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Cognitive Aging is Not Created Equally: Differentiating Unique 
Cognitive Phenotypes in “Normal” Adults

Kaitlin B. Casaletto, Ph.D., Fanny M. Elahi, M.D., Ph.D., Adam M. Staffaroni, Ph.D., 
Samantha Walters, B.S., Wilfredo Rivera Contreras, B.S., Amy Wolf, B.S., Dena Dubal, M.D., 
Ph.D., Bruce Miller, M.D., Kristine Yaffe, M.D., and Joel H. Kramer, Psy.D.
Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, 
USA

Abstract

Age-related cognitive decline is a public health problem, but highly diverse and difficult to predict. 

We captured non-overlapping cognitive phenotypes in high-functioning adults and identified 

baseline factors differentiating trajectories. 314 functionally normal adults (M=69y) completed 2+ 

visits. Participants with sample-based longitudinal slopes in memory or processing speed <−1SD 

were classified as “declining” on that measure. 29 and 50 individuals fell <−1SD on processing 

speed or memory slopes, respectively; 2.5% met criteria for both, who were excluded. At baseline, 

speed decliners demonstrated greater age, inflammation, and cognitive complaints compared to 

speed stable adults; memory decliners were more likely to be male, and had lower depressive 

symptoms, gray matter volumes, and white matter hyperintensities (WMH) compared to memory 

stable adults. Baseline speed, TNFα, and cognitive complaints accurately classified 96.3% of 

future speed decliners; baseline memory, sex, precuneal volume, and WMH accurately classified 

88.5% of future memory decliners. There are discrete cognitive aging phenotypes reflecting non-
overlapping vulnerabilities in high-functioning adults. Early markers can predict cognition even 

within the “normal” spectrum and underscore therapeutic targets.
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1.1 Introduction

Cognitive aging is a highly heterogeneous clinical phenomenon with equally diverse 

underlying biology. The Einstein Aging study recently identified that up to nine unique 

“cognitive classes” best fit their data in a large cross-sectional cohort of non-demented older 

adults using a data-driven approach (latent class modeling)(Zammit et al., 2018). Similarly, 
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in typically aging adults followed for 7-years in the Geneva Variability Study, Mella and 

colleagues (2018) demonstrated that although an overall group-level decline was 

measurable, particularly in processing speed and executive functions, high intra-individual 

variability was the norm (Mella et al., 2018). In fact, 35–50% of the sample showed stability 

or improvement across a comprehensive battery for the near-decade study period. Although 

“cognitive aging” is commonly discussed as a singular omnibus entity, the concept of 

idiosyncratic cognitive aging trajectories is much more consistent with the highly diverse 

biology of the aging brain. Models of neurologic aging include a host of upstream and 

downstream pathways, including immune dysregulation and changes in blood-brain 

permeability, oxidative stress and mitochondrial dysfunction, and aberrant protein 

misfolding and accumulation (e.g., Aβ1–42, TDP43)(Erikson et al., 2016; Franceschi et al., 

2000; López-Otín et al., 2013; Morrison and Baxter, 2012; Rahimi and Kovacs, 2014), that 

may each drive a specific clinical phenomenology – the unique combination(s) of which are 

even more diverse (Boyle et al., 2018). In fact, multimodal brain imaging approaches 

suggest a dynamic, multifactorial aging process during which there may be both sequential 

sets of events, as well as simultaneous processes occurring across the lifespan that may even 

differ by individual(Fjell et al., 2016). For example, hippocampal-based networks better 

predict memory functioning in younger adults, while fronto-striatal networks better memory 

functioning in older adults; additionally while brain structure demonstrates a largely 

monotonic trend, functional connectivity appears to be nonlinear across ages. These data 

suggest that potentially unique brain networks subserve the same cognitive skill differently 

across age epochs. Appreciation and quantification of this variability inherent even within 

“normative” cognitive aging is an important addition to the aging nomenclature to parse out 

and potentially support the temporal sequence these different mechanisms.

