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Part of the substantial unexplained familial aggregation of breast cancer may be due to interactions between
common variants, but few studies have had adequate statistical power to detect interactions of realistic magni-
tude. We aimed to assess all two-way interactions in breast cancer susceptibility between 70 917 single nucleo-
tide polymorphisms (SNPs) selected primarily based on prior evidence of a marginal effect. Thirty-eight
international studies contributed data for 46 450 breast cancer cases and 42 461 controls of European origin
as part of a multi-consortium project (COGS). First, SNPs were preselected based on evidence (P < 0.01) of a
per-allele main effect, and all two-way combinations of those were evaluated by a per-allele (1 d.f.) test for inter-
action using logistic regression. Second, all 2.5 billion possible two-SNP combinations were evaluated using
Boolean operation-based screening and testing, and SNP pairs with the strongest evidence of interaction
(P < 1024) were selected for more careful assessment by logistic regression. Under the first approach, 3277
SNPs were preselected, but an evaluation of all possible two-SNP combinations (1 d.f.) identified no interactions
at P < 1028. Results from the second analytic approach were consistent with those from the first (P > 10210). In
summary, we observed little evidence of two-way SNP interactions in breast cancer susceptibility, despite the
large number of SNPs with potential marginal effects considered and the very large sample size. This finding
may have important implications for risk prediction, simplifying the modelling required. Furthercomprehensive,
large-scale genome-wide interaction studies may identify novel interacting loci if the inherent logistic and com-
putational challenges can be overcome.
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INTRODUCTION

We recently identified 47 novel breast cancer susceptibility loci
in a multi-centre case–control study of single nucleotide poly-
morphisms (SNPs) with prior evidence of association from
a combined analysis of genome-wide association studies
(GWAS) (1–3), raising the total number of susceptibility loci
for breast cancer to .70 (4–20). Despite this and other successful
efforts to identify breast cancer susceptibility variants by as-
sociation, linkage and sequencing studies, a large portion of the
observed familial aggregation of the disease remains unexplained
(3,21–25). Part of this unexplained heritability may be due to var-
iants that modify breast cancer risk through interaction effects
(26), where (and throughout this paper) an interaction is defined
in the statistical sense that the relative risks for the combined gen-
otypes differ from those predicted by multiplying the marginal
relative risks for each SNP. Few studies have evaluated genetic
interactions with sufficient statistical power to reach meaningful
conclusions and no SNP–SNP interactions in association with
breast cancer risk have been convincingly replicated.

We aimed to assess, agnostically, two-SNP interactions for as-
sociation with breast cancer risk between 70 917 common SNPs
with potential marginal effects, which were selected for geno-
typing based primarily on a combined analysis of nine GWAS.
Interactions were assessed using cases and controls of white
European origin from the Breast Cancer Association Consor-
tium (BCAC).

RESULTS

We first preselected 3277, 2788 and 1342 SNPs for the assessment
of interactions in regard to risk for overall, oestrogen receptor
(ER)-positive and ER-negative disease, respectively, based on
statistical evidence of a marginal per-allele effect (P , 0.01).
An evaluation of all two-SNP combinations (1 degree-of-
freedom, d.f.) revealed no clear evidence of interaction in any of
the three analyses (Fig. 1). For risk of breast cancer overall,
of the 5.4 million interactions considered, 13 had a P-value of
,1026 (compared with 5.4 predicted), but none had a P-value
of ,1028. The 13 interactions at P , 1026 represented eight po-
tential interaction signals after accounting for SNPs in high
linkage disequilibrium (LD) (r2 . 0.85, Table 1), and three of
these involved the same SNP (rs17117532) along with one of
three others in modest LD (0.58 ≤ r2 ≤ 0.77). The lowest
P-value was 3.3 × 1028, which corresponded to a Bonferroni-
corrected value of 0.16 considering all interactions evaluated.
The corrected P-value was 0.058 based on the number of possible
interactions between the estimated 1898 effective independent
loci represented by the total 3277. In all 13 instances, the inter-
action effect was in the opposite direction to the main effects
for the two SNPs involved, with very little LD between the two
potentially interacting SNPs (r2 ≤ 0.073).

