,CF = grs

∑

α

εi jkc†
BαcAiαcAjαcAkα

+ grt

∑

α )=β

εi jkc†
BαcAiαcAjβcAkβ + H.c., (29)

where grs and grt are the CF interaction decomposed into
different momentum transfer channels: the intra-hot-spot scat-
tering grs and the inter-hot-spot scattering grt.

These CF interactions receive corrections from the follow-
ing density-density interactions at the one-loop level:

Hint,AA + Hint,AB = gas

∑

α,st

nAsαnAt α + (As ↔ At )

+ gbt

∑

α )=β,s

nBαnAsβ + (As ↔ B)

+ H.c. + . . . , (30)

where . . . refers to the other interactions that are decoupled
from grs, grt, gas, gbt in the RG equations. The scattering pro-
cesses of these four important interactions are illustrated in
Fig. 4. The complete set of all possible interactions is pre-
sented in Appendix C.

We derive the RG equations based on the systematic ap-
proach developed in Ref. [106]. Since we are interested in the
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FIG. 4. Scattering of fermions between Van Hove singularities
(VHSs) by (a) density-density interactions gbt (red), gas (blue) and
(b) nonvanishing processes grs (yellow), grt (green) of Hint,CF. Thin
(or thick) arrows correspond to A-type (or B-type) fermions.

flow of Hint,CF, the relevant part of the RG equations reads

dgbt

d,
= 2d0dABg2

bt,
dgas

d,
= −2g2

as,

dgrs

d,
= −6gasgrs,

dgrt

d,
= 4d0dABgbtgrt − 2gasgrt. (31)

where the RG parameter is defined by the Cooper-pairing
susceptibility of A-type fermions , = χpp,AA(k = 0, E ) ∼
ν0 ln2(#/E ), in which ν0 ln(#/E ) is the diverging density
of states at the VHS, E is the running energy scale, and #
is the high-energy cutoff. Here, d0 = dχph,AA(Q)/d, � 1 is
the nesting parameter of A-type fermions, which saturates
to one in the perfectly nested limit (d0 → 1). In our case,
different VHSs are half-nested (only one of the two cross-
ing FSs is perfectly nested between every pair of different
VHSs), so d0 = 1

2 is a suitable estimation. Similarly, we define
dAB = dχpp,AB(0)/d,, which depends on the energies of A-
and B-type fermions near the VHS. The full RG equations and
details are listed in Appendix C.

According to the one-loop RG equations, if the density-
density interactions gbt, gas are initially zero, then the CF
interactions grs, grt remain marginal along the RG flow. How-
ever, if we turn on small density-density interactions gbt, gas
with correct signs (gbt > 0 or gas < 0), the CF interactions
grs, grt will be marginally relevant. The solutions of the RG
equations in Eq. (31) are

gbt(,) = gbt(0)
1 − 2d0dABgbt(0),

, gas(,) = gas(0)
1 + 2gas(0),

,

grs(,) = grs(0)
[1 + 2gas(0),]3

,

grt(,) = grt(0)
[1 + 2gas(0),][1 − 2d0dABgbt(0),]2

. (32)

As the RG parameter , increases under the RG flow, the cou-
pling strengths can diverge at some critical scale ,c, when any
of the denominators in Eq. (32) vanish. The critical scale is
set by the bare density-density interaction strengths gbt(0) and
gas(0), but the CF interaction strengths grs, grt diverge faster
than the density-density interactions as the critical scale is
approached. Therefore, the RG fixed points are characterized
by the behavior of grs, grt.

FIG. 5. The renormalization group (RG) phase diagram with re-
spect to the density-density interactions gas, gbt. In the Fermi liquid
(FL) phase, the gapping interaction flows to zero. In the symmet-
ric mass generation (SMG) phase, the gapping interaction flows to
infinity.

Depending on the bare density-density interaction
strengths gas(0) and gbt(0), the system can flow toward
different RG fixed points, as shown Fig. 5. When
gas(0) > 0 and gbt(0) < 0, all interactions flow to
zero, which corresponds to the FL fixed point. When
gas(0) < min[0,−d0dABgbt(0)], both CF interactions grs, grt
flow to infinity, which should correspond to the SMG phase
according to the previous lattice model analysis. However,
we also find a region in the phase diagram, described by
gbt > max(0,−gas/d0dAB), where grs → 0 and grt → ∞,
i.e., flowing toward different limits. We are not sure how
to interpret the physical meaning of this RG fixed point. It
might still be in the SMG phase as one interaction still flows
strong, but it could as well end up in a spontaneous symmetry
breaking (SSB) phase that breaks the LU(1) symmetry since
the A- and B-type FSs have pretty strong nesting instability.
This might also be an artifact of the hot-spot RG method, as
it does not fully capture all low-energy fermionic degrees of
freedom of the FS.

Admittedly, it is not possible to determine whether the full
FS is gapped using the hot-spot RG analysis alone. This is
because the hot-spot RG approach only considers the fermions
near the VHSs and not the FS freedom away from the VHSs.
To determine whether the strong coupling fixed point is a fully
gapped state, we have to rely on lattice model analysis in
the strong coupling limit. The exact ground-state solution in
Eq. (27) provides evidence to support the argument that the
strong coupling fixed point is indeed a fully gapped state.

To improve, functional RG [107–110] might provide a
better resolution of the FS and remove the uncertainty in the
phase diagram in Fig. 5. A recent study [111] has demon-
strated the functional RG method in a triangle lattice model
with spinless fermions. The same technique might apply to
our model as well. However, we will leave such a study for
future research.

By tuning gas(0) across zero on the gbt(0) < 0 side, one
can drive a FL-to-SMG transition. The gapping interaction
is marginally relevant at the transition point. According to
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FIG. 6. Classification of Fermi surface (FS) reconstruction
mechanisms, based on the LU(1) loop group symmetry. Symmet-
ric FS reconstruction (SFSR) contains two broad classes: (1) FS
symmetric mass generation (SMG) if the total FS anomaly is can-
celed and (2) FS topological mass generation (TMG) if the total FS
anomaly is matched by topological order with low energy topological
field theory.

the solution of the RG equations in Eq. (32), the coupling
diverges at the critical scale ,c ∼ ν0 ln2(#/)SMG) when the
denominator [1 + 2gas(0)lc] vanishes. This implies that the
SMG gap )SMG (the energy gap between the ground state and
the first excited state) opens up as [112,113]

)SMG ∼ # exp
[
− c√

gas(0)ν0

]
, (33)

where # is the ultraviolet (UV) cutoff energy scale, ν0 is the
coefficient in front of the diverging density of state at the VHS,
and c is some nonuniversal constant.

IV. SUMMARY AND DISCUSSION

In this paper, we propose the concept of FS SMG: a mech-
anism to gap out FSs by nonperturbative interaction effects
without breaking the LU(1) symmetry. This phenomenon can
only happen when the FS anomaly is canceled out in the
fermion system. We present (1+1)D and (2+1)D examples of
FS SMG. We expect that the mechanism can generally occur
in all dimensions.

FS SMG belongs to a broader class of phenomena, called
the symmetric FS reconstruction (SFSR), as summarized in
Fig. 6. The SFSR is in contrast to the more conventional
symmetry-breaking FS reconstruction, where the FS is recon-
structed (or gapped) by developing SSB orders. Depending
on the cancellation of the FS anomaly, the SFSR further splits
into two classes: the FS SMG if the anomaly vanishes or the
FS topological mass generation (TMG) if the anomaly does
not vanish. The former class, the FS SMG, is the focus of
this paper. The latter class, the FS TMG, is also discussed in
the literature, where the nonvanishing FS anomaly is absorbed
by an anomalous topological quantum field theory, such that
the SFSR is achieved by developing the corresponding topo-
logical order. This gives rise to deconfined/fractionalized
FL (FL∗) [114–116] or orthogonal metal [117–119].

Symmetry extension [120] has provided a unified framework
to understand TMG and SMG for bosons or fermions of
zero Fermi volume [121–126], where the symmetric gapping
can be achieved by extending the symmetry group to lift
any gapping obstruction that was otherwise imposed by the
symmetry. Similar constructions can be applied to understand
SFSR more generally.

FS SMG deforms an anomaly-free (charge-compensated)
FL state to a fully gapped product state. Although the result-
ing SMG gapped state does not have nontrivial features like
topological order, the SMG transition from the FL phase to
the SMG phase can still be quite exotic. The SMG transition
of relativistic fermions has been proposed as a deconfined
quantum critical point [127,128], where the physical fermion
fractionalizes to bosonic and fermionic partons with emer-
gent gauge fluctuations at and only at the critical point. It
is conceivable that similar scenarios might apply to the FS
SMG transition as well, where deconfined FL (orthogonal
metal) could emerge at the critical point. The lattice models
presented in this paper lay the ground for future theoretical
and numerical studies of the exotic SMG transition in these
models.

It is also known that the fermion single-particle Green’s
function has symmetry-protected zeros at zero frequency in
the SMG phase [129–132]. It will be interesting to investigate
further the Green’s function structure in the FS SMG phase.
Whether the SMG interaction will replace the original FS (a
loop of poles) with a loop of zeros in the Green’s function is
still an open question to explore.

Another potential experimental connection is to apply the
FS SMG to understand the nature of pseudogap phases, which
is an exotic state of electrons where the FS is partially gapped
without obvious symmetry breaking. It has been observed in
many correlated materials. The recent proposal of the ancilla
qubit approach [133,134] for pseudogap physics draws a con-
nection between the pseudogap metal-to-FL transition with
the FS SMG transition in the ancilla layers, as both transi-
tions are described by field theories of fermionic deconfined
quantum critical points [127,128,135–137]. The FS anomaly
constrains the dynamical behavior of such field theories and
can potentially shed light on the open problem of pseudogap
transition in correlated materials.
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APPENDIX A: EMERGENT U(1) SYMMETRIES
IN THE (1+1)D TWO-BAND MODEL

Start from the definition of charge U(1) (parameterized
by a periodic angle φ ∈ [0, 2π )) and lattice translation Z
(parameterized by an integer n ∈ Z) symmetries as defined
in Eq. (7):

U(1) : ciA → exp(iqAφ)ciA, ciB → exp(iqBφ)ciB;

Z : ciA → c(i+n)A, ciB → c(i+n)B. (A1)

Follow the definition in Eq. (9) of the fermion operators in the
momentum space:

ckA =
∑

i

ciAe−iki, ckB =
∑

i

ciBe−iki, (A2)

where the wave number k ∈ [−π ,π ) is a dimensionless pe-
riodic variable defined in the first Brillouin zone. (Note: the
dimensionful momentum p should be related to the dimen-
sionless wave number k by p = h̄k/a, with a being the lattice
constant, and the site coordinate x ∈ R is related to the site
index i ∈ Z by x = ai, such that the Fourier factor e−ipx/h̄ =
e−iki is consistent with the quantum mechanics convention.) It
is straightforward to show that the U(1) × Z symmetry acts in
the momentum space as

U(1) : ckA → exp(iqAφ)ckA, ckB → exp(iqBφ)ckB;

Z : ckA → eiknckA, ckB → eiknckB. (A3)

Apply these transformations to the low-energy fermion near
the four Fermi points. According to Eq. (12):

cAR = c(3kF )A, cBR = c(−kF )B,

cBL = c(kF )B, cAL = c(−3kF )A, (A4)

Eq. (A3) becomes

U(1) :






cAR → exp(iqAφ)cAR,
cBR → exp(iqBφ)cBR,
cBL → exp(iqBφ)cBL,
cAL → exp(iqAφ)cAL;

Z :






cAR → exp(3ikF n)cAR,
cBR → exp(−ikF n)cBR,
cBL → exp(ikF n)cBL,
cAL → exp(−3ikF n)cAL.

(A5)

Because kF = |νB|π is almost always (i.e., with probability
1) an irrational multiple of π (because |νB| is almost always
an irrational number without fine tuning), kF n mod 2π can
approach any angle in [0, 2π ) (with 2π periodicity) as close
as we want (given n ∈ Z). This allows us to define two angular
variables φV and φA, both are periodic in [0, 2π ):

φV = φ, φA = kF n mod 2π , (A6)

then Eq. (A5) can be compactly written as

UV symmetry ⇒ IR symmetry

U(1) ⇒ U(1)V : ca → exp
(
iqV

a φV
)
ca,

Z ⇒ U(1)A : ca → exp
(
iqA

a φA
)
ca, (A7)

for a = AR, BR, BL, AL, enumerating over the four Fermi
point labels, together with the charge vectors (given that qA =
1 and qB = 3):

qV =





qA
qB
qB
qA



 =





1
3
3
1



, qA =





3
−1

1
−3



. (A8)

Therefore, the global charge U(1) symmetry is simply rein-
terpreted as the U(1)V vector symmetry, and the translation
symmetry (described by a noncompact Z group) in the UV
becomes an emergent U(1)A axial symmetry (described by a
compact U(1) group) in the IR. The symmetry transformation
in Eq. (A7) precisely matches Eq. (14) with the correct charge
assignment as listed in Table I.

Recombining the charge vectors of U(1)V and U(1)A, we
can define two alternative emergent U(1) symmetries, denoted
as U(1) 3V ±A

2
with the charge vectors:

q
3V ±A

2 = 1
2 (3qV ± qA), (A9)

as their names implied. More explicitly, the charge vectors
match the chiral charge assignments for the 3-4-5-0 fermions:

q
3V +A

2 =





3
4
5
0



, q
3V −A

2 =





0
5
4
3



. (A10)

The fermions are expected to transform under U(1) 3V ±A
2

as
(parameterized by the periodic angles φ± ∈ [0, 2π ))

U(1) 3V ±A
2

: ca → exp
[

i
1
2

(
3qV

a ± qA
a

)
φ±

]
ca. (A11)

This can be viewed as the combined transformation of U(1)V
and U(1)A with the vector rotation angle φV and the axial
rotation angle φA given by

φV = 3
2φ±, φA = ± 1

2φ±, (A12)

as can be verified by comparing Eq. (A11) with Eq. (A7).
Now we can connect these rotation angles back to the original
U(1) × Z symmetry of the lattice fermions using the relation
in Eq. (A6):

φ = 3
2φ±, ± 1

2φ± = kF n mod 2π . (A13)

Eliminate φ± from the equations, and we obtain the relation:

φ = ±3kF n mod 2π , (A14)

for the U(1) 3V ±A
2

symmetries. Therefore, to reproduce the IR
emergent U(1) 3V ±A

2
symmetries, the corresponding UV sym-

metries (at the lattice level) must be implemented such that
every n-step translation should be followed by a charge U(1)
rotation with the rotation angle φ = ±3kF n. Thus, we estab-
lish the following correspondence between the IR and UV
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symmetries:

IR symmetry ⇒ UV symmetry

U(1) 3V ±A
2

⇒ Z
(

3V ± A
2

)
:

{
ciA → exp(±3iqAkF n)c(i+n)A,

ciB → exp(±3iqBkF n)c(i+n)B.

(A15)

Here, the compact U(1) symmetries in the IR get mapped
to the noncompact symmetries Z in the UV because the UV
symmetries are parameterized by the integer variable n ∈ Z.
Given that qA = 1 and qB = 3, Eq. (A15) becomes Eq. (15),
as claimed in the main text. Therefore, the 3-4-5-0 chiral
fermion model is indeed realized by the (1+1)D two-band
lattice model at low energy.

APPENDIX B: WANG-WEN INTERACTION

In the bonsonization language, the Wang-Wen interaction
is described by

Lint =
∑

α=1,2

gα cos
(
l�
α ϕ

)
, (B1)

with ϕ = (ϕAR,ϕBR,ϕBL,ϕAL )� and the interaction vectors
given by

l1 =





1
−2

1
2



, l2 =





2
1

−2
1



. (B2)

Mapping back to the chiral fermions by the correspondence
ca ∼ : exp(iϕa) :, the interaction reads

Hint = g1

2
(cARcBL )(c†

BRcAL )2 + H.c.

+ g2

2
(cBRcAL )(cARc†

BL )2 + H.c. (B3)

According to Eq. (12) and using the inverse Fourier transfor-
mation:

cAR = c(3kF )A =
∑

i

ciA exp(3ikF i),

cBR = c(−kF )B =
∑

i

ciB exp(−ikF i),

cBL = c(kF )B =
∑

i

ciB exp(ikF i),

cAL = c(−3kF )A =
∑

i

ciA exp(−3ikF i). (B4)

Plugging Eq. (B4) into Eq. (B3), the interaction becomes

Hint =
∑

i1,··· ,i6

gi1···i6
(
c†

i1Bci2A
)(

ci3Bci4A
)(

c†
i5Bci6A

)
+ H.c.,

(B5)

with

gi1···i6 = g1

2
exp[ikF (i1 − 3i2 + i3 + 3i4 + i5 − 3i6)]

+ g2

2
exp[ikF (−i1 + 3i2 − i3 − 3i4 − i5 + 3i6)].

(B6)

Notice that, under lattice reflection symmetry Z2 : ciA →
c(−i)A, ciB → c(−i)B, g1 and g2 map to each other. To simplify,
we can impose the reflection symmetry which requires g1 =
g2 = g. Then the coupling coefficient is

gi1···i6 = gcos [kF (i1 − 3i2 + i3 + 3i4 + i5 − 3i6)]. (B7)

The dominant s-wave interaction is given by

i1 − 3i2 + i3 + 3i4 + i5 − 3i6 = 0, (B8)

such that gi1···i6 = g is uniform. We seek a local interaction
that has minimal span on the lattice. The optimal solution of
Eq. (B8) is given by

i1 = i2 = i − 1, i3 = i4 = i, i5 = i6 = i + 1, (B9)

for any choice of i. With this solution in Eq. (B9), Eq. (B5)
reduces to

Hint = g
∑

i

c†
(i−1)Bc(i−1)AciBciAc†

(i+1)Bc(i+1)A + H.c., (B10)

which is the SMG interaction in Eq. (16) proposed in the main
text.

APPENDIX C: FULL RG EQUATIONS

We start with the interaction Hint,CF:

Hint,CF = grs

∑

α

εi jkc†
BαcAiαcAjαcAkα

+grt

∑

α )=β

εi jkc†
BαcAiαcAjβcAkβ + H.c. (C1)

Under RG, the following density-density and exchange inter-
actions will be generated:

Hint,AA = gas

∑

α,st

nAsαnAt α + gat

∑

α )=β,st

nAsαnAt β

+gae

∑

α )=β,st

c†
Asα

cAsβc†
At β

cAt α

+(As ↔ At ) + H.c., (C2)

and

Hint,AB = gbs

∑

α,s

nBαnAsα + gbt

∑

α )=β,s

nBαnAsβ

+gbe

∑

α )=β,s

c†
BαcBβc†

Asβ
cAsα + (As ↔ B) + H.c.

(C3)
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There is an additional density-density interaction that will
correct Hint,AA, Hint,AB:

Hint,BB = gbb

∑

αβ

nBαnBβ − c†
BαcBβc†

BβcBα. (C4)

Putting all interactions together, the complete RG equa-
tions are

dgbb

d,
= 4d0dBBg2

bb + 3d0g2
be,

dgbs

d,
= −2dABg2

bs + 9g2
rs

2
+ g2

rt,

dgbt

d,
= 2d0dABg2

bt,

dgbe

d,
= −6d0gaegbe + 2d0gatgbe + 4d0dBBgbbgbe

+3grsgrt + g2
rt

2
,

dgas

d,
= −2g2

as,

dgat

d,
= 2d0g2

at − d0dABg2
rt,

dgae

d,
= −d0dABg2

rt + 4d0gaegat − 6d0g2
ae − 2d0dBBg2

be,

dgrs

d,
= −6gasgrs,

dgrt

d,
= 4d0dABgbtgrt − 2gasgrt,

where dAB = dχpp,AB(0)/d,, dBB = dχpp,BB(0)/d,. These
ratios depend on the energies of A- and B-type fermions
near the VHSs. The two types of fermions have similar band
structures, which can be approximated as EA,B

k = εA,B f (k).
The ratios are then given by dAB = 2|εA|

|εA|+|εB| and dBB = |εA|
|εB| .

If A- and B-type fermions have the same band structure, then
dAB = dBB = 1.
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The Fermi surface symmetric mass generation (SMG) is an intrinsically interaction-driven mechanism that
opens an excitation gap on the Fermi surface without invoking symmetry-breaking or topological order. We
explore this phenomenon within a bilayer square lattice model of spin-1/2 fermions, where the system can be
tuned from a metallic Fermi liquid phase to a strongly interacting SMG insulator phase by an interlayer spin-spin
interaction. The SMG insulator preserves all symmetries and has no mean-field interpretation at the single-
particle level. It is characterized by zeros in the fermion Green’s function, which encapsulate the same Fermi
volume in momentum space as the original Fermi surface, a feature mandated by the Luttinger theorem. Utilizing
both numerical and field-theoretical methods, we provide compelling evidence for these Green’s function zeros
across both strong and weak coupling regimes of the SMG phase. Our findings highlight the robustness of the
zero Fermi surface, which offers promising avenues for experimental identification of SMG insulators through
spectroscopy experiments despite potential spectral broadening from noise or dissipation.

DOI: 10.1103/PhysRevB.108.205117

I. INTRODUCTION

Symmetric mass generation (SMG) [1–8] is an interaction-
driven mechanism that creates many-body excitation gaps
in anomaly-free fermion systems without condensing any
fermion bilinear operator or developing topological orders.
It has emerged as a alternative symmetry-preserving ap-
proach for mass generation in relativistic fermion systems,
which is distinct from the traditional symmetry-breaking
Higgs mechanism [9–14]. The prospect of SMG offering
a potential solution to the long-standing fermion doubling
problem [15–21] has sparked significant interest in the lat-
tice gauge theory community [22–46]. In condensed matter
physics, SMG was initially explored within the framework
of the interaction-reduced classification of fermionic sym-
metry protected topological (SPT) states [1,2,47–68], and
has been recently extended to systems with Fermi sur-
faces [69–74], given the growing understanding that Fermi
liquids can be perceived as fermionic SPT states within the
phase space [75,76].

One important feature of the SMG gapped state lies in
the zeros of fermion Green’s function [77–82] at low energy.
Investigations reveal that the poles of the fermion Green’s
function in the pristine gapless fermion state will be replaced
by zeros in the gapped SMG state as the fermion system goes
across the SMG transition upon increasing the interaction
strength. This pole-to-zero transition was postulated [78] as
a direct indicator of the SMG transition [80,83] that can be
probed by spectroscopy experiments. However, the presence
of similar zeros in the Green’s function within Fermi surface
SMG states has not been investigated yet, and it is the focus
of our present research.

Fermi surface SMG [74] refers to the occurrence of SMG
phenomena on Fermi surfaces with nonzero Fermi volumes. It
describes scenarios where the fermion interaction transforms
a gapless Fermi liquid state (metal) into a nondegener-
ate, gapped, direct product state (trivial insulator), without

breaking any symmetry (for example, without invoking
Cooper pairing or density wave orders). Such a metal-
insulator transition is viable when Fermi surfaces collabo-
ratively cancel the Fermi surface anomaly [74,84,85]. This
anomaly can be perceived as a mixed anomaly between the
translation symmetry and the charge conservation U(1) sym-
metry on the lattice [84–90], or as an anomaly of an emergent
loop LU(1) symmetry [91–93] in the infrared theory.

In this work, we present evidence of robust Green’s func-
tion zeros in Fermi surface SMG states. Let t be the energy
scale of band dispersion and J be the energy scale of SMG
gapping interaction, we investigate the problem from two
parameter regimes.

(1) Deep in the SMG phase (J/t ! 1), we start with an
exact-solvable SMG product state in a lattice model and cal-
culate the fermion Green’s function by treating the fermion
hopping as perturbation [94]. We find that the Green’s func-
tion GSMG(ω, k) deep in the SMG phase takes the following
form

GSMG(ω, k) = ω + αεk/J2

(ω − εk/2)2 − J2
, (1)

where (ω, k) labels the frequency-momentum of the fermion.
εk is the energy dispersion of the original band structure in the
free-fermion limit, and α is an order-one number depending
on other details of the system. One salient feature of GSMG is
that it has a series of zeros at ω = −αεk/J2 in the frequency-
momentum space. At ω = 0, the Green’s function zeros form
a zero Fermi surface that replaces the original Fermi surface.

(2) If the SMG phase is adjacent to a spontaneous sym-
metry breaking (SSB) phase, we use perturbative field theory
to argue that the Green’s function in the SMG phase near the
symmetry-breaking transition (J/t � 1) should take the form
of

G′
SMG(ω, k) = ω + εk

ω2 − ε2
k − $2

0
(2)
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where we assume that the SSB order parameter retains a finite
amplitude $0 in the SMG phase, but its phase is randomly
fluctuating [95]. Again, G′

SMG features a series of zeros at
ω = −εk, with the same zero Fermi surface.

Many previous works [96–99] suggest that the Luttinger
theorem [100] will not be violated in the presence of the
interaction that preserves the translation and charge conser-
vation symmetry. However, quasiparticles (poles of Green’s
function) may not exist in the strongly correlated systems, the
Fermi surface is instead defined by the surface of Green’s
function zeros at zero frequency, i.e., G(0, k) = 0, and the
Green’s function changes sign on the two sides of the zero
Fermi surface, or the so-called Luttinger surface [91,98,101–
103]. This can be regarded as the remnant of the conventional
Fermi surface in the strongly interacting gapped phase. Our
analysis shows that the volume enclosed by the zeros of the
Green’s function in the SMG phase is the same as the Fermi
volume in the Fermi liquid phase, which agrees with the
Luttinger theorem.

The paper will be structured as follows. We start by in-
troducing a concrete lattice model for Fermi surface SMG in
Sec. II A and briefly discussing its phase diagram. We give
theoretical arguments for Green’s function zeros in the SMG
phase from the Luttinger theorem in Sec. II B (general), and
the particle-hole symmetry in Sec. II C (specific). We provide
numerical and field theoretical evidence of Green’s function
zeros from both the strong coupling Sec. III A and the weak
coupling Sec. III B perspectives. We comment on the robust-
ness of probing the zero structure in spectroscopy experiments
in Sec. IV. We conclude in Sec. V with a discussion of
the relevance of our model to the nickelate superconductor
La3Ni2O7.

II. ARGUMENT FOR GREEN’S FUNCTION ZEROS

A. Lattice model and phase diagram

As a specific example of Fermi surface SMG, we consider
a bilayer square lattice [104–106] model of spin-1/2 fermions,
as illustrated in Fig. 1(a). Let cilσ be the fermion annihilation
operator on site-i layer l (l = 1, 2) and spin σ (σ =↑,↓). The
model is described by the following Hamiltonian:

H = −t
∑

〈i j〉,l,σ
(c†

ilσ c jlσ + H.c.) + J
∑

i

Si1 · Si2, (3)

where Sil := 1
2 c†

ilσ σσσ ′cilσ ′ denotes the spin operator with
σ := (σ 1, σ 2, σ 3) being the Pauli matrices. The Hamil-
tonian H contains a nearest-neighbor hopping t of the
fermions within each layer and an interlayer Heisenberg
spin-spin interaction with antiferromagnetic coupling J >
0. The Heisenberg interaction should be understood as a
four-fermion interaction, that there is no explicitly formed
local moment degrees of freedom. Unlike the standard t-J
model [107], we do not impose any on-site single-occupancy
constraint [108] here. We assume that the fermions are half-
filled in each layer.

In the noninteracting limit (J/t → 0), the ground state
of the tight-binding Hamiltonian in Eq. (3) is a Fermi liq-
uid with a fourfold degenerated (two layers and two spins)
square-shaped Fermi surface in the Brillouin zone, as shown

FIG. 1. (a) Bilayer square lattice model with intralayer hopping
and interlayer spin interaction. (b) Fermi sea and Fermi surface at
J = 0 in the Brillouin zone. A high-symmetry path is traced out in
gray. (c) A conjectured phase diagram consist of a Fermi liquid (FL)
fixed point, a spontaneous symmetry breaking (SSB) phase, a XY
transition, and a SMG insulating phase.

in Fig. 1(b). The fermion system is gapless in this limit.
However, given that the fermion carries one unit charge under
the U(1) symmetry, the Fermi surface anomaly vanishes due
to [76,87]

4∑

a=1

qaνa = 4 × 1 × 1
2

= 0 mod 1, (4)

where a indexes the fourfold degenerated Fermi surface with
qa = 1 being the U(1) charge carried by the fermion and
νa = 1/2 being the filling fraction. This implies there must be
a way to gap out the Fermi surface into a trivial insulator while
preserving both the translation and the U(1) charge conserva-
tion symmetries. Nevertheless, these symmetry requirements
are restrictive enough to rule out all possible fermion bilinear
gapping mechanisms, leaving Fermi surface SMG the only
available option.

One possible SMG gapping interaction is the interlayer
Heisenberg spin-spin interaction J in Eq. (3). In the strong
interaction limit (J/t → ∞), the system has a unique ground
state, given by

|0〉 =
⊗

i

(c†
i1↑c†

i2↓ − c†
i1↓c†

i2↑)|vac〉, (5)

which is a direct product of the interlayer spin-singlet state on
every site. |vac〉 stands for the vacuum state of fermions (i.e.,
cilσ |vac〉 = 0). The SMG ground state |0〉 does not break any
symmetry and does not have topological order. All excitations
are gapped by an energy of the order J from the ground state.
Any local perturbation far below the energy scale J can not
close this excitation gap, so the SMG phase is expected to be
stable in a large parameter regime as long as J ! t .

Given the distinct ground states in the two limits of J/t ,
we anticipate at least one quantum phase transition separating
the Fermi liquid and the SMG insulator. However, due to the
perfect nesting of the Fermi surface, the Fermi liquid state is
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unstable towards spontaneous symmetry breaking (SSB) upon
infinitesimal interaction, so a more plausible phase diagram
should look like Fig. 1(c), where an intermediate SSB phase
sets in. A mean-field analysis based on the Fermi liquid fixed
point shows that there are two degenerated leading instabil-
ities: (i) the interlayer exciton condensation (EC) and (ii)
the interlayer superconductivity (SC). They are respectively
described by the following order parameters

φEC =
∑

i,σ

(−)ic†
i1σ ci2σ , φSC =

∑

i,σ

(−)σ c†
i1σ c†

i2σ̄ . (6)

Here, (−)i denotes the stagger sign on the square lattice of
lattice momentum (π ,π ). (−)σ = +1 for σ =↑ and −1 for
σ =↓. σ̄ stands for the opposite spin of σ .

The energetic degeneracy of these two SSB orders can
be explained by the fact that their order parameters φEC
and φSC are related by a particle-hole transformation ci2σ →
(−)i(−)σ c†

i2σ̄ in the second layer only, which is a symmetry of
the model Hamiltonian in Eq. (3). The EC 〈φEC〉 += 0 sponta-
neously breaks the translation and interlayer U(1) symmetry,
and the SC 〈φSC〉 += 0 spontaneously breaks the total U(1)
symmetry. Both of them gap out the Fermi surfaces fully,
leading to an SSB insulator (or superconductor). The SSB and
SMG phases are likely separated by an XY transition, at which
the symmetry gets restored. We will leave the numerical ver-
ification of the proposed phase diagram Fig. 1(c) for future
study, as the main focus of this research is to investigate the
structure of fermion Green’s function in the SMG insulating
phase.

We note that the model Eq. (3) was also introduced as
the “coupled ancilla qubit” model to describe the pseudo-gap
physics in the recent literature [70,72,73]. Its honeycomb
lattice version has been investigated in recent numerical
simulations [109], where a direct quantum phase transition
between semimetal and insulator phases was observed.

B. Luttinger theorem and Green’s function zeros

The Luttinger theorem [100,110] asserts that in a fermion
many-body system with lattice translation and charge U(1)
symmetries, the ground state charge density 〈N〉/V [i.e., the
U(1) charge per unit cell] is tied to the momentum space
volume in which the real part of the zero-frequency fermion
Green’s function is positive Re G(0, k) > 0. This can be for-
mally expressed as

〈N〉
V

= Nf

∫

Re G(0,k)>0

d2k
(2π )2

. (7)

Here, the U(1) symmetry generator N =
∑

i,l,σ c†
ilσ cilσ mea-

sures the total charge, and the volume V =
∑

i 1 is defined as
the number of unit cells in the lattice system. Nf = 4 counts
the fermion flavor number (or the Fermi surface degeneracy),
including two layers and two spins. The Green’s function
G(ω, k) in Eq. (7) is defined by the fermion two-point cor-
relation as

〈clσ (ω, k)cl ′σ ′ (ω, k)†〉 = G(ω, k)δll ′δσσ ′ . (8)

The correlation function is proportional to an identity ma-
trix in the flavor (layer-spin) space because of the layer

U(1) : clσ → e(−)l iθclσ , the layer interchange Z2 : c1σ ↔ c2σ ,
and the spin SU(2) : clσ → (eiθ·σ/2)σσ ′clσ ′ symmetries.

The Luttinger theorem applies to the Fermi liquid and
SMG states in the bilayer square lattice model Eq. (3), as both
states preserve the translation and charge U(1) symmetries.
Given that the fermions are half-filled (ν = 1/2) in the system,
the Fermi volume should be

∫

Re G(0,k)>0

d2k
(2π )2

= 〈N〉
V Nf

= ν = 1
2
. (9)

The Fermi volume is enclosed by the Fermi surface, across
which Re G(0, k) changes sign. The sign change can be
achieved either by poles or zeros in the Green’s function.

In the Fermi liquid state, the required Fermi volume is
satisfied via Green’s function poles along the Fermi surface,
as pictured in Fig. 1(b). However, the SMG insulator is a fully
gapped state of fermions that has no low-energy quasiparti-
cles (below the energy scale J). Consequently, the Green’s
function G(ω, k) cannot develop poles at ω = 0, meaning
the required Fermi volume can only be satisfied by Green’s
function zeros. Therefore the Lutinger theorem implies that
there must be robust Green’s function zeros at low energy
in the SMG phase, and the zero Fermi surface must enclose
half of the Brillouin zone volume in place of the original pole
Fermi surface.

It is known that the Luttinger theorem can be violated in
the presence of topological order [86,88,102,111–117]. How-
ever, this concern does not affect our discussion in the SMG
phase, because the SMG insulator is a trivial insulator without
topological order.

C. Particle-hole symmetry and zero Fermi surface

The Luttinger theorem only constrains the Fermi volume
but does not impose requirements on the shape of the Fermi
surface. However, in this particular example of the bilayer
square lattice model Eq. (3), the system has sufficient sym-
metries to determine even the shape of the Fermi surface.

The key symmetry here is a particle-hole symmetry ZC
2 ,

which acts as

cilσ → (−)i(−)σ c†
ilσ̄ . (10)

The Hamiltonian H in Eq. (3) is invariant under this trans-
formation. Since the Green’s function is an identity matrix in
the flavor space Eq. (8) which is invariant under any flavor
basis transformation, we can omit the flavor indices and fo-
cus on the frequency-momentum dependence of the Green’s
function, written as

G(ω, k) =
∑

t,x,t ′,x′

〈c(t, x)c(t ′, x′)†〉ei(ω(t−t ′ )−k·(x−x′ )). (11)

Given Eq. (10), the fermion field c(t, x) transforms under the
ZC

2 symmetry as

c(t, x) → c(t, x)†eiQ·x, c(t, x)† → c(t, x)e−iQ·x, (12)

where Q = (π ,π ) is the momentum associated with the stag-
ger sign factor (−)i on the square lattice. As a consequence,
the Green’s function transforms as

G(ω, k) → −G(−ω, Q − k). (13)
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Furthermore, there are also two diagonal reflection symme-
tries on the square lattice, which maps k = (kx, ky) to (ky, kx )
or (−ky,−kx ) in the momentum space.

Both the Fermi liquid and the SMG states preserve the
particle-hole symmetry ZC

2 and the lattice reflection sym-
metry, which requires the Green’s function to be invariant
under the combined symmetry transformations. So the zero-
frequency Green’s function must satisfy

G(0, kx, ky) = −G(0,π ± ky,π ± kx ), (14)

meaning that the sign change of G(0, k) should happen along
kx ± ky = π mod 2π , which precisely describes the shape of
the Fermi surface. The Fermi surface is polelike in the Fermi
liquid state and becomes zerolike in the SMG state, but its
shape and volume remain the same.

However, it should be noted that the precise overlap of the
zero Fermi surface in the SMG insulator and the pole Fermi
surface in the Fermi liquid is a fine-tuned feature of the bilayer
square lattice model Eq. (3). In more general cases, such as
including further neighbor hopping in the model, the particle-
hole symmetry would cease to exist, thus the invariance in the
shape of the Fermi surface is no longer guaranteed. Neverthe-
less, the Luttinger theorem can still ensure the invariance in
the Fermi volume, thereby providing the SMG insulator with
robust Green’s function zeros.

To verify this proposition, we will analyze the behavior
of the Green’s function in the SMG phase from both strong
and weak coupling perspectives in Sec. III. Our calculations
suggest that, for this specific model, the SMG state indeed
possesses a Fermi surface (of Green’s function zeros) that is
identical in shape to that in the Fermi liquid state.

III. EVIDENCE OF GREEN’S FUNCTION ZEROS

A. Strong coupling analysis

We will first focus on the strong interaction limit (J/t →
∞), where the system is deep in the SMG phase and the
exact ground state is known [see Eq. (5)]. We start from this
limit and turn on the hopping term as a perturbation. We
employ exact diagonalization and cluster perturbation theory
(CPT) [94,118] to compute the Green’s function in the SMG
phase. The details of our method are described in Appendix.
It is valid to use a small cluster to reconstruct the Green’s
function in the SMG phase since the ground state is close
to a product state that does not have long-range correlation
or long-range quantum entanglement. This is quite different
from the Hubbard model, where the Fermi surface anomaly
is nonvanishing, and the infrared phase must be either SSB
order or topological order [86,111,114,115]. In either case, the
ground state wave functions cannot be reconstructed from the
small clusters due to the long-range correlation/entanglement.
This argument has been noted in the original paper on the CPT
method [94].

To be specific, we first partition the square lattice (in-
cluding both layers) into 2 × 2 square clusters as shown in
Fig. 2. Let us first ignore the intercluster hopping. Within
each cluster, we represent the Hamiltonian in the many-body
Hilbert space and use the Lanczos method to obtain the lowest
∼2000 eigenvalues and eigenvectors. The Green’s function
in the cluster can then be obtained by the Källén-Lehmann

FIG. 2. Partition the square lattice into 2 × 2 clusters. The many-
body Hamiltonian is exactly diagonalized within each cluster. The
effect of intercluster hopping is included in an RPA-like approach.

representation

G0(ω)i j =
∑

m>0

〈0|ci|m〉〈m|c†
j |0〉

ω − (Em − E0)
+

〈m|ci|0〉〈0|c†
j |m〉

ω + (Em − E0)
, (15)

where |m〉 is the mth excited state with energy Em, and |0〉 is
the ground state with energy E0, whose wave function was
previously given in Eq. (5). Since the four fermion flavors
(two spins and two layers) are identical under the internal
flavor symmetry, we can drop the flavor index in the Green’s
function and only focus on one particular flavor with the site
indices i, j, where i, j = 1, 2, 3, and 4 as indicated in Fig. 2.
The convergence of the Green’s function can be verified by
including more eigenstates from the Lanczos method. We
checked that increasing the number of eigenpairs to ∼8000
will not change the result significantly, indicating that the
result with ∼2000 eigenpairs has already converged.

Now we restore the intercluster hoping to extend the
Green’s function from small clusters to the infinite lattice. The
Green’s function of superlattice momentum k can be obtained
from the random phase approximation (RPA) approach [94],

G(ω, k)i j =
(

G0(ω)
1 − T (k)G0(ω)

)

i j
, (16)

where the T (k) matrix

T (k) = −t





0 e−i2kx 0 ei2ky

ei2kx 0 ei2ky 0

0 e−i2ky 0 ei2kx

e−i2ky 0 e−i2kx 0




(17)

describes the intercluster fermion hopping. The resulting
Green’s function G(ω, k)i j is defined in the folded Brillouin
zone k ∈ (−π/2,π/2]×2 with sublattice indices i, j. To un-
fold the Green’s function to the original Brillouin zone k ∈
(−π ,π]×2, we perform the following (partial) Fourier trans-
form

G(ω, k) = 1
L

∑

i, j

e−ik·(ri−r j )G(ω, k)i j . (18)

We numerically calculated the unfolded Green’s func-
tion G(ω, k) using the above-mentioned cluster perturbation
method. We take a large interaction strength J/t = 8 deep in
the SMG phase and present the resulting Green’s function
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FIG. 3. Fermion Green’s function Eq. (18) deep in the SMG
insulator phase, at J = 8t . (a) The imaginary part (spectral func-
tion) −2 Im G(ω + i0+, k) shows the pole (spectral peak) structure.
(b) The real part Re G(ω, k) shows the pole (divergence) and zero
(purple contour) structures. (c) Same as (b) but zoomed in near ω = 0
to show the dispersion of Green’s function zeros.

in Fig. 3. From Fig. 3(a), the poles of the Green’s function
form two dispersing bands around ω = ±J , which resembles
the upper and lower Hubbard bands in the Hubbard model.
This indicates the quasiparticles are fully gapped in the SMG
phase. Meanwhile, from Figs. 3(b) and 3(c), the zeros of
the Green’s function appear around ω = −αεk/J2 with some
nonuniversal but positive coefficient α > 0. We find that the
“dispersion” of zeros is reversed compared to the original
band dispersion εk. In Fig. 4, we also numerically confirmed
that the “bandwidth” wzero of zeros is suppressed by the inter-
action J as wzero ∼ J−2 as J → ∞.

Building upon the above observation of the poles and zeros
of the Green’s function, we put forth the following empirical
formula:

GSMG(ω, k) = ω + αεk/J2

(ω − εk/2)2 − J2
, (19)

FIG. 4. Scaling of the Green’s function zero “bandwidth” wzero

with the interaction strength J . Circles represent the numerically
calculated wtext at different J , and the line is a fit to the data.

as an approximate description of our numerical result Eq. (18).
An important aspect of this formula is the positioning of
the Green’s function zeros precisely around the initial Fermi
surface (where εk = 0) at ω = 0. This is indicated by the small
arrows in Fig. 3(c).

Assuming Re GSMG(0, k) = 0 as the definition of the zero
Fermi surface in the SMG phase, it would encompass the
same Fermi volume as the pole Fermi surface in the Fermi
liquid phase. As both translation and charge conservation
symmetries remain unbroken in the SMG phase, the Luttinger
theorem mandates the preservation of the Fermi volume.
Given that the SMG state is a fully gapped trivial insulator,
there is no pole (no quasiparticle) at low energy, thus the
Green’s function can only rely on zeros to fulfill the Fermi
volume required by the Luttinger theorem, which is explicitly
demonstrated by Eq. (19).

B. Weak coupling analysis

Nevertheless, SMG is not the sole mechanism for gapping
out the Fermi surface. SSB might also open a full gap on the
Fermi surface, which corresponds to the Higgs mechanism for
fermion mass generation. Specifically, in the bilayer square
lattice model Eq. (3), due to the perfect nesting of the Fermi
surface, the Fermi liquid exhibits strong instability toward
SSB orders. Without loss of generality, we will focus on the
interlayer exciton condensation in the weak coupling limit.
The corresponding order parameter φEC was introduced in
Eq. (6), which carries momentum Q = (π ,π ). The exciton
condensation leads to an SSB insulating phase, as noted in
the phase diagram Fig. 1(c). However, there are significant
differences between the SMG insulator and the SSB insulator,
especially in terms of the structure of Green’s function zeros.

In the SSB insulator phase, the Brillouin zone folds by the
nesting vector Q = (π ,π ). The fermion Green’s function can
be written in the (ck, ck+Q)� basis (omitting layers and spins
freedom) as

GSSB(ω, k) = ωσ 0 + εkσ
3 + Re $σ 1 + Im $σ 2

ω2 − ε2
k − |$|2

, (20)

where $ = J〈φEC〉 denotes the exciton gap induced by the
exciton condensation 〈φEC〉 += 0. The properties of GSSB are
illustrated in Fig. 5. The spectral function in Fig. 5(a) depicts
the quasiparticle peak along the band dispersion, reflecting a
gapped (insulating) band structure.

Since GSSB is a matrix, its zero structure should be de-
fined by its determinant being zero, i.e., det GSSB(ω, k) = 0,
which is the only way to define the zero structure in a basis
independent manner. Figure 5(b) indicates the determinant of
GSSB remains the same sign within the band gap induced by
the exciton condensation. Since GSSB does not preserve the
translation symmetry (as $ → −$ is translation-odd), and $
is nonzero, det GSSB does not have zeros crossing ω = 0 at the
original Fermi surface. These two observations are linked: the
absence of translation symmetry makes the Luttinger theorem
ineffective, hence there is no expectation for the zero Fermi
surface in the SSB insulator.

As the interaction J intensifies, the SSB insulator ulti-
mately transitions into the SMG insulator, as depicted in
the phase diagram Fig. 1(c). During this transition, the
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FIG. 5. Fermion Green’s function Eq. (20) GSSB in the SSB in-
sulator phase, assuming a gap size of |$| = t . (a) The imaginary
part −2 Im G(ω + i0+, k)11 in the 〈c†

kck〉 channel, showing the pole
(quasiparticle peak) along gapped bands. (b) The real part of the
determinant Re det G(ω, k). No zero within the gap. In both plots,
the frequency is shifted by a small imaginary part ω → ω + 0.01it
for better visualization of spectral features.

broken symmetry is restored, yet the fermion excitation gap
remains intact, similar to the pseudo-gap phenomenon seen
in correlated materials [119,120]. In the context of modeling
fermion spectral functions, the pseudogap phenomenon can
be interpreted as a consequence of the phase (or orientation)
fluctuations of fermion bilinear order parameters [121–128].
In this picture, the order parameter $ = $0eiθ maintains a
finite amplitude $0 as we enter the SMG phase from the
adjacent SSB phase, but its phase θ is disordered by long-
wavelength random fluctuations. Consequently, on the large
scale, $ cannot condense to form long-range order; but on a
smaller scale, $0 still provides a local excitation gap every-
where for fermions.

Based on this picture of the SMG state, the simplest treat-
ment is to focus on the long wavelength fluctuation of $ and
estimate its self-energy correction for the fermion by

+(ω, k) = = E
$

$̂†G0(ω, k)$̂ = $2
0

ωσ 0 + εkσ 3
, (21)

where the vertex operator is $̂ := Re $σ 1 + Im $σ 2 and the
bare Green’s function is G0(ω, k) = (ωσ 0 − εkσ

3)−1. Here
we have assumed that the correlation length ξ of the bosonic
field $ is long enough that its momentum is negligible for
fermions. This assumption is valid near the transition to the
SSB phase, as the correlation length diverges (ξ → ∞) at the
transition.

Using this self-energy to correct the bare Green’s function,
we obtain

G(ω, k) = (G0(ω, k)−1 − +(ω, k))−1

= ωσ 0 + εkσ
3

ω2 − ε2
k − $2

0
. (22)

Since the translation symmetry has been restored in the SMG
phase, we can unfold the Green’s function back to the original
Brillouin zone [by taking the G(ω, k)11 component], which
leads to a weak coupling description of the Green’s function

FIG. 6. Fermion Green’s function Eq. (23) G′
SMG in the SMG

insulator phase near the phase transition to an adjacent SSB phase,
assuming a local gap size of $0 = t . (a) The imaginary part (spectral
function) −2 Im G(ω + i0+, k) shows the pole (quasiparticle peak)
along gapped bands. (b) The real part Re G(ω, k) exhibits the zero
(purple contour) crossing ω = 0 at the original Fermi surface. In
both plots, the frequency is shifted by a small imaginary part ω →
ω + 0.01it for better visualization of spectral features.

in the shallow SMG phase near the transition to the SSB phase

G′
SMG(ω, k) = ω + εk

ω2 − ε2
k − $2

0
. (23)

A more rigorous treatment of a similar problem can be found
in Ref. [95], which includes finite momentum fluctuations
of $. The major effect of these fluctuations is to introduce
a spectral broadening for the fermion Green’s function as
if replacing ω → ω + iδ in Eq. (23). It was also found that
the broadening δ ∼ ξ−1 scales inversely with the correlation
length ξ of the order parameter, which justifies our simple
treatment in the large-ξ regime. Similar Green’s functions as
Eq. (23) was previously constructed to describe non-Fermi
liquid [98] statisfying the Luttinger theorem. However, its
physical meaning is now clarified as Green’s function in the
SMG phase.

The features of G′
SMG in Eq. (23) are presented in Fig. 6.

When comparing Figs. 6(a) and 5(a), we can observe that the
pole structure of G′

SMG is identical to that of GSSB (in the
diagonal component), both showcasing a gapped spectrum.
However, they significantly differ in their zero structures, as
seen by comparing Figs. 6(b) and 5(b). Due to the restoration
of symmetry, the low-energy zeros reemerge in the Green’s
function in the SMG phase. Additionally, its zero Fermi sur-
face perfectly aligns with the original pole Fermi surface,
fulfilling the Luttinger theorem’s requirement for the Fermi
volume.

Comparing the Green’s function in the SMG phase derived
from the strong coupling analysis Eq. (19) and the weak
coupling analysis Eq. (23) (see also Figs. 3 and 6), we find that
despite the apparent difference in high-energy spectral fea-
tures, the zero Fermi surface defined by G(0, k) = 0 remains a
resilient low-energy feature. The persistent zero Fermi surface
in the SMG phase is a consequence of the Luttinger theorem.

Nonetheless, besides the low-energy zero structure, it is
also intriguing to understand how the high-energy spectral
feature deforms from the weak coupling case to the strong
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FIG. 7. (a) Broadened spectral function from the one in Fig. 3.
(b) Reconstructed Green’s function real part by the KK relation,
showing robust Green’s function zeros (purple contour) crossing
ω = 0.

coupling case. However, this problem requires nonperturba-
tive numerical simulations. Fortunately, the bilayer square
lattice model Eq. (3) admits a sign-problem-free [129] quan-
tum Monte Carlo [130–134] simulation. We will leave this
interesting direction for future research.

IV. PROBING GREEN’S FUNCTION ZEROS

While Green’s function zeros are an important feature of
the SMG insulator, they are not directly observable in ex-
periments. Spectroscopy experiments, such as angle-resolved
photoemission spectroscopy (ARPES), can directly probe the
fermion’s spectral function A(ω, k) = −2 Im G(ω + i0+, k),
which is the imaginary part of Green’s function. By employ-
ing the Kramers-Kronig (KK) relation to recover the real part
of Green’s function from the spectral function,

Re G(ω, k) = 1
2π

P
∫

dω′ A(ω′, k)
ω′ − ω

, (24)

we can indirectly study the zero structure of the Green’s func-
tion.

However, the spectral function might be broadened in ex-
perimental data due to noise or dissipation. We are interested
in studying how sensitive the reconstructed Green’s function
zero is to these disturbances, in order to understand the sta-
bility of the method. Following Sec. III A, we start from the
strong coupling limit and use the CPT approach to calculate
Green’s function. To account for the spectral broadening ef-
fect, we replace ω with ω + iδ, where δ is relatively large,
say, about the order of the hopping t . Based on the broadened
spectral function in Fig. 7(a), we use the KK relation to
reconstruct the real part, as shown in Fig. 7(b). We find that
the zero Fermi surface maintains the same shape, but the zero
“dispersion” bandwidth gets larger.

The increase in bandwidth can be understood by taking the
SMG Green’s function GSMG(ω, k) in Eq. (19), and solving
for its zeros Re G(ω + iδ, k) = 0. To the leading order of 1/J
and δ, the solution is given by

ω(k) = −
(

1 + δ2

α

)αεk

J2
+ · · · , (25)

meaning that the bandwidth of Green’s function zero disper-
sion will increase by δ2/α, but the corresponding Luttinger
surface remains unchanged. Therefore the Green’s function
zero in the SMG phase is a robust feature that can be poten-
tially identified from spectroscopy measurements, even in the
presence of noises or dissipations.

V. SUMMARY AND DISCUSSIONS

In this paper, we investigated the Fermi surface SMG in a
bilayer square lattice model. A crucial finding of this study
lies in the robust Green’s function zero in the SMG phase.
Traditionally, a Fermi liquid state is characterized by poles in
the Green’s function along the Fermi surface. However, as the
fermion system is driven into the SMG state by interaction
effects, these poles are replaced by zeros. This is a robust
phenomenon underlined by the constraints of the Luttinger
theorem.