Deep characterization of diverse presentations of brain aging will not only inform our 

understanding of the spectrum and pathophysiological development of age-related 

neurodegenerative processes, but also point to early potential preventative targets to support 

the aging brain. Age is the greatest risk factor for developing a neurodegenerative syndrome 

and more than a third of otherwise clinically normal adults exhibit clinicopathologically 

significant levels of pathology at autopsy (Negash et al., 2011). These findings blur the line 

of what is considered “normal” versus “pathological” in aging and encourage a framework 

of neurologic aging on a spectrum of neurodegeneration. Given this, identification of 

specific neurologic aging trajectories may be highly useful to identify the earliest 

“pathological” processes that are commonly present even within clinically normal adults that 

could be predictive of a specific aging phenotype. By 2030, the number of adults >65 years-

old is estimated to exceed that of children (Bureau, n.d.); there is a huge public health need 

to identify clinically relevant (and potentially modifiable) factors that are associated with 

sub-optimal aging. Even incremental preventative improvements in cognitive health will 

have massive downstream public health benefits (Barnes and Yaffe, 2011; Norton et al., 

2014). Measurable markers that can differentiate risk for specific less-than-optimal cognitive 

aging paths will lead to the most potent targets for individually-tailored brain health 

programs.

We aimed to leverage a highly characterized longitudinal cohort of high-functioning adults 

to: 1) identify non-overlapping cognitive aging phenotypes, and 2) characterize baseline 
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clinical and biological factors that differentiate individuals who go on to develop each 

phenotype.

2.1. Methods

2.2. Participants.

314 participants who completed at least two annual study visits as part of the University of 

California, San Francisco Memory and Aging Center healthy aging study were included. 

Participants represent a community-dwelling, convenience sample of the Bay Area collected 

between 2000–2017, largely recruited via newspaper advertisements, flyers, and community 

outreach events. All participants underwent comprehensive neurological and 

neuropsychological evaluations, including study partner interview, and met the following 

criteria at every study visit: 1) no diagnosed memory or neurological condition (e.g., 

epilepsy, stroke), and 2) no functional decline as operationalized as a Clinical Dementia 

Rating scale of 0 (via study partner interviews). The California Verbal Learning Test was 

administered since the inception of this longitudinal study and all included study participants 

had available data at two or more time points (n=314 with 1249 observations; M=4.6 total 

years in study); however, administration of the processing speed measures began in 2008 

and therefore a subset of individuals had two or more available time points on this measure 

(n=180 with 493 observations; M=3.9 total years in study)(see Table 1 for further participant 

characterization).

2.3 Neuropsychological Measures.

We selected episodic memory and processing speed as cognitive phenotypes of interest 

given their clinical relevance and to tap into relatively distinct cognitive domains to examine 

non-overlapping cognitive trajectories. Episodic memory was measured via the California 

Verbal Learning Test-second edition (CVLT-II), a widely validated and implemented 

measure of verbal episodic memory (Delis et al., 2000). Total long delay (20–30 minute) 

free recall raw scores were our primary memory variable of interest (range: 0–16). 

Processing speed was measured using a computerized battery of visual reaction-time based 

measures; measures were combined into a composite z-score. This battery has been 

previously described elsewhere (Casaletto et al., 2018) and validated as sensitive to 

neurologic aging (Kerchner et al., 2012).

2.4. Psychological Measures.

We measured depressive symptoms with the Geriatric Depression Scale (GDS), a self-

reported screener of depressive symptoms developed for older adults, and everyday 

cognitive complaints via the Everyday Cognition Self-Report Scale (ECog)(Farias et al., 

2008).

2.5. Laboratory markers of inflammation.

Baseline 12h fasting blood draws were analyzed for a panel of plasma-based cytokine 

markers of global immune activation – interleukin-6 (IL6) and tumor necrosis factor-alpha 

(TNFα) -- and chemokine markers more specific to monocyte/macrophage activation -- 

macrophage inflammatory protein 1-alpha (MIP1α; CCL3), macrophage inflammatory 
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protein 1-beta (MIP1β; CCL4), and macrophage derived chemokine (MDC). We chose IL6 

and TNFα given their known involvement in multiple pro-inflammatory pathways, disrupted 

signaling in aging, and consistently reported relationship with age-related cognition 

(Bettcher and Kramer, 2014; Perry, 2010; Tanaka et al., 2014). We additionally chose to 

include markers of monocyte/macrophage inflammation given that this is a particularly 

important pathway in age-related immunosenescence (Franceschi et al., 2000; Gomez et al., 

2005). All analyses were conducted via Meso Scale Diagnostics (Rockville, MD, USA) V-

PLEX kits following standard manufacturer guidelines.