For risk of ER-positive breast cancer, the strongest evidence of
interaction was observed for rs7603983 and rs10490346 (P ¼
2.6 × 10210). These two SNPs are 45 kb apart and in modest
LD (r2 ¼ 0.65). A re-evaluation of the cluster plot revealed
poor cluster separation for rs7603983 and it was noted that data
from one study in particular (Oulu Breast Cancer Study,
OBCS) were overrepresented among borderline genotype deter-
minations. When the 407 cases and 414 controls from the OBCS

(1.1% of the sample) were excluded, there was no evidence of
interaction (P ¼ 0.58), suggesting that the original result was
an artefact of the poor clustering. For none of the other 3.9
million SNP pairs considered for ER-positive disease risk was
evidence of interaction observed after correction for multiple
testing (VeffLi ¼ 1647; P

∗ ≥ 0.64) and only one pair had an un-
corrected P-value of ,1026 (Table 1). Using this first approach,
no evidence of two-SNP interactions was observed in regard to
the risk of ER-negative breast cancer (VeffLi ¼ 949; P

∗ ≥ 0.91).

Figure 1. Q–Q plots from the first set of analyses based on the x2 statistics from
the 1 d.f. LRT for (A) overall breast cancer, (B) oestrogen receptor (ER)-positive
breast cancer and (C) ER-negative breast cancer.
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We evaluated the statistical power of our first approach to
detect interactions between the preselected SNPs at a nominal
significance level of 1028, in the absence of main effects
(Table 2). We estimated that for overall breast cancer, we had
.90% power to detect a per-allele interaction odds ratio
(ORint) as low as 1.16 between SNPs with minor allele frequency
(MAF) .0.20. The corresponding minimum detectable ORint

were 1.29 and 1.58 for SNPs with a MAF as low as 0.10 and
0.05, respectively. For pairs of SNPs with a equal MAF of
0.20, 0.10 and 0.05, an ORint of 1.16, 1.29 and 1.58, respectively,
in the absence of main effects gives rise to a marginal OR of 1.08,
1.06 and 1.07, respectively, when the interactions are not
accounted for. The corresponding statistical power estimates

for the detection of these marginal OR in single-SNP analysis
at P , 0.01 (i.e. to preselect SNPs for inclusion in the assessment
of interactions) were 99, 88 and 72%. The power was similar for
ER-positive disease, particularly for the more common SNPs
(MAF ≥ 0.10). The power was lower for ER-negative disease,
although for SNPs with MAF .0.20, the power was .90%
for ORint as low as 1.30.

As an alternative approach,we exhaustively investigated all 2.5
billion possible two-SNP interactions using Boolean operation-
based screening and testing (BOOST) and identified 278 387,
278 240 and 275 214 SNP pairs potentially associated (P ,
1024) with risk of overall, ER-positive and ER-negative
disease, respectively. These interactions were then evaluated

Table 1. SNP pairs with per-allele P-values for interaction ,1026

Position MAF (r2) Single-SNP analysisa OR (95% CI),
P-value

Interaction analysisb OR (95% CI),
P-value

Overall breast cancer
rs10822036 Chr10: 64044366 0.18 1.04 (1.01–1.06); 5.2 × 1023 0.88 (0.82–0.94)
rs1379805 Chr18: 18748550 0.36 1.04 (1.02–1.06); 1.4 × 1024 0.92 (0.87–0.97)
Interaction (,0.01) 1.10 (1.06–1.14); 7.7 × 1027

Overall breast cancer
rs132274 Chr22: 27855126 0.35 1.03 (1.01–1.05); 9.4 × 1023 1.19 (1.12–1.26)
rs17478824 Chr5: 87821380 0.09 1.04 (1.01–1.08); 1.1 × 1022 1.28 (1.18–1.41)
Interaction (,0.01) 0.88 (0.84–0.93); 6.6 × 1027

Overall breast cancer
rs1573998 Chr5: 56312250 0.20 1.06 (1.03–1.08); 2.6 × 1026 0.87 (0.81–0.93)
rs16886496c Chr5: 56253286 0.09 1.13 (1.09–1.17); 3.7 × 10213 0.88 (0.80–0.96)
Interaction (0.073) 1.15 (1.09–1.21); 7.8 × 1028