Our exploration is not limited to theoretical assertions.
We also offer a tangible demonstration of this occurrence
in the bilayer square lattice model. By applying both strong
and weak coupling analyses, we provide a comprehensive
portrayal of the fermion Green’s function across different
interaction regimes. We highlight that the emergence of the
zero Fermi surface is not an ephemeral or fine-tuned phe-
nomenon, but rather a robust and enduring feature of the SMG
phase. We show that even when the system is subjected to
spectral broadening, the zero Fermi surface persists, retaining
the Fermi volume.

The results of this study confirm the robustness of the zero
Fermi surface and underscore the possibility of observing it
in experimental setups, such as through ARPES. Despite not
being directly observable, the zero structure of the Green’s
function could be inferred indirectly via the KK relation.

The bilayer square lattice model may be relevant to the
nickelate superconductor recently discovered in pressurized
La3Ni2O7 [135,136], which is a layered two-dimensional ma-
terial where each layer consists of nickel atoms arranged in
a bilayer square lattice. The Fermi surface is dominated by
dz2 and dx2−y2 electrons of Ni. The dz2 electron has a rela-
tively small intralayer hopping t due to the rather localized
dz2 orbital wave function in the xy plane but enjoys a large
interlayer antiferromagnetic Heisenberg interaction J due to
the super-exchange mechanism mediated by the apical oxy-
gen. This likely puts the dz2 electrons in an SMG insulator
phase in the bilayer square lattice model and opens up op-
portunities to investigate the proposed Green’s function zeros
in real materials. The potential implication of SMG physics
on the nickelate high-Tc superconductor still requires further
theoretical research in the future.
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APPENDIX: CLUSTER PERTURBATION THEORY

Here we review the details of cluster perturbation theory
(CPT) originally developed in [94]. Denote the superlattice
lattice points by R, then the position of any original lattice
point would be given by R + r, where r is the relative position
of the lattice point to the location R of the cluster containing
that particular lattice point. For clusters of size L, the generic
Green’s function in real space can be denoted by GR,R′

i, j , with
i, j = 1, . . . , L, where the time dependence is implicitly as-
sumed and same goes for the frequency dependence in Fourier
space. Due to the translation invariance of the clusters on the
superlattice, the real space Green’s function can be firstly
partially Fourier-transformed to give

GR,R′

i, j = 1
N

∑

q

G(q)i jeiq·(R−R′ ), (A1)

where the q summation is over the Brillouin zone (BZ) of
the superlattice and N is the number of clusters on the su-
perlattice, which goes to infinity in the thermodynamic limit.
In contrast to the translation invariance of the (R, R′) part of
GR,R′

i, j , or equivalently it only depends on the difference R − R′

as can be seen in Eq. (A1), the (i, j) part of the Green’s
function loses translation invariance due to the introduction
of clusters. This is so because correlation between two points
within the same cluster is not manifestly the same with the
correlation between another pair of equally separated points
across clusters. Therefore it takes two lattice momenta to fully
characterize GR,R′

i, j in Fourier space. More precisely, we have,

G(k, k′) = 1
NL

∑

R,R′

∑

i, j

GR,R′

i, j eik·(R+ri )−ik′·(R′+r j ). (A2)

Then we can plug Eq. (A1) into Eq. (A2) and integrate out the
superlattice lattice vectors R, R′ to obtain the following:

G(k, k′) = 1
L

∑

i, j

∑

q

G(q)i j δ̃k,qδ̃k′,qei(k·ri−k′·r j ), (A3)

where the δ̃ function denotes the fact that the two wave vectors
are equivalent only up to a superlattice reciprocal lattice vector
Q because Q · R = 2πZ in the phase factor. More precisely,
we have

δ̃k,q =
L∑

s=1

δk,q+Qs
, (A4)

where Qs with s = 1, . . . , L are the L inequivalent wave vec-
tors in the reciprocal lattice of the original lattice (see the 1d
case shown in Fig. 8). Then we can perform the q summation
in Eq. (A3) to have

G(k, k′) = 1
L

∑

i, j

∑

s,s′

G(k − Qs)i jδk′−k,Qs−Qs′
ei(k·ri−k′·r j )

=
∑

i, j

∑

$Q

G(k)i jδk′−k,$Qei(k·ri−k′·r j ), (A5)

where we have used the fact that G(q)i j is invariant under the
shift by a superlattice reciprocal lattice vector Qs.

The translation invariant approximation for the Green’s
function on the original lattice is obtained when $Q = 0, i.e.,

FIG. 8. Reciprocal lattice in 1d for a four-site cluster. K labels the
reciprocal lattice vector for the original lattice and Q labels the recip-
rocal lattice vector for the superlattice. More precisely, Ks = 2π

a s and
Qs = 2π

La s, where a is the lattice constant of the original lattice, L = 4
here and s ∈ Z.

k = k′. Therefore the Green’s function becomes

G(k) =
∑

i, j

G(k)i jeik·(ri−r j ). (A6)

Now we just need to calculate Gi, j (k) using cluster per-
turbation. The idea is to treat hopping between clusters as
perturbation when consider strong on-site interactions. In par-
ticular,

Ĥ = Ĥ0 + V̂ , (A7)

where Ĥ0 contains intracluster terms and V̂ contains interclus-
ter hopping. Considering nearest-neighbor hopping between
the square clusters used in the main text. The cluster construc-
tion is reproduced in Fig. 9 with the four sites in each cluster
labeled by 1–4. The hopping matrix is given by (setting lattice
constant a = 1)

V R,R′

i, j = − tδR,R′−2x̂(δi,2δ j,1 + δi,3δ j,4)

− tδR,R′+2x̂(δi,1δ j,2 + δi,4δ j,3)

FIG. 9. Cluster diagram showing the hopping between neigh-
boring clusters (dashed line). The four sites inside each cluster are
numbered as shown.
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− tδR,R′−2ŷ(δi,1δ j,4 + δi,2δ j,3)

− tδR,R′+2ŷ(δi,3δ j,2 + δi,4δ j,1). (A8)

Fourier transforming V R,R′

i, j into the superlattice reciprocal
space, we have

Vi, j (q) = −tei2qx (δi,2δ j,1 + δi,3δ j,4)

− te−i2qx (δi,1δ j,2 + δi,4δ j,3)

− tei2qy (δi,1δ j,4 + δi,2δ j,3)

− te−i2qy (δi,3δ j,2 + δi,4δ j,1)

= −t





0 e−i2qx 0 ei2qy

ei2qx 0 ei2qy 0
0 e−i2qy 0 ei2qx

e−i2qy 0 e−i2qx 0





i, j

, (A9)

which is the form presented in Eq. (17) in the main text. Then
the interacting Green’s function is given by

Ĝ(q) = 1

ω − Ĥ
= 1

ω − Ĥ0 − V̂ (q)
= Ĝ0

1 − V̂ (q)Ĝ0
, (A10)

where Ĝ0 ≡ (ω − Ĥ0)−1 is the intracluster Green’s function
that can be easily obtained by exact diagonalization as long as
the cluster size is not too big. The obtained G(q)i j can now be
plugged into Eq. (A6) to calculate the CPT Green’s function
for the interacting system.
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Symmetric mass generation (SMG) insulators are interaction-driven, featureless Mott insulating
states in quantum many-body fermionic systems. Recent advancements suggest that zeros in the
fermion Green’s function could lead to non-vanishing negative optical conductivity in SMG insula-
tors, even below the charge excitation gap. This study explores the origin of this unusual behavior
through the lens of pole-zero duality, highlighting a critical issue where the current operator be-
comes unbounded, rendering the response function unphysical. By employing a lattice model, we
derive a well-behaved lattice regularization of the current operator, enabling a detailed study of
optical conductivity in SMG insulators. Utilizing both analytical and numerical methods, including
strong-coupling expansions, we confirm that SMG insulators exhibit no optical conductivity at low
energies below the charge gap, e�ectively resolving the paradox. This work not only deepens our
understanding of quantum many-body phenomena but also lays a robust theoretical groundwork
for future experimental explorations of SMG materials.

Introduction. — Symmetric mass generation (SMG)
insulators [1–30] represent a novel class of interaction-
driven featureless Mott insulating states in quantum
many-body systems of fermions. These systems feature
the cancellation of all quantum anomalies [31–33], such
that a symmetric gapped state without spontaneous sym-
metry breaking (SSB) or topological order is allowed,
which we refer to as “featureless”. SMG insulators are
characterized by a full energy gap to all fermionic and
bosonic excitations, including collective charge and cur-
rent excitations. The excitation gap arises from non-
perturbative interaction e�ects and eludes mean-field
theoretical explanations.

Central to the theoretical understanding of SMG in-
sulators is the behavior of the fermion Green’s function,
defined as: G(k) := ���k�†

k�, where �k is the fermion op-
erator at the energy-momentum k = (�, k). A key aspect
of the SMG insulator is that its fermion Green’s function
determinant approaches zero as energy-momentum tends
to zero [34–49], i.e.

det G(k) = 0 as kµkµ � 0. (1)

This property, the zero of the Green’s function, raises
an intriguing question regarding its experimental impli-
cations [29, 45–48, 50]. Recently, Golterman and Shamir
[49] proposed that these zeros might significantly influ-
ence the electromagnetic response of the SMG insula-
tor when the fermions are coupled to a background U(1)
gauge field, particularly suggesting a scenario where the
SMG insulator exhibits non-vanishing charge conductiv-
ity at low energy, even below the energy gap of all exci-
tations.

This apparent puzzle of how an insulator might exhibit
conductive behavior without charge excitations below the
insulating gap presents a fascinating paradox. This re-
search aims to postulate a potential resolution of this
paradox, o�ering new insights into the behavior of the

optical conductivity in SMG insulators and expanding
our understanding of quantum many-body phenomena.

Pole-Zero Duality. — Let us first revisit the
Golterman-Shamir construction [49], and reproduce their
results through the broader lens of pole-zero duality in
the fermion Green’s function.

The analysis starts with the fermion two-point correla-
tion function G(k) = ���k�†

k� in the energy-momentum
space. At this point, Golterman and Shamir introduced
a pivotal assumption that the fermion system can be ap-
proximated by a free e�ective action,

S[�] = �
�

k

�†
kG(k)�1�k = �

�
ddx �†G(i�)�1�, (2)

such that the Green’s function will be consistently repro-
duced by the fermion path integral:

G(k) =
1

Z

�
D[�] (��k�†

k)e�S[�], (3)

with Z =
�

D[�]e�S[�] being the partition function. It is
crucial to acknowledge that this approach to reconstruct-
ing the e�ective action from the two-point correlation is
only valid under the premise that the fermions behave
as free or generalized free fields [51–55]. In such cases,
higher-point correlations decompose into two-point corre-
lations via Wick’s theorem. Should the fermions deviate
from generalized free field behavior, it becomes necessary
to incorporate higher-order terms in the e�ective action
to model higher-point correlation functions.

If we accept the e�ective action S[�] in Eq. (2), we can
proceed to gauge the U(1) symmetry of the fermion field
�, under which � � ei��. By introducing the U(1) gauge
field A through minimal coupling, the e�ective action
becomes:

S[�, A] = �
�

ddx �†G(i� � A)�1�. (4)
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2

Integrating out the fermion field �, the fermion path in-
tegral e�S[A] =

�
D[�]e�S[�,A] defines an e�ective action

S[A] for the gauge field A:

S[A] = Tr log G(i� � A)

=
��

n=0

1

n!
�µ1µ2···µn

n Aµ1Aµ2 · · · Aµn ,
(5)

where �µ1µ2···µn
n := �Aµ1

�Aµ2
· · · �Aµn

S[A] corresponds
to the nth order current correlation, or loosely denoted
as �n = �n

AS[A]. These correlations �n encode the re-
sponses of the fermion system to the external electromag-
netic field at di�erent orders. The goal is to understand
their behaviors across the SMG transition.

The SMG transition refers to the fermion gap-opening
transition driven by the fermion interaction [33]. On the
weakly interacting side, the fermion system is metallic,
characterized by gapless single-particle excitations at low
energy, manifested as poles in the fermion Green’s func-
tion. In contrast, on the strongly interacting side, the
system transitions into the SMG insulating phase, where
the original poles in the Green’s function are replaced by
zeros. For instance, in the case of the relativistic fermions
discussed in Ref. 49, the propagator poles and zeros are
respectively modeled by GDirac and GSMG as

GDirac(k) =
1

�0�µkµ
, GSMG(k) = ��0�µkµ

m2
. (6)

The concept of pole-zero duality [35, 42, 43, 46] o�ers
a compelling framework for relating the low-energy be-
haviors of Green’s functions across the SMG transition.
This duality is articulated through a transformation of
the fermion Green’s function,

G(k) � G̃(k) � G(�k)�1, (7)

under which poles and zeros replace each other. For ex-
ample, GDirac and GSMG in Eq. (6) are related by the
pole-zero duality.

Under the pole-zero duality defined in Eq. (7), the ef-
fective gauge action S[A] = Tr log G(i� � A) in Eq. (5)
transforms as

S[A] � Tr log G(�i� + A)�1 = �S[�A], (8)

then the nth order current correlation �n = �n
AS[A]

transforms as

�n � ��n
AS[�A] = �(�1)n�n. (9)

This implies that if the fermion Green’s functions across
the SMG transition are related by pole-zero duality, as
exemplified by GDirac and GSMG in Eq. (6), then their
corresponding electromagnetic response functions will
also be related by (for n = 2, 3)

�2,SMG = ��2,Dirac, �3,SMG = �3,Dirac, (10)

which reproduce the main conclusions in Ref. 49 that,
compared to free Dirac fermions, the vacuum polarization
�2 changes sign in the SMG insulator while the triangle
diagram �3 remains the same.

These results are remarkably general and do not de-
pend on the specific form of the Green’s function G(k).
Provided we accept the e�ective action S[�, A] in Eq. (4)
as our starting point, the conclusions outlined above are
inevitable under the principle of pole-zero duality.

The implications of these results are significant. Since
vacuum polarization is connected to optical conductiv-
ity by Re �(�, k) = � 1

� Im �2(�, k) [56], the relationship
�2,SMG = ��2,Dirac would imply that �SMG = ��Dirac,
indicating that the gapped SMG insulator would exhibit
a conductivity that is finite and opposite to that of the
gapless Dirac semimetal. However, we should not antici-
pate finite conductivity in an insulator below the charge
excitation gap. Additionally, the notion of negative con-
ductivity raises concerns about the potential violation of
the fluctuation-dissipation theorem and the loss of uni-
tarity in the theory.

Unbounded Current Operator — Given the perplexing
behavior of conductivity, we are motivated to examine
the foundational assumptions of the Golterman-Shamir
construction. Specifically, it is presumed that the e�ec-
tive action S[�, A] described in Eq. (4) models the physics
of the SMG insulator in a background electromagnetic
field. Starting from this premise, the current operator in
the system should be given by

Jµ = ��AµS[�, A � 0] =
�

k

�†
k�kµG(k)�1�k. (11)

For Dirac fermions described by GDirac(k) in Eq. (6),
Eq. (11) gives the current operator in the conventional
form Jµ =

�
k �̄k�µ�k (where �̄ := �†�0), which has a

bounded spectrum. However, for the SMG insulator, if
we naively substitute the Green’s function GSMG(k) from
Eq. (6) into Eq. (11),

Jµ =
�

k

m2

k4
(2kµk� � k2�µ�)�̄k���k, (12)

we find that the resulting current operator Jµ would di-
verge as k2 := kµkµ � 0. This divergence is a direct
consequence of the Green’s function zeros along the light
cone (k2 = 0) below the SMG insulating gap. Such
a current operator has an unbounded spectrum, which
is unphysical because this would imply the existence of
quantum states in which the velocity of charge movement
could potentially exceed the speed of light.

Starting from such an unbounded current operator to
define the current-current correlation �µ�

2 = ��JµJ��
could potentially lead to unphysical results. This per-
spective makes the unusual behavior of �2 less surpris-
ing. It implies that S[�, A] in Eq. (4) might not be a
complete theory for describing the SMG insulator. Given
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that the SMG insulator is intrinsically a strongly inter-
acting system, it is reasonable to suspect that the action
should include various higher-order terms to cancle the
divergence of the current operator, thereby ensuring a
well-defined bounded current operator.

Lattice Modeling — Having recognized the critical is-
sue with the unbounded current operator, our goal is to
move beyond the e�ective action S[�, A] and explore the
electromagnetic response of the SMG insulator from a
more fundamental perspective.

To address this challenge, we turn to a concrete lattice
model for the SMG insulator. Consider a system com-
prising four flavors of fermions cia (where a = 1, 2, 3, 4)
on each lattice site i, governed by the following Hamilto-
nian

H = �
�

ij

tije
iAij c†

iacja � g
�

i

c†
i1c

†
i2ci3ci4 + h.c., (13)

where the repeated flavor index a in c†
iacja will be im-

plicitly summed over, and “h.c.” represents the Hermi-
tian conjugate terms. In this model, a background U(1)
gauge connection Aij is introduced between every pair of
sites to gauge the global U(1) symmetry of the fermions
(acting as cia � ei�cia).

We further specify that the fermions in the system are
half-filled, a crucial condition for cancelling the Fermi-
surface anomaly [57–73] and enabling an SMG insulating
state [26, 27]. To enforce the half-filling condition with-
out fine-tuning the chemical potential, a simple approach
is to first assume a bipartite lattice structure (e.g., a
square or honeycomb lattice that can be partitioned into
A and B sublattices), and then impose an anti-unitary
sublattice particle-hole symmetry ZS

2 (also known as the
chiral symmetry [74, 75]), under which cia � K(�)ic†

ia,
with an alternating sign (�)i = ±1 for the site i in A and
B sublattices respectively. Here K represents the com-
plex conjugation operator that K2 = 1 and KiK = �i.

Let us first turn o� the background gauge field by set-
ting Aij = 0. In the free fermion limit (g = 0), the
Hamiltonian H describes a fermion hopping model on a
bipartite lattice with a chiral symmetry ZS

2 . In the mo-
mentum space, the ZS

2 symmetry transforms the fermions
as cka � K�3c†

ka, enforcing the Hamiltonian to take

the form H =
�

k c†
ka�k�1cka, where �� (� = 0, 1, 2, 3)

denote the Pauli matrices acting within the sublattice
Hilbert space. The specific details of the band dispersion
�k are not crucial to our discussion. Without fine-tuning
the band structure, �k typically exhibits a Fermi surface,
rendering the fermion system as a gapless Fermi liquid in
general.

Conversely, in the strong interaction limit (g � �),
the hopping term tij can be omitted relative to g, and
the model is decoupled to individual sites, permitting an
independent solution for each site. In this limit, the exact

many-body ground state of H is a product state:

|�SMG� =
�

i

1�
2
(c†

i1c
†
i2 � c†

i3c
†
i4)|0�, (14)

where |0� represents the vacuum state of the fermions.
This solution arises because the four-fermion interaction
g directly hybridizes the two-fermion states c†

i1c
†
i2|0� and

c†
i3c

†
i4|0� on each site, thereby lowering the energy of the

particular superposition state of them in Eq. (14). The
resulting product state |�SMG� maintains the full sym-
metry of the Hamiltonian H and exhibits a gap of order
g to all excitations, therefore realizing an SMG insulator
(in its ideal limit). It is noteworthy that the fermions
are automatically half-filled on every site, which is pre-
cisely why we emphasize the half-filling condition from
the outset. Otherwise, we would have to violate the
fermion number conservation when driving the system
into the SMG insulating state as we increase the interac-
tion strength g.

Ideal SMG Limit. — As long as at half-filling, regard-
less of the band structure of �k, strong enough interac-
tion g in this model will always drive the fermion system
into the SMG insulating phase. Understanding how the
SMG transition happens, as a metal-insulator transition,
is a fascinating yet challenging problem. However, this
inquiry is beyond the scope of our current analysis. In-
stead, our focus will be on the strongly interacting regime
where g � tij , and we aim to study the current correla-
tion in the SMG insulating phase.

First, to properly define the current operator in the
lattice model Eq. (13), we start by introducing the back-
ground gauge field Aij , di�erentiating H with respect to
Aij and subsequently taking the limit of Aij � 0,

Jij =
�H

�Aij
= �(itijc

†
iacja + h.c.). (15)

This current operator Jij , well-defined on the lattice, has
a bounded spectrum and does not su�er from the previ-
ous problem of unbounded current in the e�ective ac-
tion approach. We can observe that the on-site inter-
action g has no influence on the definition of the cur-
rent operator in Eq. (15), as the interaction term was
not modified by the U(1) background field Aij in the
Hamiltonian Eq. (13) to begin with. The lattice cur-
rent operator Jij is entirely determined by the hopping
term. Therefore, in momentum space, the current opera-
tor J =

�
k c†

ka�k�k�1cka can also be expressed as solely
dependent on the band dispersion �k, the same as in the
free fermion limit.

Then, we can compute the current-current correla-
tion on the lattice as �(t) = �i�[Jij(t), Jkl(0)]��(t),
where Jij(t) = e�iHtJijeiHt. Evaluating the operator
expectation values on the ideal ground state |�SMG� in
Eq. (14) of SMG insulator in the g � tij limit, we find
�(t) = 4|tij |2 sin(2gt)�(t)�il�jk. Fourier transform to
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the frequency domain and averaging over all sites, the
optical conductivity Re �(�) = � 1

� Im �(�) reads

Re �(�) =
2�|t|2

2g

�
�(� � 2g) + �(� + 2g)

�
, (16)

where |t|2 :=
�

j |tij |2 characterizes the overall hopping
strength. This result illustrates the expected reasonable
behavior of the conductivity in an ideal SMG insula-
tor: Re �(�) should vanish at low frequencies |�| < 2g
within the charge gap 2g. The presence of sharp peaks
at � = ±2g is attributed to the fact that all excitations
exhibit flat dispersion in the ideal SMG state, as the sys-
tem decouples among independent sites. Deviating from
this ideal limit, for a finite tij/g, we should anticipate the
peaks to broaden into continua above the charge gap.

Beyond Ideal Limit. — To elucidate the general behav-
ior of optical conductivity in the SMG insulator beyond
the strong interaction limit, we engage a perturbative ex-
pansion in tij/g around the ideal state |�SMG� and cal-
culate the correlation functions in the perturbed state.
The perturbation theory has been thoroughly analyzed
in Ref. 46. The results indicate that the fermion Green’s
function in the SMG insulator of a ZS

2 -symmetric two-
band system can be approximated by:

GSMG(k) =
��0 + �k�1

�2 � �2
k � �2

, (17)

where � � g represents the single-particle gap (i.e., the
fermion mass) renormalized from its bare value g set by
the interaction strength. It is worth emphasizing that the
gap � here is not a symmetry-breaking order parameter
and has no mean-field interpretation. Notably, GSMG(k)
exhibits zeros along � = ±�k, a distinguishing feature of
SMG insulators. By contrast, in systems where the gap
opens due to spontaneous symmetry breaking (SSB), the
fermion Green’s function would take the following form:

GSSB(k) =
��0 + �k�1 + ��3

�2 � �2
k � �2

, (18)

where the extra term ��3 on the numerator breaks the
ZS

2 symmetry, which is particularly absent in GSMG.
In any scenario, the charge �00 and current �ij cor-

relation functions can be characterized by the following
equations:

�00(q) = Tr(G(k + q)G(k)),

�ij(q) = Tr(viG(k + q)vjG(k)).
(19)

In these expressions, the charge vertex operator is always
�0, and the current vertex operator is v = �k�k�1. These
vertex operators align with the lattice current operators
derived in Eq. (15), ensuring a bounded operator spec-
trum.

For example, consider a square lattice fermion
model characterized by the dispersion relation �k =

FIG. 1. The dynamic charge susceptibility ���(�, q) (imagi-
nary part) and optical conductivity �(�, q) as a function of fre-
quency � along a cut through �(0, 0), X(�, 0), M(�, �) points
in the momentum space, for 2D square lattice fermions in the
Fermi liquid (FL), spontaneous symmetry breaking (SSB),
and symmetric mass generation (SMG) phases respectively.

�2t(cos kx + cos ky) given the hopping parameter t (set
as the energy unit). We can numerically evaluate the
spectral weight of the dynamic charge susceptibility
���(�, q) = �2 Im�00(� + i0+, q) and the optical con-
ductivity �(�, q) = � 1

� Im �ii(� + i0+, q) as outlined in
Eq. (19). Plugging in the fermion Green’s function in
di�erent phases: GFL(k) = (��0 � �k�1)�1, GSSB(k)
in Eq. (18), and GSMG(k) in Eq. (17) (assuming � = t
in the SSB and SMG cases), their resulting electromag-
netic response functions are compared in Fig. 1. Much
like that in the SSB insulator, the SMG insulator’s elec-
tromagnetic response is gapped, displaying only subtle
di�erences in detail. Contrarily, it does not resemble the
gapless response typical of a Fermi liquid.

This analysis can be extended to SMG in non-chiral
Dirac/Weyl fermions, where on-site local gapping inter-
actions generally exist, ensuring that the current opera-
tor remains una�ected by interactions. This is a crucial
element for our argument concerning the lattice regu-
larization of the current operator. However, for chiral
fermions, such as in the 3-4-5-0 model [19, 24, 76, 77],
where the SMG interaction is not on-site, regularizing
the current operator is an open problem for future re-
search. Thus, while the paradox regarding how the SMG
insulator can exhibit finite optical conductivity despite
its gap is e�ectively resolved for non-chiral fermions, fur-
ther work is needed for chiral systems. This resolution
hinges on a nuanced understanding of the current opera-
tor in the SMG phase using lattice regularization. These
insights reinforce the SMG state’s insulating nature while
clarifying its distinctive low-energy electromagnetic prop-
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erties, laying a theoretical foundation for future experi-
mental exploration of featureless Mott insulators.
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Gauging a finite subgroup of a global symmetry can map conventional phases and phase transi-
tions to unconventional ones. In this work, we study, as a concrete example, an emergent Z2-gauged
system with global symmetry U(1), namely, the Z2-gauged Bose-Hubbard model both in 1-D and
in 2-D. In certain limits, there is an emergent mixed ’t Hooft anomaly between the quotient Ũ(1)
symmetry and the dual Ẑ2 symmetry. In 1-D, the superfluid phase is mapped to an intrinsically
gapless symmetry-protected topological (SPT) phase, as supported by density-matrix renormaliza-
tion group (DMRG) calculations. In 2-D, the original superfluid-insulator transition becomes a
generalized deconfined quantum critical point (DQCP) between a gapless SPT phase, where a SPT
order coexists with Goldstone modes, and a Ũ(1)-symmetry-enriched topological (SET) phase. We
also discuss the stability of these phases and the critical points to small perturbations and their
potential experimental realizations. Our work demonstrates that partial gauging is a simple and yet
powerful approach in constructing novel phases and quantum criticalities.

I. INTRODUCTION

The popular Landau paradigm has been tremendously
successful in describing di�erent phases and phase tran-
sitions among them. However, more novel phases and
phase transitions beyond the traditional paradigm have
been found over the past few decades. For example,
the deconfined quantum critical point (DQCP) [1] be-
tween two phases that break di�erent ordinary (0-form)
symmetries cannot be explained simply by spontaneous
symmetry breaking (SSB) from Landau order parame-
ters. Topologically ordered phases [2], as another exam-
ple, cannot be captured by SSB of ordinary symmetries.

It was realized recently that some DQCPs can be ex-
plained using mixed ’t Hooft anomalies, which can be
emergent at low energy between the two associated sym-
metries [3, 4]. The concept of ’t Hooft anomalies, widely
studied in high energy physics, has also found deep and
broad applications in condensed matter physics since
the discovery of topological insulators or, more gener-
ally, symmetry protected topological (SPT) phases [5–
12]. These anomalies characterize global symmetries that
cannot be gauged consistently. Related to this work,
more recently emergent anomalies have been used to con-
struct gapless SPT phases [13–17] which are “intrinsic”
in the sense that not only are the topological edge modes
robust against the gapless bulk of the system, but also
the SPT nature relies crucially on the gaplessness [18–
21]. ’t Hooft anomalies thus play an important role in
extending the Landau paradigm.

Another perspective in extending the Landau
paradigm comes from recent development in expanding
the definition of “symmetries” to generalized sym-
metries [22–24] (non-invertible symmetries included
[25, 26]) after it was realized that symmetry genera-
tors are essentially topological defects. In particular,
ordinary (0-form) symmetries, whose charged objects
are 0-dimensional, have been generalized to p-form

symmetries, whose charged objects are p-dimensional.
Topologically ordered phases can be interpreted as
SSB of some higher-form symmetries. Moreover, it
was realized that the Higgs phase can be viewed as a
SPT phase protected by higher-form symmetries and
is stable to weak explicit breaking of these higher-form
symmetries [27, 28].

One more perspective comes from gauging, i.e. cou-
pling systems to dynamical gauge fields. Gauging a the-
ory of matter fields can yield a rich phase diagram. A
prominent example is the Fradkin and Shenker model
whose phase diagram can contain a confined phase, a
Higgs phase, and a deconfined phase [29]. The gaug-
ing technique can also be used to extract information
in the original system. For example, gauging di�erent
SPT phases can lead to distinct topologically ordered
phases where quasiparticles have di�erent braiding statis-
tics [30].

Anomalies, higher-form symmetries, and gauging form
a powerful toolkit and have led to many interesting new
discoveries. It is known that coupling a system to a flat
gauge field produces a dual higher-form symmetry and
that partially gauging a discrete symmetry can produce
a mixed anomaly between the quotient symmetry and
the new dual symmetry [31, 32]. It was emphasized in
Ref. [33] that gauging a finite subgroup is a general ap-
proach to construct exotic critical points from ordinary
continuous ones. In 1-D, the critical point where the
global symmetry is spontaneously broken is mapped to a
DQCP between two SSB phases associated with the quo-
tient symmetry and the dual symmetry [34]. In higher di-
mensions, it is a generalized DQCP between an ordinary
SSB phase and a symmetry enriched topological (SET)
phase. We will analyze the generalized DQCP after par-
tial gauging using the new perspectives from higher-form
symmetries and mixed anomalies.

In this work, we study the emergent Z2-gauging of a
system with global U(1) symmetry. In next section, we
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describe the general ideas. Starting from Sec. III, we
will focus on a concrete model, i.e. the Bose-Hubbard
model both in 1-D and in 2-D, coupled to Ising spins
on the bonds, where the bosonic parity is e�ectively
gauged. We adapt the argument in the recently pro-
posed “Higgs = SPT” paradigm [27, 28] to argue that
the gauged 1-D superfluid phase is actually an intrinsi-
cally gapless SPT phase by considering both the peri-
odic boundary condition (PBC) and the open bound-
ary condition (OBC). The critical low energy theory
is a Z2-gauged compact boson conformal field theory
(CFT). These statements are corroborated by density-
matrix renormalization group (DMRG) computations. In
Sec. IV, we will argue that in 2-D, the superfluid is also
a type of gapless SPT where the gaplessness comes from
the Goldstone modes and thus the generalized DQCP is
between a gapless SPT phase and a SET phase. We also
discuss the e�ect of some perturbations that explicitly
break the dual symmetry, and comment on potential re-
alizations in experiments. We conclude our discussion
in Sec. V with some future directions. Some details are
presented in the appendices.

II. GENERAL IDEAS

Gauging a finite Abelian ordinary (0-form) symme-
try in d-D space induces a dual (d � 1)-form symmetry
generated by the Wilson operators [22]. The charged
objects of the dual (d � 1)-form symmetry are (d � 1)-
dimensional. One can gauge a finite Abelian normal sub-
group � of the global symmetry G (discrete or continu-
ous), then the global symmetry becomes G/� ⇥ �̂(d�1)

where �̂(d�1) = hom(�, U(1)), the Pontryagin dual of �,
is the dual (d � 1)-form symmetry. If G is a nontrivial
extension of G/� by �, then there is a mixed anomaly
between the G/� and �̂(d�1)[31]. As a corollary, there
is no trivially gapped (i.e. nondegenerate, gapped, and
symmetric under both symmetries) ground state.

Starting with a general ordinary second order phase
transition of Landau type in d-D where the global sym-
metry G is completely spontaneously broken, we can ob-
tain a generalized DQCP by gauging a finite normal sub-
group � of G [33]. The two phases separated by the gen-
eralized DQCP are associated with the SSB of G/� and
�̂(d�1), respectively. In particular, the SSB of a higher-
form symmetry �̂(d�1) (d � 2) leads to a topologically or-
der phase [22, 23]. For example, we can gauge the � = Z2

subgroup of a Z4 clock model in 2-D where there is an
ordinary second order phase transition across which the
unbroken G = Z4 is completely broken. The transition
point now becomes a generalized DQCP between a SSB
phase where the quotient Z̃2 is broken and a SET phase
enriched by the quotient Z̃2 (see Ref. [33] and also Ap-
pendix A). Using the argument in Refs. [27, 28], we claim
that the the quotient Z̃2 SSB phase in fact has bound-
ary modes as long as the dual 1-form Ẑ2 (as well as the

original Z4 symmetry) is preserved. If G is continuous,
the SSB of G/� leads to Goldstone modes, the winding
number of which is the charge under the dual Ẑ2 sym-
metry. Thus, in the corresponding phase, the boundary
modes coexist with the gapless bulk.

It is even more interesting if there is an intermediate
phase sandwiched between phases where the global sym-
metry is preserved or completely broken, such that, after
gauging, the dual symmetry and the quotient symmetry
are both preserved. For instance, the intermediate criti-
cal phase for the 1-D q-state clock model with q � 5 has
an emergent U(1) (see Appendix A). This is similar to
the superfluid phase in the 1-D XY model with global
symmetry U(1). We argue that the critical phase is an
intrinsically gapless SPT phase in the Z2-gauged model,
described by a symmetry-enriched CFT [16]. The re-
sponse action that dictates the symmetry protected edge
modes is similar to that in the gauged Ising model in the
Ref. [27]. However, as a result of partial gauging, there
is a subtle ’t Hooft anomaly matching that governs the
gaplessness of the SPT phase. This idea is not limited
to bosonic systems and can be similarly applicable to
fermionic systems. In our following discussions, we will
focus on the bosonic case with G = U(1).

III. 1-D Z2-GAUGED BOSE-HUBBARD MODEL

A. Model

Consider a 1-D Bose-Hubbard model (on the sites, see
Fig. 1(a)) coupled to Ising spins (on the bonds) as follows:

H = �t
�

i

b†
i�

z
i+1/2bi+1 + U

�

i

ni(ni � 1)

� K
�

i

�x
i�1/2(�1)ni�x

i+1/2, (1)

where t is the hopping, U > 0 is the on-site Hubbard
repulsion, and ni = b†

i bi is the local boson number. In
the last term, the Ising spins are coupled to the local
boson parity operator (�1)ni . If K is taken to be much
larger than the rest of the parameters, then it becomes
an emergent parity-gauged Bose-Hubbard model

H = �t
�

i

b†
i�

z
i+1/2bi+1 + U

�

i

ni(ni � 1) (2)

with the gauge constraints

Gi = �x
i�1/2(�1)ni�x

i+1/2 = 1. (3)

Note that in the Hamiltonian, for simplicity, we consider
the canonical ensemble where the total boson number
N =

�
i ni is conserved. In our following discussion,

we consider even system size L, regardless of boundary
conditions, with one boson per site. This makes the pre-
sentation more neat while retaining the essential physics
[35] .
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FIG. 1: (a) Schematic diagram for the 1-D Bose-Hubbard
model (blue sites) coupled to Ising spins (violet bonds).
(b) Schematic phase diagram. The original BKT tran-
sition between the superfluid and the insulator phase is
enriched to a gauged BKT transition between a gapless
SPT superfluid phase, protected by Ũ(1) and the dual
Ẑ2 symmetry W , and the insulator phase with W spon-
taneously broken. (c) Degeneracies in the superfluid and
the insulator phase with PBC and OBC, respectively.
(d, e) Finite size scaling of the gap �bulk in both the
superfluid (t = 1.0, U = 1.0) and the insulator phase
(t = 0.1, U = 1.0). �bulk is defined to be the gap in
spectrum above the (possibly) degenerate ground states.
OBC is used in both cases.

The microscopic model has two symmetries: spin flip
symmetry generated by

W =
�

i

�z
i+1/2, (4)

and boson particle number conservation U(1) symmetry
acting as:

X(�) =
�

i

ei�ni (5)

with X(�) = X(� + 2�). The boson parity

P =
�

i

(�1)ni (6)

is a subgroup of U(1).
In the low energy theory, we can interpret the Ising

spins as Ising gauge fields. E�ectively, bosons on sites
are minimally coupled to the Ising gauge field on the
bonds. The boson parity, viewed as a Z2 subgroup of
the U(1) symmetry, is gauged, while W can be viewed
the dual Ẑ2 symmetry generated by Wilson loops. Using
PBC, it is easy to see that the UV physical symmetry
P acts trivially in the IR theory since P =

�
i(�1)ni =�

i(�
x
i+1/2)

2 = 1. This is equivalent to (trivially) project-
ing out the parity odd sector of the Hilbert space and at

the same time adding the twisted sector. Thus, in the IR
theory, the original U(1) symmetry e�ectively reduces to
the quotient Ũ(1) � U(1)/Z2 symmetry whose action is
now

X̃(�) =
�

i

X̃i(�) �
�

i

ei�ni/2. (7)

Due to the gauge constraints, X̃(� + 2�) = X̃(�) is sat-
isfied when PBC is used. In our following discussion, we
will sometimes refer to Z2 groups using their generator
for simplicity.

We must distinguish the UV symmetry W ⇥ U(1),
where P is a subgroup and hence physical, and the IR
symmetry W ⇥ Ũ(1), where the Z2 parity is a gauged
symmetry. They will play an important role in our later
discussion when it comes to the question whether a ’t
Hooft anomaly is emergent and whether it should be
canceled. Also, even though P = 1 is trivial in the UV
because we are considering the case with even N = L,
it still plays a nontrivial role in the IR. The discussion
about the grand canonical ensemble with a finite chem-
ical potential µ adds more features and is discussed in
Appendix C.

Before coupling to Ising spins, the Bose-Hubbard
model can have two phases: a superfluid or a Mott in-
sulator. The superfluid-insulator transition is a Berezin-
skii–Kosterlitz–Thouless (BKT) transition point where
the transition is due to fluctuations of vortices in the
phase [36, 37]. The transition occurs around t/U � 0.3
[38–40]. Note that in the supefluid phase, the U(1)
symmetry is not broken due to the celebrated Mermin-
Wagner theorem [41], but there is a quasi-long range or-
der, where �b†

i bj� � r��b decays algebraically for large
r = |j � i| with �b = K̃/2, K̃ being the Luttinger pa-
rameter. Similarly, the disorder parameter |�XR(�)�| =
|�

�
i�R ei�ni�|, where R is a line segment with r = |R|,

decays algebraically.
Typical phase transitions are insensitive to boundary

conditions in the thermodynamical limit. Gauging the Z2

subgroup is equivalent to averaging over untwisted and
twisted sectors. Thus, gauging the Z2 subgroup does not
change the position of critical point in the phase diagram.
A continuous phase transition in the gauged model is
directly inherited from the ungauged one but with many
new features due to the interplay between the quotient
Ũ(1) and the dual Ẑ2 symmetry W . The original BKT
transition is now gauged (see Fig. 1(b)).

The intuitions are justified by DMRG computations.
After gauging, �b†

i b
†
i bjbj� remains gauge-invariant. The

scaling law remains the same as in the ungauged system.
�b†

i bj�, however, has to be dressed with gauge fields �z
i to

remain gauge-invariant: �b†
i�

z
i+1/2...�

z
j�1/2bj�. The lat-

ter has the same scaling law as �b†
i bj� in the ungauged

system. An example of both order parameters in the su-
perfluid phase is shown in Fig. 2(a-b) where a power-law
decay as a function of large r = |j � i| in both parame-
ters can be seen. In the insulator phase, they both decay
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FIG. 2: (a) Boson pair correlation function, which is
shown to follow a power law �b†

i b
†
i bjbj� � r��bb in the su-

perfluid phase. The inset shows the extrapolation of the
exponent �bb to the thermodynamic limit using finite-
size scaling. Error bars are obtained from the upper
and the lower bound of the extrapolation. (b) Gauge-
invariant boson correlation, which also follows power law
�b†

i�
z...�zbj� � r��b . The inset shows the extrapola-

tion of �b. (c) The Ũ(1) disorder operator |�X̃R(�)�| de-
cays as power law r��(�) in r. The main plot shows
the � = 2� case. The inset shows the �-dependence of
the exponent �, which is 4�-periodic. � is symmetric
about 2�, and a quadratic fit (dashed line) is performed
for the segment from 0 to 2�. (d) Subsystem von Neu-
mann entanglement entropy SE as a function of subsys-
tem size l. The inset shows the linear dependence of SE

on �(l) � 1
6 log

�
2L
� sin

�
�l
L

��
. The central charge c, which

is given by the slope, is shown to be almost exactly 1. All
the main plots are for L = 100, t = 0.5 and U = 1.0.

exponentially to zero. The disorder parameter |�X̃R(�)�|
also remains intact. It saturates to a constant in the
insulator phase. Its behavior in the superfluid phase is
shown in Fig. 2(c) where the angle dependence of �(�) is
also displayed. �(�) has a quadratic dependence on �. As
we will discuss below, this is compatible with the charge
fractionalization in the superfluid phase. Note that even
though OBC is used when these quantities are calculated,
the bulk behavior is the same as in the PBC case.

On the other hand, the new Ising degrees of freedom
also behave di�erently in the superfluid and the insula-
tor phase. As a result of the emergent gauge constraints,
the relation ��x

i �x
j � = �

�
i�R(�1)ni� = �X̃R(2�)� holds

in either phase. It relates an “order parameter” asso-
ciated with W to a disorder parameter associated with
Ũ(1). As we will discuss soon, this is a manifestation
of the emergent mixed anomaly between Ũ(1) and the
dual Ẑ2 symmetry W . In the insulator case, the magne-
tization |��x

i �| in the thermodynamical limit is nonzero,
W is spontaneously broken, and the spin-spin correlation
|��x

i �x
j �| saturates to a constant. In the superfluid phase,
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FIG. 3: (a) The bulk spin-spin correlation in the super-
fluid phase with a power-law fit (dash line) |��x

i �x
j �| �

r��s . The inset shows the extrapolation of the critical
exponent �s to the thermodynamic limit using finite-size
scaling. (b) The magnetization |��x

i �| in the superfluid
phase across the system with OBC. The spins on the
edges are perfectly polarized and the magnetization de-
cays to a small value to the bulk. The inset shows the
center spin magnetization |��x

L/2�| follows a power law
decay as system size increases, compatible with the fact
that magnetization vanishes when PBC is used. L = 100,
t = 0.5 and U = 1.0 for both plots.

the bulk magnetization vanishes and the bulk spin-spin
correlation |��x

i �x
j �| � r��s decays algebraically regard-

less of whether PBC or OBC is used. See Fig. 3(a) for
the bulk correlation with OBC [42].

In our DMRG calculations, the local bosonic Hilbert
space dimension is truncated to 5 (beyond which the crit-
ical exponents almost saturate). Bond dimensions less
than 400 are su�cient for the results to converge. To ob-
tain the power law exponents, the correlation functions
are fitted with a power law decay with i and j far away
from both edges. Finite-size scaling is performed with
system sizes (number of boson sites) up to L = 200. For
each system size, the mean and the error bar are ob-
tained by fitting di�erent segments/bins of data points.
The extrapolated mean value is obtained by a quadratic
fit against 1/L. The extrapolated error bar comes from
the di�erence between the extrapolated upper bound and
lower bound of the exponent across di�erent system sizes.
The DMRG calculations are done using the ITensor pack-
age [43].

B. Emergent mixed anomaly

In the low energy theory, there is an emergent mixed
anomaly between the quotient Ũ(1) and the dual Ẑ2 sym-
metry W (considering PBC for simplicty). One manifes-
tation of the mixed anomaly is that Ũ(1) and W can-
not be simultaneously realized on-site. Here Ũ(1) and
W seem to be realized on-site. However, Ũ(1) is only
exact when the gauge condition in Eq. (18) is enforced,
i.e., K � �, and the Hilbert space then is not a tensor
product. We can follow Ref. [33] to eliminate the gauge
constraints and find that either Ũ(1) or W is realized
non-on-site (see Appendix B).
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If we turn on the background gauge field AŨ(1) and
AW associated with Ũ(1) and W respectively, the mixed
anomaly is characterized by a response action in (2+1)-D:

� = AW �dAŨ(1)/4� where � is a cup product, a discrete
analogue of the wedge product of di�erential forms [44].
Thus, Ũ(1) and W cannot be gauged consistently in the
(1 + 1)-D system we are studying which may be viewed
as the boundary of the (2 + 1)-D bulk (Appendix D).
The system, viewed as the boundary of the bulk, usu-
ally cannot have boundaries because the boundary of a
boundary is an empty set. This is not a contradiction be-
cause in our work the mixed anomaly is emergent in the
low energy sector. After some suitable modifications of
boundary terms, we can put this model on a lattice with
open boundary conditions while preserving both symme-
tries in the Hamiltonian, which plays a crucial role in
the “Higgs = SPT” argument in Refs. [27, 28] and our
argument in the following for the gapless SPT phase.

As a result of the emergent mixed anomaly, the ground
state cannot be trivially gapped, meaning that in a
gapped phase W must be spontaneously broken since
Ũ(1) cannot be spontaneously broken due the Mermin-
Wagner theorem. Indeed, W is spontaneously broken in
the insulating phase, while in the superfluid phase both
Ũ(1) and W are preserved. As we have discussed above,
in the superfluid phase, both �b†

i b
†
i bjbj� and |��x

i �x
j �| are

shown to have a power law decay (Fig. 2(a) and 3(a)).
These correlated ordering/disordering behaviors are al-
ready encoded in the relation ��x

i �x
j � = �

�
i�R(�1)ni� =

�X̃R(2�)� we mentioned earlier. This relation implies
that Ũ(1) is preserved if W is spontaneously broken and
that Ũ(1) is spontaneously broken if W is preserved.

Another manifestation of the mixed anomaly is sym-
metry fractionalization. We take W to act on a seg-
ment of sites R instead of the entire chain. This is a
disordered operator for the Ising spins. The emergent
gauge constraints imply that the string operator has to
be dressed with b or b† to act nontrivially on the low-
energy sector. In other words, �b†

i�
z
i+1/2...�

z
j�1/2bj� is

e�ectively gauge invariant. Note that both b or b† are
fractionally charged under X̃(�) in Eq. (7). Similarly,
the disorder operator for X̃R(�) is fractionally charged
under W . This can be seen from that X̃i(2�) = (�1)ni

and ��x
i�1/2(�1)ni ...(�1)nj �x

j+1/2� = 1. Since the edge
spins are charged under W , linearity implies that the end
points of the disorder operator X̃R(�) are fractionalized.

C. Gapless SPT phase

In this subsection, we show that the superfluid phase
is a gapless SPT phase.

We first adapted the “Higgs = SPT” argument in
Ref. [27] to argue for the existence of edge modes if W
and P both commute with the Hamiltonian and an open
boundary is chosen such that the emergent gauge con-

straints in Eq. (3) are preserved. Note that we treat
P as the physical symmetry in the UV. The emergent
gauge constraints force P = �x

1/2�
x
L+1/2 in the IR. There

are di�erent ways to impose boundary conditions on the
edges to guarantee the (dynamical) gauge-invariance. If
the edge degrees of freedom are not fixed, Ref. [27] argues
that P is a physical symmetry, similar to the observation
made about asymptotic symmetries in Ref. [45]. In our
discussion, we find it more transparent to simply treat
P as a UV symmetry. Since the Hamiltonian is local, it
must commute with the two �x individually. The anti-
commutativity between �x with W implies that there are
necessarily edges modes if W or P is preserved. To be
more explicit, let |�� be a ground state of the Hamilto-
nian that satisfies W |�� = �|�� with � = ±1, then the
state |�̃� � �x|�� is another degenerate state because
W |�̃� = ��|�̃�. If the bulk is non-degenerate, the degen-
eracy necessarily comes from the edges. In fact, either W
or P is spontaneously broken by the edges while the bulk
remains gapless. These observations can be justified by
the DMRG computations.

First, we compare the degeneracy for PBC and OBC
in both the insulator and the superfluid phase. From
Fig. 1(c), we can see that the ground state in the insula-
tor phase is doubly degenerate, be it with PBC or OBC.
This is expected due to the SSB of the dual Ẑ2 symme-
try. There are no edge modes in this phase. On the other
hand, if PBC is used, the ground state of the superfluid
phase is unique, while if OBC is used, there is a double
degeneracy. This is a result of the SSB of W on the edges
we mentioned above. Indeed, we present the magnetiza-
tion |��x

i �| in Fig. 3(b). Even though the bulk magne-
tization decays to zero in the thermodynamical limit as
in the PBC case, the edge spins are clearly polarized. In
fact, due to the constraint from P = �x

1/2�
x
L+1/2 = 1, two

edge spins are perfectly correlated. Note that the degen-
eracy in this phase is exact even in finite-size systems.
This means that the edge modes are strictly localized on
the edges, and the edge localization length �e, defined as
e�L/�e � �bdry, is exactly 0. The wave function can be
interpreted as a fixed point SPT state.

Next, we discuss the finite size scaling in the bulk gap
�bulk to show the bulk is indeed gapless in the ther-
modynamic limit. As we can see from Fig. 1(d), the
bulk gap, the first excited state from the doubly degen-
erate ground state, is inversely proportional to the sys-
tem size L. In the thermodynamic limit, the bulk cor-
relation length �b diverges and the bulk becomes gapless
[46]. This is compatible with the fact that there is a
mixed anomaly between Ũ(1) and the dual Ẑ2 symmetry
W . As we have already mentioned, both Ũ(1) and W are
preserved, which is supported by algebraically decaying
�b†

i b
†
i bjbj� (Fig. 2(a)) and |��x

i �x
j �| (Fig. 3(a)). The gap

�bulk in the insulator phase, on the other hand, remains
finite in the thermodynamical limit, as extrapolated by
finite-size scaling (Fig. 1(e)). Thus, we have showed that
the superfluid phase is a gapless SPT phase.
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We can discuss the e�ective action of this gapless SPT
phase. Let us recall that the microscopic on-site symme-
try of the Hamiltonian in Eq. (1) is U(1)⇥W . The emer-
gent symmetry acting nontrivially in the IR is Ũ(1)⇥W .
To capture the edge degeneracy, we may write down a
response action as [27]

� =
1

2
AW � AP , (8)

where AW and AP is the background field of W and P
in the spacetime M , respectively. If AP and AW are
flat, dAP = 0 and AW = 0. Then if M is closed, � is
gauge invariant and describes a SPT phase protected by
W and P . Indeed, if M has a nontrivial boundary, there
can be an open Wilson line terminating on the �M where
dAW �= 0. Then the action SM = 2�

�
M � changes by is

�AW /2 under the gauge transformation AP � AP +d�P .
To compensate this change, there must be edge modes.

On the other hand, P is a subgroup of U(1). If we
turn on a flat background field AU(1), the closedness
of AU(1) requires dAP = dAŨ(1)/2� mod 2 (see Ap-
pendix D), i.e., AP may no longer be closed. The ac-
tion SM = 2�

�
M � now is no longer invariant under

AW � AW + d�W even if M is closed. This is a ’t
Hooft anomaly between W and P ! Since both W and
P are UV onsite symmetries, this ’t Hooft anomaly must
be canceled by some other terms. Luckily, we find that
the emergent mixed anomaly can play the role.

Indeed, we have already seen that there is an emergent
mixed anomaly between Ũ(1) and W . If we denote the
(2+1)-D bulk as Y such that its boundary is the (1+1)-
D spacetime M that we are studying, i.e. �Y = M ,
then the corresponding anomaly action can be written as
� = AW � dAŨ(1)/4� where AŨ(1) and AW are extended
into Y . Note that � and � satisfy the anomaly vanishing
equation [18]

� = d�, (9)

so the partition function

Z = e2�i
�

Y �e�2�i
�

M � (10)

is anomaly free. In other words, the emergent mixed
anomaly compensates the ’t Hooft anomaly in �. If M
has a nontrivial boundary, the gauge invariance argument
again justifies the existence of edge modes. Thus, the
gapless SPT phase can be captured by � and � together.
For more details, see Appendix D.