2.6. Neuroimaging.

Participants completed 3T magnetic resonance imaging within 180 days of their baseline 

visit (n=288). Participants who received neuroimaging did not differ on age, education, 

baseline MMSE, memory or processing speed performances compared to those who did not. 

Notably, there were more males who completed neuroimaging (p=0.005), which we adjusted 

for in all imaging-related models.

Acquisition Parameters.—Participants completed a 3T Magnetom Vision TIM Siemens 

Trio system (Siemens, Iselin, NJ) magnetic resonance imaging (MRI) scan within 180 days 

of their neuropsychological evaluation. A T1-weighted MP-RAGE structural scan was 

acquired with an acquisition time=8 min 53 sec, sagittal orientation, a field of view of 160 × 

240 × 256 mm with an isotropic voxel resolution of 1 mm3, TR=2300 ms, TE=2.98 ms, 

TI=900 ms, flip angle=9°.

T1 Processing.—Before processing, all T1-weighted images were visually inspected for 

quality. Images with excessive motion or image artifact were excluded. Magnetic field bias 

was corrected using the N3 algorithm(Sled et al., 1998). Tissue segmentation was performed 

using the unified segmentation procedure in SPM12(Ashburner and Friston, 2005). Each 

participant’s T1-weighted image was warped to create a study-specific template using 

Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL)

(Ashburner, 2007); subsequently, the images were normalized and modulated in the study-

specific template space using non-linear and rigid-body registration. Images were smoothed 

using a 8mm Gaussian kernel with 8-mm full width half maximum. For registration with a 

brain parcellation atlas, linear and non-linear transformations between DARTEL’s space and 

ICBM space were applied(Mazziotta et al., 1995). Quantification of volumes in specific 

brain regions at each time point was accomplished by transforming a standard parcellation 

atlas into ICBM space and summing all modulated gray matter within each parcellated 

region(Desikan et al., 2006). Total Intracranial Volume (TIV) was estimated for each subject 

in MNI space.

Gray Matter Regions of Interest.—Gray matter regions of interest (ROIs) were selected 

a priori based on regions of known vulnerability in aging and Alzheimer’s-related processes. 

ROIs from the Desikan atlas were summed to examine the following bilateral regions: 1) 

dorsolateral prefrontal cortex (caudal and rostral middle frontal gyrus), 2) parietal lobes, 3) 

precuneus, 4) amygdala, 5) hippocampus, and 6) subcortical volumes (thalamus, putamen, 

and caudate).
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White Matter Hyperintensity Volumes.—White matter hyperintensities (WMH) were 

segmented using FLAIR and T1-weighted images (n=193). We visually inspected the raw 

scans for quality control. The WMH segmentation process is fully automated, is based on a 

regression algorithm, and uses a Hidden Markov Random Field with Expectation 

Maximization software(Avants et al., 2011; Dadar et al., 2017).

2.7. Statistical Analyses

Classification of Cognitive Phenotypes.—To classify individuals into longitudinal 

cognitive phenotypes, we conducted linear mixed-effects regressions allowing for random 

intercepts and slopes modeling the effect of years in study (time) on processing speed and 

episodic memory, separately. Based on these model parameters, individual-specific slopes 

for processing speed and memory were fitted for each participant. We then classified 

individuals with slopes falling in the bottom 16th percentile (corresponding with 1 SD on a 

normal curve) of the sample as “decliners” while those with slopes in the upper 84th 

percentile were classified as “stable” on the given measure (Heaton et al., 2004). It is 

important to note that although we derived a −1SD “declining” cut-point within our sample, 

these data represent an independently--functioning cohort of clinically normal older adults 

overall – i.e., these individuals are simply at the outlying ends of the normal curve (not 

“impaired”). We elected to classify individuals into groups (versus continuous modeling) to 

determine if it was possible to identify and differentiate specific “at-risk” subgroups. 