Overall breast cancer
rs17117532 Chr14: 82392717 0.10 1.05 (1.01–1.08); 5.3 × 1023 0.84 (0.77–0.92)
rs1936396d Chr10: 44868074 0.23 1.03 (1.01–1.06); 4.3 × 1023 0.87 (0.81–0.93)
Interaction (,0.01) 1.16 (1.10–1.23); 5.4 × 1028

Overall breast cancer
rs17117532 Chr14: 82392717 0.10 1.05 (1.01–1.08); 5.3 × 1023 0.84 (0.77–0.92)
rs2018728e Chr10: 44837353 0.34 1.03 (1.01–1.05); 5.6 × 1023 0.88 (0.83–0.94)
Interaction (,0.01) 1.14 (1.09–1.20); 9.2 × 1028

Overall breast cancer
rs17117532 Chr14: 82392717 0.10 1.05 (1.01–1.08); 5.3 × 1023 0.84 (0.77–0.91)
rs7905526f Chr10: 44837353 0.27 1.03 (1.01–1.06); 2.1 × 1024 0.87 (0.82–0.93)
Interaction (,0.01) 1.15 (1.10–1.21); 3.3 × 1028

Overall breast cancer
rs17355209 Chr4: 84672332 0.50 1.04 (1.02–1.06); 3.0 × 1025 1.19 (1.13–1.26)
rs4980025 Chr10: 80510787 0.11 0.94 (0.92–0.97); 3.0 × 1024 1.17 (1.07–1.29)
Interaction (,0.01) 0.90 (0.86–0.94); 8.6 × 1027

Overall breast cancer
rs7714708 Chr5: 58330771 0.36 1.03 (1.01–1.05); 4.1 × 1023 1.17 (1.11–1.23)
rs836808 Chr5: 80010326 0.26 0.97 (0.95–0.99); 7.5 × 1023 1.12 (1.06–1.19)
Interaction (,0.01) 0.92 (0.89–0.95); 4.0 × 1027

ER-positive disease
rs11604821 Chr11: 69061318 0.33 1.04 (1.02–1.07); 2.8 × 1024 1.22 (1.14–1.30)
rs11600497 Chr11: 68882499 0.14 0.95 (0.92–0.98); 3.0 × 1023 1.17 (1.07–1.27)
Interaction (,0.01) 0.88 (0.84–0.93); 7.5 × 1027

MAF, minor allele frequency; r, correlation coefficient; OR, odds ratio per copy of the minor allele(s); CI, confidence interval.
aThe single-SNP analysis modelled main effects, per copy of the minor allele, for each SNP separately (it was on this basis that SNPs were preselected for inclusion in
the interaction analysis under the first analytical approach).
bThe interaction analysis included main effects for each of the two SNPs plus an interaction effect, in all cases per copy of each minor allele.
cSNP in LD with two SNPs, rs12655019 (r2 ¼ 0.94) and rs16886525 (r2 ¼ 0.99), for which P ¼ 2.1 × 1027 and 8.8 × 1028, respectively, for interaction with
rs1573998. r2 was 0.58 between rs1936396 and rs7905526, 0.77 between rs1936396 and rs7905526 and 0.74 between rs2018728 and rs7905526.
dSNP in LD with another SNP, rs11471 (r2 ¼ 0.94), for which P ¼ 3.3 × 1027 for interaction with rs17117532. r2 was 0.58 between rs1936396 and rs7905526,
0.77 between rs1936396 and rs7905526 and 0.74 between rs2018728 and rs7905526.
eSNP in LD with another SNP, rs2018728 (r2 ¼ 0.86), for which P ¼ 9.0 × 1027 for interaction with rs17117532. r2 was 0.58 between rs1936396 and rs7905526,
0.77 between rs1936396 and rs7905526 and 0.74 between rs2018728 and rs7905526.
fSNP in LD with another SNP, rs6593456 (r2 ¼ 0.98), for which P ¼ 8.7 × 1028 for interaction with rs17117532. r2 was 0.58 between rs1936396 and rs7905526,
0.77 between rs1936396 and rs7905526 and 0.74 between rs2018728 and rs7905526.
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using logistic regression. For overall breast cancer risk, 18 SNP
pairs hadassociatedP-values of ,10210 from the genotype-based
test for interaction (Supplementary Material, Table S1). Six of
these includedtheSNPrs9625520,whichon individual inspection
of the cluster plot was determined to have failed genotyping due to
merged clusters, despite having passed the previous quality-
control filters based on the automatic genotype calls. All seven
SNPs forming these six SNP pairs were in high LD (0.89 ≤
r2 ≤ 1.00) and all but rs9625520 were well-clustered; we
re-checked the evidence of interaction between these and
observed very little (all P[4 d.f.] ≥ 0.018) for any of 15 other pos-
sible two-SNP combinations. A further 11 pairs in the top 18
included the SNP rs7603983 (identified using the first analytical
approach) and another correlated SNP within 220 kb (r2 ≥
0.50); the evidence of interaction disappeared for each of these
when data from the OBCS were excluded (P ≥ 0.82). For one
of these SNP pairs, evidence of interaction was also observed in
the per-allele model (P ¼ 8.3 × 10211), but not once data from
the OBCS were excluded (P ¼ 0.71). The remaining SNP-pair
comprised two SNPs in high LD (r2 ¼ 0.94); visual inspection
of cluster plots showed that one of these (rs6989466) was
poorly called (merged clusters). Since the only SNP in high LD
with rs6989466 was the potentially interacting one (rs2013845),
the interaction could not be assessed by proxy. No other SNP
pairs had interaction-associated P-values of ,10210 from the
per-allele test for interaction (1 d.f.).