It is not surprising that Eq. (8) is also the e�ec-
tive action of the 1-D SPT phase in Ref. [27] where
an Ising model is gauged. However, the total symme-
try we are considering is U(1) ⇥ W instead of W ⇥ P in
that work. Instead of the Higgs phase, our focus here is
more on the critical phase. In Ref. [27], they suggested
that the critical point is a “symmetry-enriched quantum
critical point” studied in Ref. [16] . Here, our critical
phase is more closely related to the “intrinsically gap-
less SPT phase” proposed in Ref. [18]. In that work,

the (fermionic) parity is gapped by interactions, while in
our discussion, the parity is simply gapped by emergent
gauging. The SPT string order parameter in our case is
simply ��x

i�1/2(�1)ni ...(�1)nj �x
j+1/2� = 1 while Higgs or-

der parameter �b†
i�

z
i+1/2...�

z
j�1/2bj� vanishes in the ther-

modynamical limit. Since H2(U(1) ⇥ Z2, U(1)) = 0,
there is no nontrivial gapped SPT phase protected by
U(1) ⇥ W , based on the complete classification of con-
ventional bosonic SPT phases in 1-D [5]. In other words,
if OBC is used for our gapless SPT phase, we cannot gap
out the bulk without destroying the edge degeneracy or
breaking the total symmetry.

Conceptually, constructing intrinsically gapless SPT
phases using partial gauging as we discussed in this
work is easier than the approach used in Ref. [18]. The
mixed anomaly between the quotient symmetry and the
dual symmetry is a direct consequence of the nontrivial
group extension and does not depend on the details of
the Hamiltonian. In Ref. [18], the authors considered a
fermionic system, but the analysis above is obviously gen-
eralizable to fermionic systems even though the fermionic
parity cannot be spontaneously broken and spin struc-
tures may need to be taken into account. As long as
there is no other SSB order, the gauged Luttinger liquid
of spinless fermions with W =

�
i �z

i+1/2 preserved is a
gapless SPT phase.

Even though we have focused on a canonical ensem-
ble with even parity, the analysis carries over to a grand
canonical ensemble. Then both even and odd parity sec-
tors should be taken into account, especially when OBC
is used. The essential physics stays almost unchanged.
For example, the ground state degeneracy for both PBC
and OBC is the same as in Fig. 1(b). The anomaly anal-
ysis is similar. For more details, see Appendix C.

D. Conformal field theory

Since the BKT transition can be described by a com-
pact boson CFT [47], we expect that the gauged BKT
transition and the superfluid phase is also captured by
gauging the Z2 symmetry of the compact boson CFT
which is also a compact boson CFT. Indeed, the compact
boson CFT contains two global U(1)’s, one associated
with momentum and the other with winding. They are
dual to each other and there is a mixed anomaly between
them. Gauging a Z2 subgroup of a compact boson CFT
not only changes the radius of the compactification, but
also maps order operators to disorder operators and vice
versa [24, 33]. The Z2-charged sectors and the Z2-twisted
sectors are exchanged under this operation. The states
in the Z2-twisted sectors are charged under the dual Ẑ2

symmetry. This dual Ẑ2 symmetry can be viewed as a
subgroup of the U(1) symmetry associated with winding.

This expectation again can be verified by the DMRG
results. We first check the central charge c in the su-
perfluid phase in the gauged system. Indeed, as shown
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in Fig. 2(d), the subsystem entanglement entropy SE =
�tr(�R ln �R), associated with the reduced density ma-
trix �R of a subsystem R, scales linearly with the factor
�(l) � 1

6 log
�

2L
� sin

�
�l
L

��
[48]. Here L is the total system

size of the open chain and l is the size of the subsystem
R on one side of the entanglement cut. The slope gives
us the central charge c � 1, the nominal central charge
of a compact boson CFT.

Next, we identify the microscopic operators with the
primary vertex operators. Before gauging, the (Eu-
clidean) action is given by

S =
1

4�

�
dzdz̄�z��z̄�, (11)

where z = exp(� + ix), and the free boson field � is
compactified on a circle of radius R, i.e. �(z, z̄) �
�(z, z̄) + 2�R. Split �(z, z̄) into the left-moving and
the right-moving components: �(z, z̄) = XL(z) + XR(z̄).
Then the local primary operators are:

Vn,w(z, z̄) (12)

= exp
�
i
� n

R
+ wR

�
XL(z) + i

� n

R
� wR

�
XR(z̄)

�
,

where n � Z and w � Z are the momentum number
and the winding number, respectively. After gauging,
R � R/2, which is equivalent to redefining n and w:
n � 1

2Z and w � 2Z and �(z, z̄) � �(z, z̄) + 4�R while
fixing R [33, 49]. The conformal weights of Vn,w are

hn,w =
1

4

� n

R
+ wR

�2
, h̄n,w =

1

4

� n

R
� wR

�2
, (13)

and conformal dimensions

�n,w = hn,w + h̄n,w =
1

2
(
n2

R2
+ w2R2). (14)

At a generic radius, the CFT has global symmetry
U(1)n ⇥ U(1)w which act on XL/R as :

U(1)n :XL/R(z) � XL/R(z) + R�n,

U(1)w :XL/R(z) � XL/R(z) ± 1

4R
�w, (15)

where �n/w � �n/w +2�. On the gauged vertex operators
Vn,w, they act as

U(1)n :Vn,w � ei2n�nVn,w,

U(1)w :Vn,w � eiw�w/2Vn,w. (16)

In our case, we can identify Ũ(1) with U(1)n and identify
Ẑ2 with the Z2 subgroup of U(1)w. It is straightforward
to see that b†b† (or bb) can be identified with V2,0 and
�x with V0,1/2. The corresponding conformal dimensions
are thus 2/R2 and R2/2 respectively. Meanwhile, the
nonlocal operator b† (or b) corresponds to the nontriv-
ial local operator with the lowest scaling dimension V1,0

before gauging. Its scaling dimension should be 1/2R2.
This is indeed supported by DMRG.

In the DMRG calculations, we choose a sample point
in the superfluid phase: t = 0.5, U = 1.0. As shown
in Fig. 2 and Fig. 3, the scaling dimension of b†b† is
�bb � 0.62 and the scaling dimension of the scaling di-
mension of �x is �s � 1.5. The nonlocal correlation
�b†

i�
z...�zbj� � r��b yields a scaling dimension �b � 0.16.

They are all compatible with R2 � 3.1. Note also that
the conformal dimensions of the order/disorder operators
scale quadratically with the charges n and w. Previously
we have seen that the end points of the disorder opera-
tor X̃R(�) are fractionalized charged under the dual Ẑ2.
Assuming linearity in charge fusion, we may formally as-
sign a charge proportional to � to the end points when
0 � � � 2�. Thus we may expect that the conformal
dimension of X̃R(�) should be proportional to �2 in the
interval. This is compatible with the quadratic fit in the
inset of Fig. 2(c).

E. Perturbations

In the discussions above, we have argued that the su-
perfluid is a gapless SPT is protected by U(1) and W .
As long as the Hamiltonian (and the boundary condi-
tions) preserve U(1) and the dual Ẑ2 symmetry W , the
edge degeneracy is protected. For instance, as verified
by DMRG, adding a term

�
�z

i�1/2�
z
i+1/2 does not lift

the degeneracy. Adding a small perturbation �
�

�x
i+1/2

however breaks this symmetry. The edges open up a
small gap and are no longer degenerate. The situation
is di�erent in higher dimensions when the protecting
symmetries include higher-form symmetries. Breaking
higher-form symmetries explicitly may not lift the edge
degeneracy.

IV. 2-D Z2-GAUGED BOSE-HUBBARD MODEL

Having considered the 1-D case, we can generalize the
analysis to higher dimensions. In this section, we con-
sider the emergent Z2-gauged Bose-Hubbard model on a
2-D square lattice (Fig 4(a)):

H = �t
�

i,j��eij

b†
i�

z
eij

bj + U
�

i

ni(ni � 1) � µ
�

i

ni,

� 1

g

�

p

�

e��p

�z
e � g

�

e

�x
e , (17)

with the gauge constraints

Gi =
�

i��e

�x
e (�1)ni = 1. (18)

Here eij represents the bond connecting site i and site j,
and p represents any plaquette of the lattice. Note that in
order to capture the Higgs phase, we turn on the chemical
potential µ and consider the grand canonical ensemble.
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FIG. 4: (a) Schematic diagram for the 2-D Bose-Hubbard
model (blue sites) coupled to Ising spins (violet bonds).
A star operator related to the gauge constraints in
Eq. (18) and a plaquette operator are highlighted. (b)
Schematic phase diagram. The gapless SPT in the su-
perfluid phase where Ũ(1) is spontaneously broken and
the SET enriched by Ũ(1) in the insulator phase are sep-
arated by a generalized DQCP.

The 1-D case is briefly discussed in Appendix C. Similar
to the 1-D version, we view the gauge constraints to be
energetically enforced.

We first let g � 0 so that the zero-flux (flatness) con-
dition

�
e��p �z

e = 1 is enforced and the transverse field
term is dropped, giving rise to an emergent 1-form sym-
metry

W =
�

e��

�z
e , (19)

where � is a loop running along the bonds of the lat-
tice. Nonzero g perturbations will be discussed later.
There is also a Ũ(1) with X̃(�) =

�
i ei�ni/2 satisfying

X̃(� + 2�) = X̃(�). This model has been studied before
in, e.g., Ref. [50] from a di�erent perspective. In their
studies, the boson field b is not fundamental but emer-
gent as a result of fractionalization. In our following dis-
cussion, we will emphasize more on higher-form symme-
tries and anomalies. As it is hard to study large systems
using DMRG, we will focus on the theoretical analysis,
although some results have been checked already in small
systems using DMRG.

It is well-known that there is a second order superfluid-
insulator transition in the pure Bose-Hubbard model (be-
fore coupling the Ising model) by tuning the ratio U/t.
Unlike the 1-D version, the global U(1) symmetry is
spontaneously broken in the superfluid phase. For sim-
plicity, we may also assume that the chemical potential µ
has been tuned such that the boson filling is an integer.
In the gauged model, the zero-flux condition ensures the
flatness of the gauge field, killing all local dynamics but
the topological degrees of freedom in �z. Thus a con-
tinuous phase transition in the gauged model is directly
inherited from the ungauged one but with many new fea-
tures due to the interplay between the quotient Ũ(1) and
the dual Ẑ2 1-form symmetry W .

A. Emergent mixed anomaly

Since U(1) is a nontrivial extension of Ũ(1) by Z2,
there is a mixed anomaly between Ũ(1) and the Ẑ2 1-
form symmetry W (see Appendix D). Let us denote the
2-D system as M (without boundaries) and view it as a
boundary of a 3-D bulk Y . The mixed anomaly is cap-
tured by a (3+1)-D SPT bulk protected by the general-
ized symmetry Ũ(1)⇥W . If we turn on the 1-form back-

ground gauge field AŨ(1) of Ũ(1) and the 2-form back-
ground gauge field AW of W and extend them into Y ,
then the anomaly action is given by

SY =
i

2

�

Y
AW � dAŨ(1). (20)

Here, AŨ(1) is compact and periodic in 2�, and AW takes
value in Z2. This action is not gauge invariant under the
gauge transformations of AW in the presence of bound-
ary M , a manifestation of the mixed anomaly between
Ũ(1) and W in the boundary theory which implies that
it is impossible to gauge both symmetries consistently.
In fact, the mixed anomaly reduces to that in the case of
gauging the Z2 subgroup of Z4 [33, 51]. Analogous to the
1-D case, the end points of the disordered operators of
one symmetry are fractionally charged under the other,
which can be seen directly from �b†

i�
z
i+1/2...�

z
j�1/2bj� and

|�X̃R(�)�|.
Similar to the 1-D case, the ground state of the system

cannot be trivially gapped (i.e. nondegenerate, gapped,
and symmetric under both symmetries). This conse-
quence strongly constrains the phase diagram. As we
will argue in this work, the critical point inherited from
the ordinary superfluid-insulator transition now becomes
a generalized DQCP between a gapless SPT phase where
Ũ(1) is spontaneously broken and a SET phase where the
dual Ẑ2 symmetry is spontaneously broken (Fig. 4(b)).

B. Gapless SPT phase

We now combine the emergent mixed anomaly with
the “Higgs = SPT” argument in Ref. [27] to argue in two
steps that the superfluid phase after gauging becomes a
gapless SPT phase.

As the first step, we show that if the 1-form symmetry
W is not spontaneously broken, then the ground state is
a gapless SPT phase. The gaplessness is a direct conse-
quence of the mixed anomaly: if Ũ(1) is also preserved,
then the system is critical; on the other hand, if Ũ(1) is
spontaneously broken, there will be Goldstone bosons.
When the system has no boundary, the gauge condi-
tion Eq. (18) implies that the boson parity symmetry
P is trivial in the low energy e�ectively gauged system,
P =

�
i(�1)ni =

�
e(�

x
e )2 = 1. However, when there

is an open boundary (which preserves necessary symme-
tries), P becomes non-trivial because the spin operators
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on the boundary are not canceled, P =
�

e�bdry �x
e . Us-

ing some rough terms, we may state that in this case P
is not “completely” gauged even in the low-energy sec-
tor. It is manifested in the existence of “half” string op-
erators �z

1/2...�
z
j�1/2bj with one end terminating on the

boundary which acts nontrivially in the low energy sec-
tor. Nevertheless, boson creation/annihilation operators
still have to be attached by a string of gauge field �z.
In particular, if the string operator does not end on the
boundaries, it has to end on a creation or an annihilation
operator to ensure a nontrivial action in the low energy
sector. This means that the emergent mixed anomaly is
still playing its due role and the ground state still cannot
be trivially gapped.

To show that the state is SPT, we place it on lattice
with open boundaries that preserve the dual Ẑ2 sym-
metry W . We consider a half-plane geometry with an
infinitely long boundary (Fig. 5(a)), where the “rough”
boundary has dangling bonds sticking out so that prop-
erly modified local gauge constraints Eq. (18) are still
well-defined [52]. Then similar to the 1-D case, we can
argue that if W is preserved, there will necessarily be a
boundary degeneracy as follows. We choose the symme-
try generator of W =

�
e�� �z

e to be a Wilson line with
one end terminating on the boundary and the other end
either extending to infinity or terminating on a boson cre-
ation/annihilation operator. With P and W preserved in
the bulk, the anti-commutativity of P and W implies a
ground state degeneracy, which in this case necessarily
comes from the boundary. This defines a SPT phase. In
fact, the Higgs condensate �b†

i�
z
i+1/2...�

z
j�1/2bj� can be

viewed as a SPT string order parameter here.

As the second step, we show that W is preserved in
the superfluid phase. To this end, we show that a ’t
Hooft loop operator, charged under W , satisfies the non-
perimeter law. We take the ’t Hooft loop (defined on
the dual lattice) to be

�
e��R �x

e where R is an arbitrary
large connected area with perimeter l = |�R|, shown in
Fig. 5(b) (we ignore the contributions from corners for
simplicity). Then the gauge condition Eq. (18) implies
that |�

�
e��R �x

e �| = |�
�

i�R(�1)ni�| = |�
�

i�R ei�ni�| =

|�X̃R(2�)�|. Since X̃R(2�) is a disorder operator for Ũ(1),
we can see that the order parameter of the dual Ẑ2 and
the disorder parameter of the Ũ(1) are directly related.
We interpret this relation as a direct manifestation of the
mixed anomaly: if one symmetry is spontaneously bro-
ken, then the other is preserved. There is one subtlety
here. In the insulating phase, |�X̃R(�)�| and |�

�
e��R �x

e �|
both satisfy the perimeter law e��(�)l, where �(�) is in-
dependent of l. Thus, Ũ(1) is preserved while the dual
Ẑ2 is spontaneously broken in this phase. It is possible
to absorb the dependence on �R in the perimeter law by
adding a local counterterm such that both quantities ap-
proach a constant for large smooth �R [53]. This is the
SET phase in Fig. 4(b) which we will discuss more later.
On the other hand, in the superfluid phase, |�X̃R(�)�| sat-
isfies the scaling � e��(�)l ln l where �(�) is independent

P
σx

W

σz RX

R(2π)

 

bi
† bjσz

π πσx

xLx
0

φ

π

φ1,0
φ0,0

(a)

(c) (d)

(b)

FIG. 5: (a) Action of boson parity P , e�ectively a ’t
Hooft line (purple), and a Wilson line W (orange) termi-
nating on the boundary (top) of a semi-infinite system.
The other end of W terminates either in the bulk or at
infinity. The anti-commutativity of P and W forces a
SSB on the boundary. (b) Disorder operator X̃R(� = 2�)
supported on sites (highlighted in red) inside a region R,
which is the same with with the ’t Hooft loop operator,�

e��R �x
e , supported on the (dual lattice) boundary of

R. (c) Gauge invariant Wilson line W attached to bo-
son operators (Higgs order operator), and a ’t Hooft line
connecting two �-vortices (which is suppressed by the
zero-flux condition). (d) Example of two topologically
distinct phase modes with winding number 1, �1,0 (red),
and winding number 0, �0,0 (blue) along the x-direction.
0 and Lx are identified.

of l [54, 55], weaker than the area law. Consequently, the
scaling of |�

�
e��R �x

e �| is also weaker than the area law.
Since it is strictly stronger than the perimeter law, it is
impossible to renormalize the scaling law to a constant
for large smooth �R. Thus, we claim that W is unbroken.

Combining the two steps, we conclude that the super-
fluid is mapped to a gapless SPT phase protected by W
and P where Ũ(1) is spontaneously broken. The gapless-
ness comes from the Goldstone bosons.

Similar to the 1-D case, we may write down the term
in the e�ective action that dictates the existence of edge
modes

� =
1

2
AW � AP , (21)

where AW is the 2-form background gauge field of W
and AP is the 1-form background gauge field of P . The
anomaly in � when AŨ(1) is turned on is again canceled
by the anomaly action in Eq. (20). In some rough sense, �

dictates the existence of edge modes when dAŨ(1)/2� = 0
mod 2, while the mixed anomaly governs the SSB of Ũ(1)
in the superfluid phase.
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C. Excitations in the superfluid phase

We have argued that the superfluid phase is a gapless
SPT phase. Here we discuss the excitations in the phase:
vortices, Goldstone bosons, and domain walls. Since the
Z2-gauging process amounts to projecting out the Z2-
charged sector and adding the twisted sector to the the-
ory and the process relates some order parameters to
disorder parameters [33, 51], many physical properties
of this new gapless SPT phase can be inferred directly
from its superfluid parent state. As we have already
seen above, the disorder parameter |�X̂R(�)�| for Ũ(1)
is a (fractional) order parameter for the dual Ẑ2. Simi-
larly, |�b†

i (
�

e��ij
�z

e )bj�| where �ij connects sites i and j

(Fig. 5(c)), viewed as a disorder parameter for the dual
Ẑ2, serves as a (fractional) order parameter for Ũ(1).

To guarantee the exactness of the 1-form symmetry,
we imposed the zero-flux condition

�
e��p �z

e = 1, which
suppresses all (dynamical) �-vortices excitations. Equiv-
alently, an open ’t Hooft line which would end on a pair
of �-vortices (Fig. 5(c)) are also suppressed. In the Higgs
phase, the condensate phase � is locked to the vortcies.
The dual 1-form symmetry measures the Z2 winding of
condensate phase �, which takes values in n� for inte-
ger n modulo 2, along noncontractible cycles, which is
equivalent to insertions of �-fluxes across noncontractible
cycles (see Fig. 5(d)). We should compare the scenario
with that in the “parent” superfluid phase before gaug-
ing where there is an emergent 1-form U(1) symmetry in
the low energy sector [22, 56, 57]. Charged objects of the
emergent U(1) are the winding of �, taking values in 2n�
for integer n. 2�-vortices explicitly breaks this emergent
dual U(1) 1-form symmetry. However, since they are
neutral under the dual Ẑ2 1-form symmetry W after the
e�ective gauging, they do not destroy the exactness of
the dual Ẑ2 1-form symmetry.

Being put on a torus, the gapless Goldstone modes can
be e�ectively decomposed into two parts: � = �n,m+��,
where the first term denotes winding of n� and m� along
the two noncontractible cycles separately and the second
term is the small fluctuation with respect to this con-
figuration. Thus the topology of the Goldstone modes
can be captured by the 1-form charges. It is very tempt-
ing to compare it with the topology of Goldstone modes
after a continuous symmetry G is spontaneously broken
to a subgroup group H [58]. There, the symmetry pro-
tection/enrichment of the Goldstone modes is discussed
with respect to the residual symmetry H (which in our
case corresponds to the quotient symmetry Ũ(1)) while
the topology in the SPT phase we are studying is associ-
ated with the dual 1-form symmetry.

In the decomposition of � above, n and m label the
twisted sector, and �� is neutral under the 1-form sym-
metry generated by W . Nevertheless, we may locally de-
form �� to some separate �̃-domain walls where locally
its value jumps by �̃. Similar to the 1-D case and the
discrete case, by assuming fusion linearity, we may for-

mally assign a charge �̃/� for 0 � �̃ � � under the dual
1-form symmetry to a domain wall where �� changes by
�̃. This is a manifestation of the mixed anomaly and
the symmetry fractionalization. In the superfluid/Higgs
phase, �� is small such that the winding numbers of � is
conserved. Proliferation of the winding, and equivalently
the inserted fluxes, breaks the Ẑ2 1-form symmetry and
recovers the Ũ(1) simultaneously, leading to a SET phase.

D. SET phase

Having discussed the SPT phase, we now briefly touch
upon the emergent Ũ(1)-SET phase (Fig. 4(b)).

The SSB of a discrete higher-form symmetry leads
to a topologically ordered phase [22, 23], a phase with
long-range entanglement and ground state degeneracy
depending on the topology of the base space. The SSB
of the dual Ẑ2 1-form symmetry leads to a Z2-topological
ordered phase whose excitations are the same as Ki-
taev’s toric code or (untwisted) quantum double model
[59]. When OBC is used, the boundaries can be gapped
[52, 60]. This phase is also enriched by the Ũ(1) because
the quotient Ũ(1) symmetry is preserved.

The topological charges are gauge charges e, �-fluxes
m, and their bound state em. The last two types are not
dynamical due to the exactness of the 1-form symmetry,
or equivalently the zero-flux condition. Since Ũ(1) does
not commute anyon types, there is no obstruction to the
symmetry fractionalization [61]. Hence, it is classified by
[w] � H2(Ũ(1), A) where A is the finite group whose ele-
ments are the Abelian topological charges of the unitary
modular tensor category C with group multiplications
given by their corresponding fusion rules [61]. In this
case, A = Z2 ⇥Z2, so H2(Ũ(1), A) = Z2 ⇥Z2. Explicitly,

a representative cocycle is given by w(�, ��) = m� �+��
2� �,

where �, �� � [0, 2�) parametrizes Ũ(1) and �·� is the
floor function. The nontriviality of w, as a manifestation
of the mixed anomaly we discussed above, dictates the
fractionalization of charges under Ũ(1). Alternatively,
the system can be viewed as living on the surface of a
SPT phase in 3-D protected by Ũ(1) and Ẑ2. To trivially
gap out the system, Ũ(1) has to be broken.

E. Generalized DQCP

As we have discussed above, even though �-vortices
are suppressed once the zero-flux condition is enforced,
the proliferation of topological phase winding excitations
drives the SPT phase to the SET phase. Since the origi-
nal superfluid-insulator transition is continuous and only
a finite subgroup is gauged, we expect this inherited tran-
sition to be continuous as well [33]. Thus, we obtain a
generalized DQCP from the gapless SPT phase with pre-
served Ẑ2 1-form symmetry and broken Ũ(1) to a SET
phase with Ũ(1) (see Fig. 4(b)).
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As a result of partial gauging of a finite group, much
of the information encoded in the order/disorder param-
eters can be directly read from the original superfluid-
insulator transition. The critical point can be deter-
mined by the change in the scaling laws of di�erent
order/disorder parameters. The symmetry breaking of
higher-form symmetries at critical points has been in-
vestigated in the recent literature [62–64]. If all sym-
metries involved including the higher-form symmetry are
preserved at the critical point in some systems, we may
get a 2-D analogue of the intrinsically gapless SPT in 1-D
by invoking similar anomaly arguments.

This generalized DQCP is essentially the same as the
so-called XY � transition obtained from the conventional
3-D XY critical point [50, 65]. The di�erence is that
it is � � bb rather than b that is treated as the funda-
mental degree of freedom [65]. At the XY � transition,
b undergoes an ordinary XY transition. Since � is a
composite operator of two b’s, the power law scaling ex-
ponent of ��†

i �j� gets significantly modified �bb � 1.49
from �b � 0.03 for b. The divergence of the correla-
tion length � � 0.67 and the isotropy of the space and
time dimensions z � 1 were verified to be the same as
in the conventional 3-D XY universality class. These
statements were verified numerically [65].

In terms of entanglement entropy SR of a smooth sim-
ply connected region R without corners, it is known that,
other than the leading perimeter law term SA � l � |�R|,
there is a logarithmic subleading correction in a SSB
phase of a continuous symmetry [66] and a topological
subleading correction in a topologically ordered phase
[67, 68]. At the critical point, SA takes the form of
SA = �l � � with � = �XY + �Z2 . Here �XY comes
from the ordinary XY transition, i.e. SSB of U(1), and
�Z2 = ln 2 is the topological entanglement entropy of the
Z2 topologically ordered phase [50].

If we consider OBC, there is also a generalized bound-
ary phase transition between the gapless SPT/Higgs
phase and the Ũ(1)-enriched topological phase. It would
be interesting to investigate this boundary phase transi-
tion.

F. Perturbations

In the above discussion, we have imposed the zero-flux
condition by taking g � 0 in order to preserve the exact-
ness of the dual 1-form. The existence of the

�
�x

i term
in Eq. (17) explicitly breaks this symmetry. However,
we expect the perturbation changes neither the topolog-
ical order in the SET phase nor the gapless boundary
modes in the SPT phase in 2-D due to the robustness of
higer-form symmetries [23]. In particular, in the origi-
nal Fradkin-Shenker phase diagram for 2-D Ising gauge
theory coupled to matter with PBC, both the deconfined
phase, the Higgs phase and the transition in between are
robust with the introduction of the small polarizing field.

To study the edge physics, the authors in Ref. [27]

numerically demonstrated the robustness of the topolog-
ical edge modes in the SPT/Higgs phase. On the other
hand, the robustness of Z2 topological order with open
boundaries under perturbation is also numerically inves-
tigated in Ref. [69]. Based on their results, the robustness
depends both on the boundary type (rough or smooth)
and the perturbation type (�x or �z). For rough bound-
aries (see Fig. 5(a)) and perturbations of the form �x,
the topological order is robust. It is natural to expect
resilience in the edge physics.

Based on the robustness of both phases, it is also nat-
ural to expect the SPT/Higgs-SET transition to remain
continuous and robust, even with small perturbations
that explicitly break the 1-form symmetry. In this case,
we can regard the 1-form symmetry to be emergent [70],
and the properties of the generalized DQCP should re-
main intact. In this sense, generalized DQCPs can be a
generic type of quantum criticalities and deserve to be
investigated in more details in future work.

G. Experimental realizations

The Bose-Hubbard model in 1-D and higher dimen-
sions has been realized in such systems as cold atoms on
optical lattices [71–76], and the continuous superfluid-
insulator transition has been observed. Lattice gauge
theories have also been simulated in such systems [77–
79]. Recently, the Z2 topological order has been real-
ized and measured in Rydberg atoms on a 2-D Ruby lat-
tice [80, 81]. It is more complicated to simulate gauged
matter theories, but there are also some recent experi-
mental progress in this direction. For example, a simi-
lar Z2-gauge Bose-Hubbard model in 2-D was studied in
Ref. [82] with the idea of realizing the gauge constraints
by using simplified local pseudogenerators [83]. We be-
lieve quantum simulation with cold atoms is a promising
platform to realize the unconventional phases and quan-
tum criticalities proposed in this work.

Realizations of the gapless SPT phases and the gen-
eralized DQCPs discussed in our work may be also pos-
sible in other solid state systems. For example, since
the generalized DQCP is essentially the XY � transition
studied before [65, 84], we may start with an ordinary
Bose-Hubbard system with fractionalized excitations. As
long as the low energy e�ective theory is described by an
emergent Z2-gauged Bose-Hubbard model, we may test
the analysis in our work.

A recent trend in the past few years has been realizing
the gauging process by using finite-depth unitaries, mea-
surement, and feedforward so topological ordered states
can be obtained e�ciently [85–88]. Other phases such
as Higgs phases [89] and continuous symmetry breaking
states [90], and phase transitions [91, 92] have been pro-
posed. Some SET phases can also be obtained by partial
gauging [93]. Realizing a SET phase by partially gauging
a U(1) symmetry is also very natural. To simulate and
study a gapless SPT phase and the generalized DQCP
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discussed in this work in these adaptive circuits is a fas-
cinating direction.

V. CONCLUSIONS

In this work, we investigated the emergent Z2-gauged
matter theory of the 1-D and 2-D Bose-Hubbard model
coupled to Ising degrees of freedom. We analyzed the
inherited phase diagram from that of the ungauged
superfluid-insulator version. In 1-D, we identified the
superfluid phase to be an intrinsically gapless SPT phase
protected by W ⇥U(1), W being the Ising spin reflection
symmetry. In the low energy theory, W can be viewed as
the dual Ẑ2 symmetry. We discussed the e�ective action
which includes a mixed anomaly term between W and
the quotient Ũ(1) symmetry �, and a topological term �
dictating the edge degrees of freedom if there is an open
boundary. The ’t Hooft anomaly in � is matched by that
in �. We argued that the gapless SPT phase is described
by a Z2-gauged compact boson CFT, which is also sup-
ported by DMRG computations. In 2-D, we focused on
the zero-flux limit and concluded, by adapting the “Higgs
= SPT” argument, that the superfluid phase is also a
gapless SPT protected by higher form symmetries whose
gaplessness comes from the Goldstone modes due to the
SSB of the quotient Ũ(1). We studied the excitations, es-
pecially the Goldstone modes whose winding number is
related to the charge of the Ũ(1) domain wall under the
dual Ẑ2 1-form symmetry W , which is a direct manifesta-
tion of the mixed anomaly between the two symmetries.
The other phase is the insulating phase corresponding
to the SSB of the W with Ũ(1) preserved, i.e. Ũ(1)-
enriched Z2 topological order. Then we analyzed the
transition between the gapless SPT/Higgs phase and the
Ũ(1)-SET phase, which is a generalized DQCP. The ro-
bustness of the gapless SPT/Higgs phase, the SET phase,
and the generalized DQCP between them toward pertur-
bations that explicitly break the Ẑ2 1-form symmetry is
discussed. Possible experimental realizations using quan-
tum simulations with cold atoms are also proposed.

The idea of partially gauging a finite subgroup dis-
cussed in this work is straightforward and general. In
principle, we can start with any system that has a SSB
of a generic continuous symmetry, including generalized
symmetries, and then perform the partial gauging to ar-
rive at novel phases and phase transitions in between.
The system can even be topological at the outset. Ex-
tension to higher dimensions is straightforward. The col-
luding roles of the topological term � and the emergent
anomaly � in constructing general (intrinsically) gapless
SPT phase deserve further elaboration. It would also
be interesting to study deformations of the gapless SPT
phases away from their fixed-point so that the edge lo-
calization length �e is not strictly zero.

As we have mentioned earlier on, our analysis gener-
alizes easily to fermionic systems. In particular, the 1-D
intrinsically gapless SPT phase works for a free fermion

gas or a Luttinger liquid and is generalizable to generic
critical point or a Fermi liquid in higher dimensions.
Generically, introduction of a weakly fluctuating gauge
field may destabilize the system and drive the system to
other phases, such as superconductors. It would be in-
teresting to construct such a stable intrinsically gapless
fermionic SPT phase. A good starting point may be ex-
actly solvable models of free lattice fermions coupled to
Ising spins on the link. When it is not analytically solv-
able, numerical simulations using, e.g., the determinant
quantum Monte Carlo method similar to Refs. [94, 95]
can give us more valuable insights. We hope our work
can stimulate more endeavors along these directions.
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Appendix A: Emergent Z2-gauged q-state clock
model

In the main text, we focused on the case where the Z2

subgroup of the continuous U(1) is e�ectively gauged.
Some of the properties we discussed there can already
be found when the total symmetry group is discrete. In
this appendix, we present similar analysis of the q-state
clock model with discrete on-site Zq symmetry. We focus
on even q cases, so that there exists a Z2 subgroup that
can be subsequently gauged. Both 1-D and 2-D cases are
discussed.

1. 1-D

For the Ising model, i.e. when q = 2, gauging the Z2

is equivalent to a Kramers-Wannier transformation from
the original Ising model to the dual Ising model with a
dual 0-form Ẑ2 symmetry. The minimal non-trivial case
corresponds to q = 4, which is also discussed in Refs.
[33, 34]. The Z2-gauged 4-state clock model has global
symmetry Z̃2 ⇥ Ẑ2 with a mixed anomaly between the
two symmetries characterized by the non-trivial exten-
sion class in H2(Z̃2, Ẑ2) = Z2. A concrete lattice model
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can be written down as follows,

H = � J
�

j

�
C†

j �z
j+1/2Cj+1 + h.c.

�
� h

�

j

�
Sj + S†

j

�

� K
�

j

�x
j�1/2S

2
j �x

j+1/2,

(A1)

where C4
j = S4

j = 1 and CjSj = ei 2�
4 SjCj . We fix J = 1.

Similar to the case in the main text, we have a minimal
coupling between clock degrees of freedom on sites and
Ising spins on bonds, where the large K limit e�ectively
implements the gauging with the gauge constraint given
by Gj = �x

j�1/2S
2
j �x

j+1/2 = 1. The global symmetry is
V ⇥ W , with

V =
�

j

Sj , W =
�

j

�z
j+1/2, (A2)

where at low energy W becomes the dual Ẑ2 symme-
try and V is the quotient symmetry. There is a sub-
tlety for the V symmetry when there is an open bound-
ary. For periodic boundary condition (PBC), we have
V 2 =

�
j S2

j =
�

j �x
j�1/2�

x
j+1/2 = 1, by using the low en-

ergy gauge constraint, making V explicitly Z2. However,
for open boundary condition (OBC), we have instead the
nontrivial identity V 2 = �x

1/2�
x
L+1/2. Here L is the num-

ber of sites in the open chain.
In the case of h � 1, Sj will be polarized, which implies

that ��x
m�1/2�

x
n+1/2� =

�
m�j�n S2

j �= 0, i.e. there is
long range order in �x, leading to SSB of W while V
is preserved. On the other hand, when h � 1, there
will be SSB in V but with W preserved. The SSB in
V directly inherits from the SSB of the ungauged clock
model, since the Z2 gauging corresponds to summing over
twisted boundary conditions, which does not change the
long-range correlation of the order parameter [33, 34].
Due to the SSB of V , which is simply Z̃2 in the bulk,
the ground state is 2-fold degenerate |�1� and |�2� with
V |�1� = |�2�.

Furthermore, in the V SSB phase, for either of the
degenerate ground state |���, there is non-trivial string
order parameter given by �C†

m�z
m+1/2...�

z
n�1/2Cn� �= 0,

signifying that the V SSB phase is in fact the Higgs/SPT
phase [27]. To see the non-trivial edge states, we consider
a semi-infinite chain with one open boundary at site L.
Then we have V 2 = �x

L+1/2, so that V 2W = �WV 2.

For a ground state |���, both V 2 and W are symme-
tries. Due to the anti-commutation of the two symmetry
operators, we can similarly argue that V 2|��� and |���
are degenerate and the degeneracy comes from the edge
since V 2 is localized at the edge. This way, we explicitly
see the edge degeneracy for each of the bulk degenerate
ground states.

The analogue of the intrinsically gapless SPT of the
U(1) case shows up when q � 5. It is known that the
1-D quantum clock model without gauging has two criti-
cal points, both are of BKT type and dual to each other,

hh1 h2



4 SSB critical 


2 SSB

P
B
C

(a)

hh1 h2

16



4 SSB critical 


2 SSB

O
B
C

(b)

FIG. 6: Ground state degeneracy in di�erent phases of
the 1-D Z8-clock model with its Z2 subgroup gauged,
under PBC (a) and under OBC (b).

and there is a critical phase with emergent U(1) symme-
try in between the two critical points [96]. The minimal
non-trivial case with mixed anomaly after gauging is the
8-state clock model. After gauging, the emergent sym-
metry is Z̃4⇥Ẑ2, where there is a mixed anomaly charac-
terized by the non-trivial extension class in H2(Z̃4, Ẑ2) =
Z2.

Fig. 6 shows the schematic phase diagram with the cor-
responding ground state degeneracies under both PBC
and OBC. In the large h limit, the dual Ẑ2 symmetry
is spontaneously broken, which is labeled as the Ẑ2 SSB
phase. In the small h limit, we have the Z̃4 SSB phase.
In the intermediate coupling regime (h1 < h < h2), the
system is in a critical phase, where both of the two sym-
metries are preserved. There is an emergent symmetry
U(1) ⇥ U(1) � Z̃4 ⇥ Z̃2 and the critical phase is de-
scribed by the (Z2-gauged) compact boson CFT. Indeed,
this phase is an analogue of the intrinsically gapless SPT
phase we discussed in the main text.

2. 2-D

For 2-D q-state clock model, the Hamiltonian takes
similar form with that of the Z2-gauged Bose-Hubbard
model described in the main text,

H = � J
�

i,j��e

�
C†

i �z
e Cj + h.c.

�
� h

�

j

�
Sj + S†

j

�

� 1

g

�

p

�

e��p

�z
e � g

�

e

�x
e

� K
�

j

Sq/2
j

�

e,j��e

�x
e ,

(A3)

where Cq
j = Sq

j = 1 and CjSj = ei 2�
q SjCj . We fix J = 1.

In the zero flux limit g � 0 and large K limit, the global
symmetries are the quotient 0-form Z̃q/2 and the 1-form
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Ẑ2, given by,

V =
�

j

Sj , W =
�

e��

�z
e , (A4)

where � is a loop running along the bonds of the lattice.
Notice that in order for there to be an emergent mixed
anomaly between V and W , the group extension of V
by W , classified by H2(Z̃q/2, Ẑ2) = Zgcd(q/2,2) has to be
non-trivial, meaning that q/2 has to be even, i.e. q is
an integer multiple of 4. Similar to the 1-D case, due to
the mixed anomaly between V and W , W is SSB while
V is preserved when h � 1. This is the Z2 topological
order enriched by Z̃q/2, classified by H2(Z̃q/2, Z2 ⇥Z2) =
Zgcd(q/2,2) ⇥ Zgcd(q/2,2).

When h � 1, we have SSB for V with W preserved.
Therefore, the bulk is q/2-fold degenerate, and each de-
generate ground state has additional degenerate edge
states when there is an open boundary. The argument is
the same by considering the two anti-commuting symme-
tries V q/2 and W of the ground states. Therefore, this is
again the Higgs/SPT phase. The Z̃q/2-enriched topologi-

cal order and the Ẑ2 1-form protected SPT with q/2-fold
bulk degeneracy are separated by a generalized DQCP.

Appendix B: Elimination of gauge constraints

In the main text, based on the mixed anomaly between
the quotient Ũ(1) symmetry and the dual 1-form Ẑ2 sym-
metry in the emergent gauge theory, we claimed that
these two symmetries cannot both be on-site. This can be
demonstrated easily by eliminating the gauge constraints.
The elimination may be achieved by performing a uni-
tary transformation consisting of controlled gates and
Hadamard transformations [97]. Here we follow Ref. [33]
to gain more intuition.

After gauging, i.e. implementing the gauge condition�
e,i��e �x

e = (�1)ni , the onsite boson states are di-
vided into the boson parity even sector and the parity
odd sector, depending on the sign of the star operator�

e,i��e �x
e . Therefore, the new onsite boson basis can

be denoted as |1, ñ� and | � 1, ñ�, where the first number
labels the onsite boson parity, determined by

�
e,i��e �x

e ,
and the second number labels the new local boson states
with ñ = 0, 1, 2, ... in the corresponding sector. No-
tice that we have a one-to-one correspondence between
the new basis and the original ungauged basis, given by
|1, ñ� � |2ñ� and | � 1, ñ� � |2ñ + 1�. Therefore, no
degrees of freedom are lost, as it should be. Expressed in
the new basis, the boson number operator becomes

n̂i �
1 +

�
e,i��e �x

e

2
2ˆ̃ni +

1 �
�

e,i��e �x
e

2

�
2ˆ̃ni + 1

�

= 2ˆ̃ni +
1 �

�
e,i��e �x

e

2
.

(B1)

The action of the boson creation/annihilation operator
should be accompanied with a flip in

�
e,i��e �x

e since
(�1)ni changes sign. Consider the gauge invariant mini-
mal coupling term b†

i�
z
eij

bj . In the new basis,

b†
i�

z
eij

bj � Ai�
z
eij

Bj . (B2)

where

Ai �
1 +

�
e,i��e �x

e

2
+

1 �
�

e,i��e �x
e

2
b̃†
i ,

Bi �
1 +

�
e,i��e �x

e

2
b̃i +

1 �
�

e,i��e �x
e

2
.

(B3)

In the new basis, the action of the dual 1-form Ẑ2 sym-
metry remains unchanged as W =

�
e�� �z

e for closed

loop �, but the Ũ(1) symmetry is now implemented by

X̃(�) =
�

i

exp

�
i

�
2ˆ̃ni +

1 �
�

e,i��e �x
e

2

�
�

2

�
, (B4)

which is explicitly non-onsite. It is easy to see that
X̃(�) = X̃(� + 2�) for PBC. Combining Eq. (B1)
and (B2), we can obtain the Hamiltonian of the Bose-
Hubbard model (with the zero-flux condition) expressed
in the new basis where the gauge constraints have already
been encoded.

Note that the quantity ˆ̃N =
�

i
ˆ̃ni itself is not con-

served. Instead, the term (1�
�

e,i��e �x
e )/2 contributes a

fractional charge 1/2 to ˆ̃N . By invoking the “electromag-
netic duality” for the Z2 gauge field: �x � �z, we can
regard the zero-flux condition

�
e��p �z

e = 1 as the new
“Gauss law” for the “gauge field” �x while

�
e,i��e �x

e as
the new “magnetic” flux operator. Thus, the new mag-

netic flux carries a fractional charge under ˆ̃N , a man-
ifestation of the mixed anomaly. Since the anomalous
system may be viewed as a boundary of a SPT phase in
the (3+1)-D bulk, as mentioned in Ref. [33], it is natural
to envision a discrete realization of the bulk by decorat-
ing the magnetic monopoles of the Ẑ2 gauge field with
unit charges under Ũ(1), which is an analogue of the
continuum construction in Ref. [98].

Appendix C: Grand canonical ensemble in 1-D

In Sec. III, we used canonical enemble (CE) in 1-D for
simplicity since the particle number conservation cannot
be violated due to the Mermin-Wagner theorem. In this
appendix, we support this statement by presenting some
DMRG results for the Z2-gauged Bose-Hubbard model in
the context of grand canonical ensemble (GCE) where the
total particle number can vary. GCE is more general and
it allows energy levels consisting of both even and odd
parity states (see Fig. 7(a)). The existence of states with
di�erent parities is a consequence of the boundaries when
using OBC, where the parity operator P = �1/2�L+1/2
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can still take values ±1. However, GCE is computation-
ally more challenging in DMRG since particle number is
not fixed. On the other hand, we observed numerically
that as long as the chemical potential µ is carefully tuned
to ensure unit filling for the GCE ground state, both the
ground state and the next excited state have no fluctua-
tions in total boson number, i.e. they have fixed boson
number. A nice consequence of this observation is that
the GCE low energy states can now be related to those
of the CE, which renders the numerical calculation easier
and more tractable for larger system sizes. We can still
show that the superfluid phase is a gapless SPT phase
with double degeneracy.

The GCE Hamiltonian HGCE(µ, N̂) is related to the
CE Hamiltonian HCE(N̂) as the following,

HGCE(µ, N̂) = HCE(N̂) � µN̂, (C1)

where N̂ is the total boson number operator. As men-
tioned previously, the chemical potential µ can be tuned
to achieve a ground state with unit filling and fixed bo-
son number, i.e. �N̂� = L in the ground state. Here L
is the number of boson sites which for simplicity is taken
to be even. Notice, however, that the proper µ has a
strong size dependence. To carry out a finite size scaling
of the gap, we extract the thermodynamical information
by bounding the gap as follows.

For a typical set of parameters both the gap in the
parity even sector �P=+1

GCE and the gap in the parity odd
sector �P=�1

GCE are much larger than the true gap �GCE

which is between a parity even state and a parity odd
state (Fig. 7(a)). Note that the ground state is exactly
doubly degenerate as in the CE. The GCE ground state
energy is given by,

EGCE(µ, L) = ECE(L) � µL, (C2)

and satisfies the following conditions,

EGCE(µ, L) � EGCE(µ, L ± 1), (C3)

which implies

µL � ECE(L) � ECE(L � 1)

� µ � ECE(L + 1) � ECE(L) � µU .
(C4)

Fig. 7(b) shows the system size dependence of the lower
and upper bounds of the chemical potential based on
Eq. (C4). The two bounds converge to µ� � �0.254
in the thermodynamic limit, which is also reflected in
the inset showing the di�erence between the bounds ap-
proaching 0.

Both �P=±1
GCE decay to zero following a power law 1/L.

Furthermore, the true gap is given by

�GCE = min{EGCE(µ, L + 1) � EGCE(µ, L),

EGCE(µ, L � 1) � EGCE(µ, L)}
= min{µU � µ, µ � µL}
� µU � µL.

(C5)
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FIG. 7: (a) Schematic diagram for the energy levels in
the grand canonical ensemble, where parity even and par-
ity odd states coexist. �P=±1

GCE is the gap in the parity
even/odd sector and �GCE is the true gap above the
doubly degenerate ground state. (b) The upper bound
µU and the lower bound µL for the chemical potential in
order to have unit filling at di�erent system sizes. The
inset shows the di�erence between the two bounds. The
parameters used are t = 0.5, U = 1.0.

Since µU � µL is shown to decay to 0 in the thermody-
namic limit as 1/L (see inset of Fig. 7(b)), the bulk gap
�GCE also decays to 0 at least as fast as 1/L.

Appendix D: Anomaly action

In this appendix, we provide more details regarding the
’t Hooft anomalies that show up in the main text. We will
emphasize the comparison between the mixed anomaly
from gauging a finite subgroup [31] and the emergent
anomaly through separation of gapped and gapless de-
grees of freedom [18].

Consider the following central extension

1 � Z2
i�� U(1)

��� Ũ(1) � 1. (D1)

Here i is inclusion and � is projection. The extension cor-
responds to the nontrivial element e in H2(Ũ(1), Z2) =
Z2. To Let G = U(1) be the total global symmetry
free from anomalies. Then we can turn on a flat back-
ground gauge field AU(1) on a closed (1+1)-D spacetime
M . Then

AU(1) = i(AZ2) + r(AŨ(1)), (D2)

where r lifts AŨ(1) into AU(1) and satisfies �(r) = Id.
The flatness of AU(1) implies that the AZ2 sees the flux
of AŨ(1):

dAZ2 = e(AŨ(1)) =
dAŨ(1)

2�
mod 2, (D3)

where we have omitted r for simplicity. We can gauge the
Z2 subgroup of U(1) by making AZ2 dynamical which we
will denote as aZ2 . Then

daZ2 = e(AŨ(1)) =
dAŨ(1)

2�
mod 2. (D4)
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After gauging Z2, there is a dual quantum symmetry Ẑ2

showing up [99]. It can again be coupled to its back-

ground field AẐ2 as follows

S = �i

�

M
AẐ2 � aZ2 . (D5)

Since aZ2 is not closed when AŨ(1) is nontrivial, as a re-
sult of Eq. (D4), there is an mixed anomaly between the
dual symmetry Ẑ2 and quotient Ũ(1) which is character-
ized by an anomaly action in a (2+1)-D dimensional bulk
Y

� =
1

2
AẐ2 � daZ2 =

1

2
AẐ2 � dAŨ(1)

2�
, (D6)

where AẐ2 and AŨ(1) are extended to the bulk Y . When
M = �Y , the anomaly is canceled. In the main text, the
gauge theory is emergent, so the mixed anomaly is also
emergent in the low energy theory.

In Ref. [18], the Z2 group is not gauged but gapped out
by interactions in the sense that Z2 only acts nontrivially
on the gapped degrees of freedom while Ũ(1) is the sym-
metry that acts nontrivially on the low energy degrees of
freedom. Turning on the background fields, we arrive at
Eq. (D3) as well. If the symmetry Ũ(1) acting on the
gapless degrees of freedom has an emergent anomaly, it
is possible to construct a gapless SPT phase.

In particular, if U(1) is broken to Z4, then since
H2(Z4, U(1)) = 0, there is no gapped SPT phase in 1-
D. However, an intrinsically gapless SPT phase can exist
when there is an emergent anomaly, which is captured
by

� =
1

2
AZ2 � dAZ2 (D7)

in the higher-dimensional bulk Y . Indeed, since the total
symmetry group G = Z4 is anomaly-free, the low energy
anomaly �(AZ2) must be compensated by a counterterm

�(AZ2 , AZ̃2) satisfying the anomaly vanishing equation
[18]

�(AZ2) = d�(AZ2 , AZ̃2). (D8)

Here AZ̃2 is the background field of the quotient symme-
try Z̃2 � Z4/Z2 acting on the gapped degrees of freedom.
The partition function then may be written as

Z = e2�i
�

Y �(AZ2 )e�2�i
�

M �(AZ2 ,AZ̃2 ). (D9)

One solution to the anomaly vanishing equation is given
by �(AZ2 , AZ̃2) = AZ2 � AZ̃2/2. The gauge invariance
of the partition function under AZ2 � AZ2 + d�Z2 then
necessarily implies the existence of an edge mode of the
1-D system.

If the total symmetry is G = Z�
2 ⇥ U(1), the Z2 sub-

group of U(1) can be gapped so that the symmetry acting

on the gapless degrees of freedom is Z�
2 ⇥ Ũ(1). If the low

energy theory has a mixed anomaly

� =
1

2
AZ�

2 � dAŨ(1)

2�
, (D10)

then the anomaly vanishing equation yields

� =
1

2
AZ�

2 � AZ2 . (D11)

Consequently, the gauge invariance of the partition func-
tion requires the existence of an edge mode. The form of
� and � is very similar to those we discussed in the main
text. We also note that the similarity between Eq.(D6)
and Eq.(D10).

In the main text, the Z2 subgroup of U(1) is the par-
ity P =

�
i(�1)ni . Unlike the gapping mechanism in

Ref. [18], in Sec. IIIA, P is gapped out (when PBC is
used) due to the emergent gauge constraints arising from
the terms �K

�
�x

i�1/2(�1)ni�x
i+1/2 in the Hamiltonian

when K is large. W =
�

i �z
i+1/2, a UV symmetry, e�ec-

tively becomes the dual symmetry of P . Consequently,
there is an emergent mixed anomaly � between W and
Ũ(1) as in Eq.(D6). On the other hand, we argued in
the main text that there is a term � = AW � AP /2 that
dictates the SPT edge modes. P and W being UV sym-
metries, the anomaly in � when AŨ(1) is not flat requires
it to be canceled by other terms. Indeed, the emergent

anomaly � serves the purpose if dAP = daZ2 = dAŨ(1)

2�

mod 2 where aZ2 is the emergent Z2 gauge field. Not
surprisingly, the anomaly is identical to that in Eq.(D10)
after we identify W with Z�

2. This explains the resem-
blance between Eq.(D6) and Eq.(D10).

There is a subtlety if M has boundaries. Boundary
conditions need to be chosen properly to guarantee the
emergent (dynamical) gauge-invariance. In principle, the
true symmetry acting on the gapless modes are W and
Ũ(1), regardless of whether OBC or PBC is used. In
the main text, P is interpreted as a UV symmetry, and
thus physical. When PBC is used, it is fully gapped.
When OBC is used, it also acts nontrivially on the low
energy modes. The gauge-invarinace of � = AW � AP /2
under AP � AP + d�P already implies the existence
of edge modes when OBC is used, irrespective of the
existence of the mixed anomaly. This is because W can
terminate on the edges such that dAW �= 0 mod 2. It is
the delicate cooperation of both � and � through ’t Hooft
anomalies that determines the nature of the intrinsically
gapless SPT phase protected by W and U(1) as discussed
in Sec. III.