Particularly within a cohort of typically aging adults, the ability to detect potential 

differentiating factors sensitive to future decline is highly desirable (i.e., identify individual 

who may be at-risk for future decline who are currently in the asymptomatic stages). To this 

end, we selected a cut-off approach to allow for calculation of more clinically meaningful 

predictive parameters (e.g., classification rates).

Baseline Predictors.—Once the phenotypes were defined, we conducted ANCOVA 

models to examine the baseline (cross-sectional) group differences (declining vs. stable) on 

our variables of interest (demographics, psychological measures, plasma cytokines, and 

neuroimaging), separately for the memory and speed phenotypes. Finally, to determine the 

best set of baseline predictors, we entered those variables that significantly (p<0.05) 

differentiated between the declining vs. stable phenotypes into a forward, combined 

direction stepwise logistic regression model with a minimum AICc stopping rule.

3.1. Results

Overall, our sample demonstrated improving memory (b=0.04, p=0.06) and very subtle 

speed declines (b=−0.04, p=0.001) over time. In other words, as a group, our cohort 

improved at a rate of 0.04 words recalled on the CVLT per year, and declined 0.04 z-score 

points on the processing speed composite per year. At baseline, 29 adults (16.1%) met 

criteria for a declining speed slope across time (decliners b=−0.10, p=0.07; “processing 

speed phenotype”), while 151 demonstrated stable processing speed. On memory testing, at 

baseline, 50 individuals (15.9%) met criteria for a declining memory slope (decliners b=

−0.42, p<0.001; “memory phenotype”), while 264 showed stable memory performances 

across time. Notably, these data-derived cohorts were largely orthogonal; at baseline, only 
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n=7 (2.5%) individuals met criteria for both declining speed and memory phenotypes. We 

excluded these 7 individuals from subsequent analyses to more clearly determine the 

biological and clinical predictors of unique cognitive trajectories.

3.1.2. Processing Speed Phenotype.

At baseline, adults who developed the slowed processing speed phenotype demonstrated 

slower baseline processing speed performances (t(171)= −12.2, p<0.001) compared to speed 

stable adults. After adjusting for baseline processing speed, older age at baseline 

significantly differentiated between speed declining versus stable individuals (b=2.6, 

p=0.003). There were no significant group differences on sex (χ2=0.10, p=0.75) or 

education (t(171)=1.4, p=0.15).

Adjusting for age, sex, education, and baseline processing speed, at baseline, adults who 

developed a declining speed phenotype demonstrated higher concentrations of IL6 (b=0.29, 

p=0.003), TNFα (b=0.10, p=0.047), MIP1α (b=0.14, p=0.03), and MDC (b=0.12, 0.02), as 

well as endorsed more cognitive symptoms at baseline (ECog; b=0.05, p=0.04) compared to 

speed stable adults. The speed phenotypes did not differ on baseline MIP1β concentrations 

(b=0.06, p=0.30) or depressive symptoms (b=0.45, p=0.32). Notably, at baseline, adults with 

a declining processing speed phenotype also did not significantly differ from speed stable 

adults on cortical grey matter ROIs (ps>0.30), white matter hyperintensity volumes (b=0.05, 

p=0.82), or APOEε4 (χ2=0.17, p=0.68)(Figure 1).

We then entered age, baseline processing speed, IL-6, MIP1a, MDC, TNFα, and ECog 

scores as possible regressors into our final stepwise model. The best fitting model 

(BIC=26.6, AICc=17.5, X2(3)=74.74, p<0.001) included baseline processing speed, TNFα, 

and perceived cognitive symptoms (see Table 2). These three baseline factors explained 

89.3% (entropy R2) of the variance with a 96.3% accurate classification rate differentiating 

between those who went on to develop a declining versus stable processing speed 

phenotype.