No evidence of interaction in susceptibility to ER-positive or
ER-negative breast cancer was observed for any additional SNP
pairs using this second approach. The seven SNP pairs with an
interaction P-value of ,10210 for ER-positive breast cancer
risk were a subset of the 18 observed for overall breast cancer
risk, all involved either rs7603983 (for which evidence disap-
peared after exclusion of data from the OBCS), rs9625520 or
rs6989466 (both of which were deemed to have been poorly
called after visual inspection of cluster plots) (Supplementary
Material, Table S1).

DISCUSSION

We have assessed two-way combinations of .70 000 SNPs
selected because they were associated with, or potentially asso-
ciated with, breast cancer risk and found little evidence of inter-
action, defined as departure from multiplicativity between SNP
main effects. This was the case for overall breast cancer and
disease subtypes defined by ER status. We considered genotype-
specific interactions (4 d.f.) for all 2.5 billion SNP pairs and per-
allele departure (1 d.f.) for all pairwise combinations of SNPs
selected based on evidence of a marginal effect.

Few SNP–SNP interactions have been identified (27) and none
associated with breast cancer risk has been convincingly repli-
cated. That said, no large-scale systematic evaluations have
been published to date. Tao et al. (28) used BOOST to analyse
data from two GWAS of prostate cancer, totalling 3140 cases
and 4273 controls, and found no convincing evidence of interac-
tions. To our knowledge, our study of 46 450 breast cancer cases
and 42 461 controls is by far the largest of its kind. The statistical
power of our first analysis of selected SNPs was very high
(.90%) to detect ORint as low as 1.29 between common SNPs
(MAF ≥ 0.10). Also, assuming an epistasis model in which an
associated risk is restricted to individuals carrying variant
alleles at both loci, which would imply a weak marginal effect
for each SNP, the probability that SNPs involved in interactions
of this magnitude were selected was also high (.80%). It was
also highly likely that more common SNPs (MAF ≥ 0.20),
involved in interactions with ORint as low as 1.16, were selected.
Although no SNP pair achieved P , 1028, we did observe an
excess of pairs with an interaction P , 1026 (13 versus 5.4 pre-
dicted). This suggests that some of these associations could be
real and may be confirmed by even larger studies, if they could
be carried out. In addition, it should be noted that the current ana-
lysis was based on a set of 70 917 SNPs and was, therefore, not
genome-wide. On the other hand, 70% of the SNPs were included
because evidence of per-allele association at P , 0.008 was

Table 2. Minimum interaction odds ratio detectable with 90% power at P , 1028 in the absence of main effects