The discussion above about the mixed anomaly be-
tween the quotient symmetry and the dual symmetry af-
ter gauging a finite subgorup can be generalized to ar-
bitrary dimensions [31]. In d-D, the dual Ẑ2 symme-
try is (d � 1)-form, and the anomaly action is given by

� = i
2

�
Y AẐ2 � dAŨ(1). Here, AẐ2 is a d-form back-

ground field. If the symmetry Ẑ2 again coincides with a
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UV symmetry W and the gauge theory is emergent as
we have discussed in the main text, we then again have
a SPT phase with � = AẐ2 � AZ2/2, which is again can-

celed by �. If both U(1) and Ẑ2 are preserved, then we
may have a higher dimensional intrinsically gapless SPT
phase. On the other hand, if Ũ(1) is spontaneously bro-
ken as in the Higgs phase, the SPT phase coexists with
gapless Goldstone modes.
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Spontaneous time-reversal symmetry breaking plays an important role in studying strongly correlated unconventional supercon-
ductors. When two superconducting gap functions with di�erent symmetries compete, the relative phase channel (�� � �1 � �2)
exhibits an Ising-type Z2 symmetry due to the second order Josephson coupling, where �1,2 are the phases of two gap functions.
In contrast, the U(1) symmetry in the channel of �+ � �1+�2

2 is intact. The phase locking, i.e., ordering of ��, can take place in
the phase fluctuation regime before the onset of superconductivity, i.e., when �+ is disordered. If �� is pinned at ±�

2 , then time-
reversal symmetry is broken in the normal state, otherwise, if �� = 0, or, �, rotational symmetry is broken, leading to a nematic
normal state. In both cases, the order parameters possess a 4-fermion structure beyond the scope of mean-field theory, which can
be viewed as a high order symmetry breaking. We employ an e�ective two-component XY-model assisted by a renormalization
group analysis to address this problem. As a natural by-product, we also find the other interesting intermediate phase corresponds
to ordering of �+ but with �� disordered. This is the quartetting, or, charge-4e, superconductivity, which occurs above the low
temperature Z2-breaking charge-2e superconducting phase. Our results provide useful guidance for studying novel symmetry
breaking phases in strongly correlated superconductors.

superconductivity, strong correlation, time-reversal breaking, charge-4e
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1 Introduction

Unconventional superconductors (for instance, high-Tc

cuprates [1], heavy-fermion systems [2], and iron-based su-
perconductors [3]) have aroused a great deal of attentions for
novel symmetries in addition to the U(1) symmetry breaking.
Time-reversal symmetry (TRS) as well as parity and charge
conjugation are fundamental discrete symmetries, hence,

*Corresponding author (email: wucongjun@westlake.edu.cn)

spontaneous TRS-breaking superconductivity is of particular
importance [4-14]. Various TRS-breaking pairing structures
are theoretically proposed, including d ± id [15, 16], p ± ip
[11,17], s±id [4,18], p±is [19], and s+is [14,20], and exper-
imental evidence has been reported in various systems, such
as Re6Zr [21, 22], UPt3 [23, 24], PrOs4Sb12 [25], URu2Si2
[26, 27], SrPtAs [28], LaNiC2 [29], LaNiGa2 [30, 31], Bi/Ni
bilayers [32], and CaPtAs [33] (For details refer to a recent
review [34]). They are often probed by the zero-field µ-
spin relaxation, or, rotation [35-37], and the polar Kerr e�ect
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[38, 39]. TRS breaking signatures have also been reported in
iron-based superconductors [40, 41].

If TRS breaking arises from a complex pairing structure,
it is often presumed that it develops after the onset of super-
conductivity. However, these two transitions are of di�erent
nature: Superconductivity is of the U(1) symmetry breaking
and TRS is of Z2, hence, they could take place at di�erent
temperatures. It is interesting to further check whether TRS
breaking can occur before the superconducting transition as
the temperature is lowered. In fact, phase fluctuations are
prominent in strongly correlated superconductors above but
close to Tc, such as high Tc cuprates [42] and iron-based su-
perconductors [43].

In a two-gap superconductor, the TRS breaking can be
solely determined by the relative phase between two gap
functions. The phases of two channels may fluctuate in
a coordinated way such that the relative phase is locked,
leading to TRS breaking, while the total phase �+ is dis-
ordered, hence, the system remains normal. In the con-
text of 2D bosons in the p-band, a TRS breaking Mott-
insulating ground state was studied via the Ginzburg-Landau
free energy analysis and the quantum Monte Carlo simula-
tions [44,45]. The TRS breaking normal state has been stud-
ied in the context of three-gap superconductors as a conse-
quence from frustrations [46].

In this article, we show that there exists an Ising symmetry
breaking normal phase in a generic 2D two-gap superconduc-
tors when the gap functions belong to di�erent symmetries
and are near degeneracy. The key ingredient here, as men-
tioned above, is the superconduct phase fluctuations. Hence,
it is a phase-fluctuation induced TRS-breaking, or, a nematic
normal state. By the symmetry principle, the two gap func-
tions couple via a second order Josephson term. Therefore,
we dub the resultant symmetry-breaking normal state as the
“high-order” symmetry-breaking state. In the phase fluctu-
ation regime, the low energy physics is described by a cou-
pled two-component XY-model, which is mapped to a cou-
pled sine-Gordon model and analyzed by the renormalization
group (RG) method. Unlike the small di�erence in the su-
perconducting transition temperature and the TRS-breaking
temperature obtained in ref. [46] from the frustration ef-
fects in the three-band model, the phase-locking, or, the Z2

symmetry breaking temperature can be considerably larger
than the superconducting Tc. Another competing order, the
quartetting [47], or, charge-4e phase [48], can also appear
above Tc, which corresponds to ordered total phase �+ but
with the relative phase �� disordered, i.e., the U(1) sym-
metry in the �+ channel is broken whereas the Z2 symme-
try in the �� channel is preserved. All these phases exhibit
the 4-fermion-type order parameters, and thus are di�cult
to analyze in mean-field theories. Quite remarkably, the Z2-

breaking TRS-breaking normal state has recently been exper-
imentally observed in hole-doped Ba1�xKxFe2As2 [49, 50],
where the TRS-breaking transition is identified with the on-
set of specific-heat anomaly and spontaneous Nernst signal
is also detected in the TRS-breaking normal state. The Z2-
breaking nematic normal state has been observed in Sr2RuO4

[51] using optical anisotropy measurement. Even though
the normal state nematicity most likely has a di�erent origin
from our theory because it can happen at much higher tem-
perature scale, the same experimental techniques can be used
to detect nematicity in the phase fluctuation regime proposed
in our work. The competing charge-4e state has also been
observed recently in kagome superconductor CsV3Sb5 [52],
where the quantization of magnetic flux in units of hc/4e is
observed.

The paper is structured as the following: In sect. 2 we
introduce the Ginzberg-Landau theory for superconductors
with two gap functions of di�erent symmetries. They cou-
ple due to the second order Josephson e�ect. In sect. 3, we
focus on the phase degree of freedom by mapping the the-
ory to a coupled XY-model, which can be further mapped
to a coupled sine-Gordon model, setting the stage for the
RG study. In sect. 4, we perform detailed RG analysis of
the sine-Gordon model by considering the e�ects of var-
ious symmetry-allowed couplings between di�erent chan-
nels, which lead to the emergence of di�erent phase diagram
topologies. In sect. 5, we briefly discuss the application of
our theory to Fe-based superconductors. Then we conclude
in sect. 6.

2 Ginzberg-Landau theory with two gap func-
tions

We start with the Ginzberg-Landau (GL) free-energy of su-
perconductivity with two gap functions. Each one by itself
is time-reversal invariant. These two gap functions belong to
two di�erent representations of the symmetry group, say, the
s-wave and d-wave symmetries of a tetragonal system, or,
di�erent components of a two-dimensional representation,
say, the px and py-wave symmetries. They cannot couple
at the quadratic level since no invariants can mix them at this
level. Bearing this in mind, the GL free-energy is constructed
as F = F1 + F2 with

F1 =�1|���1|2 + �2|���2|2 + �1(T )|�1|2 + �2(T )|�2|2

+ �1|�1|4 + �2|�2|4 + �|�1|2|�2|2, (1)

F2 =�
�
�2

1�
�2
2 + �

�2
1 �

2
2

�
, (2)

where �1,2(T ) are functions of temperatures, and their ze-
ros determine their superconducting transition temperatures
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when the two gap functions decouple. �1,2, �1,2 are all pos-
itive and �2 < 4�1�2 to maintain the thermodynamic stabil-
ity. If the gap functions form a two-dimensional represen-
tation of the symmetry group, then �1 = �2, �1 = �2, and
�1 = �2, otherwise, they are generally independent. Never-
theless, we consider the case that they are nearly degenerate,
i.e., �1 � �2, when they belong to two di�erent representa-
tions, such that they can coexist.

The F1-term only depends on the magnitude of �1,2,
hence, is phase insensitive. We assume that the two gap
functions can form a quartic invariant as the F2-term, as in
the cases of s and d-waves, and px and py-wave symme-
tries. The F2-term does depend on the relative phase be-
tween �1,2, which can be viewed as a 2nd order Josephson
coupling. To minimize the free energy, the relative phase
between two gap functions �� = �1 � �2 = ±�

2 at � > 0,
i.e., they form �1± i�2, breaking TRS spontaneously. On the
other hand, when � < 0, �� = 0, or, �. They form the nematic
superconductivity �1±�2, breaking the rotational symmetry.
The magnitude of the mixed gap function remains isotropic
in momentum space in the former case, while that in the latter
case is anisotropic. The value of � depends on the energetic
details of a concrete system. At the mean-field level, the free
energy is a convex functional of the gap function distribution
in the absence of spin-orbit coupling [5,19,53]. This favors a
relatively uniform distribution of gap function in momentum
space, corresponding to the complex mixing �1 ± i�2 , i.e.,
� > 0. Nevertheless, the possibility of � < 0 cannot be ruled
out, which could take place in the presence of spin-orbit cou-
pling [11], or as a result beyond the mean-field BCS theory.
This leads to the gap function �1 ± �2, which breaks the ro-
tational symmetry leading to nematic superconductivity.

3 New phases due to the phase fluctuations

The above GL analysis only works in the superconducting
phases in which both �1,2 develop non-zero expectation val-
ues. However, it does not apply to the phase fluctuation
regime above Tc. Let us parameterize the gap functions as
�1,2 = |�1,2|ei�1,2 . In the phase fluctuation regime, the order
magnitudes |�1,2| are already significant, and their fluctua-
tions can be neglected. On the contrary, the soft phase fluc-
tuations dominate the low energy physics, and the system re-
mains in the normal state before the onset of the long-range
phase coherence.

New states can arise in the phase fluctuation regime in
which neither of �1,2 is ordered. A possibility is that the sys-
tem remains in the normal state but �� is pinned: If �� = ±�

2 ,
then Im��1�2 is ordered, which breaks TRS; if �� = 0,�, then
Re��1�2 is ordered, which breaks rotation symmetry. Similar

physics occurs in the p-orbital band Bose-Hubbard model,
where the boson operators in the px,y-bands play the role of
�1,2, respectively. The transitions of superfluidity and TRS
breaking divide the phase diagram into four phases of super-
fluidity states with and without TRS breaking, and the Mott
insulating state with and without TRS breaking, where TRS
here corresponds to the development of the onsite orbital an-
gular momentum by occupying the complex orbitals px ± ipy

[54, 55]. The TRS-breaking normal states were also stud-
ied in the context of competing orders in superconductors
[56,57]. Another possibility is that the total phase �+ = �1+�2
is pinned, i.e., �1�2 is ordered. This corresponds to the quar-
tetting instability, i.e., a four-fermion clustering instability
analogous to the �-particle in nuclear physics. The compe-
tition between the pairing and quartetting instabilities in one
dimension has been investigated by one of the authors [47].
Later it was also studied in the context of high-Tc cuprates as
the charge-4e superconductivity [48].

However, all the above states involve order parameters
consisting of 4-fermion operators. Hence, they are beyond
the ordinary mean-field theory based on fermion bilinear or-
der parameters. To address these novel states, we map the
above GL free-energy to the XY-model on a bilayer lat-
tice, and perform the renormalization group (RG) analysis
to study the possible phases. Since there should be no true
long-range order of the U(1) symmetry at finite temperatures,
we mean the quasi-long-ranged ordering of the Kosterlitz-
Thouless (KT) transition. The model is expressed as:

H = � J1

�

�i, j�
cos(�1i � �1 j) � J2

�

�i, j�
cos(�2i � �2 j)

+ ��
�

i

cos2(�1i � �2i), (3)

where �1,2 are compact U(1) phases with the modulus
2�. J1,2 are the intra-layer couplings estimated as J1,2 �
�1,2|�1,2|2, and �� is the inter-layer coupling estimated as
�� � 2�|�1|2|�2|2.

Following the dual representation of the 2D classic XY-
model as detailed in the Appendix A1, the above model eq.
(3) can be mapped to the following multi-component sine-
Gordon model, which is often employed for studying cou-
pled Luttinger liquids [58, 59]. Its Euclidean Lagrangian in
the continuum is defined as L =

�
d2xL(x) [60], where

L(x) =
1

2K1

�
�µ�1
�2
+

1
2K2

(�µ�2)2 + g��cos2 (�1 � �2)

� g�1 cos2��1 � g�2 cos2��2, (4)

where �1,2 are the dual fields to the superconduct-
ing phase fields of �1,2 with commutation relations
[�1,2(t, x), �y�1,2(t, y)] = 2�i�(x � y), and the Luttinger pa-
rameters K1,2 = J1,2/T (Please note that K1,2 appear in the
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denominators in eq. (4) since we are using the dual repre-
sentation). The compact radius of �1,2 is 2�, and that of the
vortex fields �1,2 is 1. g�� is proportional to �� in eq. (3);
g�1,�2 are proportional to the vortex fugacities of the phase
fields �1,2, respectively. For simplicity, all of these g-eology
coupling constants have absorbed the short-distance cuto� of
the lattice.

4 Renormalization group analysis for phase dia-
grams

In this section, we explore the possible phase diagrams us-
ing RG analysis for the case where the two channels are
degenerate, i.e., J1 = J2 � J, g�1 = g�2 � 1

2 g�± , and
K1 = K2 = J/T � K.

Due to the permutation symmetry between these two chan-
nels, the coupled theory is rewritten in terms of the collective
basis �±, �± channels conveniently defined as:

�+ � (�1 + �2)/2, �� � �1 � �2,
�+ � �1 + �2, �� � (�1 � �2)/2.

(5)

The compact radius of �± can be chosen as 2�, and that of
the vortex fields �± remains 1. This new basis is also conve-
nient in the sense that it makes the symmetries of the coupled
system explicit and at the same time it preserves the com-
mutation relations between the fields and the dual fields, i.e.,
[�±(t, x), �y�±(t, y)] = 2�i�(x�y). The Lagrangian has a U(1)
symmetry in �+ channel, �+ � �+ + � with � � [0, 2�), and
the Z2 symmetry in the �� channel, �� � �� + �, due to the
cos 2�� term.

Based on symmetry alone, there can exit four di�erent
phases: (i) Both U(1) and Z2 are unbroken, i.e., the normal
phase; (ii) only Z2 is broken, i.e., TRS-breaking (or nematic)
normal phase; (iii) only U(1) is broken, i.e., the charge-
4e phase; (iv) both U(1) and Z2 are broken, i.e., the TRS-
breaking (or nematic) superconducting phase. We can start
with the free theory containing only the kinetic terms, and
then add on the most relevant symmetry-preserving interac-
tion terms to obtain phase diagrams containing all of the four
possible phases discussed above, but with di�erent phase di-
agram topologies.

With the basis transformation defined above, the free part
of the Lagrangian in eq. (4) can be equivalently written in
the �±, �± basis as:

L0(x) =
1

4K+
(�µ�+)2 +

1
K�

(�µ��)2, (6)

where the initial values of both K± are both J/T .
Once various interaction terms are added, the phase dia-

gram lives in a high dimensional parameter space. As a re-

sult, it is di�cult to present a complete phase diagram in-
volving all the parameters. However, based on the symmetry
analysis provided above, there are only four phases in total.
Therefore, it is possible to show two dimensional (2D) slices
of the phase diagram that contains the four phases. Interest-
ingly enough, topologically distinct configurations of phase
boundaries can be obtained, depending on which interaction
terms dominate at low energy. In the following two subsec-
tions, we will present two generic cases showing three types
of phase diagram topologies.

4.1 �± channels decoupled

We consider possible local vortex terms in the collective ba-
sis, which are discussed in Appendix A3. The most rele-
vant one is g�int cos ��+ cos 2���, which couples the even
and odd channels together. It originates from the vortex fu-
gacity terms in the individual basis cos 2��1 + cos 2��2. The
sign change of cos ��+ cos 2��� from shifting �+ by 1 can
be compensated by a shift of �� by 1/2, and vice versa. The
next leading vortex terms are g�+ cos 2��+ and g�� cos 4���
in the even and odd channels, respectively, which originate
from the inter-layer vortex-vortex coupling in the original ba-
sis cos 2��1 cos 2��2 ± sin 2��1 sin 2��2.

We begin with the limit that the initial value of the inter-
layer phase coupling g�� is large. In this case, vortices in two
layers tend to be aligned together. Hence, the independent
single vortex excitation in each layer is not favored and its
fugacity is suppressed, i.e., |g�± | � |g�int |. In this limit, the
g�int -term is neglected, then the system is decoupled in the
collective basis with Lagrangian given by

L1(x) =
1

4K+
(�µ�+)2 +

1
K�

(�µ��)2

� g�+cos2��+ � g��cos4��� + g��cos2��. (7)

In this decoupled case, we expect the U(1)-breaking tran-
sition in the �+ channel to be completely independent from
the Z2-breaking transition in the �� channel. The phase dia-
gram can be obtained by numerically solving the following
set of RG equations (see Appendix A2 for details),

dg�+
d ln l

= (2 � 2�K+) g�+ ,

dg��
d ln l

= (2 � 2�K�) g�� ,

dg��
d ln l

=

�
2 � 2

�K�

�
g�� ,

dK+
d ln l

= �2�3g2
�+K2

+,

dK�
d ln l

= �4�3g2
��K2

� + 4�g2
�� ,

(8)

where both of the initial values of K± are J/T .
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Below we analyze the nature of the fixed points of RG for
four di�erent phases: (I) the Z2 breaking SC phase; (II) Z2

breaking normal phase; (III) quartetting phase; (IV) normal
phase. The values of couplings at these fixed points are sum-
marized in Table 1.

Phase I and Phase II are the Z2 breaking superconducting
(SC) and normal phases, respectively. In the former case, the
relative phase �� is locked, while the �+ is quasi-long-range
ordered. Hence, g�� � � and correspondingly K� � �. As
for the vortex term cos 2��+ in the �+ channel, such a vor-
tex term should be irrelevant in Phase I, which requires that
K+ takes a constant value with K+ > 1/�, and (g�� , g�+ ) �
(0, 0). In the Z2-breaking normal phase, the relative phase
�� remains locked, while the vortex �+ proliferates such that
superfluidity is lost. Notice that the Z2-breaking normal state
appears in the intermediate temperature, i.e., the phase fluc-
tuations of the underlying SC state lead to the symmetry-
breaking normal state above the SC critical temperature. This
intermediate phase can be the TRS breaking state, or, the ne-
matic state depending on the �� is pinned at ±�

2 , or, 0 or �,
respectively. In such a phase, g�� � � and K� � +�, which
are the same as in Phase I. On the other hand, in order to pro-
liferate vortices in the �+ channel, g�+ � �, which means
K+ � 0. Then (g�� , g�+ )� (0,�).

Phase III and Phase IV, i.e., the quartetting (4e) state and
the normal state, are both the Z2-symmetric phases. For the
quartetting (4e) state, the vortex field in the relative chan-
nel �� condenses, while the �+ channel is quasi-long-range
ordered. The condensation of �� means that g�� � 0 and
K� � 0, and g�� � �. The quasi-long-range ordering of �+
requires g�+ � 0, which means that the renormalized value
of K+ reaches a constant with K+ > 1

� , which becomes a
line of stable fixed points. As for the normal state, it means
that the vortex fields in both channels condense. This sim-
ply gives rise to g�+ � �, g�� � �, and g�� � 0, which
corresponds to K+ � 0 and K� � 0.

By numerically integrating the RG eq. (8), the above four
phases are obtained. The phase diagram as a function of tem-
perature and fugacity ratio between two channels g��/g�+ is
shown in Figure 1. The fixed point values of the couplings
deep in the four phases as well as on the phase boundaries
are listed in Table 1. As expected, when the two channels are
decoupled, the U(1)-breaking phase boundary and the Z2-
breaking phase boundary are independent from each other
and cross at a single point, diving the phase diagram into
four regions characterized by di�erent symmetry breaking
patterns.

Along the phase boundary P1P3 (excluding the multi-
critical point O), it represents a Z2-breaking transition inside
the normal state with K� = 1

� . Then the fixed point condi-
tion for K� can be solved to give the relation |g�� | = |g�� |.

The segment of P1O lies in the normal state with g�+ = �
with K+ � 0 separating the Z2-breaking normal state and the
complete normal state. In contrast, the P3O lies in the re-
gion with quasi-long-range ordered U(1) phase �+ separating
the Z2-breaking SC state with �� locked and the quartetting
charge-4e phase. The boundary of P2P4 separates the su-
perfluid phase and the normal phase, below which the U(1)
phase �+ becomes quasi-long-range ordered. The line of P2O
marks the boundary between the Z2-breaking normal and SC
phases. Similarly, the line of P4O marks the boundary be-
tween the quartetting phase and the normal phase.

Here we comment on the exact duality on the critical line
P1P3. More precisely, it is the duality between the field ��
and its dual ��. To make the duality manifest, we can do a
field rescaling

�̃� �
�

2���, �̃� � ��/
�

2�, (9)

such that the two mass terms become cos
�

8��̃� and
cos
�

8��̃� respectively. At the same time, the Luttinger

Table 1 Values of couplings at fixed points in the four phases and on phase
boundaries under RG eq. (8)

Phases and phase boundaries g�� g�� g�+ K� K+
(I) Z2-breaking SC � 0 0 +� > 1

�

(II) Z2-breaking normal � 0 � +� 0
(III) quartetting (4e) 0 � 0 0 > 1

�

(IV) normal 0 � � 0 0

P1O g��
g��
= ±1 � 1

� 0

P2O � 0 0 +� 1
�

P3O g��
g��
= ±1 0 1

�
1
�

P4O 0 � 0 0 1
�

Normal

Charge-4e

Z2-breaking normal

Z2-breaking SC

0.10 1.10 2.20

2.00

1.10

0.10

gϕ -
/gϕ +

T
/J

P1

P2

O P4

P3

Figure 1 (Color online) Phase diagram vs. temperature and g��/g�+ by
numerically integrating the RG eq. (8). The initial values of coupling con-
stants are g�+ = 0.2 and g�� = 0.01. All of the four phases appear and meet
at the multi-cirtical point O.
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parameter also has to be rescaled K̃� � �K�, which becomes
1 at the critical point. It is again straightforward to show that
|g�� | = |g�� | at criticality. Then the duality of exchanging
�̃� and �̃� on the Lagrangian level is made explicit. Such a
theory has also been studied as the field theory description
of one dimensional deconfined quantum critical point with
Z2 � Z2 symmetry [61]. In our case, the first Z2 acts on the
field ��, and the second Z2 acts on its dual ��. The mixed
anomaly between the two Z2 symmetries dictates that when
one is preserved the other has to be spontaneously broken.
It has also been shown that such exotic critical point can be
mapped to the usual Landau symmetry-breaking transition of
a 1D Z4 clock model, whose critical point is just two decou-
pled copies of Ising CFT [61,62]. It is interesting to note that
such exotic critical point can arise naturally in the two-gap
superconductors that we study.

4.2 �± coupled through cos ��+ cos 2���

Now we add the vortex term of cos ��+ cos 2��� which cou-
ples the �± fields together. The following Lagrangian is ob-
tained:

L2(x) =
1

K�
(�µ��)2 +

1
4K+

(�µ�+)2

+ g��cos2�� � g�int cos��+cos2���

� g��cos4��� � g�+cos2��+. (10)

The RG equations can be written down as the following
(see Appendix A2):

dg��
d ln l

=

�
2 � 2

�K�

�
g�� ,

dg�int

d ln l
=
�
2 � �

2
(K+ + K�)

�
g�int ,

dK�
d ln l

= �4�3K2
�
�
g2
�� + g2

�int
/8
�
+ 4�g2

��

dK+
d ln l

= �4�3K2
+

�
g2
�+ + g2

�int
/8
�
,

dg��
d ln l

= (2 � 2�K�) g�� +
�

4
g2
�int
,

dg�+
d ln l

= (2 � 2�K+) g�+ +
�

4
g2
�int
.

(11)

By analyzing eq. (11), again we have the four stable
phases as discussed in the decoupled case in the previous sec-
tion before. The values of couplings at the fixed points cor-
responding to these phases and at the phase boundaries are
summarized in Table 2. Compared with the decoupled case,
the Z2-breaking SC phase, the Z2-breaking normal phase, and
the quartetting phase further require that g�int � 0. Further-
more, the quartetting phase requires K+ > 4

� to ensure the

irrelevancy of the g�int -term. As for the normal phase, cer-
tainly g�int � �.

A key feature of the new phase diagram after introducing
the g�int term is that the previous tetra-critical point O splits
into a pair of tri-critical points O1 and O2, such that there
appears a direct transition across O1O2 from the Z2-breaking
SC phase to the normal state [63].

A small g�int -term does not change the boundaries much
when deep inside the Z2-ordered or the superconducting re-
gions as long as they are relatively far away from O1O2.
In this case, the RG processes in the two channels can be
decomposed into fast and slow steps. For example, along
the boundary P2O1 deep inside the Z2-breaking phase, �� is
pinned, which renders the g�int -term highly irrelevant by dis-
ordering the �� field. Similarly, along the boundary P3O2

deep inside the superfluid phase, g�+ is quickly suppressed to
0. The RG process in the �+ channel stops quickly, such that
g�int does not grow much and remains small still. Further-
more, �+ remains power-law fluctuating, which suppresses
the e�ect of the g�int -term.

On the other hand, the g�int -term a�ects the boundaries
surrounding the normal phase. As for the part along P4O1

deep inside the Z2-disordered region, �� is pinned. The g�int -
term becomes g� cos ��+, which is a half-quantum vortex
with a renormalized coupling constant g� = g�int�cos 2����.
Such a term is more relevant than the one-vortex term
of g�+ although its coupling is weaker. Nevertheless,
it extends the region of the normal state significantly as
shown in Figure 2. As for P1O1 deep inside the nor-
mal phase, g�+ -term reaches the order of 1 quickly, and �+
is pinned. Then the g�int -term becomes g�� cos 2��� with
g�� = g�int�cos ��+�, which is more relevant than the exist-
ing g�� cos 4��� term. It changes the competition between
the condensation of �� and ��, which corresponds to the Z2-
ordered and disordered state, respectively. The critical theory
on P1O1 is also modified as a consequence of the g�int -term.
Based on the numerical solution near this critical line, the

Table 2 The values of couplings at the fixed points corresponding to four
stable phases and on the phase boundaries by solving eq. (11)

Phases g�� g�� g�+ g�int K+ K�
(I) Z2-breaking SC � 0 0 0 > 1

� +�
(II) Z2-breaking normal � 0 � 0 0 +�

(III) Quartetting (4e) 0 � 0 0 > 4
� 0

(IV) Normal 0 � � � 0 0

P1O1 � � � � 0 1
�

P2O1 � 0 0 0 1
� 0

P3O2
g��
g��
= ±1 0 0 > 4

�
1
�

P4O2 0 � 0 0 1
� 0

O1O2
g��
g��
= ±1 0 0 1

�
1
�
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0.10 1.20 2.20

2.00

1.10
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P1

P2

O1

O2

P4

P3

Normal

Charge-4e

Z2-breaking normal

Z2-breaking SC

gϕ -
/gϕ +

T
/J

Figure 2 (Color online) Phase diagram vs. temperature and g��/g�+ by
numerically integrating the RG eq. (11). The initial values of coupling con-
stants are g�+ = 0.2, g�� = 0.01 and g�int = 0.001. Di�erent from Figure 1,
this phase diagram features a direct transition boundary O1O2 between the
normal state and the Z2-breaking SC phase due to the coupling between the
�± channels.

scaling dimensions of the two competing interaction terms,
the g�int -term and the g��-term both stabilize at 1, indicating
the criticality belongs to the Ising universality class. In con-
trast, the critical behavior on P3O1 for the ��-channel inherits
from the critical line P3O in Figure 1 since g�int flows to 0 and
this coupling term is non-consequential.

When close to O1O2, the energy scales in the even and odd
channels are close, hence, the RG processes cannot be de-
composed into fast and slow steps any more. Since the g�int -
term is the most relevant, it grows quickly and overwhelms
other terms under su�ciently long RG processes. Once g�int

is renormalized to the strong coupling region, both �+ and ��
are pinned, thus the system enters into normal state. Once it
is renormalized to zero, the system is in the SC state and the
residual g��-term will drive the Z2 symmetry breaking. The
transitions on the critical lines across the tri-critical points O1

and O2 are also quite interesting, but we leave the details for
future study.

5 Discussion

We briefly discuss the application of our theory to the
FeTe1�xSex superconductor, in which evidence to sponta-
neously time-reversal-symmetry breaking states has been
observed by using the high-resolution laser-based photo-
emission method both in the superconducting and the normal
states [41].

Following ref. [64], we consider two superconducting gap
functions �1 and �2, which possess di�erent pairing symme-
tries and each of them maintains time-reversal symmetry. It

has been argued that the pairing symmetries are constrained
to be among A1g(u) ± iA2g(u), B1g(u) ± iB2g(u), or Eg(u) ± iEg(u),
based on the e�ects of TRS-breaking pairing on the surface
Dirac cone. Here A, B, E denote discrete angular momenta
analogous to the s, d, p-wave in the continuous case. g and
u denote even and odd parities respectively. A1,2 means even
or odd under vertical plane reflection. The Ginzburg-Landau
free energy is given by

F =�1|�1|2 + �1|�1|4 + �2|�2|2 + �2|�2|4

+ �|�1|2|�2|2 + �
�
(��1�2)2 + c.c.

�
, (12)

where �1 � �2 is assumed so that the two pairing channels
are nearly degenerate as discussed before. And we focus on
the case of � > 0, where the relative phase between �1 and
�2 as �� = ±�

2 . Hence, the complex gap function �1 ± i�2

spontaneously breaks time-reversal symmetry.
Since the FeSe1�xTex superconductor has strong atomic

spin-orbit coupling, as allowed by symmetry, the complex
gap function can directly couple to the spin magnetization
mz via a cubic coupling term as:

FM = �m|mz|2 + i�mz(�1�
�
2 � ��1�2), (13)

where �m > 0 and � is proportional to the spin-orbit coupling
strength [64]. This term satisfies both the U(1) symmetry and
time-reversal symmetry. Because of �m > 0, the spin mag-
netization can only be induced by the complex gap function
via mz =

�
�m
|��1�2| sin �� when �� = ±�

2 . The development
of mz will gap out the surface Dirac cone as observed in the
experiment [41]. As detailed in ref. [64], this spontaneous
breaking of TR symmetry can impose a strong constraint on
the gap function symmetry in the FeSe1�xTex system.

Furthermore, recent experiment [41] also shows that the
spin-magnetization develops nonzero values even at T > Tc,
indicating that TRS breaking already occurs above Tc. It can
be understood from the analysis in the main text, where we
propose the Z2-breaking normal state. There are no long-
range superconducting orderings, i.e., the ��1� = ��2� = 0.
However, the expectation value of the 4-fermion order pa-
rameter is nonzero ���1�2� � 0 due to the pinning of �� =
±�

2 .

6 Conclusions

To summarize, we have analyzed the possible symmetry-
breaking phases in the phase fluctuation regime in a two-gap
superconductors in 2D. The system has an overall Z2 � U(1)
symmetry, where the Z2 in the �� channel is due to the sec-
ond order Josephson coupling between the two gaps and the
�+ channel still has U(1) symmetry. If only the Z2 is bro-
ken, then we have the Z2-breaking normal state, which can
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be either the phase fluctuation induced TRS breaking normal
state or the nematic state, depending on whether the relative
phase �� is locked at ±�

2 , or, at 0 or �. On the other hand, if
only the U(1) symmetry is broken, then it corresponds to the
ordering of the total phase �+, even though the two gaps are
not individually ordered. This is the quartetting phase, or the
so-called 4e phase.

Extensive RG analysis is done by including the more rel-
evant symmetry allowed couplings. Not only have we ob-
tained all the four possible phases, including the two interest-
ing intermediate phases in the phase fluctuation regime, we
also find a direct transition from the Z2-breaking SC state to
the normal state. This is because the coupling between half-
vortices in the even and odd channels favors the simultaneous
ordering/disordering of the two channels.

On the experimental side, the TRS-breaking normal phase
has been experimentally observed recently in hole-doped
Ba1�xKxFe2As2 [49, 50]. Furthermore, experimental evi-
dence of the elusive charge-4e state has also been found re-
cently in kagome superconductor CsV3Sb5 [52]. The theory
presented in this work is based on general symmetry princi-
ples. We believe the fluctuation e�ects and the physical con-
sequences discussed here are quite generic and likely play a
role in a wide range of multi-gap superconductors with dom-
inant second-order Josephson couplings.

Note added: Upon the completion of the first version of
this manuscript, we became aware of two manuscripts on re-
lated topics refs. [65,66]. Very recently, similar physics have
also been discussed in ref. [67].
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Appendix

A1 The 2D classical XY-model and its dual to the sine-
Gordon model

In this section, we review the duality transformation from
the XY-model to the sine-Gordon model. We follow ref. [68]
to review the duality between the XY-model and the sine-
Gordon model. The Hamiltonian of a single-component XY-
model with the coupling constant J is given by

HXY = �J
�

�i, j�
cos(�i � � j). (a1)

To map the XY-model to the sine-Gordon model, we start
with the Villain approximation,

e�K(1�cos �) �
��

n=��
e�

K
2 (��2n�)2

, (a2)

which is valid when K is large. In this case, the dominant
contribution comes from the regime that cos � � 1, i.e.,
� � 2n�. Performing Taylor expansion around each of these
values, we have e�K(1�cos �) � �n e�

K
2 (��2n�)2 .

Using the Villain approximation, the Partition function of
the XY-model in eq. (a1) is given by

ZXY =

� 2�

0

�

i

d�i
2�

e��HXY =

� 2�

0

�

i

d�i
2�

e�J
�
�i, j� cos(�i�� j)

=

� 2�

0

�

i

d�i
2�

�

�i, j�

�

mi j

e�K/2(�i�� j�2mi j�)2
, (a3)

where K = �J = J/T and the Boltzmann constant is set to be
1 for simplicity; mi j are integers defined on each link of the
2D lattice. Now we perform the Hubbard-Stratonovich trans-
formation by introducing the continuous variables xi j defined
on each link of the lattice. The Partition function becomes

ZXY =

� 2�

0

�

i

d�i
2�

� �

��

�

<i j>

�
2K
�

dxi j

�
�

�i, j�

�

mi j

e�
1

2K x2
i j�ixi j(�i�� j�2mi j�). (a4)

With the help of the Poisson resummation formula,
�

n

�(x � nT ) =
�

m

1
T

ei 2m�
T x, (a5)

where n is an integer, the partition function ZXY becomes

ZXY =

� 2�

0

�

i

d�i
2�

� �

��

�

<i j>

�
2K
�

dxi j

�
�

�i, j�
e�

1
2K x2

i j�ixi j(�i�� j)
�

n

�(xi j � n)
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�
� 2�

0

�

i

d�i
2�

�

{mi j}

�

�i, j�
e�

1
2K m2

i j�imi j(�i�� j). (a6)

To perform the above integrals, each �i is extracted from its
neighbors,

ZXY �
� 2�

0

�

i

d�i
2�

�

{mi j}
e�

1
2K
�

i,µ̂ m2
i,µ̂�i
�

i,µ̂(mi,µ̂�mi,�µ̂)�i , (a7)

where µ̂ = x̂, ŷ denotes the lattice unit vectors along the bond
directions. Now the angles �i can be integrated out,

ZXY �
�

{mi j}
e�

1
2K
�

i,µ̂ m2
i,µ̂

�

i

�

�
�������
�

µ̂

(mi,µ̂ � mi,�µ̂)

�
������� , (a8)

where the �-function here is the Kronecker �.
Each integer mi j defined on the link can be treated as a cur-

rent flown into and out of the connected lattice sites, and the
�-function here basically says the current through each site
is conserved. This conservation constraint is naturally satis-
fied if we define another set of integers {ni} at the sites of the
dual lattice, i.e., the centers of the plaquettes of the original
lattice,

mi,x̂ = ni+x̂+ŷ � ni+x̂,

mi,ŷ = ni+ŷ � ni+x̂+ŷ,

mi�x̂,x̂ = ni+ŷ � ni,

mi�ŷ,ŷ = ni � ni+x̂.

(a9)

With the new set of integers, the partition function now be-
comes,

ZXY �
�

{ni}
e�

1
2K
�

i,µ̂(ni+µ̂�ni)2
. (a10)

Comparing with the original partition function, we notice that
the temperature has been inverted because K � 1/K, and
continuous variables has been replaced by integer variables.
However, we can use Poisson summation to go back to con-
tinuous variables. Therefore,

ZXY �
� �

i

d�i

�

{ni}
e�

1
2K
�

i,µ̂(�i,µ̂��i)2
�

i

�(�i � ni)

=

� �

i

d�i

�

{ni}
e�

1
2K
�

i,µ̂(�i,µ̂��i)2�i2�
�

i ni�i . (a11)

After adding the chemical potential term, the Partition func-
tion becomes

ZXY �
� �

i

d�i

�

{ni}
e�

1
2K
�

i,µ̂(�i,µ̂��i)2�i2�
�

i ni�i+lny
�

i n2
i . (a12)

Next we perform the summation over {ni} by using the fol-
lowing identity,
�

{ni}
e�i2�

�
i ni�i+lny

�
i n2

i =
�

i

�

ni=0,±1,...

yn2
i e�i2�ni�i

=
�

i

(1 + 2y cos 2��i + O(y2))

= e2y
�

i cos 2��i . (a13)

The partition function eventually becomes the form of the
sine-Gordon model,

ZXY �
� �

i

d�ie�
1

2K
�

i,µ̂(�i,µ̂��i)2+2y
�

i cos 2��i . (a14)

A2 RG equations from operator product expansions

A2.1 Scaling dimensions

In this part we use the operator product expansion (OPE) to
calculate the scaling dimensions of the coupling terms con-
sisting of vertex operators of the form cos �� in the free
bosonic field � and the vertex operators cos �� in the dual
field �, based on the free Lagrangian L0 =

1
2K (�µ�)2. No-

tice that the Luttinger parameter K in the results presented
below have to be accordingly scaled in order to be used for
the theory in eq. (6).

We start with the correlation functions of the following
vertex operators. Following the notation in ref. [69], the cor-
relation function is given by

G�(x � y) � �ei��(x)e�i��(y)�. (a15)

By using the operator identity: eAeB :=: eA+B : e�AB+ A2+B2
2 �,

where : Ô : means normal ordering, we have

G�(x � y) = �: ei�(�(x)��(y)) :�e� �
2
2 �(�(x)��(y))2�

= e���(x)�(y)��2(x)� = lim
l�0

�
l2

l2 + (x � y)2

� �2K
4�

, (a16)

where l is the short distance cuto�. The following fact is used
to derive the above equation,

��(x)�(y) � �2(x)� = � K
2�

ln
l2

l2 + (x � y)2 . (a17)

Similarly, we have for the dual field �:

��(x)�(y) � �2(x)� = � 1
2�K

ln
l2

l2 + (x � y)2 . (a18)

Therefore, we are able to obtain the following correlation
functions for two di�erent types of vertex operators:

�ei��(x)e�i��(y)� � |x � y|� �
2K

2� ,

�ei��(x)e�i��(y)� � |x � y|� �2
2�K ,

(a19)

based on which the scaling dimensions of the vertex opera-
tors can be calculated.
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By taking cos �� = 1
2 (ei�� + e�i��), then

�cos��(x)cos��(y)� = 1
4

�
�ei��(x)ei��(y)� + �ei��(x)e�i��(y)�

+�e�i��(x)ei��(y)� + �e�i��(x)e�i��(y)�
�

� |x � y|� �
2K

2� ,

where we have used the fact that �ei�1�(x1)...ei�N�(xN )� = 0 in
the thermodynamic limit when

�N
n=1 �n � 0 [70]. From this

we conclude that the scaling dimension of the cos �� term
is �

2K
4� . Similarly the cos �� term has scaling dimension �2

4�K .
Using these results, the composite operators consisting of this
two types of basic vertex operators, like the ones in the main
text, can be readily calculated.

A2.2 The one-loop correction

For the one-loop corrections for the RG equations, we con-
sider first the simple case where the free bosonic Lagrangian
L0 =

1
2K (�µ�)2 is perturbed by a generic vortex term L� =

g�
lD��� cos�� + g�

lD��� cos��, where the short-distance cuto� l is
restored to make the couplings dimensionless or scale invari-
ant [60]. The partition function can then be expanded as the
following:

Z =
�

D[�]e�S

= Z�
�
1 +
�

dx
g�

lD��� �cos��� +
�

dx
g�

lD��� �cos���

+
1
2

�
dxdy

g�g�
l2D������ �cos��(x)cos��(y)�

+
1
2

�
dxdy

g2
�

l2D�2��
�cos��(x)cos��(y)�

+
1
2

�
dxdy

g2
�

l2D�2��
�cos��(x)cos��(y)� + O(g3)

�
, (a20)

where Z� represents the free theory partition function. As we
know, the conformal invariance of the free theory requires
that the cross term corresponding to g�g� vanishes at the one-
loop level because the g� and the g� terms in general have
di�erent scaling dimensions. So we only need to consider
the g2

� and g2
� terms.

Firstly, consider the g2
� term. The OPE in terms of ei�� is

given by ref. [60],

: ei��(x) :: e�i��(y) :=
1

|x � y|2�� �
1

|x � y|2���2
�2

2
: (�µ�)2 :,

(a21)

: e±i��(x) :: e±i��(y) :=
1

|x � y|�2��
: e±i2��(x) :, (a22)

: ei��(x) :: e�i��(y) :=
1

|x � y|2�� �
1

|x � y|2���2
�2

2
: (�µ�)2 :,

(a23)

: e±i��(x) :: e±i��(y) :=
1

|x � y|2�� : e±i2��(x) :, (a24)

where it is understood that |x � y|� 0. Therefore,

: cos��(x) :: cos��(y) :

=
1
4

:
�
ei��(x) + e�i��(x)

�
::
�
ei��(y) + e�i��(y)

�
:

=
1/2

|x � y|2�� �
1/2

|x � y|2���2
�2

2
: (�µ�)2 :

+
1/2

|x � y|�2��
: cos 2��(x) :, (a25)

and similarly,

: cos��(x) :: cos��(y) :

=
1/2

|x � y|2�� �
1/2

|x � y|2���2
�2

2
: (�µ�)2 :

+
1/2

|x � y|�2��
: cos 2��(x) : . (a26)

For the g2
� term in eq. (a20), 1

2

�
dxdy

g2
�

l2D�2�� �cos��(x)cos��(y)�,
which gives rise to the one-loop correction to the : (�µ�)2 :
term, becomes

� �
2

8

�
dxdy

g2
�

l2D�2��
|x � y|�2��+2�: (�µ�)2 :�

= ��
2

8

�
dx

g2
�

l2D�2��
�: (�µ�)2 :�

�
dy|x � y|�2��+2. (a27)

Now we do a change of scale by changing the cuto� l �
l + �l = (1 + � ln l)l. This means the domain of the above
integration is changed from |x� y| > l to |x� y| > (1+ � ln l)l.
Therefore, the corresponding change in the above integration
becomes

�2

8

�
dx

g2
�

l2D�2��
�: (�µ�)2 :�

�

l<|x�y|<(1+� ln l)l
dy|x � y|�2��+2,

(a28)

which in the case of D = 2 is

�2�

4
g2
�� ln l

�
dx�: (�µ�)2 :�. (a29)

Comparing with the kinetic term 1
2K

�
dx(�µ�)2, we obtain

the correction of K due to the g� term,

d(1/K)
d ln l

=
��2

2
g2
� �

dK
d ln l

= ���2K2

2
g2
�. (a30)

The contribution from the g� cos�� term can be similarly ob-
tained as:

dK
d ln l

=
��2

2
g2
� . (a31)
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A2.3 Derivation of the RG equations

Using the basic ingredients above, we can proceed to work
out the full RG equations presented in the main text. For the
free theory given by

L0 =
1

4K+
(�µ�+)2+

1
K�

(�µ��)2 � 1
2K̃+

(�µ�+)2+
1

2K̃�
(�µ��)2,

(a32)

where we have redefined the Luttinger parameters K̃+ �
2K+, K̃� � K�/2, so that the Lagrangian takes the stan-
dard normalization convention and the results derived from
the previous section can be directly carried over. We have
the following scaling dimensions for the di�erent interaction
terms:
• For cos ��+: ��+ =

�2K̃+
4� ;

• For cos ���: ��� =
�2K̃�
4� ;

• For cos���: ��� =
�2

4�K̃�
;

• For cos ��+ cos���: ��+�� =
1

4�

�
�2K̃+ + �2K̃�

�
.

The scaling dimensions above give us the tree-level flow
equations. For the loop-level correction of the Luttinger pa-
rameters, we again make use of the OPEs. The OPE

: cos��+(x) :: cos��+(y) :

=
1/2

|x � y|2��+ �
1/2

|x � y|2��+�2
�2

2
: (�µ�+)2 :, (a33)

gives the following correction after repeating the real-space
renormalization,

�

�
1
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�
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1
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· �

2

4
g2
�+ ·2�� (ln l)� �K̃+ = �

�
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�2K̃2

+g2
�+� (ln l) .

(a34)

The OPE

: cos���(x) :: cos���(y) :

=
1/2

|x � y|2��� �
1/2

|x � y|2����2
�2

2
: (�µ��)2 :, (a35)

gives the following correction to K̃�,

�

�
1

2K̃�

�
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The OPE

: cos���(x) :: cos���(y) :

=
1/2

|x � y|2��� �
1/2

|x � y|2����2
�2

2
: (�µ��)2 :, (a37)

gives the following correction to K�,
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�
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�� · 2�� (ln l)� �K̃� =
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(a38)

The OPE

: cos ��+(x) cos���(x) :: cos ��+(y) cos���(y) :

=
1
16

�

�1,2,3,4=±1

: ei(�1��+(x)+�2���(x)) :: ei(�3��+(y)+�4���(y)) :

=� � 1/8
|x � y|2��++2����2

�
�2 : (�µ�+)2 : +�2 : (�µ�+)2 :

�

+
1/4

|x � y|�2��++2���
: cos 2��+ :

+
1/4

|x � y|2��+�2���
: cos 2��� :, (a39)

which generates the following renormalizations:
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· 1

4
g2
�int
· 2�� (ln l) =

�

4
g2
�int
� (ln l) .

(a40)

Combining the contributions from the di�erent interaction
terms, we eventually arrive at the RG equations presented in
the main text.

A3 K-matrix formulation of Luttinger liquid

In this section, we review the K-matrix formulation of the
Luttinger liquid. In this framework, a Luttinger liquid is
treated as the boundary of a higher-dimensional bulk and the
K-matrix contains topological information about the bulk. In
particular, using the K-matrix it is straightforward to calcu-
late the braiding statistics between the various vertex oper-
ators that represent the charges, vortices or their combina-
tions. This is a useful way to rule out non-local operators
when writing down the Lagrangian based on symmetry con-
siderations.

A3.1 One pair of boson and dual boson

To warm up for the case of two coupled Luttinger liquids in
our paper, we look at the simpler case of one Luttinger liquid
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consisting of the boson field � and its dual �. By defining
� � (�, �)T, the free Lagrangian density is given by

L0 =
1

4�

�
�t�

TK�x� + �x�
TV�x�

�
, (a41)

where K is not to be confused with the Luttinger parameter
K that appears in the rest part of the paper. The K-matrix is
given by K = �1 and the V-matrix is given by V = �0, where
the �µ with µ = 0, 1, 2, 3 are the Pauli matrices. In canonical
quantization, the conjugate momentum of the � field is given
by

� =
�L0

��t�
=

1
2�
�x�, (a42)

with the canonical commutation given by [�(t, x),�(t, y)] =
i�(x � y), or equivalently, [�(t, x), �y�(t, y)] = 2�i�(x � y).

We have two basic types of vertex operators ei� and ei�,
whose charge vectors are given by l� = (1, 0)T and l� =
(0, 1)T respectively. Then the braiding statistics between the
two vertex operators is given by

2�lT�K
�1l� = 2�, (a43)

which simply states the fact that if we move a charge around
its vortex, then it picks up a phase of 2�. Here we take ei� to
be the charge operator and the ei� to be the vortex operator to
be consistent with the notation of the main text. Notice how-
ever, that in the normalization convention of the main text,
the vortex is given by ei2�� instead, so there is a factor of 2�

in the field rescaling for �. In the convention used here, �
and � are put on equal footing, both without the � factors.
The normalization convention does not change the essential
physics we discuss.

A3.2 Two coupled Luttinger liquids

Now we move on to two coupled Luttinger liquids, which
would correspond to two coupled XY-models. Choosing the
basis � = (�1, �1, �2, �2)T, the Lagrangian density takes the
same form as in eq. (a41), but the new K-matrix and V-matrix
are given by

K =

�
�������
�x 0
0 �x

�
������� , V =

�
�������
�0 0
0 �0

�
������� . (a44)

Then we have the following charge vectors:

l�1 = (1, 0, 0, 0)T, l�1 = (0, 1, 0, 0)T,

l�2 = (0, 0, 1, 0)T, l�2 = (0, 0, 0, 1)T.
(a45)

Under the basis transformation used in the main text,

�+ � (�1 + �2)/2, �� � �1 � �2,
�+ � �1 + �2, �� � (�1 � �2)/2,

(a46)

the charge vectors for the new fields are given by

l�+ =
�

1
2
, 0,

1
2
, 0
�T
, l�+ = (0, 1, 0, 1)T,

l�� = (1, 0,�1, 0)T, l�� =
�
0,

1
2
, 0,�1

2

�T
.

(a47)

In a similar fashion, the braidings between the fields and the
dual fields are given by

2�lT�+K
�1l�+ = 2�, 2�lT��K

�1l�� = 2�,

2�lT�+K
�1l�� = 0, 2�lT��K

�1l�+ = 0,
(a48)

i.e., the braidings between fields from di�erent channels van-
ish, as it should be.

Now we are ready to check the locality of the various terms
appearing in the Lagrangian, i.e., whether their braiding with
the original local physical fields �1,2 are integer multiples of
2�.
• cos �+ (note again that this term is the cos 2��+ in the

main text): The charge vector is (0, 1, 0, 1)T, and its braiding
with �1,2 are both 2�. Higher order terms are therefore also
allowed.
• cos 2��: The charge vector is (1, 0, 1, 0)T, and its braid-

ing with �1,2 are both 0.
• cos �� (equivalent to cos 2��� in the main text): The

charge vector is (0, 1
2 , 0,� 1

2 )T, and its braiding with �1,2 are
±� respectively, i.e., not integer multiple of 2�, hence not
allowed.
• cos 2�� (equivalent to cos 4��� in the main text): The

charge vector is (0, 1, 0,�1)T, and its braiding with �1,2 are
±2�.
• cos 1

2�+ cos �� (equivalent to cos ��+ cos 2��� in the
main text): The charge vector is given by (0, 1, 0, 0)T, whose
braiding with �1,2 are 2� and 0 respectively, hence it is lo-
cal and allowed, even though neither cos 1

2�+ nor cos �� is
allowed separately. This is consistent with the fact that this
term comes from the sum of the original two local vortex
terms cos �1 and cos �2.
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Chapter 7

Pseudospin-triplet pairing in iron-chalcogenide
superconductors
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Understanding the pairing symmetry is a crucial theoretical aspect in the study of uncon-

ventional superconductivity for interpreting experimental results. Here we study super-

conductivity of electron systems with both spin and pseudospin-1/2 degrees of freedom. By

solving linearized gap equations, we derive a weak coupling criterion for the even-parity spin-

singlet pseudospin-triplet pairing. It can generally mix with the on-site s-wave pairing since

both of them belong to the same symmetry representation (A1g) and their mixture could

naturally give rise to anisotropic intra-band pairing gap functions with or without nodes. This

may directly explain why some of the iron-chalcogenide superconductors are fully gapped

(e.g. FeSe thin film) and some have nodes (e.g. LaFePO and LiFeP). We also find that the

anisotropy of gap functions can be enhanced when the principal rotation symmetry is

spontaneously broken in the normal state such as nematicity, and the energetic stabilization

of pseudospin-triplet pairings indicates the coexistence of nematicity and superconductivity.