3.1.3. Episodic Memory Phenotype.

At baseline, individuals who went on to evidence a declining memory phenotype 

demonstrated better memory performances at their first visit compared to those with stable 

memory performances (t(304)=−2.3, p=0.02). After adjusting for baseline memory 

performances, men were at a higher risk of developing a memory phenotype than women 

(OR=1.9, 95%CI=1.05, 3.62; χ2=4.5, p=0.03); the memory phenotypes did not differ on age 

(t(304)=−0.35, p=0.73) or education (t(304)=0.59, p=0.55).

Adjusting for age, sex, education, baseline memory, and total intracranial volumes, at 

baseline, adults with a declining memory phenotype demonstrated smaller bilateral parietal 

(b= −1.37, p=0.046), precuneus (b= −0.41, p=0.038), and amygdala (b= −0.03, p=0.03) gray 

matter volumes, as well as less white matter hyperintensity burden (b= −0.25, p=0.049) 

compared to memory stable adults. Smaller subcortical (b=−0.24, p=0.09) and hippocampal 

(b=−0.06, p=0.085) volumes approached but did not reach statistical significance, while 

dorsolateral prefrontal volumes did not differ between groups (b=−0.03, p=0.88). Individuals 

with a declining memory phenotype also demonstrated significantly fewer depressive 
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symptoms at baseline compared to those with stable memory phenotypes (GDS b=−0.54, 

p=0.03), but did not differ on cognitive complaints (ECog b=−0.01, p=0.66). The memory 

phenotypes also did not significantly differ on any plasma cytokine markers (b range=

−0.06–0.02; ps>0.55), or APOEε4 (b=−0.02, p=0.93)(Figure 1).

We entered baseline memory, sex, parietal, precuneus, amygdala, and white matter 

hyperintensity volumes, and GDS as possible regressors into our final stepwise model. The 

best model (BIC=85.0, AICc=73.3, X2(4)=24.7, p<0.001) included baseline memory, sex, 

precuneus and white matter hyperintensity volumes (Table 2). These baseline regressors 

accounted for 28.3% (entropy R2) of the variance with an 86.6% accurate classification rate 

identifying individuals at baseline who went on to develop a memory declining versus stable 

phenotype.

4.1. Discussion

In a cohort of comprehensively evaluated, high-functioning older adults, we found evidence 

for distinct cognitive aging trajectories with non-overlapping biological and clinical 

characteristics at baseline. Though the groups were data-derived, discrete processing speed 

or episodic memory phenotypes were identified such that <3% of the sample met criteria for 

both. Most interestingly, there was a clear pattern of baseline characteristics that 

distinguished individuals who went on to develop a speed or memory declining phenotype. 

Older age, endorsement of psychological distress, and immune activation differentiated 

between speed declining versus stable phenotypes; whereas male sex, less psychological 

distress, smaller gray matter volumes, and less white matter injury were associated with an 

increased likelihood of exhibiting a memory declining phenotype. Final multivariable 

models suggested high classification accuracy (>88%) was possible when including the best 

combination of baseline traits to predict subsequent cognitive aging phenotypes. Most 

notably, these groups were detectable and predictable, even within an otherwise clinically 

normal cohort of adults with particularly mild levels of decline (memory: −0.4 words/year; 

processing speed: −0.1 z-score points/year). The high accuracy with which we were able to 

predict subsequent phenotypes even within the normal spectrum also underscores the 

important potential of these early markers as possible risk stratification tools and/or 

therapeutic targets for dementia prevention.

Though tempting to consider these declining phenotypes as “preclinical”, it is important to 

keep in mind that these individuals were otherwise functioning independently in the 

community, indistinguishable from their “stable” peers at their annual study evaluation, and 

that our cut-points (and nomenclature of “declining”) were artificially imposed on the data. 

Although demarcation of such groups is a useful research tool to better understand these 

processes, including classification metrics for at-risk groups and future operationalization of 

clinically meaningful parameters, neurologic aging is likely a more continuous phenomenon. 