This could be potentially applied to bulk FeSe, where gap anisotropy has been experimentally

observed.
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The symmetry principle is one of the most powerful tools to
diagnose low-energy electronic band structures, lattice
vibrations, and linear responses1, and is also valuable to

explore various symmetry-breaking ordered phases such as
magnetism, charge/spin density-wave, nematicity and
superconductivity2. The crystal symmetry of a solid-state system
dictates the normal band structures it hosts near the Fermi level,
which could in turn determine the most favorable super-
conducting pairing symmetry3,4. This symmetry principle for
superconductors (SC) is recently extended to investigate multi-
band unconventional superconductivity5–7. Interestingly, the
orbital-independent and orbital-dependent pairings that belong
to the same symmetry representation may coexist with each
other8. Such orbital-dependent pairings have been studied in a
wide variety of systems with multi-band character, including
Sr2RuO4

9, iron-chalcogenide SCs10–13, Cu-doped Bi2Se314 and
half-Heusler compounds15–18, from which the guiding principle
by symmetry is crucial to understanding the nature of uncon-
ventional superconductivity.

A few specific systems can be effectively characterized by a
general normal-state model Hamiltonian that contains both spin
({↑, ↓}) and pseudospin ({1, 2}) degrees of freedom, where pseu-
dospin could originate from two atomic orbitals, two sublattices,
two layers, or two valleys6. We start from a spin-singlet cen-
trosymmetric SC to explore the existence of even-parity pseu-
dospin-triplet pairings, for example, c1,↑(k)c2,↓(− k)+ c2,↑(k)
c1,↓(− k)− c1,↓(k)c2,↑(− k)− c2,↓(k)c1,↑(− k), and further inves-
tigate their valuable roles in tailoring anisotropic pairing gap
functions with or without nodes19. Different from spin-triplet
pairings, spin-singlet pseudospin-triplet pairings have not been
much explored in real materials since such pairings are usually
considered to be energetically unfavorable. This is partly due to
the common belief that the double degeneracy of the two orbitals
is lifted by orbital hybridization so that the orbital-dependent
pairing would be severely suppressed under crystal field splitting
or electron-electron repulsive interaction. One aim of this work is
concerned with the possible condition for the existence of even-
parity spin-singlet orbital-dependent pairings, and possible
applications to real materials.

On the other hand, the effects of symmetry breaking in
unconventional SCs is an important topic that has attracted tre-
mendous interest. The symmetry could be broken explicitly by
external fields or strain, or be broken spontaneously from many-
body interactions. Two typical examples are rotational symmetry
breaking20,21 and time-reversal-symmetry (TRS) breaking22–26.
Besides, the interplay between nematicity and superconductivity
is yet to be fully understood in some real materials, such as
FeSe12,27, where gap functions can be highly anisotropic. These
systems are all multi-band SCs, while symmetry-reducing sig-
natures are experimentally observed above the superconducting
transition temperature, which is mainly caused by both crystal
field splittings and interaction-induced order parameters (e.g.
nematicity). Thus, discovering the coexistence of nematicity and
superconductivity in these multi-band systems can shed new light
on understanding the underlying favorable pairing symmetries.

The main finding of this work is that the anisotropic gap
functions with or without nodes could be attributed to the mixing
of isotropic s-wave pairing and even-parity spin-singlet
pseudospin-triplet pairing, even though both of them belong to
the A1g symmetry representation. For technical conveniences, we
adopt an orbital do(k)-vector notations11 to describe the pairing
matrix and similarly a go(k)-vector for orbital hybridization in the
two-orbital subspace ({1, 2}). Solving linearized gap equations, we
show that the presence of go-vector generally suppresses the
superconductivity with orbital do-vector except for do(k)∥go(k),
which is consistent with the concept of superconducting fitness6.

This sets up weak-coupling criteria for A1g-type orbital-
dependent pairings that could naturally give rise to anisotropic
gap functions in real superconducting materials. Moreover, we
reveal a deep connection between two-orbital nematic SC and
pseudospin-triplet pairings. Within the mean-field theory for
electron-electron repulsive interactions, the nematic order
develops in the orbital subspace at T < Tnem, which also con-
tributes to the total orbital hybridization, gtot= go+ gnem. This
leads to the stabilization of a nematic orbital do-vector for
do(k)∥gtot(k), indicating the coexistence of nematicity and
superconductivity. The direct applications to FeSe12,27 are also
discussed. We also generalize it to a two-valley system with C6
breaking terms (e.g., Kekulé distortion). In the end, we also
predict an orbital-polarized superconducting state.

Results
Classification of Spin-singlet Orbital-triplet pairings. To
explore the weak-coupling criterion for the energetically favorable
even-parity spin-singlet pseudospin-triplet pairing, we consider
the mean-field pairing Hamiltonian,

HΔ ¼ ∑
k

∑
s1a;s2b

Δa;b
s1;s2

ðkÞFy
s1a;s2b

ðkÞ þ h.c. ; ð1Þ

where Fy
s1a;s2b

ðkÞ ¼ cys1aðkÞc
y
s2b
ð%kÞ is the creation operator of

Cooper pairs, s1, s2 are indices for spins and a, b are for pseu-
dospins (e.g., two orbitals {1, 2}). A general pairing potential of a
two-band model is a four-by-four matrix6. In particular, the spin-
singlet pairing function Δa;b

s1;s2
ðkÞ ¼ f ðkÞMa;bðkÞðiσ2Þs1;s2 consists of

the angular form factor f(k) and Ma,b(k) in the orbital channel.
The spin-singlet pairings are not mixed with spin-triplet pairings
in the absence of spin-orbit coupling (SOC). In analogy to spin-
triplet SCs, for the technical convenience, we then use an orbital
do(k)-vector for the spin-singlet orbital-dependent pairing
potential11,

Δ̂totðkÞ ¼ ½ΔsΨsðkÞτ0 þ ΔoðdoðkÞ ' τÞ(ðiσ2Þ; ð2Þ

where Δs and Δo are pairing strengths in orbital-independent and
orbital-dependent channels, respectively. Here τ and σ are Pauli
matrices acting on the orbital and spin subspace, respectively, and
τ0 is a 2-by-2 identity matrix. When both Δs and Δo are real, a real
orbital do(k)-vector preserves TRS while a complex one sponta-
neously breaks TRS (T ¼ iτ0σ2K with K being complex con-
jugate). The Fermi statistics requires Ψs(k)=Ψs(− k),
d1;3o ðkÞ ¼ d1;3o ð%kÞ and d2oðkÞ ¼ %d2oð%kÞ. In other words, d2oðkÞ
describes odd-parity spin-singlet orbital-singlet pairings and the
other two are for even-parity spin-singlet orbital-triplet pairings.
Moreover, we provide an alternative definition of orbital do-
vectors in Supplementary Note 1. Even though the orbital-
independent part Ψs(k) is also “orbital-triplet” by statistics, it is
completely trivial. Hereafter, we only refer to d1oðkÞ and d3oðkÞ as
orbital-triplet pairings28.

In addition, the basis functions for both Ψs(k) and orbital
do(k)-vectors in Eq. (2) could be classified by crystalline
symmetry.

Under the action of an n-fold rotation operator Cn about the z-
axis, the pairing potential Δ̂ðkÞ transforms as

D½Cn( Δ̂J ðkÞ ðD½Cn(Þ
T ¼ ei

2π
n J Δ̂J ðC

%1
n kÞ; ð3Þ

where D½Cn( is the corresponding matrix representation, J is the
orbital angular momentum quantum number, and also labels the
irreducible representations of the Cn point group. For example,
J= 0 is for A representation and J= 2 is for B representation.
Firstly, the TRS requires the coexistence of Δ̂J and Δ̂%J with equal
weight. If the rotation symmetry Cn is further imposed, then J
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and− J have to be equivalent modulo n, i.e. J≡− Jmod n. The
results for the basis functions of Ψs(k) and do(k) are summarized
in Table 1 for a two-band SC with the {dxz, dyz}-orbitals. In this
case, D½Cn( ¼ ½cosð2πn Þτ0 % i sinð2πn Þτ2( ) σ0. For instance,
D½C4( ¼ %iτ2 ) σ0 explains that both Δoτ1 and Δoτ3 are d-
wave-like pairing states29.

At the mean-field level, the Bogoliubov de-Gennes (BdG)
Hamiltonian is given by

HBdG ¼
H0ðkÞ Δ̂totðkÞ

Δ̂
y
totðkÞ %H*

0ð%kÞ

 !

; ð4Þ

where H0ðkÞ represents a two-band normal-state Hamiltonian
with both spin and pseudospin degrees of freedom.

In general, the BdG Hamiltonian is also invariant under
the Cn rotation symmetry, i.e., DBdG½Cn(HBdGðkÞ ðDBdG½Cn(Þ

y ¼

HBdGðC
%1
n kÞ when we define DBdG½Cn( ¼

D½Cn( 0
0 ei

2π
n J ðD½Cn(Þ

*

! "
based on Eq. (3).

Here we assume both inversion and time-reversal symmetries
are preserved. To be specific, we consider a SOC-free Hamilto-
nian,

H0ðkÞ ¼ ϵðkÞτ0σ0 þ λoðgoðkÞ ' τÞσ0; ð5Þ

where the basis is ψy
k ¼ ðcy1;"ðkÞ; c

y
1;#ðkÞ; c

y
2;"ðkÞ; c

y
2;#ðkÞÞ, ϵðkÞ ¼

ðk2x þ k2yÞ=2m% μ is the band energy measured relative to the
chemical potential μ, m is the effective mass, λo represents the
orbital hybridization and go(k)= (g1(k), g2(k), g3(k)). And the g3-
component leads to the different effective masses of different
orbitals. As mentioned earlier, this vector notation is just for the
technical convenience. Besides, the g1 and g2 components are
determined by symmetries. For example, TRS requires g1,3(k)=
g1,3(− k) and g2(k)=− g2(− k). If inversion symmetry (IS) is
present, g2(k) (or g1(k)) must vanish for I ¼ τ0σ0 (or I ¼ τ3σ0),
which is the same as the constraint for the orbital do-vector. The
more explicit form of go(k) is determined by other crystal
symmetries.

In general, the pseudospin-triplet (i.e. orbital-triplet) pairing
state shares some similarities with the spin-triplet pairing state30.
To show that, we first discuss the superconducting quasi-particle
spectrum of orbital-triplet SCs in the absence of band-splitting
caused by orbital hybridizations, i.e., go(k)= 0 for Eq. (5). In this
case, the superconducting gaps on the Fermi surface are

EðkÞ ¼ ± jΔoj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdoðkÞj

2 ± jd*oðkÞ ´ doðkÞj
q

; ð6Þ

for the Δs= 0 limit. This indicates that there are two distinct gaps

if TRS is spontaneously broken. In the following, we mainly focus
on the time-reversal-invariant superconducting states, i.e., real
do-vectors, for which the classification of pairing potentials is
shown in Table 1 based on Eq. (3). We will show the interplay
between Δs and Δo can lead to anisotropic superconducting gaps
on different Fermi surfaces. Moreover, its stability against orbital-
hybridization, electron-electron interactions, and applications to
real materials will be discussed in detail as follows. We will also
briefly comment on the effects of TRS-breaking in the end.

Stability for spin-singlet orbital-triplet pairings. We apply the
weak-coupling scheme6 for spin-singlet orbital-triplet pairings
against crystal field splittings, which cause orbital hybridizations
[i.e. the go(k) term in Eq. (5)]. We analytically calculate the
superconductivity instability for the orbital do-vector by BCS
decoupling scheme. The superconducting transition temperature
Tc of orbital-dependent pairing channels is calculated by solving
the linearized gap equation,

Δa;b
s1;s2

ðkÞ ¼ %
1
β
∑
ωn

∑
s01a

0;s02b
0
Vs1a;s2b

s01a
0;s02b

0 ðk; k0Þ

´ Geðk
0; iωnÞΔ̂ðk

0ÞGhð%k0; iωnÞ
$ %

s01a
0;s02b

0 ;

ð7Þ

where β= 1/kBT, Geðk; iωnÞ ¼ ½iωn %H0ðkÞ(
%1 is the Matsubara

Green’s function for electrons with ωn= (2n+ 1)π/β and
Ghðk; iωnÞ ¼ %G*

e ðk; iωnÞ. We expand the attractive interactions as
Vs1a;s2b

s01a
0;s02b

0 ðk; k0Þ ¼ %∑Γ;l½vΓd
Γ;l
o ðkÞ ' τiσ2(s1a;s2b½d

Γ;l
o ðk0Þ ' τiσ2(s01a0;s02b0

with vΓ > 0. Here Γ labels the irreducible representation with
l ¼ 1; 2; :::;Dim Γ. In this work we focus on 1d representations, i.e.
Dim Γ= 1, which already include many interesting cases and are
sufficient for the applications discussed in later sections. Due to the
possible existence of multiple pairing channels belonging to different
representations, each channel has its own critical temperature TΓ

c ,
the largest of which becomes the actual critical temperature of the
system. In the weak-coupling theory, TΓ

c follows the standard BCS
form and is solely determined by the corresponding pairing inter-
action vΓ in that particular channel. To the leading order of λok

2
F=μ

(kF ¼
ffiffiffiffiffiffiffiffiffi
2mμ

p
), the equation for Tc for the channel Γ reads (see

details in the Methods section),

ln TΓ
c

Tc0

& '
¼
R
SdΩ C0ðTcÞ dΓo

(( ((2 % dΓo ' ĝo
(( ((2

& '
; ð8Þ

where Tc0 is the critical temperature for λo= 0, Ω is the solid angle
of k, ĝo ¼ goðkÞ=jgoðkÞj are normalized vectors. Here we takeR
SdΩ jdΓoj

2 ¼ 1. And C0ðTcÞ ¼ Re ½ψð0Þð12Þ % ψð0Þð12 þ i λojgðkÞj2πkBTc
Þ(,

where ψ(0)(z) is the digamma function.

Table 1 Classification of spin-singlet pairing potentials for Eq. (2).

Cn J=− J (mod n) Ψs(k)=Ψs(− k) d1oðkÞ ¼ d1oð%kÞ d2o ðkÞ ¼ %d2o ð%kÞ d3oðkÞ ¼ d3oð%kÞ
n= 2 J= 0 1; k2x ; k

2
y ; k

2
z ; kxky 1; k2x ; k

2
y ; k

2
z ; kxky kz; kzk

2
x ; kzk

2
y ; k

3
z ; kzkxky 1; k2x ; k

2
y ; k

2
z ; kxky

J= 1 kxkz, kykz kxkz, kykz kx, ky kxkz, kykz
n= 3 J= 0 1; k2x þ k2y ; k

2
z Eg representation kz Eg representation

n= 4 J= 0 1; k2x þ k2y ; k
2
z k2x % k2y ; kxky kz; kzðk

2
x þ k2y Þ; k

3
z k2x % k2y ; kxky

J= 2 k2x % k2y ; kxky 1; k2x þ k2y ; k
2
z kzðk

2
x % k2y Þ; kzkxky 1; k2x þ k2y ; k

2
z

n= 6 J= 0 1; k2x þ k2y ; k
2
z Eg representation kz Eg representation

J= 3 ðkx þ ikyÞ
3; ðkx % ikyÞ

3 Eg representation k3x % 3kxk
2
y ; 3k

2
x ky % k3y Eg representation

Here we consider a spin-singlet two-orbital superconductors with {dxz, dyz}-orbitals. Based on the n-fold rotation symmetry Cn about z-axisd and time-reversal symmetry (TRS), we have J=− J mod n,
which leads to all the pairing channels with orbital-independent Ψs(k) and orbital-dependent do(k)-vector in Eq. (2). Here, for J= 0 pairing subspace of C3, the ðd1oðkÞ; d

3
o ðkÞÞ forms a two-dimensional Eg

representation, where the basis functions are ðk2x % k2y ; kxky Þ and (kykz, kxkz). For J= 0 pairing subspace of C6, the ðd1oðkÞ; d
3
o ðkÞÞ forms a two-dimensional Eg representation, where the basis functions are

(kykz, kxkz); for the J= 3 pairing subspace of C6, the ðd1oðkÞ; d
3
o ðkÞÞ forms a two-dimensional Eg representation, where the basis functions are ðk2x % k2y ; kxkyÞ.
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We now discuss its implications. In general, the λo-term
describes a pair-breaking term, since C0ðTcÞ≤ 0 and it mono-
tonically decreases as λo increases, hence the right-hand side of
Eq. (8) suppresses Tc in general. However, if we focus on one-
dimensional representations, i.e. Dim Γ= 1, it is straightforward
to see that dΓo k go can lead to Tc= Tc0 for any value of λo, which
indicates that the orbital do-vector that is parallel with go is
unaffected by the orbital hybridizations. It is worth mentioning
that due to the possible suppression of Tc, depending on the
relation between dΓo and go the leading instability channel at
λo= 0 could be suppressed more than some of the other
coexisting channels and may eventually become sub-leading.
This interesting behavior is discussed further in Supplementary
Note 3. For notional simplicity, we will drop the representation
index Γ when there is no danger of confusion. Choosing
goðkÞ ¼ ð2kxky; 0; k

2
x % k2yÞ, the numerical results are shown in

Fig. 1. The black line confirms that Tc is unaffected as λok
2
F=kBTc0

increases for doðkÞ ¼ k%2
F ð2kxky; 0; k

2
x % k2yÞ, which is the uncon-

ventional A1g pairing. However, Tc for other do-vectors are
severely suppressed. The light-blue line is for doðkÞ ¼ 1ffiffi

2
p ð1; 0; 1Þ,

and the light-orange line for doðkÞ ¼ k%2
F ðk2x % k2y ; 0;%2kxkyÞ.

Therefore, we conclude that the orbital do-vector could exist in
SCs with two active orbitals that are not fully degenerate. This is
similar to spin-triplet SCs, where the A1g-type spin ds-vector
could exist in noncentrosymmetric SCs because ds∥gs is optimally
satisfied4,6.

It is worth mentioning that the results presented above is using
a continuum form of the Hamiltonian based on k ⋅ p theory. For
real materials, given the interaction on the lattice, the compo-
nents of the interaction in terms of the basis functions of the
representations might not be exactly the same with the form of
the vector go. As a result, the parallel condition presented above
may not be exactly satisfied. However, the theory developed in
this work is generally applicable and the extend to which the
parallel condition holds can still be a useful criterion for the most
favorable pairing.

Next, we include Δs, and investigate the coupling between Ψs
and do. Solving the coupled linearized gap equations up to

ðλok
2
F=μÞ

2
order (see details in Supplementary Note 3), we find

that the results from Eq. (8) are still correct. Besides, the
magnitude of orbital do-vectors might be determined as
doðkÞ ¼ ΨsðkÞĝoðkÞ. It implies that Ψs and do belong to the same
representation of crystalline groups. Therefore, the stability of
orbital do-vector by Eq. (8) indicates the symmetry principle for
spin-singlet orbital-triplet pairings.

We now explain Eq. (8) from the band picture. Within the
band basis, the pairing potential in the orbital subspace becomes
Δ̂bandðkÞ ¼ UyðkÞ ΔsΨsðkÞτ0 þ ΔoðdoðkÞ ' τÞ

$ %
UðkÞ, where U(k) is

the unitary matrix in the orbital subspace, U†(k)[ϵ(k)
τ0+ λo(go(k) ⋅ τ)]U(k)=Diag[E+(k), E−(k)], with the normal
band dispersion

E ± ðkÞ ¼ ϵðkÞ± λojgoðkÞj: ð9Þ

The intra-orbital pairing naturally gives rise to the intra-band
pairing. However, it is different for orbital-dependent pairings. To
show that, we decompose the orbital do-vector,
doðkÞ ¼ dkðkÞĝoðkÞ þ d?ðkÞ, where dkðkÞ ¼ doðkÞ ' ĝoðkÞ and
d?ðkÞ ' ĝoðkÞ ¼ 0. We find that the d∥-part gives rise to the
intra-band pairing, while the d⊥-part leads to the inter-band
pairing (see Supplementary Note 4). If the band splitting is much
larger than the pairing gap (λok

2
F + Δo), the inter-band pairing is

not energetically favorable in the weak-coupling pairing limit. It
means that the inter-band pairing will be severely suppressed if
we increase the orbital hybridization λo, consistent with Eq. (8)
and results in Fig. 1. Now if we again include the orbital-
independent pairing part ΔsΨs(kτ0iσ2), the relation between do
and Ψs(k) obtained previously from solving the coupled linearized
gap equation (see Supplementary Note 3) can also be reproduced
in the band picture by considering the maximization of the
condensation energy. The total condensation energy per volume
and per spin of the two intra-band pairings is given by

δE ¼Nþ ∑
k2FSþ

ΔsΨsðkÞ þ ΔodkðkÞ
) *2

þ N% ∑
k2FS%

ΔsΨsðkÞ % ΔodkðkÞ
) *2

;
ð10Þ

where N± are the density of states on the two Fermi surfaces (E±).
And ΔsΨs(k) ± Δod∥(k) are the pairing gaps on these two Fermi
surfaces. In order to maximize δE, we have d∥(k)= sign[(N+−
N−)ΔsΔo]Ψs(k) (See Supplementary Note 4 for details). Even
though the intra-orbital pairing and the orbital-triplet pairing
belong to the same symmetry representation, the different k-
dependencies of Ψs(k) and d∥(k) can naturally lead to the
anisotropic superconducting gap on the Fermi surface observed
in experiments.

Applications to superconductors with/without nodes. As a
consequence of the mixing of the orbital-independent pairing (Δs)
and orbital-dependent pairing (Δo) discussed in the previous
section, there could be a nodal SC. In this section, we apply the
results of the previous section to study superconductors with two
orbitals, where Δs and Δo coexist. It is shown that the anisotropic
gap functions with/without nodes depend on the ratio of Δs and
Δo superconducting order parameters. Our weak-coupling theory
might have potential applications to some of the nodal/nodeless
SCs in the iron-chalcogenides family. For example, the angle-
resolved photoemission spectroscopy (ARPES) measurements
indicate a nontrivial superconducting gap anisotropy for the
monolayer FeSe thin film31. The penetration depth measurements
on both LaFePO32 and LiFeP33 show a linear dependence on T,
suggesting the presence of superconducting gap nodes.

Fig. 1 Stability of orbital do-vectors vs orbital hybridization λo in Eq. (5). It
shows the transition temperature Tc/Tc0 as a function of λok

2
F=kBTc0 for

goðkÞ ¼ ð2kxky;0; k
2
x % k2y Þ. Tc0 is Tc at λo= 0. The curves from top to

bottom correspond to doðkÞ ¼ k%2
F ð2kxky;0; k

2
x % k2y Þ, doðkÞ ¼

1ffiffi
2

p ð1;0; 1Þ,
and doðkÞ ¼ k%2

F ðk2x % k2y ;0;%2kxkyÞ, respectively.
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As an example, we consider the pairing potential in Eq. (2) for
monolayer FeSe, where there is no hole pocket around the Γ-
point, and a two-spin two-orbital model has been shown to be a
good approximation around the electron pockets near the M
point of the Brillouin zone (two Fe unit cell). The density
functional theory calculations show that there are four bands
around the M point, giving rise to only two electron pockets. In
the one Fe unit cell, there is one pocket near the X and Y points,
respectively. After folding with respect to the unit cell with two
Fe, we obtain two pockets around the M point. Considering spin
degrees of freedom, it naturally resembles a C4z-invariant two-
orbital model34,

HMðkÞ ¼ ϵðkÞτ0 þ Akxkyτz
h i

σ0 þ vsoτx kxσy þ kyσx
h i

; ð11Þ

where ϵðkÞ ¼ ðk2x þ k2yÞ=ð2mÞ % μ with m > 0 the effective mass, A
leads to the anisotropic effective mass (i.e., orbital hybridization),
and vso represents SOC that still preserves inversion symmetry.
These four states are degenerate at the M point since they form
the four-dimensional representation of the space group No. 129
(P4/nmm)35. We take the parameters for the FeSe thin film as
μ= 55 meV, 1/(2m)= 1375 meV ⋅Å2, A= 600 meV ⋅Å2 and
vso≤15 meV ⋅Å34. The SOC is very weak to open a tiny gap along
the kx= 0 and ky= 0 lines, shown in Fig. 2a. As what we expect, it
shows two C4z rotational-invariant Fermi surfaces, and the
maximal gap, which is induced by the z-component of the go
vector, is around 12 meV along the (11) and (1!1) directions. This
is larger than the typical superconducting gaps in iron-
chalcogenide SCs (~4 meV), implying that the effect of the
orbital hybridization on the pairing symmetries should not be
neglected.

We now use the criteria derived above (Eq. (8)) to examine the
superconducting states. Specifically, the weak-coupling criterion
indicates that the most favorable pairing to characterize the
anisotropic superconducting gap is the A1g-type s-wave pairing
symmetry,

Δ̂ðkÞ ¼ Δsτ0 þ Δokxkyτz
h i

iσ2
) *

: ð12Þ

The ratio between Δs and Δo determines the superconducting
nodal structure. To simplify the analysis, we turn off the weak
SOC. In the band basis, the dispersion of HMðkÞ is
ϵ± ðkÞ ¼ ðk2x þ k2yÞ=ð2mÞ±Ajkxkyj% μ. Here ± label the band

index. Projecting Δ̂ðkÞ onto the bands leads to Δ±= Δs ± Δo∣kxky∣.
Given that Δs, Δo > 0, nodal points can only appear for Δ− on the
“− ” band. The nodal condition would be ∣kxky∣= Δs/Δo has
solution on the FS given by ϵ−(k)= 0. By using the mathematical
inequality k2x þ k2y ≤ 2jkxkyj, it can be shown that the nodal

condition is given by,
Δs

Δo
≤

μ
1=m% A

; ð13Þ

which is shown in Fig. 2b. In general, the ratio Δs/Δo should
depend on both interaction strength in each pairing channel and
the orbital hybridization strength. This gives rise to the condition
of nodal A1g-type s-wave superconducting states. Therefore, it
could not only explain the anisotropic gap functions observed in
the FeSe thin film (fully gapped) but also the nodal super-
conductivity in LaFePO and LiFeP. Around one linear Dirac
node, the effective Hamiltonian up to linear-k can be mapped out
as

HD ¼ k1~σ0~τz þ k2~σy~τy; ð14Þ

where k1, k2 are liner combinations of kx and ky. All the other
Dirac nodes are related to this one by reflection symmetries.
Then, we only need to focus onHD, which is a Dirac Hamiltonian
with topological charge (winding number) ± 2, whose node is
protected by the chiral symmetry (i.e., the product of time-
reversal symmetry and particle-hole symmetry). The 2Z winding
number is due to the presence of inversion symmetry and time-
reversal symmetry. To analytically show the topology of Dirac
nodes, we apply perturbation analysis with respect to PT
symmetry (i.e., the product of time-reversal symmetry and
inversion symmetry) and Chiral symmetry. Note that the PT
symmetry can be also C2zT symmetry for a 2D or quasi-2D SC.
The projected symmetry representations are given by PT ¼ ~σy~τ0
and C ¼ ~σy~τx. As expected, the PT symmetry commutes withHD,
while the Chiral symmetry anti-commutes with HD. Then, local
perturbations preserving PT and Chiral are

H0
D ¼ m1~σ0~τy þm2~σy~τz; ð15Þ

where m1 and m2 represent perturbation strengths or mass terms.
The spectrum of HD þH0

D are given by

E ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þm2

1 þm2
2 ± 2jm1k2 þm2k1j

q
; ð16Þ

which indicates that the Dirac nodes are movable but not
removable. For example, k1= 510.7kx+ 76.5ky and
k2=− 14.7kx− 40.9ky around one Dirac node. Then, turning
on the SOC vso= 15 meV ⋅Å, we numerically confirm the nodal
SC phase with Δs= 3 meV and Δo= 200 meV ⋅Å2, shown in
Fig. 2c, where the logarithm of superconducting gaps are plotted.
The eight dark red points are the linear Dirac nodes. Based on the
topology-protection argument, the interplay between intra- and
inter-orbital pairings for nodal superconductivity is robust
against local perturbations. Note that our results are different
from a previous work34, in which the d-wave pairing symmetry

Fig. 2 The application to iron-chalcogenide superconductors with/without linear Dirac nodes. In (a), the two-electron pockets around the M point. For
zero spin-orbit coupling, vso= 0, (b) shows the phase diagram as a function of the intra-orbital pairing Δs and the inter-orbital pairing Δo. For the gap
parameters represented by the green dot in (b), the nodal superconductor is exhibited in (c), where the eight dark red points represent the chiral
symmetry-protected Dirac nodes.
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induced nodal SC. In experiments, the nodal gap structure could
be detected by measuring the temperature dependence of physical
quantities like specific heat and penetration depth at low
temperatures. A power law dependence usually indicates the
existence of nodal structures (point nodes or line nodes), whereas
exponential dependence implies the SC is fully gapped3.

Applications to superconductors with nematic order. In addi-
tion to the crystal field splitting, the many-body electron-electron
interactions may also lead to orbital hybridization, such as the
nematic ordering in the normal states (See Supplementary Note 5
for details). The rotational symmetry reduction could either be
from interaction-induced spontaneous symmetry breaking or
from explicit symmetry breaking from, say, adding external
strain. Then the natural question to ask is whether it is still
possible to have an orbital-dependent pairing order characterized
by some do-vector. Interestingly, we find that the orbital-
dependent pairing can coexist with the electronic nematic
ordering as long as do is parallel to the gtot, which is an effective
orbital-hybridization vector that also contains the nematic order.
This establishes a deep connection between SCs with nematic
order and spin-singlet orbital-triplet pairings. In the following, we
study two typical examples.

● For case A [two-orbital system], we apply the theory to fit
the anisotropic superconducting gap of the hole pocket in
the bulk FeSe measured by the quasiparticle interference
imaging12.

● For case B [two-valley system], we use a toy model to
demonstrate the possible existence of s+ d-like nematic
nodal superconductor in two-valley systems on a honey-
comb lattice. We also show the transition between
U-shaped and V-shaped quasi-particle density-of-state by
tuning the chemical potential.

Case A: two-orbital model for the bulk FeSe SC. We discussed
the possible anisotropic A1g-type s-wave pairing states for the C4-
symmetric iron-chalcogenide SCs including fully gapped FeSe
thin film and nodal SC in LiFeP and LaFePO. Here we investigate
the C4-breaking nematic SC in bulk FeSe. Let us revisit the iron-
based SC with a well-established nematic ordering. We consider
Hint ¼ v1n̂1ðrÞn̂2ðrÞ, where n̂i is electron density operator for the
i-atomic orbital. If hn̂1i≠hn̂2i, Cn (n > 2) is spontaneously broken
down to C2 and we have the nematic order. The intra-orbital
interaction does not alter the mean-field results for nematic
orders (See Supplementary Note 5). The total inter-orbital
hybridization contains two parts,

gtotðkÞ ¼ goðkÞ þ gnem; ð17Þ

where go(k) is caused by the crystal field splitting and
gnem= (0, 0,Φ) is induced due to the nematicity
Φ ¼ v1hn̂1 % n̂2i, which is momentum-independent if translation
symmetry is to be preserved. Hereafter, we focus on the hole
pockets around the Γ point to fit the experimental data of
superconducting gap functions12. We will see that even this
simplified weak-coupling model, where the coupling between the
hole pockets at the Γ point and the electron pockets at the M
point is ignored, can produce a descent fit the experimental data.
A similar result is expected for the electron pockets near the M
point. Replacing go with gtot in Eq. (5), we can still use Eq. (8) to
investigate the interplay between superconductivity and nematic
order, thus the orbital do-vector satisfying do∥gtot leads to the
nematic superconductivity. Thus, it generally shows the A1g-type
s-wave spin-singlet orbital-triplet pairings in nematic SCs.

This scenario can be adopted to study the quasi-two
dimensional bulk FeSe, where superconductivity (Tc ~ 8 K)
emerges inside a well-developed nematic phase (transition
temperature Tnem ~ 90 K36), shown in Fig. 3a. For a minimal
two-band model37 for the bulk FeSe with {dxz, dyz}-orbitals, go ¼
ð2kxky; 0; k

2
x % k2yÞ and gnem= (0, 0,Φ)38,39. Therefore, the

nematic orbital do-vector with do∥gtot breaks C4 (see Supplemen-
tary Note 5 for more details). The projected pairing gap function
on the large Fermi surface is given by

ΔFSðkÞ ¼ Δs þ Δo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð%λoðk

2
x % k2yÞ þΦÞ2 þ ð2λokxkyÞ

2
q

: ð18Þ

If Φ= 0, ΔFS(k) is reduced to Δs þ Δojλojðk
2
x þ k2yÞ that is in the

isotropic limit. The presence of Φ is the driving force for the
anisotropy of ΔFS(k). When the nematicity Φ is strong enough,
the orbital do-vector will be pinned along the z-axis, resulting in
the so-called orbital-selective pairing states. We adopt the realistic
parameters for the bulk FeSe SC from Ref. 39 to calculate the
superconducting gap measured by the quasiparticle interference
imaging12. In Fig. 3b, we show the angular dependence of the
pairing gap around the hole pocket at the Γ-point of FeSe in the
presence of nematic order. Our theory provides an equally decent
fit to recent experimental data12 as the intra-orbital s+ d-pairing
theory proposed by Kang et al.39, even though our work uses a
simplified model without considering the coupling to the other
two electron pockets. Our theory shows more clearly the role of
nematic order on the pairing symmetries. Therefore, the theory
developed in this work may alternatively explain the experimental
evidence of orbital-selective pairings of the FeSe SC in refs. 12,27,
and reveal a deep connection between nematic SC and spin-
singlet orbital-triplet pairings. It has to be mentioned that here we
only focused on the hole pockets around the Γ point and
discussed the nematicity-induced gap anisotropy around the hole
FS. There are other possible mechanisms for gap anisotropy in

Fig. 3 The application to bulk FeSe superconductors with nematicity.
a Schematic phase diagram vs temperature T for normal metal (T > Tnem),
nematic metal (T < Tnem), and nematic superconductivity (T < Tc).
b Angular dependence of the superconducting pairing gap: comparison
between experiment data (black dots) by Sprau et al. ref. 12, our theory (red
line) and the theory proposed by Kang et al.39 (blue line). Fitting
parameters used for our model: Δs= 2.6, Δo=− 0.055 in Eq. (18). All the
other parameters used are the same39, including the chemical potential,
effective mass, orbital hybridization, and nematic order.
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Fe-based SCs. For example, a previous work40 discussed, among
other things, the anisotropy/isotropy of the SC gap around the
electron pockets at the M point, where the degree of anisotropy
depends on the J1-J2 magnetic frustration in the proposed five-
orbital t-J1-J2 microscopic model.

Case B: two-valley system superconductivity. Similar to the two-
orbital systems considered above, we discuss in this section
superconductivity in two-valley systems, like single layer gra-
phene SC41 or transition metal dichalcogenide (TMD)42, where
the pairing can be between opposite valleys K±. The spin-singlet
pairing is merely characterized by the orbital do-vector with
Δs= 0 in Eq. (2). For the single-particle Hamiltonian, the inter-
valley hopping is naturally forbidden by translational symmetry,
namely, λo= 0 in Eq. (5). Then, we consider the inter-valley
scattering Hamiltonian,
Hint ¼ ∑k;k0;σVðk % k0Þcyþ;σðkÞcþ;σðk

0Þcy%;σðk
0Þc%;σðkÞ. It generates

the inter-valley coupling gint by defining the order parameter
ΦðkÞ ¼ ∑k0;σVðk % k0Þhcþ;σðk

0Þcy%;σðk
0Þi that spontaneously

breaks the translational symmetry,

gintðkÞ ¼ ðg int;1ðkÞ; g int;2ðkÞ; 0Þ; ð19Þ

where gint,1(k)= Re[Φ(k)] and gint,2(k)=− Im[Φ(k)]. In this
case, TRS is T ¼ iτ1σ2K and IS is I ¼ τ1σ0. The do-vector is
manifested as do= (d1(k), id2(k), 0) with d1(k)= d1(− k) and
d2(k)=− d2(− k). Both d1(k) and d2(k) are real to preserve TRS.
As for the interaction-induced gint, T and I require gint,1(k)=
gint,1(− k) and gint,2(k)= 0. By symmetry, there are two general
possibilities. One is gint,1(k)= 1, so C3 ´ I ¼ C6 is preserved, and
it describes the charge-density-wave order43,44. The other one is
g int;1ðkÞ 2 fkxky; k

2
x % k2yg that spontaneously breaks C6 down to

C2, forming a nematic order. This is experimentally possible for
the strain-induced Kekul’e distortion (i.e.,

ffiffiffi
3

p
´

ffiffiffi
3

p
type).

We next discuss superconductivity in the presence of inter-
valley couplings, by replacing the go-vector in Eq. (5) with the
interaction-induced gint. As a result, Eq. (8) is still applicable. It is

similar to a recent work45 where the charge order coexists with a
sublattice-selective non-unitary pairing state.

The nematic inter-valley coupling is represented as
g int;1ðkÞ ¼ 1þ 2t1kxky þ t2ðk

2
x % k2yÞ, which requires that doðkÞ ¼

ð1þ 2t1kxky þ t2ðk
2
x % k2yÞ; 0; 0Þ (see Supplementary Note 6).

Here the normalization factor has been dropped without
changing the essential physics. The system is fully gapped if the
s-wave gap is dominant (1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ t22

p
), otherwise, it is a d-wave

dominant nodal SC (1 ,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ t22

p
).

As a concrete toy model, we look at superconductivity on a
generic honeycomb lattice with two valleys K±, with the
Hamiltonian around the two valleys given by,

H0ðkÞ ¼ ϵðkÞτ0σ0 þ α k3x % 3kxk
2
y

& '
τ3σ0; ð20Þ

where the two-valley basis used here is given by ψy
k ¼

ðcyKþ;"
ðkÞ; cyKþ;#

ðkÞ; cyK%;"
ðkÞ; cyK%;#

ðkÞÞ and ϵ(k) takes the same
form as in Eq. (5). The parameter α determines the C3 anisotropy
of the continuum model around each valley. This Hamiltonian
was used as an effective model46 to study twisted bilayer
graphene.

Including the inter-valley scattering effects, the one-band
model is given by

HðkÞ ¼ ϵðkÞτ0σ0 þ α k3x % 3kxk
2
y

& '
τ3σ0 þ λint½gintðkÞ ' τ(σ0;

ð21Þ

where the λint determines the strength of the inter-valley
scattering. In Fig. 4, we present representative numerical results
for Eq. (21). Panels (a–c) illustrate Fermi surfaces with varying
parameters, while panels (d–f) depict the corresponding quasi-
particle density of states (DOS).

In the absence of inter-valley scattering (λint= 0), the Fermi
surfaces (FSs) around the two K± valleys are plotted in Fig. 4a. As
expected, with a fully symmetric s-wave pairing characterized by
do= (1, 0, 0), a fully gapped or U-shaped quasi-particle density-

Fig. 4 Fermi surfaces (FSs) at the K± valleys and the quasi-particle density of states (DOS). Panels (a–c) show FSs with varying parameters, while panels
(d–f) exhibit the corresponding quasi-particle DOS. The C6 symmetric FS without inter-valley scattering is shown in (a) and its DOS with an isotropic s-
wave pairing is given in (d). b Shows C6-breaking FSs due to the inter-valley scattering, together with the nodal lines of nematic pairing. There are no nodes
on the FSs and the corresponding DOS is shown in (e). c Is similar to (b) but with chemical potential μ adjusted so that the nodal lines intersect the FSs,
hence a V-shaped DOS is obtained as in (f). Parameters used are the following, the C3 anisotropy α= 0.2, the coefficients for basis functions
t1= 0.15, t2= 0.25, the orbitial-dependent pairing gap Δo= 0.5. For (a) and (d) μ= 1.5 (chemical potential), the inter-valley coupling gint= 0; for (b) and
(e) μ= 1.5, gint= 0.7; for (c) and (f) μ= 2.7, gint= 0.7.
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of-states (DOS) is obtained and shown in Fig. 4d. Then we
include the aforementioned inter-valley scattering gint that breaks
C6 down to C2. As a result, our theory implies that the effective
nematicity generated will favor a nematic pairing characterized by
do∥gint. Consider the generic form do ¼ gint ¼ ð1þ 2t1kxkyþ
t2ðk

2
x % k2yÞ; 0; 0Þ, the resulting C6-breaking FS are shown in

Fig. 4b, c, where the nodal lines of the pairing are also shown. By
tuning the chemical potential μ, the FSs and nodal lines can go
from non-intersecting in Fig. 4b to intersecting in Fig. 4c, leading
to the corresponding evolution from the gapped U-shaped DOS
in Fig. 4e to the gapless V-shaped DOS in Fig. 4f. Our results may
explain the experimental observations in magic-angle twist
bilayer graphene that reports the nematic order47, and
V-shaped DOS48 at the specific doping level.

Discussions
We briefly discuss the difference between our theory and the
previous studies21 for nematic SCs. One example is a pairing state
belonging to a 2D irreducible representation (Irrep), e.g., the E-
pairing in Cu or Nb-doped Bi2Se349,50 and UPt351,52. A real order
parameter vector (ΔE,1, ΔE,2) spontaneously breaks C3, leading to
nematic superconductivity. Alternatively, a nematic SC can be
formed by mixing two different 1D-Irrep-pairing channels. In
FeSe53,54, the nematic order breaks the C4 down to C2, which
mixes the s-wave and d-wave pairing channels. However, Tc of the
(s+ d) orbital-independent pairing state could be generally
affected by increasing nematicity, because of the significant
change in the density of states at the Fermi energy. In our theory,
the (s+ d)-like nematic do-vector coexists with the nematic order,
so Tc is almost unaffected by increasing nematicity. Therefore, it
may help to distinguish our results from previous proposals in
experiments, where one may use the chemical or physical pres-
sures to tune the nematicity and measure Tc as a function of

pressure55. Nevertheless, more efforts are necessary to test the
results established in this work for nematic SCs.

In addition to the above discussions for the time-reversal-
invariant superconducting states, we also comment on the effects
of the spontaneous TRS-breaking, where a complex orbital do-
vector generates the orbital orderings as Mo=− iγ1/αM(d × d*),
of which only the y-component breaks TRS (see details in Sup-
plementary Note 7), as illustrated in Fig. 5a. Alternatively, the
corresponding quasi-particle spectrum in Fig. 5b shows the two
distinct gaps, similar to the range given by Eq. (6). More expli-
citly, we schematically plot the atomic orbital-polarized density of
states (DOS) by defining ±j i ¼ 1j iþ i 2j i for complex orbitals,
where D+ ≠D− at finite energy clearly indicates that the DOS is
orbital-polarized, which is consistent with the Ginzburg-Landau
theory, shown in Supplementary Note 2. Moreover, we also find
that the orbital-spin conversion would lead to the spin-polarized
DOS56.

The above result for orbital-triplet pairings is similar to the
superconducting gaps for non-unitary spin-triplet SCs3. By
symmetry, the Gizburg-Landau free energy is the same. To show
the similarity, for the single-band spin-triplet SCs57, the spin-
triplet pairing potential is generally given by Δ̂ðkÞ ¼
Δ0½dsðkÞ ' σ(ðiσ2Þ, where Δ0 is the pairing strength and σ are Pauli
matrices in the spin subspace. Due to the Fermi statistics, the spin
ds(k)-vector has to satisfy ds(k)=− ds(− k). The ds-vector
formalism is firstly developed for He3 superfluid58. And it also
occurs in noncentrosymmetric SCs, the spin ds(k)-vector is
usually pinned along a certain crystal axis since superconductivity
is non-suppressed only for ds(k)∥gs(k), where gs(k) represents the
Rashba spin-orbit coupling (SOC)4,6. Besides, there is intrinsic
spontaneous spin-polarization induced by the non-unitary pair-
ing, ds(k)= kz(1,− iη0, 0) with real η0. Fig. 5c shows the spin
expectation value of the Cooper pairs (Ms / id*s ðkÞ ´ dsðkÞ ¼
2η0k

2
z e!z). It is an equal-spin pairing so that σ3 is conserved, and

(c)

(d) ↑↓

TRS-breaking 
spin-triplet SC∝ × ∗

∗
(a)

(b) +−

∝ × ∗∗
TRS-breaking 

orbital-triplet SC

Fig. 5 Schematic diagrams for the time-reversal symmetry (TRS) breaking effects. a, b Are for orbital-triplet superconductors (SCs), while (c) and (d)
are for spin-triplet SCs. As for orbital-triplet SCs characterized by a do-vector, (a) shows a complex orbital do-vector that spontaneously breaks TRS and
results in the TRS-breaking orbital-polarizationMo / ido ´ d

*
o ; and (b) shows the quasi-particle spectrum along kx and the orbital-polarized density of states

(DOS) D± with ±j i representing 1j i± i 2j i. As a comparison, in spin-triplet SCs, (c) shows the superconductivity-induced spontaneous spin-polarization
Ms / ids ´ d

*
s ; and (d) shows the two distinct gaps of the quasi-particle spectrum along kx and the spin-polarized DOS Dσ with σ= {↑,↓}. The gapped

spectrum is plotted for kz≠ 0 and the node in DOS profile is due to the nodal line at kz= 0.
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non-zero Ms leads to two distinct superconducting gaps of the
quasi-particle spectrum59, shown in Fig. 5d. In addition, the
density of states (DOS) is spin-polarized, namely, D↑ ≠D↓ at finite
energy ω, as illustrated in Fig. 5d.

To summarize, we have derived a general weak-coupling cri-
terion to investigate the spin-singlet orbital-triplet pairings in
nematic SCs. For technical convenience, we adopt the orbital do-
vector to describe the spin-singlet orbital-dependent pairing
states and the go-vector for the orbital hybridizations. The main
results of this work include, first, we demonstrate that an orbital
do-vector that is parallel with go-vector for orbital hybridizations
is possible to be realized in real superconducting materials. Sec-
ond, the interplay between intra-orbital and orbital-dependent
pairings that belong to the same symmetry representation can
explain the observation of robust Dirac nodes in the quasi-2D
iron-based SCs. Remarkably, we find that do-vectors could even
coexist with many-body interaction-induced nematic orders or
charge-density-wave orders when do∝ gtot= go+ gnem (or gint).
Moreover, our theory discovers the important role of nematic
orders in SC pairing symmetry, which builds a possible bridge
between repulsive interaction-induced nematic orders and
nematic superconductivity and also reveals a deep connection
between spin-singlet orbital-triplet pairings in nematic SCs. Our
results may be helpful in understanding the nematic super-
conductivity in bulk FeSe. Our work will motivate more theore-
tical and experimental efforts to search for spin-singlet orbital-
triplet SCs, even for topological superconductivity, which might
contribute to further understanding the effects of spontaneous
symmetry breaking on superconductivity.

Methods
Here we present the derivation for the main result Eq. (8), which
is first order in λo, by solving the linearized gap equation. The
second-order results are presented in Supplementary Note 3. The
general k ⋅ p normal Hamiltonian considered in the main text
reads,

H0ðkÞ ¼ ϵðkÞτ0σ0 þ λoðgoðkÞ ' τÞσ0; ð22Þ

where the electronic basis is made of {1, 2}-orbitals
Ψy

k ¼ ðcy1;"ðkÞ; c
y
1;#ðkÞ; c

y
2;"ðkÞ; c

y
2;#ðkÞÞ, ϵðkÞ ¼ ðk2x þ k2yÞ=2m% μ

is the band energy measured relative to the chemical potential μ,
λo represents the orbital hybridization and
go(k)= (g1(k), g2(k), g3(k)). The TRS T ¼ iσ2τ0K requires
g1,3(k)= g1,3(− k) and g2(k)=− g2(− k). It leads that

goðkÞ ' τ ¼ goð%kÞ ' τ
$ %*

: ð23Þ

Besides, we set λo > 0 without loss of generality. The Matsubara
Green’s function for electrons is Geðk; iωnÞ ¼ ½iωn %H0ðkÞ(

%1

and that for holes is Ghðk; iωnÞ ¼ %G*
e ðk; iωnÞ. Here β= 1/kBT

and ωn= (2n+ 1)π/β with n integer. Therefore,

Geðk; iωnÞ ¼
P%ðkÞ

iωn % ϵðkÞ þ λojgoðkÞj
þ

PþðkÞ
iωn % ϵðkÞ % λojgoðkÞj

≜G%
e ðk; iωnÞP%ðkÞ þ Gþ

e ðk; iωnÞPþðkÞ;
ð24Þ

Ghð%k; iωnÞ ¼
P%ðkÞ

iωn þ ϵðkÞ % λojgoðkÞj
þ

PþðkÞ
iωn þ ϵðkÞ þ λojgoðkÞj

≜G%
h ðk; iωnÞP%ðkÞ þ Gþ

h ðk; iωnÞPþðkÞ;
ð25Þ

where P ± ðkÞ ¼ 1
2 ð1 ± ĝoðkÞ ' τÞ with ĝoðkÞ ¼ goðkÞ=jgoðkÞj. Here

G±
e ðk; iωnÞ ¼ 1

iωn%ϵðkÞ-λojgoðkÞj
and G±

h ðk; iωnÞ ¼ 1
iωnþϵðkÞ± λojgoðkÞj

.
We expand the attractive interactions as

Vs1a;s2b
s01a

0;s02b
0 ðk; k0Þ ¼ %∑

Γ;l
vΓ0½d

Γ;l
o ðkÞ ' τiσ2(s1a;s2b

´ ½dΓ;lo ðk0Þ ' τiσ2(s01a0;s02b0 ;
ð26Þ

where vΓ0>0 is the interaction strength of the irreducible repre-
sentation channel Γ of the crystalline group, and
l ¼ 1; 2; :::;Dim Γ. Each pairing channel Γ gives rise to an SC
critical temperature TΓ

c , and the actual transition temperature of
the system is given by the largest of these critical temperatures. In
our work, we mainly focus on the case where Dim Γ ¼ 1, which is
sufficient for the applications discussed in the main text. The
coupling between orbital-dependent pairings and orbital-
independent pairings will be discussed in detail later. The tran-
sition temperature TΓ

c of orbital-dependent pairing channels is
calculated by solving the linearized gap equation,

Δa;b
s1;s2

ðkÞ ¼ %
1
β
∑
ωn

∑
s01a

0;s02b
0
Vs1a;s2b

s01a
0;s02b

0 ðk; k0Þ

´ Geðk
0; iωnÞΔ̂ðk

0ÞGhð%k0; iωnÞ
$ %

s01a
0;s02b

0 ;

ð27Þ

which is reduced to vΓ0χ
ΓðTÞ % 1 ¼ 0 with the superconductivity

susceptibility χΓ(T) in the channel Γ defined as,

χΓðTÞ ¼ %
1
β
∑
k;ωn

Tr ðdΓoðkÞ ' τiσ2Þ
y
Geðk; iωnÞðd

Γ
oðkÞ ' τiσ2ÞGhð%k; iωnÞ

h i
;

ð28Þ

¼ %
2
β
∑
k;ωn

∑
α;β

Gα
e ðk; iωnÞG

β
hðk; iωnÞ

´ Tr ðdΓoðkÞ ' τÞ
yPαðkÞðd

Γ
oðkÞ ' τÞPβðkÞ

h i
;

ð29Þ

where α, β∈ {+ ,− }. For notional simplicity, the superscript Γ
will be dropped when there is no danger of confusion. Firstly, let
us calculate the trace part. In the following calculation, we will use

Tr ðdoðkÞ ' τÞ
yPþðkÞðdoðkÞ ' τÞPþðkÞ

$ %

þ Tr ðdoðkÞ ' τÞ
yP%ðkÞðdoðkÞ ' τÞP%ðkÞ

$ %

¼ d*oðkÞ ' doðkÞ
) *

þ 2 d*oðkÞ ' ĝoðkÞ
) *

doðkÞ
)

'ĝoðkÞ
*
d*oðkÞ ' doðkÞ
) *

ĝoðkÞ ' ĝoðkÞ
) *

:

ð30Þ

And,

Tr ðdoðkÞ ' τÞ
yPþðkÞðdoðkÞ ' τÞP%ðkÞ

$ %

þ Tr ðdoðkÞ ' τÞ
yP%ðkÞðdoðkÞ ' τÞPþðkÞ

$ %

¼ d*oðkÞ ' doðkÞ
) *

% 2 d*oðkÞ ' ĝoðkÞ
) *

doðkÞ ' ĝoðkÞ
) *

þ d*oðkÞ ' doðkÞ
) *

ĝoðkÞ ' ĝoðkÞ
) *

:

ð31Þ

Therefore, we arrive at

Tr ðdoðkÞ ' τÞ
yPαðkÞðdoðkÞ ' τÞPβðkÞ

h i

¼
1
2
½ d*oðkÞ ' doðkÞ
) *

þ iα doðkÞ ' d*oðkÞ ´ ĝoðkÞ
) *) *

þ iβ d*oðkÞ ' doðkÞ ´ ĝoðkÞ
) *) *

þ αβ 2 d*oðkÞ ' ĝoðkÞ
) *

doðkÞ ' ĝoðkÞ
) *)

% d*oðkÞ ' doðkÞ
) *

ĝoðkÞ ' ĝoðkÞ
) **

(:

ð32Þ

Then we have
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χðTÞ ¼ %
1
β
∑
k;ωn

∑
α;β

Gα
e ðk; iωnÞG

β
hðk; iωnÞ½ d

*
oðkÞ ' doðkÞ

) *

þ iα doðkÞ ' d*oðkÞ ´ ĝoðkÞ
) *) *

þ iβ d*oðkÞ ' doðkÞ ´ ĝoðkÞ
) *) *

þ αβ 2 d*oðkÞ ' ĝoðkÞ
) *

doðkÞ ' ĝoðkÞ
) *)

% d*oðkÞ ' doðkÞ
) *

ĝoðkÞ ' ĝoðkÞ
) **

(:
ð33Þ

Next, we calculate the integration for ∑k;ωn
by using,

∑
k;ωn

!
N0

4

Z þωD

%ωD

dϵ
Z

S

dΩ
2π

∑
ωn

; ð34Þ

where N0 is the density of states at Fermi surface and Ω is the
solid angle of k on Fermi surfaces. Then,

%
N0

β

Z þωD

%ωD

dϵ
Z

S

dΩ
2π

∑
ωn

Gþ
e ðk; iωnÞG

þ
h ðk; iωnÞ

¼ %
N0

β

Z þωD

%ωD

dϵ
Z

S

dΩ
2π

∑
ωn

G%
e ðk; iωnÞG

%
h ðk; iωnÞ

. χ0ðTÞ;

ð35Þ

On one hand,
Z þωD

%ωD

dϵ∑
ωn

Gþ
e ðk; iωnÞG

þ
h ðk; iωnÞ

¼
Z þωD

%ωD

dϵ∑
ωn

1
iωn þ ϵ

1
iωn % ϵ

¼ β
Z þωD

%ωD

dϵ
tanh βϵ

2

2ϵ

¼ β
Z βωD=2

0
dx

tanh x
x

/ β ln
2eγωD

πkBT

! "
;

ð36Þ

where the approximation is done at low temperature when
β→∞.

On the other hand, we could find a series representation for χ0,
which also applies to the case where λo ≠ 0, so that χ0≡ χ(λo= 0)
and χ(λo ≠ 0) can be related by a simple relation. The way to do it
is to perform the integration in ϵ first. More precisely,
Z þωD

%ωD

dϵ∑
ωn

Gþ
e ðk; iωnÞG

þ
h ðk; iωnÞ

¼
Z þωD

%ωD

∑
ωn

1
iωn þ ϵ

1
iωn % ϵ

¼ 2Re ∑
n≥ 0

Z ωD

%ωD

dϵ
1

iωn þ ϵ
1

iωn % ϵ

¼ 2βRe ∑
n≥ 0

Z βωD

%βωD

dϵ
1

i2πðnþ 1=2Þ þ ϵ
1

i2πðnþ 1=2Þ % ϵ

/ 2βRe ∑
n≥ 0

Z 1

%1
dϵ

1
i2πðnþ 1=2Þ þ ϵ

1
i2πðnþ 1=2Þ % ϵ

¼ βRe ∑
n≥ 0

1
nþ 1=2

;

ð37Þ

where the low-temperature limit is again assumed and the inte-
gration is done using the residue theorem. In the same spirit, we
have,

Z þωD

%ωD

dϵ∑
ωn

Gþ
e ðk; iωnÞG

%
h ðk; iωnÞ

¼ βRe ∑
n≥ 0

1

nþ 1=2þ i λojgoðkÞj2πkBT

;
ð38Þ

Now by introducing the digamma function defined on the
complex plane,

ψð0ÞðzÞ ¼ %γþ ∑
n≥ 0

1
nþ 1

%
1

nþ z

! "
; ð39Þ

we have the following relation,
Z þωD

%ωD

dϵ∑
ωn

Gþ
e ðk; iωnÞG

%
h ðk; iωnÞ

%
Z þωD

%ωD

dϵ∑
ωn

Gþ
e ðk; iωnÞG

þ
h ðk; iωnÞ

¼ βRe ψð0Þ 1
2

! "
% ψð0Þ 1

2
þ i

λojgðkÞj
2πkBT

! "+ ,

. βC0ðTÞ;

ð40Þ

where χ0ðTÞ ¼ N0 ln
2eγωD
πkBT

& '
, γ= 0.57721⋯ is the Euler-

Mascheroni constant and ωD is the Debye frequency.
Therefore,

%
N0

β

Z þωD

%ωD

dϵ
Z

S

dΩ
2π

∑
ωn

G%
e ðk; iωnÞG

þ
h ðk; iωnÞ

¼ %
N0

β

Z þωD

%ωD

dϵ
Z

S

dΩ
2π

∑
ωn

Gþ
e ðk; iωnÞG

%
h ðk; iωnÞ

¼ χ0ðTÞ þ N0

Z

S

dΩ
2π

C0ðTÞ:

ð41Þ

Now we can proceed to calculate χ(T) given in Eq. (33),

χðTÞ ¼ χ0ðTÞ
Z

S

dΩ
2π

do ' ĝo
(( ((2 ð42Þ

þχ0ðTÞ
Z

S

dΩ
2π

jdoj
2 % do ' ĝo

(( ((2
& '

ð43Þ

þN0

Z

S

dΩ
2π

C0ðTÞ jdoj
2 % do ' ĝo

(( ((2
& '

ð44Þ

¼ χ0ðTÞ þ N0

Z

S

dΩ
2π

C0ðTÞ do
(( ((2 % do ' ĝo

(( ((2
& '

: ð45Þ

In the calculation, we use normalized gap functions withR
S
dΩ
2π d*o ' do ¼ 1. It leads to,

ln
Tc

Tc0

! "
¼
Z

S

dΩ
2π

C0ðTcÞ do
(( ((2 % do ' ĝo

(( ((2
& '

; ð46Þ

where Tc0 is Tc for λo= 0 case by solving v0χ0(Tc0)= 1. This is the
Eq. (8) in the main text. In general, the right-hand side of Eq. (46)
suppresses Tc. It clearly indicates that Tc would not be suppressed
by orbital hybridization once do∥go for all k. So we conclude that
the orbital do-vector is possible to be stabilized in materials.
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Supplementary Note 1 Two definitions for the orbital do-vector

In the main text, we take the general pairing potential of a two-orbital SC,

�̂tot(k) = (�s�s(k)�0 + �o(do(k) · � ))(i�2), (1)

where �s and �o are pairing strengths in orbital-independent and orbital-dependent channels, respectively. Here �
are Pauli matrices acting on the orbital subspace and �0 is a 2-by-2 identity matrix. In the absence of band-splitting
caused by spin-orbital couplings, the gap function on the Fermi surface is

�(k) =
�

|�s|2�2
s(k) + |�o|2|do(k)|2 ± |qo|, (2)

where qo = i|�o|2(d�
o(k)⇥do(k))+ Re[��

s�odo(k)]. This expression is mathematically similar to the superconducting
gap of non-unitary spin-triplet SCs.

� hu.lunhui.zju@gmail.com
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2

At this point, it is a good place to comment on the other possible way to define the orbital do-vector. Di�erent from
the one used in the main text, this definition groups the pairing term into orbital-singlet and orbital-triplet parts. In
the form of Eq. (A1), �s(k) and d1,3

o (k) are even in k, but d2
o(k) is odd in k due to Fermi statistics. By regrouping

the terms based on the parity in k, we have

�̂(k) = [�od
2
o(k)�0 + (�i�od

3
o(k), �s�s(k), i�od

1
o(k)) · � ](�2i�2), (3)

which contains d̃o · � with the new d̃o-vector redefined in terms of the original amplitudes and form factors. In
this form, the first part is odd in k, which is the orbital-singlet part, and the second part is even in k and gives
orbital-triplet state. Supplementary Table I gives a detailed comparison between the two definitions of the orbital
do-vector. The spin ds-vector is also presented for completeness. It shows that the definition of orbital do-vector
used in the main text is more convenient to discuss the spontaneous TRS-braking pairing states.

orbital do orbital d̃o spin ds

Pairing potential [�s�s(k)�0 + �odo(k) · � ]i�2 [�̃s�̃s(k)�0 + �̃od̃o(k) · � ]�2i�2 [�tds(k) · �]i�2

Parity �s(k), d2
o(k) odd; d1,3

o (k) even �̃s(k) odd; d̃o(k) even ds(k) odd

TRS
��

s(k) = �s(k);
d�

o(k) = do(k);

�̃�
s(k) = �̃s(k);�

d̃1,3
o (k)

��
= �d̃1,3

o (k);
�
d̃2

o(k)
��

= d̃2
o(k)

d�
s(k) = ds(k)

TRS breaking complex do d̃1,3
o (k) real or d̃2

o(k) complex complex ds

spontaneous AOP/SP Mo � id�
o(k) � do(k) Mo � id̃�

o(k) � d̃o(k) Ms � id�
s(k) � ds(k)

Supplementary Table I. Comparison between the two possible definitions of the orbital do-vector in spin-singlet SCs, together
with the spin ds-vector of spin-triplet SCs. The parity properties are obtained from Fermi statistics. The TRS row gives the
transformation properties in order to preserve TRS. Both the atomic orbital polarization (AOP) and the spin polarization (SP)
take the same form in terms of their respective d-vectors.

Supplementary Note 2 Classification of spin singlet pairing states with
Cn and TRS

In this section, we classify the possible spin-singlet pairing states constrained by Cn about z-axis and TRS. We also
discuss the spontaneous time-reversal symmetry-breaking pairings and the induced orbital polarized density-of-states.

A. Classification of pairings

The pairing potential �̂(k) transforms under the rotation Cn as

Cn�̂J(k)CT
n = ei 2�

n J�̂J(C�1
n k), (4)

where J labels the irreducible representations of the Cn point group. For example, J = 0 is for A representation
and J = 2 is for B representation. Firstly, the TRS requires the coexistence of �̂J and �̂�J with equal weight. If
the rotation symmetry Cn is further imposed, then J and �J have to be equivalent modulo n, i.e. J � �J mod n.
The results for the basis functions of �s(k) and do(k) are summarized in Table (1) in the main text. Here, the
kz-dependent pairing symmetries are also presented for completeness. However, such pairings are neglected in the
main text where we mainly focus on 2D systems.

When inversion symmetry is also present, it leads to the following constraints for di�erent orbital basis,

1.) If the inversion symmetry is I = �0�0, two atomic orbitals have the same parity, it requires that d2
o = 0.

2.) If the inversion symmetry is I = �3�0, two atomic orbitals have opposite parities, it require that d1
o = 0.

3.) If the inversion symmetry is I = �1�0, two orbitals are the valley indexes, it require that d3
o = 0.
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3

B. Spontaneous TRS-breaking orbital-polarization

Next, we study spontaneous TRS-breaking and its consequences for a two-band SC with {dxz, dyz}-orbitals. I =
�0�0 constrains the orbital do-vector to be (d1�1

o(k), 0, d3�3
o(k)) for Eq. (??). Under Cn (T ), the orbital do transforms

as do � ei2�J/ndo (do � d�
o). Choosing

�
|d1|2 + |d3|2 = 1, the set of superconducting order parameters are given by

{�s, �o,d � (d1, 0, d3)}. Furthermore, the orbital orderings can be characterized by Mo �
�

k,��c†
�a(k)�abc�b(k)�.

The total GL free energy preserving the U(1) ⇥ T ⇥ Cn ⇥ I symmetries is constructed as,

F [�s, �o,d,Mo] = F1 + F2 + F3 + F4, (5)

where F1 = 1
2�1(T )|�o|2 + 1

4�1|�o|4 + 1
2�2(T )|�s|2 + 1

4�2|�s|4 + 1
2�M |Mo|2, determining the gap strengths by using

�1,2(T ) = �1,2
0 (T/T 1,2

c � 1) and �1,2
0 , �M , �1,2 > 0. The second term is F2 = �|d1|4 + ��|d3|4 with �, �� > 0, which

determines d. In addition, there are two possibilities to achieve the spontaneously TRS-breaking states, which are
described respectively by F3 and F4,

F3 = b1�
�
s�o + b2(�

�
s)

2(�o)
2 + h.c., (6)

F4 = �0(T )(d ⇥ d�)2 + i�1Mo · (d ⇥ d�) + h.c.. (7)

The F3 term in Eq. (6) helps to develop a relative phase di�erence between �s and �o of being ±�/2 when b1 = 0
and b2 > 0 [1]. As for the b2 < 0 case, the TRS-breaking is caused solely by the F4 term in Eq. (7). For example,
�0(T ) = �0(T/T �

c � 1) and T �
c < Tc, where T �

c is the critical temperature for the spontaneous TRS-breaking inside the
superconducting states. When T < T �

c, the orbital do-vector becomes complex, then it generates the orbital orderings
as Mo = �i�1/�M (d ⇥ d�), of which only the y-component breaks TRS, as illustrated in the main text (see Fig. 1).
More precisely, My

o �
�

k,��n̂�,+(k) � n̂�,�(k)�. Here we define |±� = |1� + i|2� for complex orbitals, thus My
o �= 0

indicates the TRS-breaking orbital-polarization (OP), similar to the time-reversal-odd polarization of the Cooper
pairs discussed in Ref. [2, 3].

We next solve the Bogoliubov-de-Gennes Hamiltonian,

HBdG|En(k)� = En(k)|En(k)�, (8)

|En(k)� = (un
dxz,�, u

n
dxz,�, v

n
dxz,�, v

n
dxz,�, u

n
dyz,�, u

n
dyz,�, v

n
dyz,�, v

n
dyz,�)

T , (9)

The quasi-particle spectrum is plotted in the main text (see Fig. 1), where two distinct gaps appear. Then, we
calculate the atomic orbital-polarized density of states (DOS),

D�(E) =
1

2

�

�,n,k

|un
�,�|2� (E � En(k)) , (10)

where un
�,� = un

dxz,� � i�un
dyz,� with � = ± for dxz ± idyz orbitals, and �(x) is the delta function. In Supplementary

Fig. 1, the numerical results help to confirm a two-gap feature due to the spontaneous breaking of TRS, compared with
the quasi-particle spectrum. Moreover, D+ �= D� at finite energy clearly indicates that the DOS is orbital-polarized,
which is consistent with the GL analysis. The orbital-spin conversion would lead to the spin-polarized DOS [4].

Supplementary Note 3 The stability of orbital do-vector under crystal
fields

In the Method section of the main text, we derived our main result up to first-order in the coupling �o. Here, we
first address the situation where multiple pairing channels with possibly di�erent pairing strengths coexist. Then we
show the second-order result in �o.

A. First-order result applied to multiple coexisting pairing channels

We have the following first-order result,

ln

�
Tc

Tc0

�
=

�

S

d�

2�
C0(Tc)

�
|do|2 � |do · ĝo|2

�
, (11)
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𝑴𝑜 ∝ 𝑖 𝒅𝑜 × 𝒅𝑜∗
𝒅𝑜

𝒅𝑜∗
(a) TRS-breaking OP (c)(b) 𝐸𝑘𝑥

𝑘𝑥

𝜔

𝐷−

𝐷+

(b)(a) (c)

Supplementary Figure 1. The TRS-breaking e�ects for spin-singlet two-band SCs. (a) A complex orbital do-vector sponta-
neously breaks TRS and may give rise to the TRS-breaking OP with Mo � ido �d�

o, which is the same plot in Fig. (1b) in the
main text. (b) The quasi-particle spectrum along k = (kx, 0) is shown. (c) The orbital-polarized DOS D± with ± representing
dxz ± idyz are exhibited. Parameters used are: �o = 0.1, �o = 1, �s = 0.1, µ = �0.5, t0 = 1, do = (cos �

20 , 0, i sin �
20 ).

Tc
J=0 Tc

J=2

0.0 0.5 1.0 1.5 2.0
0.4

0.6

0.8

1.0

1.2

λokF2 /kBTc0J=0

T
c/
T
c0J
=
0

Supplementary Figure 2. Di�erent behaviors of T J=0
c and T J=2

c under orbital hybridization. Here dJ=0
o = k�2

F (k2
x �

k2
y, 0, 2kxky),dJ=2

o = 1�
2
(1, 0, 1), and go = k2

F (1, 0, 1).

which is derived with the assumption that there is only one pairing channel. Here, we elaborate on a subtlety
mentioned in the main text that might arise due to coexisting multiple pairing channels belonging to di�erent 1d
irreducible representations. In the weak-coupling theory and without orbital hybridization, the critical temperature
for a particular channel � is simply obtained by solving the linearized gap equation v��0(Tc0) = 1 and the solution

is given by T�
c0 = 2e��D

�kB
e
� 1

v�N0 . This means that the critical temperature in each channel is solely determined by the
strength of the pairing interaction in that particular channel. The leading instability channel has the largest pairing
interaction, which determines the Tc. However, when orbital hybridization is considered, the story could change.
Depending on the relation between d�

o and go, some pairing channels will be suppressed more than the others.
Therefore, the previous leading instability channel could become sub-leading in the presence of orbital hybridization.
In Supplementary Figure 2 we take the J = 0 and J = 2 representations under C4 as an example, with the assumption
that vJ=0 > vJ=2. We see that T J=0

c starts higher than T J=2
c , but since dJ=2

o is parallel go and dJ=0
o is not, T J=2

c is
not suppressed by �o whereas T J=0

c is suppressed and eventually becomes lower than T J=2
c .

B. Second-order approximated results

In this subsection, we consider the coupling between orbital-independent pairing (�s(k)-part in Eq. (1)) and orbital-
dependent pairing (do(k)-part in Eq. (1)), and study the second-order approximated results for the above conclusion.
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5

The attractive interaction is now decomposed as

V s1a,s2b
s�
1a�,s�

2b�(k,k�) = �v0[do(k) · � i�2]s1a,s2b[do(k
�) · � i�2]s�

1a�,s�
2b� � v1[�s(k)i�2]s1,s2 [�s(k

�)i�2]s�
1,s�

2
, (12)

where v0 is the interaction strength in the orbital-dependent channel and v1 is the interaction strength in the orbital-
independent channel. And they belong to the same representation of symmetry groups, leading to the coupled
linearized gap equation,

Det

�
v0�(T ) � 1 v0�os(T )
v1�so(T ) v1�s(T ) � 1

�
= 0, (13)

where

�os(T ) � � 1

�

�

k,�n

Tr
�
(do(k) · � i�2)

†Ge(k, i�n)(�s(k)i�2)Gh(�k, i�n)
�
,

�so(T ) � � 1

�

�

k,�n

Tr
�
(�s(k)i�2)

†Ge(k, i�n)(do(k) · � i�2)Gh(�k, i�n)
�
.

(14)

It leads to

(v0�(T ) � 1)(v1�s(T ) � 1) � v0v1�so(T )�os(T ) = 0, (15)

Considering the v0 > v1 case firstly, then, the bare Tc of orbital-dependent pairings are larger than that of orbital-
independent pairings, we have

v0�(T ) � 1 � v0v1�so(T )�os(T )

v1�s(T ) � 1
= 0, (16)

from which, we define the total superconductivity susceptibility as,

��(T ) = �(T ) +
�so(T )�os(T )

1/v1 � �s(T )
(17)

where �(T ) has been calculated in the above subsection (see Eq. (??)), and the second part is the second-order
correction. After tracing out the spin degrees of freedom, we have �os(T ) = �so(T ). Following the same procedure
as in the first-order case, we have

�os(T ) = �2N0

�

� +�D

��D

d�

�

S

d�

2�

�

�n

�

�

�G�
e (k, i�n)G�

h(k, i�n)[(do(k) · ĝo(k))�s(k)]

= �2N0

�

� +�D

��D

d�

�

S

d�

2�

�

�n

[G+
e (k, i�n)G+

h (k, i�n) � G�
e (k, i�n)G�

h (k, i�n)][(do(k) · ĝo(k))�s(k)],

(18)

which would vanish if �o = 0, i.e. no orbital hybridization, based on the definitions of G+/�
e/h , which in turn, reproduces

the first-order calculation above. At non-zero, but small �o (�ok2
F < µ), �os(T ) will also be small but non-zero. For

convenience of discussion, we define

�(T, �o) � �N0

�

� +�D

��D

d�
�

�n

[G+
e (k, i�n)G+

h (k, i�n) � G�
e (k, i�n)G�

h (k, i�n)], (19)

where �(T, �o) � �ok2
F /µ would vanish at leading order (see Eq. (??)). Then we have

�os(T ) = 2�(T, �o)

�

S

d�

2�
[(do(k) · ĝo(k))�s(k)]. (20)

With this, the total superconductivity susceptibility in Eq. (17) becomes

��(T ) = �(T ) +
�2

os(T )

2N0 log(T/Ts)
� �(T ) + ��(T ). (21)
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where ��(T ) is the second-order correction due to the coupling between orbital-independent pairings (�s(k)-part in
Eq. (1)) and orbital-dependent pairing (do(k)-part in Eq. (1)),

��(T ) =
2�2(T, �o)

��
S

d�
2� [(do(k) · ĝo(k))�s(k)]

�2

N0 log(T/Ts)
. (22)

Since we assumed v0 > v1, i.e. Tc0 > Ts, then the actual transition temperature would be Tc � Tc0 > Ts, giving
log(Tc/Ts) > 0. As a result, the correction to the susceptibility is positive: ��(T ) > 0. Then following the same
procedure as in the previous section, we have

ln

�
Tc

Tc0

�
=

�

S

d�

2�
C0(Tc0)

�
|do|2 � |do · ĝo|2

�
+

��(Tc0)

N0
, (23)

where the first part is the first-order result (see Eq. (23) or Eq. (5) in the main text; order as O(�ok2
F /µ)), and the

second part is the second-order result (order as O((�ok2
F /µ)2)). Therefore, we conclude that,

• The first part: it determines the direction of orbital do-vector to be do � ĝo. Because of C0(Tc0) � 0 , once
do � ĝo at any momentum k, the first part vanishes.

• The second part: it relates the form �s(k) to the orbital do-vector: do � �s(k)ĝo. Thus, the second part
becomes maximum, leading to the maximal increase of Tc0.

Here we have used the fact,

��

S

d�

2�
[�i(k)�j(k)]

�2

� 1, for any scalar �i,

�

S

d�

2�
[�i(k)�i(k)] = 1. (24)

And
��

S
d�
2� [�i(k)�j(k)]

�2
reaches 1 only when i = j.

Next, we briefly discuss the case where v0 < v1. The same result can be similarly argued. In this case, the
dominant pairing channel is the orbital-independent pairing (Ts > Tc0), which can induce the orbital do-vector via
their couplings. Similar to Eq. (16), we define the total superconductivity susceptibility for orbital-independent
pairings,

v1�s(T ) � 1 � v0v1�so(T )�os(T )

v0�(T ) � 1
= 0, (25)

which leads to

��
s(T ) = �s(T ) +

�so(T )�os(T )

1/v0 � �(T )
= N0 ln

�
2e��D
�kBT

�
+

�2
os(T )

N0 ln( T
Tc0

) �
�

S
d�
2� C0(Tc0)

�
|do|2 � |do · ĝo|2

� , (26)

thus,

ln

�
Tc

Ts

�
= 2�2(Tc, �o) ⇥

��
S

d�
2� [(do(k) · ĝo(k))�s(k)]

�2

N0 ln( Tc
Tc0

) �
�

S
d�
2� C0(Tc0)

�
|do|2 � |do · ĝo|2

� � 0, (27)

here Tc � Ts > Tc0 so that ln( Tc
Tc0

) > 0. The correction is in order of O((�ok2
F /µ)2). Therefore,

• The denominate: it determines the direction of orbital do-vector to be do � ĝo. Because of C0(Tc0) � 0,

then, �
�

S
d�
2� C0(Tc0)

�
|do|2 � |do · ĝo|2

�
� 0, once do � ĝo at any momentum k, the denominate is positive and

minimum.

• The numerator: it determines the local magnitude of orbital do-vector to be do � �s(k)ĝo. Thus, the
numerator becomes maximum, leading to the increasing of Tc0 maximally.

Therefore, according to both Eq. (23) and Eq. (27), we conclude that the orbital do-vector that is parallel with
orbital hybridization go-vector could be generally stabilized in real materials. And we find that

do = ±�s(k)ĝo, (28)

which is shown in Eq. (6) in the main text. However, it has also a Z2 phase ±, which can be pinned by taking higher
order corrections into account.

103
109



7

Supplementary Note 4 Formation of the pairing near Fermi surface in
band picture

Here, we provide another perspective on the pairing in orbital channel near the Fermi surface (FS) by looking at
the total free energy of the system in band picture, where the pairing amplitude is treated perturbatively.

In the presence of orbital hybridization or nematic order, the Hamiltonian without pairing is given by

H0 = (�k � µ)�0�0 + �(g · � )�0, (29)

where � is taken to be positive. The degeneracy in the orbital channel will be lifted, whereas the spin channel still
has the double-degeneracy. E�ectively, the vector g acts as a “Zeeman field” in the orbital space, and the pseudo-spin
will be parallel or anti-parallel to the field for the two splitting levels. And we notice that

[g · � , H0] = 0. (30)

More precisely, the two eigenstates of H0 can be denoted by |E±� � |ĝ; ±�, where +/� means parallel/anti-parallel
(eigenvalues of the symmetry operator ĝ · � ). Please note that ĝ = g/|g|. And

H0|E±� = E±|E±�, with E± = �k � µ ± �|g(k)|. (31)

with � > 0. Setting E± = 0, it gives rise to two FSs (labeled as FS±) with energy splitting as 2�|g(k)|, which is
approximately as � �k2

F with respect to �kF = µ.
Now we consider the spin-singlet pairing part in the original basis,

H� =
�

k

(c†
1,�(k), c†

2,�(k)) [�s�(k)�0 + �o(do(k) · � )] (c†
1,�(�k), c†

2,�(�k))T + H.c.. (32)

The BdG Hamiltonian is then given by

HBdG = ((�k � µ)�0�0 + �(g · � )�0) �3 + [�s�(k) + �o(do(k) · � )] (i�2)�2, (33)

where �i are the Pauli matrices in particle-hole channel.
Next, we consider weak-coupling limit (infinitesimal pairing strength, namely, �o � 0) and we use the band picture

to study the pairing Hamiltonian. For this purpose, we rewrite H0 as

H0 =
�

k,�,s

E� (k)c†
�,s(k)c�,s(k). (34)

where � = ± is the band index and s is for spin. The unitary transformation matrix U(k) in the orbital subspace
leads to the diagonalization of H0,

U†(k)[(�k � µ)�0 + �(g · � )]U(k) = Diag[E+(k), E�(k)], (35)

where spin index has been dropped and the 2-by-2 U(k) can be expressed by the eigenstates of H0,

U(k) = {|E+(k)�, |E�(k)�} . (36)

Thus, U †(k)U(k) = 1. And the time-reversal symmetry requires that

U(k) = (U(�k))� . (37)

Acting on the basis, we have

(c†
1,s(k), c†

2,s(k)) = (c†
+,s(k), c†

�,s(k))U †(k) (38)

where s is for spin. We then project the spin-singlet pairing Hamiltonian in Eq. (32) into the band basis, thus, the
spin-singlet pairing Hamiltonian becomes

H� =
�

k

(c†
+,�(k), c†

�,�(k))
�
U†(k) [�s�(k) + �o(do(k) · � )] U(k)

�
(c†

+,�(�k), c†
�,�(�k))T . (39)
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Here U(k) = (U(�k))� has been used. Therefore, the spin-singlet pairing potential in the band basis becomes

�band(k) = U†(k) [�s�(k)�0 + �o(do(k) · � )] U(k). (40)

Thus, the orbital-independent pairings only lead to the intra-band pairings, while the orbital-dependent pairings can
give rise to both intra-band and inter-band pairings.

First of all, we focus on the pure orbital do-vector (orbital-dependent pairings) by assuming �s = 0. To separate
the intra-band pairings from the inter-band pairings, we decompose the orbital do-vector as

do(k) = d�(k)ĝ(k) + d�(k), (41)

where d�(k) = do(k) · ĝ(k) and d�(k) · ĝ(k) = 0. Thus,

• The parallel component: the d�(k)ĝ(k)-part commutes with g · � , hence only generates intra-band pairing
for the two FSs. Therefore, the projected intra-band pairing Hamiltonian reads,

Hintra-band,� =
�

k,�

�
��od�(k)

�
[c�,�(k)c�,�(�k) � c�,�(k)c�,�(�k)] + H.c.. (42)

Here � = ± indicates that the intra-band pairing strengths on two FSs are opposite. And d�(k) = d�(�k), the
intra-band pairing is a even-parity pairing.

• The perpendicular component: the d�(k)-part would mix the two states |E±�, then it only produces
inter-band pairings. At a fixed k, we now perform a rotation,

O(3) rotation: RoĝoR
†
o = (0, 0, g�

z) and Rod�R†
o = (g�

x, g�
y, 0) (43)

at the same time, we perform a rotation in the orbital subspace

SU(2) rotation: R� �x,y,zR
†
� = � �

x,y,z (44)

Due to this rotation, the perpendicular components only couple |E+� with |E��. This proves that

�E� |d� · � |E� � = 0. (45)

Here |E� � are eigenstates of ĝo · � . Thus, the projected inter-band pairing Hamiltonian reads,

Hinter-band,� =
�

k,�

��,�� (k) [c�,�(k)c��,�(�k) � c�,�(k)c��,�(�k)] + H.c.. (46)

where ��,�� (k) = �o�E� (k)|d�(k) ·� |E�� (k)�. In the limit �k2
F � �o (i.e., band splitting is much larger than

the pairing gap), the inter-band pairing is not energetically favorable in the weak-coupling pairing theory (i.e.,
attractive interaction is infinitesimal small). It means the inter-band pairing will be severely suppressed if we
increase the orbital hybridization �, consistent with the calculation in the main text (see Fig. (2)).

From the above analysis, we conclude that the orbital do-vector should be parallel with the orbital hybridization g.
To determine the magnitude of the orbital do-vector, we turn on the orbital-independent pairing �s �= 0. We also

assume both pairing channels are small. Assuming the two FSs have DOS N± near the FS (ignoring the momentum-
dependence if the FS is almost isotropic), then the total condensation energy per volume and per spin of the two
intra-band pairings is given by

�E = N+

�

k�FS+

�
�s�s(k) + �od�(k)

�2
+ N�

�

k�FS�

�
�s�s(k) � �od�(k)

�2
, (47)

with the approximation �k2
F � µ, �E becomes

�E = (N+ + N�)
�

k�FS

[�2
s(�s(k))2 + �2

o(d�(k))2] + 2(N+ � N�)�s�o

�

k�FS

(�s(k)d�(k)), (48)

where FS is for � � 0. And we see that in order to maximize the condensation energy, we require

d�(k) � �s(k), if sign[(N+ � N�)�s�o] = 1, (49)

d�(k) � ��s(k), if sign[(N+ � N�)�s�o] = �1, (50)

according to Eq. (24). The results from the weak-coupling limit are the same as the calculations from linearized gap
equations.
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Supplementary Note 5 The coexistence of orbital do-vector and nematic
order

In this section, we discuss the interaction e�ects on the stability of orbital do-vector for a two-band superconductor.
A general density-density interaction, including both inter-band and intra-band terms, is,

Hint = v1(n̂1� + n̂1�)(n̂2� + n̂2�) + v2(n̂1�n̂1� + n̂2�n̂2�), (51)

where n̂ is the electron density operator and v1,2 are interaction strengths. With the following mean-field decompo-
sition, we can define the nematic ordering that spontaneously breaks the rotational symmetry.

HMF = n̂1�

�v1

2
�n̂2� + v2�n̂1��

�
+ n̂1�

�v1

2
�n̂2� + v2�n̂1��

�
+ n̂2�

�v1

2
�n̂1� + v2�n̂2��

�
+ n̂2�

�v1

2
�n̂1� + v2�n̂2��

�
.

(52)

For the purpose of our discussion, we assume there is no spin ferromagnetism, i.e. �n̂��� = �n̂��� = 1
2 �n̂��, then the

mean field Hamiltonian simplifies to

HMF = n̂1

�v1

2
�n̂2� +

v2

2
�n̂1�

�
+ n̂2

�v1

2
�n̂1� +

v2

2
�n̂2�

�
� n̂1�1 + n̂2�2. (53)

Then the nematic order parameter can be defined as

� � �1 � �2 =
1

2
(v2 � v1) (�n̂1� � �n̂2�) . (54)

Now the stage is set to define the total orbital hybridization as,

gtot = go + tnemgnem (55)

where gnem = (0, 0, �) and tnem = �nem/�o. Then, we apply Eq. (23) to study the stability of orbital do-vector when
nematic order develops above superconducting Tc0. The results are summarized in Supplementary Figure 3.

𝑇 𝑐
/𝑇

𝑐𝑡

𝑡𝑛𝑒𝑚

(a)

𝒅 ∥ 𝒈𝒕𝒐𝒕 = 𝒈𝒐 + 𝒈𝒏𝒆𝒎

(b)

𝑇 𝑐
/𝑇

𝑐𝑡

(c)

𝒅 𝑜
𝜃

Φ/𝑇𝑐𝑡 𝜃

Φ/𝑇𝑐𝑡
0
0.2
0.3

𝒅𝒐 ∝ 𝒈𝒐 + 𝒕𝒏𝒆𝒎𝒈𝒏𝒆𝒎 𝒅𝒐 ∝ 𝒈𝒐 + 𝒈𝒏𝒆𝒎

Φ/𝑇𝑐𝑡 0.3
0

Nematic orbital 𝒅𝑜-vector 

Supplementary Figure 3. The coexistence of orbital do-vector and nematic order. In (a), each tnem corresponds to a particular
form of the d-vector, which determines Tc based on Eq. (23). The three curves correspond to three di�erent values for the
nematic order �. The Tc is not suppressed by the nematic order as long as do � gtot, i.e. tnem = 1. The tnem = 1 case is
further illustrated in (b), where it is shown that the magnitude of the nematic order does not change Tc (up to the order of
approximation made in Eq. (23)). (c) shows non-zero nematic order breaks the original C4 (red line) down to C2 (blue line).
Here go = (k2

x � k2
y, 0, 3kxky).
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Supplementary Note 6 Application to single-layer graphene supercon-
ductor

Based on the discussion in the main text, the nematic d-vector is characterized by gtot = (gint,1, 0, 0), with

gint,1 = 1 + 2t1kxky + t2(k
2
x � k2

y). (56)

A closed Fermi surface (FS) can be parametrized by kF (�). By using Eq. (23), the nematic do-vector represents a
(s + d)-wave pairing states,

�
s-wave dominant: , t1,2 � 1, fully gapped superconductors

d-wave dominant: , t1,2 � 1, ndoal superconductors
(57)

As a result, we have |do| � |gtot| = |1+ kF (�) (t1 sin 2� + t2 cos 2�) |. We see that the SC gap function can have nodes
as long as

�
t21 + t22 is large enough. For graphene, the FS has C3 symmetry, i.e. kF (�) has periodicity of 2

3�, whereas
sin 2� and cos 2� have periodicity of �, giving a periodicity of 2� to |do|, which completely breaks the C3 symmetry
of the system. Supplementary Figure 4 shows the C3-breaking nematic orders from inter-valley scattering, one with
nodal gap function, the other with nodeless gap function.

𝑑 𝑜
𝜃

𝜃

Fully gapped
Point nodes

Supplementary Figure 4. The C3-breaking nematic order from inter-valley scattering in graphene. t1 = 0, t2 = 1.2 for the nodal
case (red) and t1 = 0, t2 = 0.5 for the fully gapped case (blue).

Supplementary Note 7 Spin and orbital magnetizations: Ms and Mo

Here we present the definitions of spin and orbital magnetizations in our mean-field analysis. The spin magnetization
is defined as,

Ms =
�

k,s1,s2

�c†
s1

(k)�s1s2cs2(k)�, (58)

and the orbital magnetization is defined as,

Mo =
�

k,s,a,b

�c†
s,a(k)�abcs,b(k)�. (59)
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More specifically, the orbital magnetization has the following components,

Mx
o =

�

k,s

�c†
s,dxz

cs,dyz + c†
s,dyz

cs,dxz �, (60)

My
o = �i

�

k,s

�c†
s,dxz

cs,dyz � c†
s,dyz

cs,dxz � =
1

2

�

k,s

�n̂s,dxz+idyz � n̂s,dxz�idyz �, (61)

Mz
o =

�

k,s

�c†
s,dxz

cs,dxz � c†
s,dyz

cs,dyz �, (62)

where Mx,z
o breaks the C4 rotation symmetry and My

o breaks the TRS. In our work, we focus on spontaneous TRS
breaking, with C4 preserved. My

o (k) gives the local density di�erence in mementum space for dxz ± idyz orbitals. A
non-zero My

o (k) implies TRS breaking at k, because the two orbitals are TR partners. However, it has to be noted
that, similar to the spin-triplet case, local TRS breaking does not necessarily imply the global TRS is broken. To
obtain the total overall magnetization, we still need to sum over momentum around the FS. In the Ginzburg-Landau
formalism, the Im[do ⇥ d�

o], whose only non-zero component is the y-component based on symmetry constraints in
our formalism, is coupled to the induced magnetization My

o so that TRS is still retained at the Lagrangian level.
Therefore, we have the following relevant terms

�My
o Im[(do ⇥ d�

o)y] + � (My
o )2 ,

which upon functional derivative with respect to the induced magnetization would give

My
o � Im[(do ⇥ d�

o)y] = �i (do ⇥ d�
o)y .
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The gap functions for a single-band model for unconventional superconductivity are distinguished by their
unitary or nonunitary forms. Here we generalize this classification to a two-band superconductor with two nearly
degenerate orbitals. We focus on spin-singlet pairings and investigate the effects of the atomic spin-orbit coupling
(SOC) on superconductivity, which is a driving force behind the discovery of a new spin-orbit coupled nonunitary
superconductor. Multiorbital effects such as orbital hybridization and strain-induced anisotropy will also be
considered. The spin-orbit coupled nonunitary superconductor has three main features. First, the atomic SOC
locks the electron spins to be out-of-plane, leading to a new Type II Ising superconductor with a large in-plane
upper critical field beyond the conventional Pauli limit. Second, it provides a promising platform to realize the
topological chiral or helical Majorana edge state even without external magnetic fields or Zeeman fields. More
surprisingly, a spin-polarized superconducting state could be generated by spin-singlet nonunitary pairings when
time-reversal symmetry is spontaneously broken, which serves as a smoking gun to detect this exotic state by
measuring the spin-resolved density of states. Our work indicates the essential roles of orbital-triplet pairings in
both unconventional and topological superconductivity.

DOI: 10.1103/PhysRevB.107.094507

I. INTRODUCTION

In condensed matter physics, research on unconventional
superconductivity [1,2] remains a crucial topic and contin-
ues to uncover new questions and challenges in both theory
and experiment, since the discovery of the heavy-fermion
superconductors (SCs) [3] and the d-wave pairing states
in high-temperature cuprate SCs [4–7]. In addition to the
anisotropic gap functions (e.g., p, d, f , g wave, etc.), the
sublattice or orbital-dependent pairings [8–10] are shown
to be an alternative avenue to realize unconventional SCs.
They might be realized in multiorbital correlated electronic
systems, whose candidate materials include iron-based SCs
[11–22], Cu-doped Bi2Se3 [23,24], half-Heusler compounds
[25–34], and possibly Sr2RuO4 [35–40], etc. In particular,
considering the atomic orbital degrees of freedom, the classifi-
cation of unconventional pairing states could be significantly
enriched. Among them, SCs with spontaneous time-reversal
symmetry (TRS) breaking is of special interest, in which two
mutually exclusive quantum phenomena, spin magnetism and
superconductivity, may coexist with each other peacefully
[41–46].

On the other hand, the orbital multiplicity could also give
rise to nonunitary pairings, which again include both time-
reversal breaking (TRB) and time-reversal invariant (TRI)
pairings. Very recently, prior studies have demonstrated the

*hu.lunhui.zju@gmail.com

existence of spin-singlet nonunitary pairing states that break
the inversion symmetry in Dirac materials [9]. One aim of
this work is the generalization of unitary and nonunitary
gap functions in a two-band SC while preserving inversion
symmetry, which is possible exactly due to the multiorbital
degrees of freedom [47]. We focus on a system with two
nearly degenerate orbitals and find that the nonunitary pairing
state is generally a mixed superconducting state with both
orbital-independent pairings and orbital-dependent pairings.
Recently, the interplay between orbital-independent pairings
and spin-orbit coupling (SOC) has been shown to demon-
strate the intriguing phenomenon of a large in-plane upper
critical field compared with the Pauli paramagnetic field for
a two-dimensional (2D) SC. For example, the Type I Ising
superconductivity in monolayer MoS2 [48,49] and NbSe2
[50] and the Type II Ising superconductivity in monolayer
stanene [51]. Therefore, the interplay of atomic SOC and
the multiorbital pairing could potentially give rise to exciting
physics. However, to the best of our knowledge, the influence
of the atomic SOC on the orbital-dependent pairings remains
unsolved. Furthermore, the multiorbital nature also gives rise
to possible orbital hybridization effects and provides an ex-
perimentally controllable handle using lattice strains, both of
which could lead to orbital anisotropy and could potentially
change the pairing symmetry. In particular, lattice strain has
been a useful experimental tool to study unconventional super-
conductors [52–54] and has even been proposed to induce the
elusive charge-4e phase [55]. We will be doing an extensive
investigation on all the aforementioned multiorbital effects.

2469-9950/2023/107(9)/094507(16) 094507-1 ©2023 American Physical Society110
117



ZENG, XU, WANG, AND HU PHYSICAL REVIEW B 107, 094507 (2023)

Another topic of this work is concerned with the co-
existence of TRB pairings and spin magnetism even in a
spin-singlet SC. It is well known that spin polarization (SP)
can be generated by nonunitary spin-triplet superconductivity,
which is believed to be the case for LaNiC2 [56] and LaNiGa2
[57,58]. More recently, the coexistence of magnetism and
spin-singlet superconductivity is experimentally suggested in
multiorbital SCs, such as iron-based superconductors [59,60]
and LaPt3P [61]. Therefore, in addition to the spin-triplet
theory, it will be interesting to examine how SP develops in
multiorbital spin-singlet SCs as spontaneous TRS breaking in
the absence of external magnetic fields or Zeeman fields.

In this work, we address the above two major issues by
studying a two-band SC with two atomic orbitals (e.g., dxz
and dyz ). We start with the construction of a k · p model
Hamiltonian on a square lattice with applied lattice strain. The
breaking of C4v down to C2 point group generally leads to
the degeneracy lifting of dxz and dyz. Based on this model,
we study the stability of superconductivity and the realization
of 2D topological superconductors in both class D and DIII.
First and foremost, the influence of atomic SOC is studied,
which gives birth to a new spin-orbit coupled SC. This exotic
state shows the following features: first, a large Pauli-limit
violation is found for the orbital-independent pairing part,
which belongs to the Type II Ising superconductivity. Further-
more, the orbital-dependent pairing part also shows a weak
Pauli-limit violation even though it does not belong to the
family of Ising SCs. Second, topological superconductivity
can be realized with a physical set of parameters even in
the absence of external magnetic fields or Zeeman fields.
In addition, a spin-polarized superconducting state could be
energetically favored with the spontaneous breaking of time-
reversal symmetry. Our work implies a new mechanism for the
establishment of spin magnetism in the spin-singlet SC. In the
end, we also discuss how to detect this effect by spin-resolved
scanning tunneling microscopy measurements.

The paper is organized as follows. In Sec. II, we discuss
a two-orbital normal-state Hamiltonian on a 2D square lat-
tice and also its variants caused by applied in-plane strain
effects, then we show the spin-singlet unitary or nonunitary
pairing states with or without TRS. The strain effect on pairing
symmetries is also studied based on a weak-coupling theory.
In Sec. III, the effects of atomic SOC on such pairing states
are extensively studied, as well as the in-plane paramagnetic
depairing effect. Besides, the topological superconductivity is
studied in Sec. IV even in the absence of external magnetic
fields or Zeeman fields, after which we consider the spon-
taneous TRB effects in Sec. V and show that spin-singlet
SC-induced spin magnetism could emerge in the presence of
orbital SOC. In the end, a brief discussion and conclusion
are given in Sec. VI. We will also briefly comment on a
very recent experiment [62], demonstrating that a fully gapped
superconductor becomes a nodal phase by substituting S into
single-layer FeSe/SrTiO3.

II. MODEL HAMILTONIAN

In this section, we first discuss the normal-state Hamilto-
nian that will be used throughout this work for an electronic
system consisting of both spin and two locally degenerate

atomic orbitals (e.g., dxz and dyz ) on a 2D square lattice. We
assume each unit cell contains only one atom, so there is no
sublattice degree of freedom. The orbital degeneracy can be
reduced by applying the in-plane lattice strain because the
original C4v point group is reduced down to its subgroup C2v

for strain σ10, σ01 or σ11 (a more generic strain would reduce
the symmetry directly to C2). Here σn1n2 represents the strain
tensor whose form will be given later. We will apply the
symmetry analysis to construct the strained Hamiltonian in
the spirit of k · p theory. Then, we discuss the pairing Hamil-
tonian and the corresponding classification of spin-singlet
pairing symmetries including nonunitary pairing states. The
strain effect is also investigated on the superconducting pair-
ing symmetries based on a weak-coupling scheme [10].

A. Normal-state Hamiltonian

In this section, we construct the two-orbital normal-state
Hamiltonian H0(k) with lattice strain-induced symmetry-
breaking terms. Before that, We first show H0(k) in the
absence of external lattice strains. For a square lattice as illus-
trated in Fig. 1(a), it owns the C4v point group that is generated
by two symmetry operators: a fourfold rotation symmetry
around the ẑ axis C4z : (x, y) → (y,−x) and a mirror reflection
about the ŷ-ẑ plane Mx : (x, y) → (−x, y). Other symmetries
can be generated by multiplications, such as the mirror re-
flection about the (x̂ + ŷ) − ẑ plane Mx+y : (x, y) → (y, x) is
given by C4z × Mx. In the absence of Rashba spin-orbit cou-
pling (SOC), the system also harbors inversion symmetry I,
enlarging the symmetry group to D4h = C4v ⊗ {E , I}. In the
spirit of k · p expansion around the " point or the M point,
we consider a two-orbital system described by the inversion-
symmetric Hamiltonian in two dimensions,

H0(k) = ε(k)τ0σ0 + λsocτ2σ3 + λo[go(k) · τ]σ0, (1)

where the basis is made of {dxz, dyz} orbitals ψ†
k =

(c†
dxz,↑(k), c†

dxz,↓(k), c†
dyz,↑(k), c†

dyz,↓(k)). Here c† is the creation
operator of electrons, τ and σ are Pauli matrices acting on the
orbital and spin subspace, respectively, and τ0, σ0 are 2-by-2
identity matrices. Besides, ε(k) = −(k2

x + k2
y )/2m − µ is the

band energy measured relative to the chemical potential µ, m
is the effective mass, λsoc is the atomic SOC [63–65], and λo
characterizes the strength of orbital hybridization. This model
could describe the two hole pockets of iron-based supercon-
ductors [17,66]. Moreover, the first two components of go(k)
are for the interorbital hopping term, while the third term is
for the anisotropic effective mass, explained below in detail.

The C4v (or D4h) point group restricts go(k) =
(aokxky, 0, k2

x − k2
y ), where ao = 2 is a symmetric case

that increases the C4z to a continued rotational symmetry
about the ẑ axis. To be precise, the g1 term, 2λokxkyτ1σ0,
is attributed to the interorbital hopping integral along the
±x̂ ± ŷ directions,

λo

2
(c†

dxz,σ
(ix, iy) cdyz,σ (ix + 1, iy + 1)

+ c†
dxz,σ

(ix, iy) cdyz,σ (ix − 1, iy − 1)

− c†
dxz,σ

(ix, iy) cdyz,σ (ix + 1, iy − 1)

− c†
dxz,σ

(ix, iy) cdyz,σ (ix − 1, iy + 1) + H.c.), (2)
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FIG. 1. The strain effect on a two-dimensional square lattice. In the absence of lattice strain, (a) shows the square lattice owing the C4v

point group that is generated by C4z and Mx . We consider the normal-state Hamiltonian with dxz, dyz orbitals. Inversion symmetry (I ) is broken
by growing crystal samples on an insulating substrate. The in-plane strain effects on the square lattice are illustrated in (b)–(d) for applied
strain along different directions. (b) shows that the x̂- or ŷ-axis strain breaks the square lattice into the rectangular lattice with two independent
mirror reflection symmetries Mx and My, obeying the subgroup C2v of C4v . The C2v point group contains four one-dimensional irreducible
representations (irrep.) A1, A2, B1, B2. (c) shows that the strain along the x̂ + ŷ direction also reduces the C4v down to C2v . (d) represents a
general case, where the subgroup C2 is preserved that only has A1 and B1 irreps.

where (ix, iy) represents the lattice site. In addition, the
g3 term, λo(k2

x − k2
y )τ3σ0, causes the anisotropic effective

masses. For example, the effective mass of the dxz orbital is
1

1/m−2λo
along the x̂ axis while that is 1

1/m+2λo
along the ŷ axis.

This means that the hopping integrals are different along x̂ and
ŷ directions,

(
1

2m
− λo

)
c†

dxz,σ
(ix, iy) cdxz,σ (ix + 1, iy)

+
(

1
2m

+ λo

)
c†

dxz,σ
(ix, iy) cdxz,σ (ix, iy + 1)

+
(

1
2m

+ λo

)
c†

dyz,σ
(ix, iy) cdyz,σ (ix + 1, iy)

+
(

1
2m

− λo

)
c†

dyz,σ
(ix, iy) cdyz,σ (ix, iy + 1) + H.c.. (3)

In this work, we focus on a negative effective mass case by
choosing 1/m ± 2λo > 0. However, using a positive effective
mass does not change our main conclusion. Moreover, our
results can be generally applied to other systems with two
orbitals px, py, once it satisfies the C4v point group.

The time-reversal symmetry operator is presented as T =
iτ0σ2K with K being the complex conjugate. And the inver-
sion symmetry is presented as I = τ0σ0. It is easy to show
Eq. (1) is invariant under both T and I. However, inversion
can be broken by growing the sample on insulating substrates,
the asymmetric Rashba SOC is described by

HR(k) = λRτ0[gR(k) · σ], (4)

where λR is the strength of the Rashba SOC with gR(k) =
(−ky, kx, 0) as required by the C4v point group.