Importantly, our data suggest that detectable clinical changes (e.g., cognitive performances) 

appear to reflect a measurable pathological correlate, even among individuals within the 

“normative” spectrum. Of course, it is important to appreciate that some pathologies are 

simply more common in aging and many are reversible in nature (not progressive or 

degenerative like AD). However, particularly in the clinical context of typical aging, we 
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argue that measureable clinical decline is a real phenomenon with a pathological (though not 

necessarily progressive) CNS correlate. Our ability to detect and predict these declining 

phenotypes within the normative spectrum sheds light into the dynamic nature of cognitive 

aging and, given their unique characteristics, provides insight into points for at-risk 

monitoring and primary prevention to support healthful brain aging.

Delving more deeply into those who developed a slower processing speed trajectory, we 

observed an age, psychological, and immune phenotype at baseline. It is difficult to 

determine which of these processes are more upstream (causative) versus downstream of 

each other, though it is notable that they were each related to further processing speed 

declines at follow-up. Slowed processing is one of the most common symptoms of 

neurologic aging, and some groups argue that it is the hallmark of aging underlying all other 

cognitive changes (Salthouse, 1996, 2000); this is consistent with our finding that 

individuals who showed the steepest speed declines were in fact the oldest. The 

mechanism(s) driving this effect are less clear. One possibility may be related to the immune 

system. We found markers of both higher global and monocyte/macrophage inflammation in 

the processing speed decliners. Loss of function of the immune system is a consistently 

reported phenomenon in aging. Though a highly pleiotropic and bidirectional process, in 

aging, the cumulative effects of loss of immune naivety, prolonged instigation of active/

reactive microglia and astrocytes, and ensuing states of chronic inflammation are 

collectively coined “immunosenescence” (Franceschi et al., 2000; Gomez et al., 2005). Such 

dysregulation of the immune system has been linked to slowed processing speed both in 

aging and primary autoimmune conditions (Eckert, 2011; Heringa et al., 2014; Hughes et al., 

2011; Shucard et al., 2007), and our finding that it may be both detectable and predictive of 

faster declines in processing speed supports a potential upstream role of the immune system 

in cognitive aging. Commensurate with these findings, a recent study demonstrated that 

higher concentrations of a systemic inflammatory marker (C-reactive protein) in middle-to-

late age was significantly associated with cerebral white matter injury 14-years later (Walker 

et al., 2018). These converging findings support the predictive validity of peripherally-based 

cytokine markers and the immune system as an important target to promote future brain 

health states. Individuals who went on to develop a processing speed declining phenotype 

additionally endorsed more cognitive complaints at baseline, which is in direct contrast to 

the memory declining phenotype who demonstrated less baseline psychological distress 

(fewer depressive symptoms). The processing speed declining individuals appear to 

represent a distinct group who may be demonstrating a heightened psychological state, 

perhaps reflecting awareness of these incipient cognitive changes and/or reflecting a 

common vulnerable pathway. Regarding the latter, frontostriatal network dysfunction 

commonly results in both processing speed impairment and are affected in psychiatric 

disease (Marsh et al., 2009; Turken et al., 2008; Walsh et al., 2017). This same pattern of 

both elevated inflammatory and psychological activation in the processing speed group is 

commensurate with these studies and raises the question of the role of the immune system as 

a mediator of individuals’ psychological experiences. Indeed, recent works are underscoring 

the important role of immune functioning in psychiatric health; for example, Kiraly and 

colleagues (Kiraly et al., 2017) demonstrated heightened peripheral inflammation in adults 

with treatment refractory depression and Hellmuth et al. (Hellmuth et al., 2017) showed that 
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markers of cytokine activation were associated with mood symptomology in acute HIV 

infection (immune deprived state). Taken together, these data support that processing speed, 

immune activation, and psychological symptoms may represent a constellation of factors 

that interplay to result in one possible unique neurologic aging phenotype.