Next, we consider the lattice strain effect on the two-
dimensional crystal with a square lattice, as summarized in
Figs. 1(b)–1(d). The in-plane strain effect is characterized
by the 2-by-2 strain tensor σ whose elements are defined as
σi j = 1

2 (∂xi u j + ∂x j ui ), where ui is the displacement at r along
the êi direction. Even though it is an abuse of notation, it
should be self-evident that the σ here does not represent the
Pauli matrices. The strain tensor σ can be parametrized as the
following:

σφ =
(

cos2 φ cos φ sin φ

cos φ sin φ sin2 φ

)
, (5)
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where φ is the polar angle with respect to the x̂ axis. For the
φ = 0 (π/2) case, the compressive or tensile strain applied
along the x̂ axis (ŷ axis) makes the square lattice as a rectangu-
lar lattice, as illustrated in Fig. 1(b). And the φ = π/4 case is
for the shear strain along the (x̂ + ŷ) direction in Fig. 1(c). All
the above cases reduce the C4v point group into its subgroup
C2v that is generated by two independent mirror reflections.
Otherwise, it is generally reduced to C2. The irreducible repre-
sentations for C2v and C2 are shown in Figs. 1(b)–1(d). Based
on the standard symmetry analysis, to the leading order, the
strained Hamiltonian is given by

Hstr = tstr[sin(2φ)τ1 + cos(2φ)τ3]σ0, (6)

where both tstr and φ can be controlled in experiments [67].
And Hstr can be absorbed into the go vector in Eq. (1), renor-
malizing the orbital hybridization as expected. Furthermore,
one can check that Hstr preserves both T and I, but ex-
plicitly breaks the C4z = iτ2ei π

4 σ3 because of [Hstr,C4z] '= 0.
Interestingly, the orbital texture on the Fermi surface can be
engineered by strain, and its effect on superconducting pairing
symmetries is briefly discussed in Appendix C.

Therefore, a strained normal-state Hamiltonian is

HN (k) = H0(k) + HR(k) + Hstr, (7)

which will be used throughout this work. The Rashba SOC-
induced spin-splitting bands are considered only when we
discuss the topological superconducting phases in Secs. IV
and V, even though the normal-state Hamiltonian HN (k) is
topologically trivial. For the superconducting states, we focus
on the inversion symmetric pairings (i.e., spin-singlet s-wave
pairing) and their response to applied strains or in-plane mag-
netic fields.

In the absence of Rashba SOC, the band structures of
HN (k) in Eq. (7) are given by

E±(k) = − 1
2m

(
k2

x + k2
y

)
±

√
λ2

soc + g̃2
1 + g̃2

3, (8)

where we define the strained orbital hybridization g̃ vec-
tor with g̃1 = aoλokxky + tstr sin(2φ) and g̃3 = λo(k2

x − k2
y ) +

tstr cos(2φ). Each band has twofold degeneracy, enforced by
the presence of both T and I. At the " point (kx = ky = 0),
E"

± = ±
√

λ2
soc + t2

str. The two Fermi surfaces with and without
strain are numerically calculated and shown in Fig. 2, where
we choose µ < −

√
λ2

soc + t2
str. These are two hole pockets

because of the negative effective mass of both orbitals. The
Fermi surfaces in Fig. 2(a) are C4 symmetric (tstr = 0), while
those in Fig. 2(b) are only C2 symmetric due to the symmetry
breaking of lattice strains. Please note that there is only one
Fermi surface when |µ| <

√
λ2

soc + t2
str, which is a necessary

condition to realize topological superconductors as we will
discuss in Sec. IV.

B. Review of singlet-triplet mixed pairings

Before discussing the possible unconventional pairing
symmetry for HN in Eq. (7), we briefly review both unitary
and nonunitary gap functions for a single-band SC in the
absence of inversion symmetry. In this case, a singlet-triplet

FIG. 2. The lattice strain effect on the Fermi surfaces of the
normal-state Hamiltonian without Rashba SOC. (a) shows the
two Fermi surfaces without lattice strain (i.e., tstr = 0), thus C4z-
symmetric energy contours are formed. (b) shows the breaking of
C4z by lattice strain with tstr = 0.4 and φ = 0, only C2z-symmetric en-
ergy contours appear. Other parameters used here are m = 0.5, a0 =
1, λo = 0.4, λR = 0, and µ = −0.5.

mixed pairing potential is given by

*(k) = [*sψs(k)σ0 + *t (ds(k) · σ )](iσ2), (9)

where σ are Pauli matrices acting in the spin subspace. Here
ψs(k) represents even-parity spin-singlet pairings and the
odd-parity ds(k) is for the spin-triplet ds vector. Physically,
the unitary SC has only one superconducting gap like in the
conventional BCS theory, while a two-gap feature comes into
being by the nonunitary pairing potential. More explicitly, the
unitary or nonunitary is defined by whether the following is
proportional to the identity matrix σ0:

*(k)*†(k) = |*s|2ψ2
s + |*t |2|ds|2

+ 2Re[*s*
∗
t ψsd∗

s ]

·σ + i|*t |2(ds × d∗
s ) · σ, (10)

Therefore, Eq. (10) gives rise to a possible classification by
assuming a nonvanishing *s ∈ R and a proper choice of a
global phase. In principle, there are four possible phases,
including the TRI nonunitary SCs (*t ∈ R, ds ∈ R), the TRB
unitary SCs (*t ∼ i, ds ∈ R), and the TRB nonunitary SCs
(*t ∈ R, ds ∈ C). On the other hand, the TRI unitary SCs are
achieved only with *s = 0 or *t = 0 and real ds, meaning
a purely spin-singlet SC or a purely spin-triplet SC. These
states might be distinguished in experiments, for example,
the TRB unitary pairing state might induce a spontaneous
magnetization with the help of Rashba spin-orbit coupling
[68], which can be detected by µSR [69].

As we know, the spin-singlet pairings do not coexist with
the spin-triplet pairings in the presence of inversion symmetry
(e.g., centrosymmetric SCs). Roughly speaking, it seems out
of the question to realize nonunitary pairing states in purely
spin-singlet SCs. However, this is a challenge but not an
impossibility for an SC with multiorbitals, which is one of
the aims of this work. In the following, we will discuss how
to generalize the classification of TRI or TRB and unitary or
nonunitary pairing states to a spin-singlet SC with two atomic
orbitals in the presence of inversion symmetry. The four cases
are summarized in Table I.
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TABLE I. The four pairing states classified by time-reversal
symmetry and unitary for a spin-singlet superconductor with both
orbital-independent pairing *s and orbital-dependent pairing *o

and do.

Pairings TRS Unitary *S *O dO

TRI unitary Yes Yes
Real
Zero

Zero
Real

Real

TRI nonunitary Yes No Real Real Real
TRB unitary No Yes Real Purely imaginary Real
TRB nonunitary No No Real Real Complex

C. Pairing Hamiltonian of a two-orbital model

We now consider the pairing Hamiltonian for HN in
Eq. (7). By ignoring the fluctuations, the mean-field pairing
Hamiltonian is generally given by,

H* =
∑

k,s1a,s2b

*a,b
s1,s2

(k)c†
as1

(k)c†
bs2

(−k) + H.c., (11)

where s1, s2 are index for spin and a, b are for orbitals.
As studied in Ref. [10], the orbital-triplet pairing is robust
even against orbital hybridization and electron-electron in-
teractions. Thus, we consider both orbital-independent and
orbital-dependent pairings for generality. In analogy to spin-
triplet SCs, we use an orbital do(k) vector for the spin-singlet
orbital-dependent pairing potential [12], which takes the
generic form

*tot (k) = [*s+s(k)τ0 + *o(do(k) · τ)](iσ2), (12)

where *s and *o are pairing strengths in orbital-independent
and orbital-dependent channels, respectively. The Fermi
statistics require that +s(k) = +s(−k), while the three
components of do satisfy d1,3

o (k) = d1,3
o (−k) and d2

o (k) =
−d2

o (−k). Namely, d2
o (k) represents odd-parity spin-singlet

orbital-singlet pairings and the others are for even-parity spin-
singlet orbital-triplet pairings. The pairing potential presented
in this form is quite convenient, similar to the spin-triplet case
[10,12,14,70]. The benefits of this form in Eq. (12) will be
shown when we discuss the mixture of orbital-independent
and orbital-dependent pairings. Combining Eq. (12) with
Eq. (1), the Bogoliubov-de Gennes (BdG) Hamiltonian is

HBdG(k) =
(

HN (k) *tot (k)
*†

tot (k) −H∗
N (−k)

)
, (13)

which is based on the Nambu basis (ψ†
k ,ψT

−k ). Same with
the spin case in Eq. (10), the nonunitarity of a spin-singlet
pairing potential defined in Eq. (12) is determined by whether
*tot (k)*†

tot (k) is proportional to an identity matrix. More
explicitly we have

*tot (k)*†
tot (k) = |*s|2ψ2

s τ0σ0 + |*o|2|do|2τ0σ0

+2Re|*s*
∗
oψsd∗

o| · τσ0 + i|*o|2(do × d∗
o ) · τσ0, (14)

which could also exhibit four general possibilities: time-
reversal-invariant (TRI) or time-reversal-breaking (TRB) and
unitary or nonunitary SCs, with a simple replacement
{*t , ds} → {*o, do}. In the absence of band splittings, i.e.,
λsoc = λo = λR = tstr = 0 as an illustration, the superconduct-

ing excitation gaps on the Fermi surfaces of a TRI unitary SC
are

Eκ,ν (k) = κ
√

ε2(k) + (*sψs(k) + ν*o|do|)2, (15)

with κ, ν = ±. It is similar to the superconducting gaps for
nonunitary spin-triplet SCs [1]. Moreover, the two-gap feature
indicates the nonunitarity of the superconducting states, which
implies the possibility of a nodal SC as long as *sψs(k) ±
*o|do| = 0 is satisfied on the Fermi surfaces. And, the nodal
quasiparticle states can be experimentally detected by mea-
suring specific heat, London penetration depths, µSR, NMR,
etc. As a result, this provides possible evidence to get a sight
of TRI nonunitary phases in real materials (e.g., centrosym-
metric SCs). Furthermore, the above conclusion is still valid
when we turn on λsoc, λo, and tstr .

III. PAULI LIMIT VIOLATION: A LARGE IN-PLANE
UPPER CRITICAL FIELD

In this section, we study the Pauli limit violation for the
spin-singlet TRI nonunitary SC against an in-plane magnetic
field (e.g., Hc2,‖ > HP ). For a 2D crystalline SC or a thin
film SC, the realization of superconducting states that are
resilient to a strong external magnetic field has remained a
significant pursuit, namely, the pairing mechanism can re-
markably enlarge the in-plane upper critical field. Along this
crucial research direction, one recent breakthrough has been
the identification of Ising pairing formed with the help of
Ising-type spin-orbit coupling (SOC), which breaks the SU(2)
spin rotation and pins the electron spins to the out-of-plane
direction. Depending on whether the inversion symmetry is
broken or not by the Ising-type SOC, the Ising pairing is
classified as Type I (broken) and Type II (preserved) Ising
superconductivity, where the breaking of Cooper pairs is dif-
ficult under an in-plane magnetic field.

To demonstrate the underlying physics, in the following,
we consider the interplay between atomic SOC λsoc '= 0 and
spin-singlet TRI nonunitary pairing state. Thus, we consider
the pairing potential

*tot =
[
*sτ0 + *o

(
d1

o τ1 + d3
o τ3

)]
(iσ2), (16)

where *s, *o, d1
o , and d3

o are all real constant. This can
be realized once we have on-site attractive interactions in
both orbital channels. Another reason for studying the atomic
SOC is that it is not negligible in many real materials. It is
interesting to note that the strength of SOC can be tuned in
experiments, for example, by substituting S into single-layer
FeSe/SrTiO3 [62] or growing a superconductor/topological
insulator heterostructure [71].

Without loss of generality, the direction of the magnetic
field can be taken to be the x direction, i.e., H = (Hx, 0, 0)
with Hx � 0. Therefore, the normal Hamiltonian becomes

HN (k) + hτ0σ1, (17)

where the first part is given by Eq. (7) and h = 1
2 gµBHx is the

Zeeman energy with g = 2 the electron’s g factor. To explicitly
investigate the violation of the Pauli limit for the spin-orbit
coupled SCs, we calculate the in-plane upper critical mag-
netic field normalized to the Pauli-limit paramagnetic field
Hc2,‖/HP as a function of the normalized temperature Tc/T0,
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by solving the linearized gap equation. Here HP = 1.86T0
represents the Pauli limit with T0 the critical temperature in
the absence of an external magnetic field.

Following the standard BCS decoupling scheme [10], we
first solve Tc for the orbital-independent pairing channel by
solving the linearized gap equation, v0χs(T ) − 1 = 0, where
v0 is effective attractive interaction and the superconductivity
susceptibility χs(T ) is defined by

χs(T ) = − 1
β

∑

k,ωn

Tr[Ge(k, iωn)Gh(−k, iωn)], (18)

where the conventional s-wave pairing with ψs(k) = 1 is
considered for Eq. (16). Here Ge(k, iωn) = [iωn − H0(k)]−1

is the Matsubara Green’s function for electrons and that for
holes is defined as Gh(k, iωn) = −σ2G∗

e (k, iωn)σ2. Here β =
1/kBT and ωn = (2n + 1)π/β with n integer. Likewise, for
the orbital-dependent pairing channels, the superconductivity
susceptibility χo(T ) is defined as

χo(T ) = − 1
β

∑

k,ωn

Tr[(do(k) · τ)†Ge(k, iωn)

× (do(k) · τ)Gh(−k, iωn)], (19)

where the orbital-dependent pairing (Ag representation) with
the vector form as do = (d1

o , 0, d3
o ) for Eq. (16) is used

for the Tc calculations. However, the momentum-dependent
do vector does not affect the formalism and main results,
as we will discuss in Appendix C. The coupling between
orbital-independent and orbital-dependent channels leads to a
high-order correction (∼λ2k2

F /µ2, with λ being the coupling
strength of the effective g̃ in the Hamiltonian representing
orbital hybridization and strain), which can be ignored once
λ , µ/kF .

A. Type II Ising superconductivity

In this section, we first consider the orbital-independent
pairing state (i.e., *s '= 0 and *o = 0) and show it is a Type II
Ising SC protected from the out-of-plane spin polarization by
the atomic SOC λsocτ2σ3. To demonstrate that, one generally
needs to investigate the effects of atomic SOC on the SC Tc as
a function of the in-plane magnetic field h based on Eq. (18),
in the presence of both orbital hybridization λo and strain tstr .
As defined in Eq. (8), the effects of orbital hybridization and
lattice strain on the system can be captured by an effective g̃ ≡
[aoλokxky + tstr sin(2φ), λo(k2

x − k2
y ) + tstr cos(2φ)]. The case

with tstr = 0 has been studied in Ref. [72], however, the strain
effect on the Type II Ising SC has not been explored yet. To
reveal the pure role of lattice strains, we consider kF to be
close to the " point so that the k-dependent hybridization part
is dominated by the strain part for generic φ. Therefore, we
focus on g̃ = tstr (sin 2φ, cos 2φ) in the following discussions.

After a straightforward calculation (see details in
Appendix B), the superconductivity susceptibility χs(T ) in
Eq. (18) is calculated as

χs(T ) = χ0(T ) + N0 fs(T, λsoc, tstr, h), (20)

with N0 is the DOS near the Fermi surface and the pair-
breaking term is given by

fs(T, λsoc, tstr, h)

= 1
2 [C0(T, ρ−) + C0(T, ρ+)]

+ [C0(T, ρ−) − C0(T, ρ+)]
(

λ2
soc + t2

str − h2

2E+E−

)
, (21)

where E± ≡
√

λ2
soc + (tstr ± h)2, ρ± = 1

2 (E+ ± E−), and
χ0(T ) = N0 ln( 2eγ ωD

πkBT ) is the superconducting susceptibility
when λsoc, tstr, h = 0. Here γ = 0.57721 · · · is the
Euler-Mascheroni constant. Furthermore, the kernel function
of the pair-breaking term fs is given by

C0(T, E ) = Re
[
ψ (0)

(
1
2

)
− ψ (0)

(
1
2

+ i
E

2πkBT

)]
, (22)

with ψ (0)(z) being the digamma function. Note that
C0(T, E ) � 0 and it monotonically decreases as E increases,
indicating the reduction of Tc. Namely, C0(T, E ) gets smaller
for a larger E .

We first discuss the simplest case with λsoc = tstr = 0,
where the pair-breaking function becomes fs(T, 0, 0, h) =
C0(T, h), which just leads to the Pauli limit Hc2,‖ ≈ HP =
1.86Tc, as shown in Fig. 3(a). Furthermore, we turn on λsoc
while take the tstr → 0 limit, the pair-breaking term in Eq. (21)
is reduced to

fs(T, λsoc, 0, h) = C0

(
T,

√
λ2

soc + h2

)
h2

λ2
soc + h2

, (23)

which reproduces the same results of Type II Ising super-
conductors in Ref. [72]. Under a relatively weak magnetic
field (h , λsoc), the factor h2/(λ2

soc + h2) , 1 leads to
fs(T, λsoc, 0, h) → 0, which in turn induces a large in-plane
Hc2,‖/HP.

Next, we investigate the effect of lattice strain tstr on the
in-plane upper critical field Hc2,‖. Interestingly, tstr would gen-
erally instead reduce Hc2,‖. To see it explicitly, we expand the
pair-breaking function fs in Eq. (21) up to the leading order of
t2
str,

fs(T, λsoc, tstr, h) ≈ fs(T, λsoc, 0, h)

+ F (T, λsoc, h)t2
str + O

(
t4
str

)
, (24)

where F (T, λsoc, h) is given in Appendix B and we find it
is always negative [i.e., F (T, λsoc, h) < 0]. In addition to the
first term fs(T, λsoc, 0, h) discussed in Eq. (23), the second
term F (T, λsoc, h)t2

str also serves as a pair-breaking effect on Tc
at nonzero field. Therefore, the second λo term further reduces
Tc, leading to the reduction of the in-plane upper critical field.

We then numerically confirm the above discussions. We
solve the linearized gap equation v0χs(T ) − 1 = 0 and ar-
rive at log(Tc/T0) = fs(Tc, λsoc, tstr, h), from which Tc/T0 is
numerically calculated in Fig. 3(a). Here T0 is the critical
temperature at zero external magnetic fields. The Pauli limit
corresponds to T0(λsoc = 0, tstr = 0, h = 0). The nonmono-
tonic behavior of the curves at small Tc/T0 (� 0.5, i.e., dashed
line) from solving the linearized gap equation calls for a
comment. In the small temperature range, the transition by
tuning the field strength becomes the first-order supercooling
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FIG. 3. The pair-breaking effects. (a) A significant Pauli limit violation is due to the atomic SOC for the orbital-independent pairing with
*s = 1. However, the lattice strain might slightly suppress the Hc2 by comparing the blue and red curves. (b) A weak Pauli limit violation due
to the atomic SOC for the orbital-dependent pairing with *o = 1. (c) The suppression of Tc by atomic SOC for orbital-dependent pairing at
zero external magnetic fields with *o = 1. For the three figures here, we have set the strain parameter φ = π

8 , i.e., g̃ = (
√

2
2 , 0,

√
2

2 ).

transition [73]. Here we mainly focus on the solid line part,
which is second order and gives the critical field Hc2. We
see that in general there is a Pauli limit violation for nonzero
λsoc and tstr . Furthermore, by comparing the two cases with
λsoc = 1.5, tstr = 0 and λsoc = 1.5, tstr = 1, we confirm the
above approximated analysis. We believe the strain effect on
the Type II Ising SC will be tested in experiments soon.

B. Hc2,‖ for orbital-dependent pairings

In this section, we further study the influence of the atomic
SOC λsoc on the paramagnetic pair-breaking effect for orbital-
dependent pairings (i.e., *s = 0 and *o '= 0). We find a weak
enhancement of the in-plane upper critical field Hc2,‖ com-
pared with the Pauli limit. Following the criteria of the orbital
do vector in Ref. [10] (also discussed in Appendix C), we
take do to be parallel to the vector g̃ by assuming λsoc , tstr ,
which leads to the maximal condensation energy. This would
be justified in the next section. After a straightforward cal-
culation (see details in Appendix B), the superconductivity
susceptibility χo(T ) in Eq. (19) is calculated as,

χo(T ) = χ0(T ) + N0 fo(T, λsoc, tstr, h), (25)

where the pair-breaking term is given by

fo(T, λsoc, tstr, h)

= 1
2

[C0(T, ρ−) + C0(T, ρ+)]

+ [C0(T, ρ−) − C0(T, ρ+)]
(

t2
str − λ2

soc − h2

2E+E−

)
, (26)

which differs from fs(T, λsoc, tstr, h) for orbital-independent
pairings in Eq. (21). The only difference between them lies
in the factor (t2

str − λ2
soc − h2)/2E+E−, compared with that of

fs(T, λsoc, tstr, h) [i.e., (t2
str + λ2

soc − h2)/2E+E−], which leads
to a completely distinct superconducting state, demonstrated
as follows.

To understand Eq. (26), we first discuss the simplest
case with λsoc = tstr = 0, where the pair-breaking function
becomes f (T, 0, 0, h) = C0(T, h), which just leads to the
Pauli limit Hc2,‖ ≈ HP = 1.86Tc, as shown in Fig. 3(b). Like-
wise, when λsoc = 0 and tstr '= 0, the pair-breaking function
again simplifies to C0(T, h). Therefore, the Pauli limit of the
in-plane upper critical field is not affected by tstr itself. Phys-

ically, this is because spin and orbital degrees of freedom are
completely decoupled in this case, and it has also been shown
that a similar orbital effect does not suppress Tc when do ‖ g̃
[10], which is what we assumed here.

On the other hand, if we turn on merely the atomic SOC
λsoc '= 0 while keeping tstr = 0, the pair-breaking function is
given by

fo(T, λsoc, 0, h) = C0(T,

√
λ2

soc + h2), (27)

which leads to the reduction of the upper critical field, i.e.,
Hc2,‖ < HP, because of f (T, λsoc, 0, h) < f (T, 0, 0, h) < 0.
Remarkably, we find that the atomic SOC also plays a similar
role of magnetic field to suppress the orbital-dependent pair-
ing, as discussed in the next section. Thus, it does not belong
to the family of Ising SCs, which makes the orbital-dependent
pairing significantly different from the orbital-independent
pairings. Moreover, their different dependence on the in-plane
magnetic field might also be tested in experiments, which is
beyond this work and left for future work. This also indicates
the difference between orbital-triplet SC and spin-triplet SC
in responses to Zeeman fields.

However, it is surprising to notice that there is a weak
enhancement of the in-plane upper critical field Hc2,‖ for the
case with both tstr '= 0 and λsoc '= 0. Solving the gap equa-
tion v0χo(T ) − 1 = 0, we obtain

ln
(

Tc

T0

)
= fo(T, λsoc, tstr, h). (28)

Figure 3(b) shows how Tc/T0 changes with the applied in-
plane magnetic field, where the Pauli limit curve corresponds
to λsoc, tstr = 0. When both the atomic SOC and strain are
included, the critical field Hc2 exceeds the Pauli limit by a
small margin. Therefore, a spin-orbit coupled SC with spin-
singlet nonunitary pairing symmetries does not belong to the
reported family of Ising superconductivity.

C. Atomic SOC-induced zero-field Pauli limit

As mentioned above, the atomic SOC breaks the spin
degeneracy, which generally suppresses the even parity
orbital-dependent pairings, in the case with *s = 0 and *o '=
0. Thus, the robustness of such pairings in the presence of
atomic SOC is the preliminary issue that we need to address.
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And we find that the spin-singlet orbital-dependent pairing is
also prevalent in solid-state systems when the energy scale of
atomic SOC is smaller than that of the orbital hybridization
or external strain. In this case, we focus on the zero magnetic
field limit. Using the general results from the calculations in
the previous section, we have

ln
(

Tc
T0

)
= fo(T, λsoc, tstr, h = 0)

= C0

(
T,

√
t2
str + λ2

soc

)
λ2

soc
t2
str+λ2

soc
, (29)

where C0(T, E ) is defined in Eq. (22). In the case of λsoc =
0, it can be seen that Tc(tstr ) = T0(tstr = 0), i.e., the su-
perconducting Tc is not suppressed by stain or the orbital
hybridization when the orbital do vector is parallel to g̃ [10].
However, in the presence of nonzero atomic SOC λsoc, the Tc
will be suppressed even when do ‖ g̃ is satisfied. Figure 3(c)
shows the behavior of Tc as a function of the λsoc/tstr for two
different values of tstr . We see the suppression of Tc as long as
λsoc '= 0, and the suppression is more prominent when tstr is
larger.

To understand the suppression of orbital-dependent pair-
ings by the atomic SOC, we take the tstr = 0 limit. Eq. (29)
leads to

ln
(

Tc

T0

)
= C0(T, λsoc), (30)

which implies that λsoc plays the same role of magnetic field
that suppresses the Tc of the orbital-dependent pairing states.
And λsoc ∼ HP roughly measures the zero-field Pauli-limit of
the orbital-dependent pairing states. We dub this new effect as
zero-field Pauli limit for orbital-dependent pairings induced
by the atomic SOC, which can serve as the preliminary anal-
ysis of whether orbital-dependent pairings exist or not in real
materials by simply calculating λsoc/Tc.

Motivated by this observation, we notice that the normal
Hamiltonian given in Eq. (7) satisfies [HN (k), τ2] = 0 with
both λo → 0 and tstr → 0. It stands for the U(1) rotation in
the orbital subspace. As a result, we can project the normal
Hamiltonian HN (k) in Eq. (7) into block-diagonal form cor-
responding to the ±1 eigenvalues of τ2 by using the basis
transformation

U = σ0 ⊗ 1√
2

[
1 −i
1 i

]
. (31)

The new basis is given by

+̃†(k) = (c†
+,↑, c†

+,↓, c†
−,↓, c†

−,↑), (32)

where c†
±,s ≡ 1√

2
(c†

dxz,s
∓ ic†

dyz,s
). On this basis, the normal

Hamiltonian is given by

H0 = H+
0 ⊕ H−

0 , (33)

where H±
0 are given by

H±
0 = ε(k) ∓ λsocσ3. (34)

Note that the time-reversal transforms H±
0 (k) to H∓

0 (−k).
Explicitly, the atomic SOC is indeed a magnetic field in each
subspace, while it switches signs in the two subspaces to
conserve TRS.

Next, we project the pairing Hamiltonian to the new basis,
and we find that it also decouples as

H* = H+
* ⊕ H−

*, (35)

where H±
* are given by

H±
* = 2*±[c†

±,↑(k)c†
±,↓(−k) − (↑ ↔ ↓)] + H.c., (36)

where *± ≡ *o(∓id1
o + d3

o ) are the gap strengths in each
subspace. In each subspace, it resembles an s-wave super-
conductor under an effective magnetic field of the atomic
SOC along the out-of-plane direction. It naturally explains
the zero-field Pauli-limit pair-breaking effect of atomic SOC
on the orbital-dependent pairings with the tstr → 0 limit. As a
brief conclusion, our results demonstrate that the spin-singlet
orbital-dependent pairings occur only in weak atomic SOC
electronic systems.

IV. 2D HELICAL SUPERCONDUCTIVITY

In the above sections, the spin-orbit coupled SCs concern-
ing inversion symmetry have been comprehensively studied.
In addition to that, it will be natural to ask if there exist more
interesting superconducting states (e.g., topological phases)
by including an inversion-symmetry breaking to the normal
Hamiltonian in Eq. (7), namely, λR '= 0. For this purpose, in
this section, we focus on the Rashba SOC and explore its
effect on the spin-orbit coupled SCs, especially the orbital-
dependent pairings. Even though the 2D bulk SC or thin film
SC preserves the inversion symmetry, a Rashba SOC appears
near an interface between the superconducting layer and the
insulating substrate. Remarkably, we find a TRI topological
SC (helical TSC) phase generated by the interplay between
the two types of SOC (atomic and Rashba) and spin-singlet
orbital-dependent pairings. Since TRS is preserved, it belongs
to Class DIII according to the tenfold classification. On the
boundary of the interface, there exists a pair of helical Majo-
rana edge states [74–83].

To explore the topological phases, we consider the normal-
state Hamiltonian in Eq. (7), and the TRI spin-singlet
nonunitary pairing symmetry in Eq. (16) for the BdG Hamil-
tonian (13), namely, a real orbital do vector is assumed for the
orbital-dependent pairings.

In the tstr → 0 and *s → 0 limit, the bulk band gap closes
only at the " point for µ±

c = ±
√

λ2
soc − 4|*o|2 while no gap

closing happens at other TRI momenta, leading to a topolog-
ical phase transition. Thus, we conclude that the topological
conditions are µ−

c < µ < µ+
c and an arbitrary orbital do vec-

tor. In Appendix D, we show the Z2 topological invariant can
be analytically mapped to a BdG-version spin Chern num-
ber, similar to the spin Chern number in the 2D topological
insulators. As mentioned in Sec. III C, the conservation of
τ2, the U(1) symmetry in the orbital subspace, leads to the
decomposition of the BdG Hamiltonian into two blocks for
different eigenvalues of τ2. In each subspace, we can define
the BdG Chern number as

C± = 1
2π

∑

filled bands

∫

BZ
dk · 〈φ±

n (k)|i∇k|φ±
n (k)〉, (37)
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FIG. 4. Topological helical superconductivity for spin-singlet orbital-dependent pairing in the presence of Rashba SOC. (a) The Z2 index
is calculated by decoupling the BdG Hamiltonian into two chiral blocks when *s = 0 and tstr = 0. The other parameters used: m = 0.5,
µ = 0.2, λsoc = 0.4, λR = 1, *o = 0.1, do = (1, 0, 1). (b) The Wilson loop calculation of the Z2 invariant for *s = 0.05, tstr = 0.1, φ = π

8 ,
and go = (1, 0, 1). The other parameters remain the same as those in (a). The spectrum of edge states in (c) shows two counterpropagating
Majorana edge states of the helical TSC.

with |φ±
n 〉 being the energy eigenstate of H±

BdG (see the details
in Appendix D). Then the Z2 topological invariant, in this case,
is then explicitly given by,

ν ≡ C+ − C−

2
, (38)

where C± are the Chern numbers of the ± channels. ν = 1 cor-
responds to the TSC phase, shown in Fig. 4(a). Based on the
analysis for the topological condition, we learn that *o should
be smaller than λsoc. However, as shown in Sec. III, the atomic
SOC actually will reduce the Tc of orbital-dependent pairings,
which set a guideline to a physically realizable set of parame-
ters, T0 5 λsoc 5 *o, beyond the BCS theory (*o ∼ 1.76T0).
For example, the monolayer FeSe superconductor films on
different substrates achieve a very high critical temperature
T0 ∼ 70 K [84].

As for a more general case with nonzero λo, tstr , and *s,
the BdG Hamiltonian can no longer be decomposed into two
decoupled blocks, hence the Chern number approach fails
to characterize the Z2 invariant. However, the more general
Wilson-loop approach still works (see details in Appendix E).
In general, the Z2-type topological invariant of helical su-
perconductivity could be characterized by the Wilson loop
spectrum [85,86], shown in Fig. 4(b), which demonstrates the
nontrivial Z2 index. To verify the helical topological nature,
we calculate the edge spectrum in a semi-infinite geometry
with ky being a good quantum number. Figure 4(c) confirms
clearly that there is a pair of 1D helical Majorana edge modes
(MEMs) propagating on the boundary of the 2D system.

V. TRB NONUNITARY SUPERCONDUCTOR

So far, the TRI nonunitary pairing states are investigated,
which exhibit the Pauli-limit violation for in-plane upper crit-
ical field and topological phases. Furthermore, in this section,
we study the TRB nonunitary pairing states characterized
by a complex do vector when both *s and *o are real. As
it is well known, the experiments by zero-field muon-spin
relaxation (µSR) and the polar Kerr effect (PKE) can provide
strong evidence for the observation of spontaneous magne-
tization or spin polarization in the superconducting states,

which indicates a TRB superconducting pairing symmetry. On
the theory side, the nonunitary spin-triplet pairing potentials
are always adopted to explain the experiments. However, for
a spin-singlet SC, a theory with TRB pairing-induced spin-
magnetization is in great demand. Addressing this crucial
issue is one of the aims of this work, and we find that a spin-
singlet TRB nonunitary SCs supports a TRB atomic orbital
polarization, which in turn would give rise to spin polarization
in the presence of atomic SOC.

A. 2D chiral TSC

We first explore the possible 2D chiral topological phases
by considering the simplest case with λo = tstr = *s = 0 to
demonstrate the essential physics. For the TRB nonunitary
pairing, a complex orbital do vector can be generally param-
eterized as do = (cos θ , 0, eiφ sin θ ). And the relative phase
φ = ±π/2 is energetically favored by minimizing the free
energy.

At the " point, the bulk gap closes at µ±
c,i =

±
√

λ2
soc − 4|*i|2, where i = 1, 2 and *1,2 = i*o(sin θ ±

cos θ ). Due to TRB, µ±
c,1 '= µ±

c,2. Accordingly, we semiqual-
itatively map out the phase diagram in Fig. 5 by tuning θ
and µ, and label the different phase regions by the num-
ber of Majorana edge modes (MEMs), denoted as Q. When
|µ| > max{|µc,1|, |µc,2|}, the topologically trivial phase is
achieved with Q = 0. As for min{|µc,1|, |µc,2|} < |µ| <
max{|µc,1|, |µc,2|}, there is only one MEM on the boundary,
corresponding to the Q = 1 regions [87,88]. When |µ| <
min{|µc,1|, |µc,2|}, there are Q = 2 MEMs. The chiral TSC
might be detected by anomalous thermal Hall conductivity
Kxy = Q

2
πT
6 [89].

B. Atomic orbital polarization and spin polarization

Next, we show how spin-singlet TRB nonunitary pairing
can induce spin polarization, and discuss how to identify
such pairings by using spin-polarized scanning tunneling mi-
croscopy measurements. We assume a TRB complex orbital
do vector and find that it can generate the orbital orderings as

Mo = −iγ1/αM (do × d∗
o ), (39)
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FIG. 5. Topological chiral superconductivity. We plot the phase
diagram in terms of the number of MEMs (Q) of the TSC. Param-
eters used: *o = 0.14, λsoc = 0.4, φ = ±π/2, λo = 0, tstr = 0, and
*s = 0.

of which the y component breaks TRS shown in Fig. 6(a).
More precisely, we find that My

o ∝
∑

k,σ 〈n̂dxz+idyz,σ (k) −
n̂dxz−idyz,σ (k)〉 '= 0 indicates the atomic orbital-polarization
(OP) (see Appendix F for details). Here, n̂ is the density oper-
ator of electrons. Once My

o develops a finite value, it leads to
orbital-polarized DOS and two distinct superconducting gaps
of the quasiparticle spectrum [Fig. 6(c), more details below].
Therefore, the orbital degree of freedom in spin-singlet SCs
plays a similar role as the spin degree of freedom of spin-
triplet SCs.

Once the atomic SOC is present, spin polarization (SP)
could be induced indirectly. A possible Ginzburg-Landau term
could be

*F = αs|Ms|2 + γsocMz
s My

o, (40)

with αs > 0 and γsoc '= 0. Here, Mz
s ∝

∑
k,τ 〈n̂τ,↑ − n̂τ,↓〉.

Therefore, the complex orbital do vector can be identified
by the spin-resolved density of states (DOS) for spin-singlet
superconductors. Minimizing Eq. (40) directly leads to Mz

s =
γsocMy

o/Mz
s , which indicates the OP-induced spin magnetism.

In addition, the direction of SP can be also aligned to x or y
axes, discussed later.

To verify the above analysis, we numerically solve
the BdG Hamiltonian (13), HBdG|En(k)〉 = En(k)|En(k)〉,
where the nth eigenstate is given by |En(k)〉 =
(un

dxz,↑, un
dxz,↓, vn

dxz,↑, vn
dxz,↓, un

dyz,↑, un
dyz,↓, vn

dyz,↑, vn
dyz,↓)T . Thus,

the atomic-orbital and spin-resolved DOS can be calculated
as the following,

Dκ
orbit (E ) =

∑

σ,n,k

∣∣un
κ,σ

∣∣2
δ[E − En(k)],

(41)
Dσ

spin(E ) =
∑

τ,n,k

∣∣un
τ,σ

∣∣2
δ[E − En(k)],

where un
κ,σ = 1√

2
(un

dxz,σ
− iκun

dyz,σ
) and κ = ±1 for dxz ± idyz

orbitals. In Fig. 6(c), D+1
orbit '= D−1

orbit indicates that the DOS
is orbital polarized. Remarkably, we also have D↑

spin '= D↓
spin

(a)

(c) (d)

(b)

FIG. 6. (a) Schematic diagram showing the TRB orbital polariza-
tion (OP) induced by complex do vector. (b) Spin could be polarized
in different directions based on the two active orbitals involved in
the pairing. (c) Orbital DOS projected into the chiral κ = ±1 basis,
showing a two-gap feature due to TRB. (d) The corresponding spin
DOS, shifted relative to the Fermi level due to the nonzero effective
Zeeman field from the OP. Parameters used: m = 0.5, µ = −2, λR =
0, λsoc = 0.2, *o = 0.4, λo = 0, tstr = 0, do = (1, 0, eiπ/10).

due to coupling between electron spin and atomic orbitals,
shown in Fig. 6(d). The difference in orbital DOS acts as an
effective Zeeman field for the electron spins, hence shifting
the spin DOS relative to the Fermi level in opposite directions
for up spin and down spin. This interesting phenomenon is
quite different from spin-triplet SCs. In TRB spin-triplet SCs
the spin-up channel and spin-down channel will form different
symmetric gaps in spin DOS, similar to the two orbital chan-
nels in Fig. 6(c) for our case. Therefore, the spin DOS profiles
are distinct in the two cases. As a result, the spin-resolved
DOS, which can be probed by spin-resolved STM [90] and
muon-spin relaxation [91,92], can serve as a smoking gun
evidence to identify TRB due to complex orbital do vector in
multiorbital SCs.

VI. DISCUSSIONS AND CONCLUSIONS

In the end, we briefly discuss the direction of spin polar-
ization induced by atomic orbital polarization, summarized in
Fig. 6(b). We consider the three-dimensional subspace of t2g
orbitals spanned by {dyz, dxz, dxy}, where the matrix form of
the angular momentum operators L reads [63],

Lx =




0 0 0
0 0 i
0 −i 0



, Ly =




0 0 −i
0 0 0
i 0 0



,

Lz =




0 i 0
−i 0 0
0 0 0



, (42)

which satisfy the commutation relation [Lm, Ln] = −iεmnl Ll .
Therefore, the spin-orbit coupling for a system with the t2g
orbitals is given by,

Hsoc = λsocL · σ. (43)
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Then, let us consider a two-orbital system, the above SOC
Hamiltonian will be reduced to,

For {dyz, dxz} : Hsoc = −λsocτ2σ3,

For {dyz, dxy} : Hsoc = λsocτ2σ2,

For {dxz, dxy} : Hsoc = −λsocτ2σ1. (44)

Therefore, in the above three cases, the spin polarization is
pointed to z, y, x axis, respectively. Because the atomic orbital
polarization is induced by the complex orbital do vector as
(0, My

o, 0) ∝ id∗
o × do.

To summarize, we establish a phenomenological theory
for spin-singlet two-band SCs and discuss the distinct fea-
tures of both TRI nonunitary pairings and TRB nonunitary
pairings by studying the effects of atomic spin-orbit coupling
(SOC), lattice strain effect, and Rashba SOC. Practically,
we demonstrate that the stability of orbital-dependent pair-
ing states could give birth to the nonunitary pairing states
in a purely spin-singlet SC. Remarkably, the interplay be-
tween atomic SOC and orbital-dependent pairings is also
investigated and we find a new spin-orbit coupled SC with
spin-singlet nonunitary pairing. For this exotic state, there are
mainly three features. First, the atomic SOC could enlarge the
in-plane upper critical field compared to the Pauli limit. A new
effect dubbed as zero-field Pauli limit for orbital-dependent
pairings is discovered. Second, topological chiral or helical
superconductivity could be realized even in the absence of
external magnetic fields or Zeeman fields. Furthermore, a
spontaneous TRB SC could even generate a spin-polarized
superconducting state that can be detected by measuring the
spin-resolved density of states. We hope our theory leads to a
deeper understanding of spin-singlet nonunitary SCs.

Our theory might have potential applications to the in-
triguing Sr2SuO4 [93,94], LaNiGa2 [58], iron-based SCs
[59,60], and ultracold atomic systems with large spin alkali
and alkaline-earth fermions [95–99].
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APPENDIX A: TOY MODEL FOR TWO-BAND
SUPERCONDUCTING PHASE DIAGRAMS

In this Appendix, we explore a possible superconducting
phase diagram including the nonunitary pairing states in the
GL framework. Here we assume a two-band SC with

*tot =
[
*sτ0 + *o

(
d1

o τ1 + d3
o τ3

)]
(iσ2). (A1)

In terms of the superconducting order parameters
{*s,*o, do = (d1

o , 0, d3
o )} and the order parameter for the

orbital orderings Mo ∝
∑

k,σ 〈c†
aσ (k)τabcbσ (k)〉, the total GL

free energy can be constructed to address the homogeneous
superconducting phase without external magnetic fields,

F[*s,*o, do, Mo] = F0 + Fb + Fo, (A2)

where

F0 = 1
2α(T )|*o|2 + 1

2α′(T )|*s|2 + 1
2αM |Mo|2

+ 1
4β|*o|4 + 1

4β ′|*s|4 + β ′′|*s|2|*o|2

+βo|d1
o |4 + β ′

o|d3
o |4, (A3)

where |do| = 1 is adopted, α(T ) = α0(T/Tc1 − 1), α′(T ) =
α′

0(T/Tc2 − 1) and the coefficients α0, α′
0, αM , β, β ′, β ′′,

βo, β ′
o are all positive. Tc1, Tc2 are critical temperatures in

orbital-dependent and orbital-independent channels respec-
tively, which are in general different from each other. And
αM > 0 means that there is no spontaneous atomic orbital po-
larization. In the superconducting state with both nonzero *s
and *o developed already, additionally, there are two possible
ways to pursue the spontaneous TRB, denoted as Fb and Fo.
First, we consider the Fb term

Fb = b1*
∗
s *o + b2(*∗

s *o)2 + h.c., (A4)

where the sign of b2 determines the breaking of TRS. Here we
focus on the generic case where *s and *o belong to different
symmetry representations so that there is no linear order cou-
pling between them, i.e. b1 = 0. Given b1 = 0 and b2 > 0,
we have a θo = ±π/2 relative phase difference between *s
and *oeiθo [100], which gives to the achievement of the TRB
unitary pairing state (*s ∈ R,*o ∼ i, do ∈ R).

More generally, a TRB nonunitary SC arises from the
nonzero bilinear b1 term, which is symmetry allowed only
when *s and *o belong to the same symmetry representation
of the crystalline symmetry group. Namely, the case with
b1 '= 0 and b2 > 0 can pin the phase difference θo to an
arbitrary nonzero value, i.e., θo ∈ (0,π ). Then, this case can
also give rise to TRB nonunitary pairing with (*s ∈ R,*t ∈
C, do ∈ R) or (*s ∈ R,*t ∈ C, do ∈ C). On the other hand,
the b2 < 0 situation makes TRI nonunitary pairing states
(*s ∈ R,*o ∈ R, do ∈ R).

However, even in the case with b2 < 0, we still have an
alternative approach to reach TRB pairing states, driven by
the Fo term

Fo = γ0|do × d∗
o|2 + iγ1Mo · (do × d∗

o ) + H.c., (A5)

FIG. 7. Schematic superconducting phase diagrams on the
b2−γ0 plane when b1 = 0 and *s is real and nonzero. Here, TRB
and TRI are short for TR-breaking and TR-invariant, respectively; U
and NU represent unitary and nonunitary, respectively.
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where the sign of γ0 identifies the TRB due to a complex do. In particular γ0 < 0 results in a TRB nonunitary state (*s ∈ R,*o ∈
R, do ∈ C).

We summarize many of the possible interesting superconducting phases in Fig. 7, which schematically shows a supercon-
ducting phase diagram as a function of b2 and γ0 by setting b1 = 0, i.e., the generic case where *o,*s belong to different
representations. Notice that this phase diagram characterized by b2 and γ0 does not contain the TRI unitary pairing phase.

APPENDIX B: DERIVATION OF TC FROM LINEARIZED GAP EQUATION

Starting from the generic Hamiltonian, containing atomic SOC, generic g̃ = (g̃1, 0, g̃2) with |g̃| = 1 and in-plane magnetic
field,

H0(k) = ε(k) + λsocσ3τ2 + λ(g̃1τ1 + g̃3τ3) + hσ1. (B1)

The Matsubara Green’s function for electrons is

Ge(k, iωn) = [iωn − H0(k)]−1

= P−−−

iωn − εk + E−
+ P+−+

iωn − εk + E+
+ P−+−

iωn − εk − E−
+ P+++

iωn − εk − E+
, (B2)

where the projection operator

Pαβγ = 1
4

[1 + α(g̃1σ1τ1 + g̃3σ1τ3)] · [1 + β

Eγ

(λsocσ3τ2 + λo(g̃1τ1 + g̃3τ3) + hσ1)], (B3)

with α,β, γ ∈ {+,−} and Eγ =
√

λ2
soc + (λ + γ h)2. The Green’s function for hole is Gh(k, iωn) = −G∗

e (k, iωn). Here ωn =
(2n + 1)πkBT .

The linearized gap equation is given by

*a,b
s1,s2

(k) = − 1
β

∑

ωn

∑

s′
1a′,s′

2b′

V s1a,s2b
s′

1a′,s′
2b′ (k, k′) × [Ge(k′, iωn)*(k′)Gh(−k′, iωn)]s′

1a′,s′
2b′ , (B4)

where the generic attractive interaction can be expanded as

V s1a,s2b
s′

1a′,s′
2b′ (k, k′) = −v0

∑

",m

[
d",m

o (k) · τiσ2
]

s1a,s2b

[
d",m

o (k′) · τiσ2
]

s′
1a′,s′

2b′ , (B5)

where v0 > 0 and " labels the irreducible representation with m dimension of crystalline groups. The linearized gap equation is
reduced to v0χ (T ) − 1 = 0 where χ (T ) is the superconductivity susceptibility. We have

(i) For orbital-independent pairing:

χ (T )s = − 1
β

∑

k,ωn

Tr[(ψs(k)iσ2)†Ge(k, iωn)(ψs(k)iσ2)Gh(−k, iωn)]. (B6)

(ii) For orbital-dependent pairing:

χ (T )o = − 1
β

∑

k,ωn

Tr[(do(k) · τiσ2)†Ge(k, iωn)(do(k) · τiσ2)Gh(−k, iωn)]. (B7)

Then we take the standard replacement,

∑

k,ωn

→ N0

4

∫ +ωD

−ωD

dε

∫∫

S
d6

∑

ωn

, (B8)

where N0 is the density of states at Fermi surface, 6 is the solid angle of k on Fermi surfaces and ωD the Debye frequency. We
will also be making use of,

− N0

β

∫ +ωD

−ωD

∑

ωn

dεG+
e (k, iωn)G+

h (k, iωn) = −N0

β

∫ +ωD

−ωD

∑

ωn

G−
e (k, iωn)G−

h (k, iωn) = χ0(T ), (B9)

− N0

β

∫ +ωD

−ωD

∑

ωn

dεG−
e (k, iωn)G+

h (k, iωn) = −N0

β

∫ +ωD

−ωD

∑

ωn

G+
e (k, iωn)G−

h (k, iωn) = χ0(T ) + N0C0(T ), (B10)

where χ0(T ) = N0 ln( 2eγ ωD
πkBT ), γ = 0.57721 · · · the Euler-Mascheroni constant and C0(T ) = Re[ψ (0)( 1

2 ) − ψ (0)( 1
2 + i E (k)

2πkBT )]
with ψ (0)(z) being the digamma function.

094507-12121
128



SPIN-ORBIT COUPLED SUPERCONDUCTIVITY WITH … PHYSICAL REVIEW B 107, 094507 (2023)

For orbital-independent pairing considered in the main text *sτ0iσ2, we have

χs(T ) = χ0(T ) + N0

2

[
C0

(
T,

E+ − E−

2

)
+ C0

(
T,

E+ + E−

2

)]

+ N0

2

[
C0

(
T,

E+ − E−

2

)
− C0

(
T,

E+ + E−

2

)]
× λ2 + λ2

soc − h2

E+E−

≡ χ0(T ) + N0 fs(T, λsoc, λ, h). (B11)

In order to look at the effect of λ on the Pauli limit, we could Taylor expand fs(T, λsoc, λ, h) for small λ:

fs(T, λsoc, λ, h) = fs(T, λsoc, 0, h) + F (T, λsoc, h)λ2 + O(λ4), (B12)

with

F (T, λsoc, h) = ψ (2)( 1
2

) λ2
soch2

4πk2
BT 2

(
λ2

soc + h2
)2

− Re
{
ψ (0)( 1

2

)
− ψ (0)

(
1
2 + i

√
λ2

soc+h2

2πkBT

)}
4λ2

soch2

(
λ2

soc + h2
)3

+ Im
{
ψ (1)

(
1
2 + i

√
λ2

soc+h2

2πkBT

)}
λ2

soch2

2πkBT
(
λ2

soc + h2
)5/2 . (B13)

This is used in the main text.
For orbital-dependent pairing *o(d1τ1 + d3τ3)iσ2 with do = g̃, we have

χo(T ) = χ0(T ) + N0

2

[
C0

(
T,

E+ − E−

2

)
+ C0

(
T,

E+ + E−

2

)]

+ N0

2

[
C0

(
T,

E+ − E−

2

)
− C0

(
T,

E+ + E−

2

)]
× λ2 − λ2

soc − h2

E+E−

≡ χ0(T ) + N0 fo(T, λsoc, λ, h). (B14)

APPENDIX C: STRAIN EFFECT ON TC AND PAIRING
SYMMETRY

The strain effect characterized by Eq. (6) in the main text
can be absorbed into the orbital hybridization vector go and
gives rise to an effective g̃ ≡ go + tstr/λo(sin 2φ, 0, cos 2φ).
Then in the absence of SOC terms, the corrected critical
temperature Tc due to the strain and hybridization effects is
perturbatively given by

ln
(

Tc

T0

)
=

∫∫

S
d6 C0(T0)(|do|2 − |do · ˆ̃g|2), (C1)

where T0 is the critical temperature without strain or hy-
bridization and the integration is over the solid angle of k
over the Fermi surface. Similar to previous discussions, the
strain generally suppresses the critical temperature when g̃ is
not exactly parallel to do, as shown in Fig. 8(a). For nonzero
strain, the Tc is not suppressed when do||g̃. Figure 8(b) shows
the symmetry-breaking pattern of the |do|, which is propor-
tional to the SC gap (the proportionality constant has been
normalized to 1 in the figure), around the Fermi surface. The
strain would reduce the symmetry from C4 to C2, as expected.

APPENDIX D: TSC WITH #s = 0, λo = 0

To demonstrate the topology, we also show a simple case
with *s = 0 and λo = 0, where the Z2 can be characterized
analytically.

In this section, we focus on the simplified case with-
out orbital-independent pairing or orbital hybridization. In
Fig. 4(c), we calculate the edge spectrum with kx being a good
quantum number in a semi-infinite geometry, and it shows
the corresponding bulk band structure together with two

FIG. 8. (a) shows the suppression of Tc for different strain
strengths. Here do = go + t

λo
gstr whereas g̃ = go + tstr

λo
gstr . (b) shows

the symmetry breaking of the SC gap from C4 to C2 due to the exis-
tence of the external strain. We have chosen go = (3kxky, 0, k2

x − k2
y )

and the strain parameter φ = 0 in gstr .
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counterpropagating MEMs. The bulk topology of the 2D heli-
cal TSC phase is characterized by the Z2 topological invariant
ν, which can be extracted by calculating the Wilson-loop
spectrum. And ν = 1 mod 2 characterizes the helical TSC.
In Fig. 4(b), we plot the evolution of θ as a function of ky,
and the winding pattern indicates the topological Z2 invariant
ν = 1.

On the other hand, with *s = 0, which is the case if we
only consider on-site attractive interactions between electrons
[101,102], the BdG Hamiltonian (13) can be decomposed into
two orbital subspaces that are related through time-reversal
transformation. Each of these blocks has a well-defined Chern
number because each block alone breaks TRS. The two Chern
numbers can then be used to define the Z2 invariant of the
whole BdG system. The detailed procedures are the following.