In contrast, individuals who went on to develop a declining episodic memory trajectory 

tended to be male and demonstrated a cortical vulnerability phenomenology. Converging 

lines of research support sex differences in brain aging (Dubal and Rogine, 2017; Nebel et 

al., 2018). For instance, typically aging men consistently demonstrate steeper declines in 

both brain volume and cognition compared to women over time, and episodic memory is 

specifically the most consistently reported domain to demonstrate sex effects with men 

performing more poorly than females across ages (Casaletto et al., 2015; Herlitz and 

Rehnman, 2008; Josefsson et al., 2012; Kramer et al., 1997). Indeed, our findings are 

remarkably consistent with a recent cross-sectional study conducted in a large cohort of 

young-to-older adults demonstrating that males had significantly more severe memory and 

hippocampal volume declines across ages compared to females (Jack et al., 2015). Though 

the pathways are not fully delineated, sex chromosomes appear to play an important and 

possibly mechanistic role in animal models. Dubal and colleagues (2012) demonstrated that 

in amyloid precursor protein transgenic mice engineered to have either male (testes) or 

female (ovaries) sex organs (regardless of sex chromosome), genetically male mice died 

faster than female mice regardless of their sex organs. Identification of sex-related resilience 

and/or risk pathways that may be driving these differences is an exciting area of future work 

with high potential to reveal novel aspects of the aging process (Dubal et al., 2012). 

Additionally, independent of sex, our finding that individuals who developed steeper 

memory declines had smaller gray matter volumes in both dorsal-posterior cortical and 

subcortical regions and less white matter injury raises the question of if we are illustrating 

risk of premorbid developmental differences and/or capturing an atrophying network in a 

vulnerable system. Previous works support this concept that reductions in cortical thickness 

are a steady, measurable phenomenon in adulthood across all regions that appears to be 

genetically-linked to changes in developmental regions; in other words, the developmental 

trajectories of early regions appear to predict future regions of vulnerability in aging(Fjell et 

al., 2015). Interestingly, while some studies of typical aging indicate that cortical temporal 

regions are particularly vulnerable in amyloid positive individuals (indicative of an emerging 

AD processes)(Oh et al., 2014), other studies suggest that fronto-temporal atrophy is present 

even in adults with low probability of AD(Fjell et al., 2013). We are not able to disentangle 

the possible contribution of prodromal AD processes, but rather continue to support the 

well-established concept that episodic memory is tightly linked with and particularly 

sensitive to cortical integrity more broadly (Fletcher et al., 2018; Leong et al., 2017).

Our study has several limitations. These data represent a largely homogeneous convenience 

sample of White, well-educated, Bay Area adults who may not be reflective of the larger 

aging population. Though some of our results are consistent with findings thus far in more 

diverse samples (e.g.,.(Fletcher et al., 2018);(Leong et al., 2017)), more work is clearly 

needed to support the generalizability of these findings in cohorts who may potentially carry 

other brain health risk factors (e.g., genetic and metabolic differences, etc.). There were also 

more males in the subset of individuals who received neuroimaging, which may limit the 
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generalizability of the imaging models. However, we adjusted to sex in all imaging models 

regardless to help mitigate this limitation. Interestingly, although it did not reach statistical 

significance, episodic memory performances increased as a whole group in our cohort of 

typically aging adults. Although this could represent psychometric noise and unwanted 

“practice effects”, there is growing evidence that episodic memory decline with age may not 

be a “typical” aging phenomenon. For instance, in a recent study, Harrington et al. (2018)

(Harrington et al., 2018) selected a cohort of older adults who were clinically normal at 

baseline and followed them longitudinally. Initially, in this study, there was a significant, 

negative association between age and memory; however, once the authors removed all 

participants who subsequently developed MCI or were AB+ PET, there was no longer an 

association between age and memory. Together, these data may suggest that declines in 

memory performances over time may not be an “expected” phenomenon. It is also important 

to note that our participants who eventually went on to decline in memory performances 

demonstrated better performances initially than those who remained stable. Though this 

finding could indicate regression to the mean, this seemed less likely given the consistent 

pattern of baseline risk factors that significantly differentiated these individuals (e.g., smaller 

cortical volumes). Future work is clearly needed to replicate our models, including deeply 

characterizing the identified cohorts and risk factors.

Our data support that “typical” cognitive aging includes discrete and diverse phenotypes 

reflecting equally disparate underlying vulnerabilities. We argue that the spectrum of 

neurologic aging to degeneration are overlapping and appreciation of this broadened 

framework may encourage new ways of thinking about how we approach age-related brain 

diseases, including identification of resilience and risk factors, and intervention points to 

promote brain health for our aging population.
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Highlights

• Are there unique, predictable cognitive trajectories in typical aging?

• We identified a declining memory or processing speed phenotype with <3% 

overlap

• Unique baseline predictors differentiated speed or memory decliners with 

>88% accuracy

• “Normal” cognitive aging is not a singular entity and may be a misnomer

• Early markers can predict “normal” aging phenotypes and highlight therapy 

targets

Casaletto et al. Page 14

Neurobiol Aging. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Baseline characteristics uniquely discriminated older adults who developed a declining 

processing speed or episodic memory phenotype.

Note. Bars reflect decliners minus stable individuals such that higher effect sizes indicate 

that decliners have more of the trait; Bolded bars = p<0.05; All values reflect full model 

adjustments described in text.
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Table 1.

Clinical and demographic characteristics of study participants at baseline (n=314); median (IQR) reported 

unless otherwise specified.

Visits

 Number of visits (mean) 4, range: 2–13

 Total years in study (mean) 4.6 years, range: 1–16.5 years

Age, y (mean, SD) 69.3 (7.5), range: 47, 99

Sex, F 55.1% (173)

Education, y (mean, SD) 17.5 (2.0), range: 11, 20

MMSE 30 (29, 30)

APOEε4 (%, n) 22.5% (62)

CVLT LDFR (raw score) 12 (10, 14)

Processing speed composite (z-score) 2.2 (1.3)

Geriatric Depression Scale 2 (0, 4), range: 0, 15

Everyday Cognition Scale 1.12 (1.1, 1.4)

Cytokine markers (pg/mL)

 IL-6 0.60 (0.47, 0.91)

 TNFα 2.3 (2.0, 3.0)

 MDC 876.0 (712.1, 1090.3)

 MIP1α 13.9 (10.5, 17.8)

 MIP1β 55.7 (43.5, 69.7)

MRI Volumes (mm3)

 Total grey matter (L3) 0.61 (0.06)

 Amygdala 1.7 (0.19)

 Hippocampus 5.3 (0.53)

 Precuneus 24.4 (2.9)

 Parietal 89.4 (10.3)

 DLPFC 12.0 (1.4)

 Subcortical 15285.4 (1563.6)

White matter hyperintensities (mm3) 2185.7 (1001.5, 4748.5)

Note. MMSE = Mini-Mental State Exam; CVLT LDFR = California Verbal Learning Test, Long Delay Free Recall; IL-6 = interleukin 6; TNF = 
tumor necrosis factor alpha; MDC = macrophage derived chemokine; MIP = macrophage inflammatory protein; MRI = magnetic resonance 
imaging.
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Table 2.

Stepwise regression models identifying the best combination of baseline factors that differentiates between 

typically aging adults who go on to develop a declining processing speed or episodic memory phenotype.

Entropy R2 Misclassification Rate AUC Effect 
Likelihood 
Ratio (X2)

beta estimate Bootstrap 95% CI* p-value

Processing Speed Phenotype (Decline vs. Stable)

Model Fit (n=85) 0.75 0.047 0.996 74.7 <0.001

Baseline Regressors

Processing Speed 54.2 4.3 2.46, 8.58 <0.001

TNFα (log) 10.07 4.0 0.75, 7.28 0.002

ECog 6.60 8.6 −.91, 22.87 0.01

Episodic Memory Phenotype (Decline vs. Stable)

Model Fit (n=90) 0.28 0.14 0.84 24.7 <0.001

Baseline Regressors

CVLT LDFR 13.6 0.50 0.19, 0.84 0.003

Sex (M=1; F=2) 6.1 −2.0 −0.17, −1.81 0.02

Precuneus volume 10.5 −0.47 −0.91, −0.05 0.005

WMH vol (log) 2.5 −0.55 −1.44, 0.16 0.11

Note.

*
Bootstrapped using 1000 samples.

TNFα = tumor necrosis factor-alpha; ECog = Everyday Cognition Scale; CVLT LDFR = California Verbal Learning Test, Long Delay Free Recall 
(episodic memory); WMH = white matter hypterintensity.
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