For the normal Hamiltonian given in Eq. (1), we have
[H0, τ2] = 0. As a result, we can project the normal Hamil-
tonian H0 in Eq. (1) into block-diagonal form corresponding
to the ±1 eigenvalues of τ2 by using the basis transformation
U = σ0 ⊗ 1√

2
[1 −i
1 i ]. The new basis is given by

+̃†(k) = (c†
+,↑, c†

+,↓, c†
−,↓, c†

−,↑), (D1)

where c†
±,s ≡ 1√

2
(c†

dxz,s
∓ ic†

dyz,s
). On this basis, the normal

Hamiltonian is given by

H0 = H+
0 ⊕ H−

0 , (D2)

where H±
0 are given by

H±
0 = ε(k) + λR(kxσ2 − kyσ1) ∓ λsocσ3. (D3)

Note that the time-reversal transforms H±
0 (k) to H∓

0 (−k). In
the new basis the pairing Hamiltonian also decouples as H* =
H+

* ⊕ H−
* with H±

* given by

H±
* = 2*±[c†

±,↑(k)c†
±,↓(−k) − (↑↔ ↓)] + H.c., (D4)

where *± ≡ *o(∓id1
o + d3

o ) are the gap strengths in each
subspace. Therefore, the Bogoliubov-de Gennes (BDG)
Hamiltonian takes the following block-diagonal form,

HBdG = H+
BdG ⊕ H−

BdG, (D5)

where

H±
BdG(k) = (ε(k) ∓ λsocσ3)γ3 + λR(kxσ2γ3 − kyσ1γ0)

± 2d1σ2γ1 − 2d3σ2γ2, (D6)

with γµ being the Pauli matrices in the particle-hole space.
The Nambu basis is +†

±(k) = (c†
±,↑(k), c†

±,↓(k), c±,↑(−k),
c±,↓(−k)). Each subspace has its own particle-hole symmetry.

By symmetry, the 2D BdG Hamiltonian in Eq. (D5) be-
longs to Class DIII of the A–Z classification [103,104] for
topological insulators and superconductors because both TRS
and particle-hole symmetry are preserved. However, it is not
the case for our model. The BdG Hamiltonian here could
exhibit topological states with Z2-type topological invariant,
which can be defined as the following. In each subspace, we
define the BdG Chern number as

C± = 1
2π

∑

filled bands

∫

BZ
dk · 〈φ±

n (k)|i∇k|φ±
n (k)〉, (D7)

with |φ±
n 〉 being the energy eigenstate of H±

BdG. Then the Z2
invariant, in this case, is then explicitly given by,

ν ≡ C+ − C−

2
, (D8)

where C± are the Chern numbers of the ± channels. This has
been discussed in the main text.

APPENDIX E: WILSON-LOOP CALCULATION
FOR Z2 TSC

In the thermodynamics limit, the Wilson-loop operator
along a closed path p is expressed as

Wp = P exp
[

i
∮

p
A(k) dk

]
, (E1)

where P means path ordering and A(k) is the non-Abelian
Berry connection

Anm(k) = i〈φn(k)|∇k|φm(k)〉, (E2)

with |φm,n(k)〉 the occupied eigenstates. The Wilson line ele-
ment is defined as

Gnm(k) = 〈φn(k + *k)|φm(k)〉, (E3)

where the k = (kx, ky), and *k = (0, 2π/Ny) is the steps.
In the discrete case, the Wilson-loop operator on a path
along ky from the initial point k to the final point k +
(0, 2π ) can be written as Wy,k = G(k + (Ny − 1)*k)G(k +
(Ny − 2)*k)...G(k + *k)G(k), which satisfies the eigen-
value equation

Wy,k
∣∣ν j

y,k

〉
= ei2πν

j
y (kx )

∣∣ν j
y,k

〉
. (E4)

The phase of eigenvalue θ = 2πν
j
y (kx ) is the Wannier func-

tion center.

APPENDIX F: SPIN AND ORBITAL MAGNETIZATIONS:
Ms AND Mo

In this section, we show the definition of spin and orbital
magnetization at the mean-field level. The spin magnetization
in orbital-inactive systems takes the form

Ms ∝
∑

k,s1,s2

〈
c†

s1
(k)σs1s2 cs2 (k)

〉
, (F1)

which tells us the magnetic moments generated by spin polar-
ization. Similarly, the orbital magnetization in orbital-active
system is given by

Mo ∝
∑

k,s,a,b

〈c†
s,a(k)τabcs,b(k)〉. (F2)

The different components of the orbital magnetization vector
represent different orders in the SC ground state. More specif-
ically, we have

Mx
o =

∑

k,s

〈
c†

s,dxz
cs,dyz + c†

s,dyz
cs,dxz

〉
, (F3)

My
o = −i

∑

k,s

〈
c†

s,dxz
cs,dyz − c†

s,dyz
cs,dxz

〉
(F4)
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= 1
2

∑

k,s

〈
n̂s,dxz+idyz − n̂s,dxz−idyz

〉
, (F5)

Mz
o =

∑

k,s

〈
c†

s,dxz
cs,dxz − c†

s,dyz
cs,dyz

〉
. (F6)

We see that Mx,z
o breaks the C4 rotation symmetry and My

o
breaks TRS. In our work, we only consider the possibility of
spontaneous TRS breaking, thus the Mx,z

o will not couple to

the superconducting order parameters, which are required to
be invariant under Cn. Because My

o breaks TRS so that it could
be coupled to the superconducting order parameters, which
spontaneously breaks TRS. This is one of the main results of
our work,

(
0, My

o, 0
)

∝ id∗
o × do, (F7)

where the complex orbital do vector breaks TRS.
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We explore the manifestation of second-order topology in a two-orbital superconductor with spin-orbital cou-
plings, characterized by the emergence of anomalous gapless boundary modes. This state arises from the spon-
taneous breaking of time-reversal symmetry, driven by a d+id-wave orbital-dependent pairing, which can be en-
ergetically favored. Notably, the orbital-active d-wave pairing leads to anomalous zero-energy Majorana corner
modes, contrasting with conventional chiral d-wave pairing that typically produces one-dimensional Majorana
edge modes. Our theory o�ers a natural explanation for the absence of edge supercurrent in a d+id supercon-
ductor. Additionally, we establish a correspondence between bulk second-order topology and dislocation lines,
where a Kramers Majorana doublet emerges, albeit with a small gap. These findings demonstrate a connec-
tion between second-order topology and orbital-dependent pairings, o�ering new insights into the behavior of
multi-band superconductors.

Introduction.— Topological superconductors (TSCs) are
exotic quantum condensed matter phases with topologically
nontrivial Cooper pair wavefunction structures. As one of the
most remarkable consequences of TSCs, spatially localized
Majorana zero modes (MZMs) can be trapped within the vor-
tex cores of a two-dimensional (2D) p-wave TSC [1–3] or be
formed at the ends of a one-dimensional p-wave superconduc-
tor [4]. MZMs exhibit non-Abelian quantum statistics, natu-
rally encoding topological qubits that pave the way for fault-
tolerant quantum computation [5, 6]. Although naturally oc-
curring topological superconductors are rare and elusive, the
past few decades have seen a tremendous e�ort to discover ar-
tificial topological superconductivity in various quantum ma-
terials [7–10], following theories [11–13]. So far, evidence of
MZMs has been experimentally reported in several systems,
ranging from one-dimensional superconducting hybrids [14–
16] to vortex cores on a proximitized topological insulator sur-
face [17] or an iron-based superconductor surface [18].

The recent advances of topological band theory have un-
veiled an entirely new category of “higher-order” TSCs with
an unprecedented bulk-boundary relation [19–66]. For exam-
ple, in two dimensions (2D), a second-order TSC generally
binds 0D MZMs around the geometric corners of a finite-size
system. In pursuit of corner MZMs, a crucial conceptual ques-
tion is looking for new simple, feasible recipes applicable to
real-world superconductors. Given the important role of or-
bital degrees of freedom in unconventional superconducting
systems, a comprehension of whether multi-orbital pairing can
enable higher-order TSC is certainly necessary but still largely
incomplete [67–70].

This study demonstrates that orbital-active d+id-wave pair-
ing can stabilize a second-order class-D topological supercon-
ducting phase protected by C4 rotation symmetry. The topo-
logical nature of this superconducting phase is confirmed by

numerically revealing Majorana corner modes and conducting
a topological quantum chemistry analysis. It naturally explains
the absence of edge supercurrent in a time-reversal-symmetry
broken d+id superconductor. Furthermore, apart from appear-
ing at sample corners, we find that lattice dislocations can also
trap Majorana zero modes due to the inherent weak topology
of the system. Our findings establish a promising platform for
the design and construction of Majorana qubits within multi-
band superconductors.

Model of d+id TSCs and symmetry analysis.— We consider
a normal state two-orbital {dxz, dyz} tight-binding model on
the square lattice with SOC,

Hn =
�

k

�† (k) {� (k) �0s0 + �� (k) �zs0 + ��� (k) �xs0

+�I�ysz + �R sin kx�0sy � �R sin ky�0sx}� (k) , (1)

where �†(k) = (c†
dxz,�, c

†
dxz,�, c

†
dyz,�, c

†
dyz,�), � (k) =

�2t cos kx�2t cos ky+4t�µ, �� (k) = �2�t cos kx+2�t cos ky ,
and ��� (k) = 4t�� sin kx sin ky . �x,y,z and sx,y,z are Pauli
matrices for the orbital and spin degrees of freedom, re-
spectively. t describes the intra-orbital nearest-neighbor hop-
ping, �t depicts the hopping anisotropy along the di�erent di-
rection of dxz , dyz orbitals and t�� is the inter-orbital next-
nearest-neighbor hopping. The �I and �R are the strengths
of intrinsic and Rashba SOCs, respectively. This normal
Hamiltonian breaks inversion symmetry but preserves TRS:
T Hn (k) T �1 = Hn (�k), where T = i�0syK with K the
complex conjugation operator. In addition, the normal Hamil-
tonian has the four-fold rotation symmetry r4z = i�ye�i�sz/4.

In the Nambu basis
�
�† (k) , �T (�k)

�
, the Bogoliubov-

de-Gennes (BdG) Hamiltonian reads

H =

�
Hn (k) � (k)
�† (k) �HT

n (�k)

�
. (2)
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Here, the pairing potential � (k) consists of both orbital-
independent and orbital-dependent pairings,

� (k) = [�i� (k) �0 + �o(do (k) · �)] isy. (3)

Here �i and �o are pairing amplitudes in orbital-independent
and orbital-dependent channels, respectively. In this work,
we are particularly interested in the d-wave pairings, and
consider � (k) = �2 cos kx + 2 cos ky . Without breaking
the crystalline symmetry, a uniform orbital-dependent pairing
do (k) = (0, 0, 1) is also allowed. For example, they belong
to the same irreducible representation (B1) of the C4v point
group [71–73]. In the Supplementary Materials (SM), we self-
consistently calculate the above gap function by using random
phase approximation in the absence of SOCs and further find
a spontaneous TRS breaking d+id pairing by minimizing the
free energy. Di�erent from the traditional dxy + idx2�y2 (or
B1 + iB2), this d + id pairing (or B1 + iB1) preserves mir-
ror symmetry, which enforces the vanishing of the BdG Chern
number for Eq. (2). While the first-order topology has thus
been ruled out, we will show below that 2nd-order TSC can
emerge naturally based on symmetry analysis [74–80].

Because of the d-wave pairing r4z�(k)rT
4z = ��(C�1

4 k),
the BdG Hamiltonian preserves C4z = r4z � �r�

4z , together
with other symmetries C2x = i�z�0sz and Mx = i�z�zsx, we
are capable of diagnosing the topology of the superconduct-
ing spectrum once it is fully gapped. In Fig. 1, we present the
band structures of superconductors with fully gapped trivial
and higher-order topological superconductor phases. To diag-
nose spatial symmetry-protected topological states, we employ
the topological quantum chemistry theory [81, 82] to obtain el-
ementary band representations (EBRs) [83–85] that is consti-
tuted by irreducible representations (irreps) of little groups at
the maximal momenta in the first Brillouin Zone, as tabulated
in Table. I and inserted in Fig. 1. Referring to Table. I, we ob-
serve that the topological trivial system, as shown in Fig. 1(a),
is equivalent to a configuration involving s and pz orbitals at
the Wycko� position of 1a. In sharp contrast, the higher-order
topological phase in Fig. 1(b), is equivalent to that of two pz

orbitals at the 1a and 1b Wycko� positions. Notice that the
1b site is at the center of the square lattice and cannot be oc-
cupied by any orbitals in real space. Thus, the potential spa-
tial symmetry-protected topological states fall within the scope
of a superconducting analog of an obstructed atomic insulator
(OAI) [81, 82, 86, 87], whose BdG Wannier orbitals are dis-
placed from the lattice sites. The OAI can be e�ectively di-
agnosed by the real space invariant (RSI) [86] defined at the
1b site. As defined in the SM, we find the non-trivial second-
order topology corresponds to (�1, �2) = (�1, 1), whereas the
trivial phase is represented as (�1, �2) = (0, 0).

Superconducting phase diagram.— In Fig. 2(a), we present
the µ-�o superconducting phase diagram, which contains
nodal superconductor, second-order TSC, and trivial phases.
The gap closing and reopening of bulk dispersion at o�-high-
symmetry points (k /� {�, X, Y, M}) distinguishes a nodal
superconductor from a fully gapped one. For the fully gapped

X M
-10

-5

0

5

10

X M
-10

-5

0

5

10(a) (b)

FIG. 1. Bulk band structure and irreducible representations at high-
symmetry points of the TRS breaking d + id superconductor. (a)
Topologically trivial superconducting phase for �o = 0.6. (b) C4

protected second-order TSC for �o = 0.3. Using EBRs analysis of
double space group P4mm, we can obtain C4 index Jz at �-point and
M-point which is also z-direction angular momentum, where Jz =
± 3

2 of �6 or M6 and Jz = ± 1
2 of �7 or M7. Common parameters:

t = 1, �t = 0.2, t�� = 0.1, µ = 0.3, �I = 0.5, �R = 0.3, �i = 0.1.

TABLE I. The EBRs of space group P4mm with SOC. The first
row labels the Wycko� positions. The second row is the irreducible
representation of the double space group. The third row represents
the orbits that induce the irreducible representation. The fourth row
is the irreducible representations at high-symmetry points.

WPs 1a (000) 1b ( 1
2

1
20)

EBRs E1 � G(2) E2 � G(2) E1 � G(2) E2 � G(2)

Orbitals s pz s pz

� (000) �7(2) �6(2) �7(2) �6(2)

X ( 1
200) X5(2) X5(2) X5(2) X5(2)

M ( 1
2

1
20) M7(2) M6(2) M6(2) M7(2)

phase, we employ the RSI method discussed above to deter-
mine its bulk topology. First, the gap function changes sign
with respect to the reflection line along the [11] or [11̄] di-
rections, suggesting a mirror symmetry-protected nodal super-
conductor [88], which is highlighted in blue in Fig. 2 (a). For
example, it must be a nodal d-wave superconductor in the limit
�o = 0. More details can be found in the SM. Furthermore,
the fully gapped superconductor can be either topologically
trivial or nontrivial as we discussed above. When �o is large
enough, it is a fully gapped but trivial phase [the white region
in Fig. 2 (a)]. While the red region represents the second-order
TSC phase. On the other hand, the TRS-breaking nodal super-
conductor is also topological, whose bulk nodes are protected
by the mirror symmetry. Namely, the topological nodes are
stable along the mirror-invariant lines (i.e., movable but irre-
movable by local perturbations). To show that, we perform a
slab calculation with open boundary condition along the [11̄]
direction and find the Majorana flat band states connecting
two bulk nodes, as shown in Ek�

x
of Fig. 2 (b). At fixed k�

x,
the 1D Hamiltonian H(k�

y) exhibits particle-hole symmetry
(mirror�PHS), leading to the Z2 topological invariant.
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FIG. 2. (a) Superconducting phase diagram on the plane of �o and
µ. The white region represents the trivial phase, the blue region is the
nodal superconducting phase and the red region is the second-order
TSC phase. (b) The spectral function of the nodal superconductor
for open boundary condition along [11̄] when �o = 0.01. There are
two pairs of bulk nodes, and each pair of nodal points is connected by
Majorana flat-band edge states. All the nodes are gapped out when
�o �= 0, as shown in (c-d). The energy gap increases as �i is in-
creased. (c) The spectral function for open boundary condition along
[01] when �i = 0.05, and (d) is �i = 0.1. (e) The wave func-
tion profile of the four corner modes, where the inset shows the finite
system spectrum near zero energy and four MZMs (red dots). The
sample size is 120 � 120. (f) The density of states near zero energy
with the density distributions of bulk, edge, and corner. Common
parameters unless otherwise specified: t = 1, �t = 0.2, t�� = 0.1,
µ = 0.3, �I = 0.5, �R = 0.5, �o = 0.3, �i = 0.1.

We next explore the second-order TSC phase as µ ap-
proaches the band bottom or top. First, we employ Green’s
function method to compute the spectral function along the
[10] or [01] direction. The results, depicted in Figs. 2 (c) and
(d), exhibit fully gapped features. The gap opening for the
in-gap edge states increases as �i is raised, with the gap of
edge states approximately 0.06 in (c) and approximately 0.12
in (d). Then, we perform a full tight-binding simulation on
a square lattice to visualize the Majorana corner states, as de-
picted in Fig. 2 (e). Inset exhibits the energy spectra, revealing
four zero-energy states. We additionally analyze the local den-
sity of states (DOS) shown in Fig. 2 (f) to identify the MZMs.

As anticipated, both bulk and edge DOS exhibit a “U” shape,
while a sharp zero-bias peak is observed in the DOS measured
at the corners.

Starting from a nodal superconductor [see Figs. 3 (a) and
(b)], the transition to a second-order TSC or trivial super-
conductor can be elucidated by the elimination of the nodes.
Specifically, the removal of a single pair of nodes results in
a phase transition from a nodal superconductor to a second-
order TSC, as illustrated in Figs. 3 (c). The gap-closing at the
� point in Fig. 3 (d) further leads to a trivial superconductor.
However, the simultaneous annihilation of two pairs of nodes
corresponds to the transition directly from a nodal supercon-
ductor to a trivial superconductor, as illustrated in (f-j).

Helical TSC and second-order TSC.—In the spirit of
“boundary of boundary”, we aim to derive an edge theory to
illustrate the occurrence of corner states akin to Jackiw-Rebbi
modes [89]. We start with an interesting observation that when
�i = 0, the system is a first-order helical TSC [70]. The topo-
logical condition is �

�
�2

I � �2
o < µ <

�
�2

I � �2
o . We

solve Eq. (2) in the long-wavelength limit and focus on the edge
along the y-axis as an illustrative example. Hence, kx can be
replaced by �i�x while ky remains a good quantum number
in the BdG Hamiltonian, H(�i�x, ky) = H0 + H �, where
H0 = �i�R�x�z�0sy � µ�z�0s0 + �I�0�ysz � �o�y�zsy

needs to be solved analytically to obtain MZMs, and H � =
��2

x(t�z�0s0 + �i�x�0sy) � �Rky�0�0sx is treated as a per-
turbation in the zero modes basis.

To solve for the zero modes, we create a domain wall along
the y-axis between a topologically trivial superconductor (x <
0) and a topologically non-trivial superconductor (x > 0).
For simplicity, we set the chemical potential µ = 0, resulting
in a non-trivial (trivial) superconductor region with �o < �I
(�o > �I). Taking the ansatz �(x) = N e��x� for the zero
modes, where �R � �(x > 0) > 0 and �L � �(x < 0) < 0
since the bulk on both sides of the domain wall is gapped, and
� is the spinor part. After solving H0� = 0, we find only
� = (�o + �I)/�R satisfies the sign condition given the topo-
logical condition on both sides of the domain wall. The corre-
sponding spinor parts are �1 = (�i, 0, 0, �1, �i, 0, 0, 1)T/2
and �2 = (0, 1, �i, 0, 0, 1, i, 0)T/2. Therefore, we obtain
�1,2(x) = N e��(x)x�1,2 with the normalization constant
N =

�
2�R�L/(�L � �R). Then, projecting H � onto this

Majorana basis {�1, �2}, we find

Hedge(ky) = N 2�Rky�y � mme��x, (4)

where the e�ective mass is me� = �|N |2�i��o/(2�R).
Below, we use Pauli matrices �x,y,z for this Majorana basis.
Please notice that the d-wave pairing naturally induces a sign-
changing feature for ��o � �o(x < 0)��o(x > 0) between
two neighboring edges (�o � ��o under C4z). Due to the
sign change of the mass term at each corner, localized zero
modes emerge at the four corners of the system, establishing
the d+id second-order topological superconductor.

Topological defects in TSCs.— Detecting Majorana corner
modes experimentally may pose challenges, as the loss of
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FIG. 3. Bulk energy spectrum evolution under increasing �o from �o = 0 to 0.5 of �-M line, where k� = kx = ky . (a-e) Display the
bulk energy spectrum evolution when µ = 0.3. The nodal superconductor can transition to second-order SC when �o � 0.17 in (b), and the
critical point between second-order and trivial SC phase when �o � 0.4 in (d). (f-j) Exhibit the bulk energy spectrum evolution when µ = 4.
The nodal superconductor can transition to a trivial superconductor when �o � 0.38 in (i). Common parameters: t = 1, �t = 0.2, t�� = 0.1,
�I = 0.5, �R = 0.5, �i = 0.1.
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FIG. 4. Topological defect on a sample of square shape. (a) The
single side edge dislocation of Volterra cut-and-glue. The black or-
thogon displays a dislocation line. The orange and blue arrow lines
show the Burgers circuit and the Burgers vector b = (�1, 0). (b)
Phase diagram of the trivial phase and Z2 non-trivial phase. Di�er-
ent weak topological indices mark the red and blue color regions as
(0, 0) or (1, 1) for the first-order TSC. (c) The energy spectrum of the
TRS-protected first-order topological superconductor with �i = 0.
The orange dots are the fourfold dislocation MZMs. (d) The wave
function profile of the four dislocation modes. Common parameters:
t = 1, �t = 0.2, t�� = 0.1, µ = 7.7, �I = 0.5, �R = 0.5, �o = 0.3.

phase coherence near the sample boundary can obscure their
observation. However, a bulk-defect correspondence could po-
tentially address this issue, particularly if the bulk TSC ex-

hibits a non-zero weak index [90–94]. In Fig. 4 (a), we illus-
trate an edge dislocation on a 2D square lattice, characterized
by a Burger vector b = (�1, 0). This configuration induces an
e�ective �-flux, capable of trapping MZMs when

b · M� = 1 mod 2. (5)

Here, M� is defined as M� = �1G1 + �2G2, where Gi rep-
resents the reciprocal lattice vectors, and the vector (�1, �2)
denotes the weak topological indices. These indices can be
computed based on the positions of Wannier centers in our 2D
system. In the case where �o = 0, the model in Eq. (2) pre-
serves TRS and thus belongs to class DIII of the A-Z classifica-
tion, which can be characterized by the Z2 topological invari-
ant [95, 96]. The phase diagram in Fig. 4 (b) shows Z2 = 1 for
both blue and red regions, while only the helical TSC phase in
the blue region (µ � 8) carries a weak index (1, 1). Our system
exhibits C4z , leading to band inversions occurring simultane-
ously at (�, 0) and (0, �) points. Consequently, the nematicity
driven by orbital fluctuations breaks C4z , a phenomenon de-
tectable through the bulk-defect correspondence.

We then study the bulk-defect correspondence to reveal
the presence of dislocation MZMs. Performing a full tight-
binding model calculation with an edge dislocation, we present
the energy spectrum in Fig. 4 (c) and the wave function in
Fig. 4 (d). A periodic boundary condition for both x and y
directions has been assumed, thereby excluding the presence
of Majorana corner states. Thus, Fig. 4 (d) only exhibits con-
fined Majorana Kramers pairs at each dislocation core due to
the presence of TRS. As outlined in the SM, we utilize the
cut-and-glue procedure to derive the e�ective 1D Hamiltonian
for MKPs. Firstly, the edge dislocation bisects the square lat-
tice into two segments, as depicted in Fig. 4 (a). The low-
energy edge Hamiltonian for the left segment is expressed by
Eq. (4), employing the Majorana basis {�1, �2}. The mirror
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Mx symmetry leads to that for the right segment. In terms of
{�1, �2, Mx�2, Mx�1}, the dislocation Hamiltonian is

Hdis(ky) = �Rky�z�y + me��0�x, (6)

where Pauli matrices �x,y,z refer to the left and right segments.
The matrix representation of Mx, TRS and particle-hole sym-
metry become i�y�x, i�z�yK, and �z�zK, respectively. The
me� term breaks TRS because of the TRS-breaking d-wave
pairing �i. Next, we consider the e�ect of the “gluing” step
on Hdis, which induces the hybridization between the left and
right edges due to the Rashba SOC, and thus find m�

e�(y)�x�y .
Once Eq. (5) is satisfied, the mass m�

e�(y) changes sign around
the dislocation core [97–103].

1 10 20
-0.1

0

0.1

1 L
1

L
(a) (b)

dislocation modes

FIG. 5. (a) Energy spectrum of the square sample for TRS-breaking
second-order TSC. The green dots are the fourfold degenerate zero-
energy Majorana corner modes. The two pairs of orange dots are
dislocation modes with a finite gap. (b) The wave function profile of
the four Majorana corner modes and four dislocation modes. Com-
mon parameters: t = 1, �t = 0.2, t�� = 0.1, µ = 7.7, �I = 0.5,
�R = 0.5, �i = 0.1 and �o = 0.3.

When me� = 0 for a helical d-wave SC, Hdis =
�Rky�z�y + m�

e�(y)�x�y elucidates the emergence of dislo-
cation KMPs. After further introducing me� (d+id-wave), its
anti-commutation with the m�

e� term results in a small gap for
the dislocation KMP, as TRS is broken by �i �= 0 [see gap
in Fig. 5 (a)]. This is inherited from the anti-commutation re-
lations between bulk terms in Eq. (2), where the Rashba term
(�R) anti-commutes with the d-wave pairing (�i). Despite the
finite gap of KMPs, this observation indicates the bulk-defect
correspondence for the second-order d+id superconductor.

Conclusions.— We propose a theory for a C4z symmetry-
protected second-order topological superconducting phase
characterized by a d+id-wave pairing. It can manifest as either
a topological and fully gapped superconductor (an obstructed
atomic insulator with C4z) or a nodal superconductor (pro-
tected by mirror symmetry). For the OAI case, we also explore
the bulk-defect correspondence using a non-zero weak index.
This orbital-dependent pairing is unique to multi-band super-
conductors. Some candidate materials demonstrating d-wave
pairing and spontaneous breaking of time-reversal symmetry
include: Sr2RuO4 [104], LaPt3 [105], and SrPtAs [106].
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SYMMETRY ANALYSIS

For our model, we use the normal state Hamiltonian Eq. (1) of the two-orbital square lattice in the main text to describe a
metallic material with space group P4mm, which breaks inversion symmetry and twofold rotation symmetry along the x or y
directions by incorporating orbital-dependent hopping terms: the lattice nematic term e✏ (k) and the orbital-hybridization next-
nearest-neighbor hopping term ✏

00 (k). Furthermore, we add spin-orbit coupling terms, including the intrinsic term �I and the
Rashba term �R sin kxsy � �R sin kysx. The symmetries of the normal state include time-reversal symmetry T = i�0syK,
fourfold rotation r4z = i�ye

�i⇡sz/4, and mirror symmetries mx = i�zsx. Notice that under r4z , the normal state Hamiltonian
satisfies r4zHn(kx, ky)r

�1
4z = Hn(�ky, kx).

The d-wave B1g+iB1g superconducting pairing is allowed in magnetic materials. There could be a phase di�erence � be-
tween the two gap functions, and we choose the d+id pairing to be � (k) = [�i� (k)�0 +�o(do (k) · �)] isy , where � (k) =
i(�2 cos kx+2 cos ky), and the uniform orbital-dependent pairing is chosen as do (k) ·� = �z . This means two d-wave pairings
have the phase di�erence equal to ⇡/2, which breaks time-reversal symmetry (TRS). The full BdG Hamiltonian is given by

H =(4t� 2t cos kx � 2t cos ky � µ)⌧z�0s0 + (�2et cos kx + 2et cos ky)⌧z�zs0 + 4t00 sin kx sin ky⌧z�xs0

+ �R sin kx⌧z�0sy � �R sin ky⌧0�0sx + �I⌧0�ysz + (2�i cos kx � 2�i cos ky)⌧x�0sy ��o⌧y�zsy. (S1)

In Nambu basis, the symmetries of BdG Hamiltonian are particle-hole symmetry ⌅ = ⌧x�0s0K, fourfold rotation C4z = r4z �
�r

⇤
4z , and mirror symmetry Mx = i⌧z�zsx. The d-wave pairing break TRS ⇥ = ⌧0�0syK.
We look at the elementary band representations (EBRs) under the C4z rotation symmetry of our model. The eigenvalue

c
n

4z(Ki) of the C4z symmetry for the occupied states is given by c
n

4z(Ki)|un

Ki
i = C4z|un

Ki
i at the high-symmetry point Ki,

where n = 1, 2, 3, 4 represents the label of occupied bands. The eigenvalue c2z(Ki) is also given by c
n

2z(Ki)|un

Ki
i = C

2
4z|un

Ki
i.

According to Table S1, the higher-order topological phase and the trivial phase can be distinguished by the di�erent EBRs at the
high-symmetry points ( �, M and X). The irreps have shown the Wannier center localized at Wycko� position a of the trivial
phase and shifted to Wycko� position b of the second-order TSC phase.

TABLE S1. The EBRs of space group P4mm with SOC and without TRS. The first row and second row are the label for the Wycko� positions
and irreps forP4mm.The third row to fifth row show the little group representations at� andM -point which are defined by rotational symmetry
C4z , and the representations at X-point are defined by C2z .

WPs 1a (000) 1b ( 12
1
20)

EBRs E1 " G(2) E2 " G(2) E1 " G(2) E2 " G(2)

Orbitals s pz s pz

� (000) �7(2) �6(2) �7(2) �6(2)

X ( 1200) X5(2) X5(2) X5(2) X5(2)

M ( 12
1
20) M7(2) M6(2) M6(2) M7(2)

NODAL SUPERCONDUTOR PHASE

In the main text, we illustrate the higher-order phase transition from the d-wave nodal superconductor by varying �o and µ,
while keeping�i constant. In the nodal d-wave superconductor, four pairs of Weyl nodes emerge along two mirror high-symmetry
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FIG. S1. Nodal superconductor phase in the d+id superconductor system. (a) Spectrum of the open boundary along [11̄] direction of the d+id
nodal superconductor while t00 = 0.2 and �o = 0.3. (b) The k0

x-dependent polarization p of the nodal phase. The red and blue dots represent
di�erent values of polarization p. (c) Phase diagram of the nodal SC and the HOTSC with varying �o and t00. The blue and red regions indicate
the nodal SC phase and the HOTSC phase respectively. The white region denotes the trivial SC phase. Common parameters: t = 1, et = 0.2,
µ = 0.3, �I = 0.5, �R = 0.5, �i = 0.1.

lines from the �-point to the M -point. The nodal phase hosts Fermi arc edge states with open boundaries along the x or y axis
and there are four Weyl nodes and two flat band Fermi arcs link each pair of Weyl nodes with open boundaries along the [11̄]
direction, as shown in Fig. S1(a). In the 2D system, we can use bulk polarization to characterize the flat band edge states as
the momentum-dependent Chern number in the 3D Weyl nodal phase using the Wilson loop method. There are two quantized
plateaus of p correspond to two segments of flat band edge states in Fig. S1(b).

Notice, the contribution to bulk polarization from two unpaired Fermi arcs will be zero when the nodal phase indicator is
calculated in the one-dimensional e�ective Hamiltonian Hkx(ky) by treating ky as a parameter. Now, we rotate ⇡/4 of (kx, ky)
under the rectangular coordinate system to

�
k
0
x
, k

0
y

�
and reduce the e�ective Hamiltonian Hkx (ky) to Hk0

x

�
k
0
y

�
, where

k
0
x
=

1p
2
(kx + ky) , k

0
y
=

1p
2
(�kx + ky) . (S2)

Therefore, the bulk polarization along the di�erent directions i, j can be written as

p(kj) = � 1

2⇡

Z 2⇡

0
Tr[Ak]dki, (S3)

where the A↵�

k = �i hu↵

k | @k |u
�

ki is the non-Abelian Berry connection, and ↵, � label the occupied energy bands. Fig. S1(b)
display the bulk polarization along the k0

x
that is quantized as 1/2 between a pair of Weyl nodes and vanished at other k0

x
. The k0

x
-

dependent polarization p can characterize the nodal superconductor phase, and the plateau of quantized polarization corresponds
to the flat band edge states in Fig. S1(a).

Next, we discuss the e�ect of this d+id wave superconductor due to next-nearest neighbor hopping t
00. Consider the simplified

nodal phase while �o 6= 0, the system becomes a d-wave Dirac superconductor with �R = 0. We choose a pair of Dirac nodes
along the kx = ky = k0 line, the low-energy continuum nodal phase Hamiltonian H (kx, ky) around the �-point as

HNodal (k) =
�
2tk20 � µ

�
⌧z�0s0 +

�
4t00k20

�
⌧z�xs0 + �I⌧0�ysz ��o⌧y�zsy. (S4)

There are two four-fold degenerate nodes at k0 = ±
r
tµ+

q
4t002µ2 �

�
t2 � 4t002

� �
�o

2 � �
2
I
�
/

q
2
�
t2 � 4t002

�
along the

mirror line, if t00 < t

p
�o2��

2
I

2
p

�o2��
2
I +µ2

and �2
o > �

2
I .

If we further introduce the Rashba SOC �R, then there could be a HOTSC phase appearing in the phase diagram shown in
Figure S1(c).

EDGE THEROY

In this section, we discuss the edge theory of the other edges for the d+id-wave pairing. The edges along the y direction on the
left side, along the x direction on the bottom, the right side along the x-axis, and the top side along the y axis of the sample are
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called the I, II, III, and IV edges. To understand the e�ect of each edge by the d + id-wave pairing, we consider the simplified
case of the low-energy Hamiltonian as

H (k) = (tk2
x
+ tk

2
y
� µ)⌧z�0s0 + �Rkx⌧z�0sy � �Rky⌧0�0sx + �I⌧0�ysz + (�ik

2
x
��ik

2
y
)⌧x�0sy ��o⌧y�zsy. (S5)

For simplicity, we can set the chemical potential µ = 0. The e�ective Hamiltonian of edge I is given in Eq. (4) of the main text.
For the edge II, the Hamiltonian is decomposed as H(kx,�i@y) = H0 +H

0, where

H0 = �µ⌧z�0s0 + i�R@y⌧0�0sx + �I⌧0�ysz ��o⌧y�zsy.

H
0 = �t@

2
y
⌧z�0s0 + �Rkx⌧z�0sy +�i@

2
y
⌧x�0sy.

(S6)

To create the domain wall at y = 0, we can use the ansatz  (y) = N e
�⌘(y)y

⇠ for the zero modes, where ⌘U ⌘ ⌘(y > 0) > 0 and
⌘D ⌘ ⌘(y < 0) < 0 since the bulk on both sides of the domain wall is gapped, and ⇠ is the spinor part. The zero modes can be
found by solving the eigenvalue equation H0�(y) = 0 which ⌘ = ��o+�I

�R
for the non-trivial phase. Following two corresponding

zero modes, we have the solution

 1,2(y) = N e
�⌘(y)y{1,2, (S7)

with the normalization constant given by N =
q

2⌘U⌘D

⌘D�⌘U
. The two orthonormal solutions for the spinor part are as

{1 =
1

2
(1, 0, 0, 1, i, 0, 0, i)T

{2 =
1

2
(0,�1, 1, 0, 0, i,�i, 0)T

.

(S8)

In this basis, the matrix elements of the perturbation H
0 are

HII,↵�(kx) =

Z +1

0
dy 

⇤
1,2(y)H

0
 1,2(y). (S9)

The e�ective Hamiltonian is

HII(kx) = �|N |2�Rkx⇣y �me�⇣x, (S10)

where me� = �|N |2�i��o
2�R

is the e�ective mass, ⇣i are Pauli matrices in this basis.
Similarly, for the edge III, the Hamiltonian is decomposed as H(�i@x, ky) = H0 +H

0, where

H0 = �µ⌧z�0s0 � i�R@x⌧z�0sy + �I⌧0�ysz ��o⌧y�zsy.

H
0 = �t@

2
x
⌧z�0s0 � �Rky⌧0�0sx ��i@

2
x
⌧x�0sy.

(S11)

In the bulk, we can use the ansatz  (x) = N e
�(x)xe� for the zero modes, where �R ⌘ �(x > 0) < 0 and �L ⌘ �(x < 0) > 0

since the bulk on both sides of the domain wall is gapped, and e� is the spinor part. We also have the solution

 1,2(x) = N e
�(x)xe�1,2, (S12)

with the normalization constant given by N =
q

2�R�L
�L��R

. The two orthonormal solutions for the spinor part are as

e�1 =
1

2
(i, 0, 0,�1,�i, 0, 0,�1)T

e�2 =
1

2
(0, 1, i, 0, 0,�1, i, 0)T

.

(S13)

Then the e�ective Hamiltonian is

HIII(ky) = �|N |2�Rky⇣y +me�⇣x. (S14)

Similarly, for the edge IV, the e�ective Hamiltonian is

HIV(kx) = |N |2�Rkx⇣y �me�⇣x. (S15)
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For the d+ id-wave pairing, the e�ective Hamiltonian of the four edges are

HI(ky) = |N |2�Rky⇣y +me�⇣x,

HII(kx) = �|N |2�Rkx⇣y �me�⇣x,

HIII(ky) = �|N |2�Rky⇣y +me�⇣x,

HIV(kx) = |N |2�Rkx⇣y �me�⇣x.

(S16)

where me� = �|N |2�i��o
2�R

. The mass terms have opposite signs on arbitrary two neighboring edges, giving rise to zeros modes
a the corners. This explains the appearance of four Majorana corner modes.

MIRROR SYMMETRY OF TOPOLOGICAL DEFECT

The edge or screw dislocation can induce topological defect modes in 3D weak TIs or weak TSC materials. In our work, we
distinguish the strong and weak topological phase in the 2D case by Wannier center in momentum space, and show the existence
of dislocation Majorana zero modes claimed in the main text. For the dislocation area, which is e�ectively an 1D chain which, the
1D Jackiw-Rebbi domain wall is helpful to understand the localized Majorana zero mode. Before the Volterra glue, the Volterra
cut create two boundaries that are bridged by a line of atoms ending at two dislocation cores.

If the edge dislocation is along the y direction, the two boundaries respect mirror symmetry Mx. The e�ective Hamiltonian
on each side follows from previous discussion on edge theory. Considering both sides of the dislocation, the basis is eX =
(�1,�2, e�1, e�2) = (�1,�2,Mx�2,Mx�1). At the line defect, the perturbation part H 0

V
is

H
0
V
= �t@

2
x
⌧z�0s0 � �Rky⌧0�0sx ��i@

2
x
⌧x�0sy, (S17)

and the e�ective Hamiltonian is

HV (ky) = |N |2�Rky⇢z⇣y +me�⇢0⇣x, (S18)

where ⇢i are Pauli matrices in mirror symmetry subspace. The mass term opens a bulk gap. In the area of two boundaries
bridging by a line of atoms, the perturbation part H 0

B
is

H
0
B
= �t@

2
x
⌧z�0s0 + �R⌧z�0sy � �Rky⌧0�0sx ��i@

2
x
⌧x�0sy. (S19)

Here, �R⌧z�0sy term provides the hopping between two boundaries. The e�ective Hamiltonian is

HB,m(ky) = |N |2�Rky⇢z⇣y +me�⇢0⇣x +m
0
e�⇢y⇣y, (S20)

where m0
e� = |N |2�R. The two mass terms will compete with each other. We can project the e�ective Hamiltonian into a block-

diagonal form corresponding to di�erent directions of the Volterra cut-and-glue line linking two dislocation modes by using the
basis transformation

U =
1p
2

0

BB@

�1 0 1 0
0 �1 0 1
0 1 0 1
1 0 1 0

1

CCA . (S21)

On this basis, the e�ective Hamiltonian is given by

HB,m(ky) = H
+
B,m

(ky)�H
�
B,m

(ky), (S22)

where H±
B,m

(ky) are given by

H
±
B,m

(ky) = �Rky%y +me�%x ±m
0
e�%z. (S23)

Here, we haveme� = 0 andm0
e� 6= 0 if dx2�y2 -paring�i = 0. The e�ective massm0

e� will flips sign on the di�erent directions of
the Volterra cut-and-glue line and create a domain wall with localized Majorana zero modes at two dislocation cores. If me� 6= 0,
the sum of a mass term will gap out the Majorana dislocation modes. The dx2�y2 -paring bring an energy gap between two pairs
of dislocation modes shown in Fig. 4 of our main text.

146



5

- 0
-15.1489

-15.1484

-15.1479

FIG. S2. The Free-energy with SOC and d+ id-wave pairing that the phase di�erence � between s-wave and d-wave pairing.

FREE ENERGY

For the spontaneous TRS breaking with SOC, we take the d+ id-wave pairing as � (k) = [ei��i(�2 cos kx +2 cos ky)�0 +
d · �]isy . The free-energy is

F (�) =
X

n,kx,ky

E (k) , (S24)

where n = 1, 2, 3, 4 is the label of occupied bands and the � is the phase di�erence between the two gap functions. The free-
energy calculation shows the minimum energy at � = ±⇡/2 in Fig. S2.

MORE INFORMATION ON RPA APPROACH

Next, we discuss the possible application of the theory to Sr2RuO4. Due to the inherent multi-orbital nature of Sr2RuO4 [1–4],
we use a (dxz , dyz) two-orbital model [5] to illustrate the essential physics. The normal state Hamiltonian reads

Hn = ✏ (k)�0 + e✏ (k)�3 + ✏
00 (k)�1, (S25)

where, ✏k = �(t + et)(x+y) � µ; e✏k = �(t � et)(x�y); ✏00k = �4t00
xy

. Here t labels the nearest-neighbor hopping inte-
gral of the dxz(yz) orbital along the x(y) direction, et is that of the dxz(yz) orbital along the y(x) direction, and t

00 denotes
the hybridization of the two orbitals between next-nearest-neighboring sites. The band parameters used in our calculation are
(t,et, t00, µ) = (1, 0.1, 0.05, 1) [5]. Fig. S3(a) shows the Fermi surface in the Brillouin zone (BZ).

(a) (b)

FIG. S3. (a) Fermi surface in the Brillouin Zone. and (b) Distribution of �(0)(i! = 0) in the Brillouin Zone.
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We adopt the following extended Hubbard model Hamiltonian in our RPA calculations:

H = Hn +Hint

Hint = U

X

iµ

niµ"niµ# + V

X

iµ<⌫

niµni⌫

+ JH

X

i,µ<⌫

"
X

��0

c
†
iµ�c

†
i⌫�0ciµ�0ci⌫� +

⇣
c
†
iµ"c

†
iµ#ci⌫#ci⌫" + h.c.

⌘#
. (S26)

Here, Hn is the normal Hamiltonian. The U , V , and JH terms denote the intra-orbital, inter-orbital coulomb repulsion and
the Hund’s rule coupling as well as the pair hopping. The spacial rotation symmetry requires U = V + 2JH . The interaction
parameters used in our calculation are (U, JH , V ) = (1.2t, 0.2U, 0.6U).

According to the standard multi-orbital RPA approach [6–15], the following bare susceptibility is defined for the non-interacting
case, namely,

�
(0)pq
st

(k, ⌧) ⌘ 1

N

X

k1k2

⌦
T⌧ c

†
p
(k1, ⌧)cq(k1 + k, ⌧)

⇥c
†
s
(k2 + k, 0)ct(k2, 0)

↵
0
, (S27)

Here h· · · i0 denotes the thermal average for the noninteracting system, T⌧ denotes the time-ordered product, and p, q, s, t = 1, 2
are the orbital indices. Fourier transformed to the imaginary frequency space, the bare susceptibility can be expressed by the
following explicit formulism:

�
(0)pq
st

(k, i!n) =
1

N

X

k0↵�

⇠
↵

t
(k0)⇠↵⇤

p
(k0)⇠�

q
(k0 + k)

⇥ ⇠
�⇤
s
(k0 + k)

⌘F ("
�

k0+k � µc)� ⌘F ("↵k0 � µc)

i!n + "
↵

k0 � "
�

k0+k

, (S28)

where ↵,� = 1, 2 are band indices, "↵k and ⇠↵
l
(k) are the ↵-th eigenvalue and eigenvector of the Hn(k) matrix, respectively, and

⌘F is the Fermi-Dirac distribution function. The distribution of the largest eigenvalue of �(0)(q, i! = 0) is shown in Fig. S3(b).
When interactions are turned on, we define the following renormalized spin and charge susceptibilities,

�
(c)pq
st

(k, ⌧) ⌘ 1

2N

X

k1,k2,�1,�2

⌦
T⌧ c

†
p,�1

(k1, ⌧)cq,�1(k1 + k, ⌧)

c
†
s,�2

(k2 + k, 0)ct,�2(k2, 0)
↵
,

�
(s)pq
st

(k, ⌧) ⌘ 1

2N

X

k1,k2,�1,�2

⌦
T⌧ c

†
p,�1

(k1, ⌧)cq,�1(k1 + k, ⌧)

c
†
s,�2

(k2 + k, 0)ct,�2(k2, 0)
↵
�1�2. (S29)

In the RPA level, the renormalized spin/charge susceptibilities for the system are,

�
(s) (q, i⌫) =

h
I � �

(0) (q, i⌫)U (s)
i�1

�
(0) (q, i⌫) ,

�
(c) (q, i⌫) =

h
I + �

(0) (q, i⌫)U (c)
i�1

�
(0) (q, i⌫) , (S30)

where �(s,c) (q, i⌫n), �(0) (q, i⌫n) and U
(s,c) are 4 ⇥ 4 matrices. Labelling orbital {dxz, dyz} as {1, 2}, the nonzero elements

of the matrix U
(s,c)l1l2
l3l4

are listed as follows:

U
(s)11
11 = U

(s)22
22 = U

U
(s)11
22 = U

(s)22
11 = JH

U
(s)12
12 = U

(s)21
21 = JH

U
(s)12
21 = U

(s)21
12 = V (S31)
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(U)k

-k

k'

-k'

p

q

t

s
(U)

(U)

q

p t

s

k k'

-k -k'

k1 k2

k3k4

(U)

(U)

q

p k

-k
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t

(a) (b) (c)

FIG. S4. The three processes which contribute the renormalized e�ective vertex considered in the RPA, with (a) the bare interation vertex and
(b) (c) the two second order perturbation processes during which spin or charge fluctuations are exchanged between a cooper pair.

U
(c)11
11 = U

(c)22
22 = U

U
(c)11
22 = U

(c)22
11 = 2V � JH

U
(c)12
12 = U

(c)21
21 = JH

U
(c)12
21 = U

(c)21
12 = 2JH � V (S32)

Note that there is a critical interaction strength Uc which depends on the ratio V/U and dopping. When U > Uc, the denom-
inator matrix I � �

(0) (q, i⌫)U (s) in Eq. (S30) will have zero eigenvalues for some q and the renormalized spin susceptibility
diverges there, which invalidates the RPA treatment. This divergence of spin susceptibility for U > Uc implies magnetic order.
When U < Uc, the short-ranged spin or charge fluctuations would mediate Cooper pairing in the system.

Let’s consider a Cooper pair with momentum/orbital (k0
t,�k0

s), which could be scattered to (kp,�kq) by exchanging charge
or spin fluctuations. At the RPA level, The e�ective interaction induced by this process is as follow,

V
RPA

e� =
1

N

X

pqst,kk0

�pq

st
(k,k0)c†

p
(k)c†

q
(�k)cs(�k0)ct(k

0), (S33)

We consider the three processes in Fig. S4 which contribute to the e�ective vertex �pq

st
(k,k0), where (a) represents the bare

interaction vertex, (b) and (c) represent the two second order perturbation processes during which spin or charge fluctuations are
exchanged between a cooper pair. In the singlet channel, the e�ective vertex �pq

st
(k,k0) is given as follow,

�pq(s)
st

(k,k0) =

✓
U

(c) + 3U (s)

4

◆pt

qs

+

1

4

h
3U (s)

�
(s) (k � k0)U (s) � U

(c)
�
(c) (k � k0)U (c)

ipt
qs

+

1

4

h
3U (s)

�
(s) (k + k0)U (s) � U

(c)
�
(c) (k + k0)U (c)

ips
qt

, (S34)

while in the triplet channel, it is

�pq(t)
st

(k,k0) =

✓
U

(c) � U
(s)

4

◆pt

qs

�

1

4

h
U

(s)
�
(s) (k � k0)U (s) + U

(c)
�
(c) (k � k0)U (c)

ipt
qs

+

1

4

h
U

(s)
�
(s) (k + k0)U (s) + U

(c)
�
(c) (k + k0)U (c)

ips
qt

, (S35)
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(a) (b)

FIG. S5. The distribution of the relative gap function. (a) Gap function of �11(k)��22(k). (b) Gap function of �11(k) +�22(k).

The e�ective Hamiltonian in the RPA level is shown as follow,

He� =
X

k↵�

c
†
k↵�ck↵�"

↵

k +
1

N

X

kq

V
↵�(k, q)c†k↵"c

†
�k↵#c�q�#cq�", (S36)

where,

V
↵�(k, q) =

X

pqst,kq

�pq

st
(k, q)⇠↵,⇤

p
(k)⇠↵,⇤

q
(�k)⇠�

s
(�q)⇠�

t
(q). (S37)

The e�ective Mean-Field Hamiltonian is given as follow,

HMF =
X

k↵�

c
†
k↵�ck↵�"

↵

k +

2

4 1

N

X

kq↵�

V
↵�(k, q)c†k↵"c

†
�k↵# hc�q�#cq�"i+ h.c.

3

5 , (S38)

a self-consistent pairing gap equation can be derived,

�↵(k) ⌘
1

N

X

q��

V
↵�(k, q) hc�q�#cq�"i . (S39)

Which gives the linearised gap equation (LGE) when linearised near Tc:

�↵(k) = �
X

�q

V
↵�(k, q)⇥

tanh(�c

2

��"�q � µc

��)���"�q � µc

���
⇥��(q) (S40)

After projecting the gap function to orbital-basis, our calculations show that the leading pairing symmetry is singlet inter-
orbital B1g in ⌧z form, with the near-zero �12(k). The pairing gap function �11(k)��22(k) and �11(k)+�22(k) are shown
in Fig. S5(a) and (b) respectively.

REAL SPACE TOPOLOGICAL INVARIANT

In Fig.2(e) of the main text, we observe the presence of Majorana zero modes localized at each corner. To understand the
corner Majorana zero modes, we can define the local invariant at Wycko� position as the real space invariant (RSI) based on the
P4mm group. In the theory of obstructed atomic insulators (OAIs), topological trivial insulators can transition into a higher-
order topological phase when the Wannier charge center moves to an unoccpied position from the occpied position of lattice
unit-cell. The OAI hosts quantized fractional corner charge at each corner in 2D case.

Referring to Table S1, there are two Wcyko� positions: a = (0, 0) and b = ( 12 ,
1
2 ), and the RSIs as (�a, �b) that are defined

at two Wycko� positions according to the EBRs theory. The non-zero RSI index indicate the localization of the Wannier charge
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center the Wycko� position n, which represented by �n. In our lattice configuration, the position a is occupied by atoms, and the
position b is unoccupied. Consequently, the d+id superconductor can transition into a second-order topological phase when �b is
non-zero. Based on the space group G, referencing to the tools given in BANDREP (www.cryst.ehu.es/cryst/bandrep), the two
RSIs defined at b as

�1 = �m(E2@b) +m(E1@b), (S41)
�2 = m(E2@b) mod 2 . (S42)

For the second-order topological phase shown in Fig. 2(b) of the main text, the band representation of the occupied bands reads

BSOTI = E2@a� E2@b, (S43)

while that of the higher-order trivial phase is

BTrival = E1@a� E2@a. (S44)

Thus, we have the RSI at Wcyko� position b, i.e., (�1, �2) = (0, 0) and (�1, 1) for the higher-order trivial phase and non-trivial
phase, respectively. Therefore, the second-order TSC corresponds to a superconductor-OAI phase.
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