MAFSNP2 MAFSNP1

0.05 0.10 0.20 0.40

Overall breast cancer
0.05 1.58 (1.06, 56%) 1.41 (1.04, 47%) 1.30 (1.03, 48%) 1.24 (1.03, 69%)
0.10 1.41 (1.08, 85%) 1.29 (1.06, 88%) 1.21 (1.04, 78%) 1.17 (1.04, 93%)
0.20 1.30 (1.12, 99%) 1.21 (1.08, 99%) 1.16 (1.07, 99%) 1.13 (1.05, 99%)
0.40 1.24 (1.20, 99%) 1.17 (1.14, 99%) 1.13 (1.11, 99%) 1.11 (1.09, 99%)

ER-positive breast cancer
0.05 1.69 (1.07, 55%) 1.48 (1.05, 53%) 1.35 (1.04, 60%) 1.28 (1.03, 51%)
0.10 1.48 (1.10, 89%) 1.34 (1.07, 87%) 1.25 (1.05, 83%) 1.20 (1.04, 81%)
0.20 1.35 (1.14, 99%) 1.25 (1.10, 99%) 1.19 (1.08, 99%) 1.15 (1.06, 99%)
0.40 1.28 (1.23, 99%) 1.20 (1.17, 99%) 1.15 (1.12, 99%) 1.12 (1.10, 99%)

ER-negative breast cancer
0.05 2.17 (1.11, 52%) 1.80 (1.08, 52%) 1.57 (1.06, 53%) 1.45 (1.05, 54%)
0.10 1.80 (1.16, 88%) 1.55 (1.11, 84%) 1.40 (1.08, 82%) 1.32 (1.07, 88%)
0.20 1.57 (1.23, 99%) 1.40 (1.16, 99%) 1.30 (1.12, 99%) 1.24 (1.10, 99%)
0.40 1.45 (1.38, 99%) 1.32 (1.27, 99%) 1.24 (1.20, 99%) 1.20 (1.17, 99%)

MAF, minor allele frequency.
In parenthesis are the resulting marginal OR for SNP1 and power to detect it in the individual main-effect analysis (the latter is the probability of selecting the SNP for
inclusion under the first approach at P , 0.01).
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observed in the combined GWAS (Stage 1) analysis of .10 000
cases and 10 000 controls; based on the scenarios considered in
Table 2, the statistical power of this Stage 1 analysis was as low
as 40% (although in most cases much higher) for more common
SNPs. It should also be noted that the effect sizes for untyped
causal variants may be greater than those associated with the
tagging SNPs (tagSNPs) on genotyping arrays, and that the rela-
tive reduction in power to detect disease association based on
tag-SNPs may be greater for interaction effects than for main
effects. We cannot therefore rule out that more common SNPs
involved in interactions, with ORint comparable to those reported
above, were not selected for the iCOGS array and thus not
included in our analysis. Nevertheless, our findings, based on a
very large number of SNPs, are consistent with the assertion of
Hill (2010) that interactionsare likely tobesmall and verydifficult
to detect if the main effects are already small.

Although our study possessed lower statistical power to detect
two-way interactions between less common SNPs (MAF ,
0.10), the study sample size required to detect any such interac-
tions may not be achievable. Zuk et al. (2012) concur with this,
suggesting that detecting genetic interactions may require a
sample size in the range of 500 000. It is also possible that inter-
actions could exist in the absence of marginal main effects, if
each SNP had associated effects that were in opposite directions,
depending on the genotype of the other SNP. Such SNPs would
not have been systematically selected for the iCOGS array nor
preselected for the assessment of interactions using our first ana-
lytical approach. However, while mathematically possible, such
qualitative interactions seem less biologically plausible.

Had we adopted a more stringent P-value criterion (than P ,
0.01) to select SNPs based on evidence of a marginal effect
using the first approach, one result in particular would have
stood out. This involved two SNPs (rs1573998 and rs16886496)
in low LD (r2 ¼ 0.073), both with marginal associations signifi-
cant at P , 1025 (Table 1), located within 60 kb of each other,
at an established breast cancer susceptibility region on 5q11.2
(5).Suchcis-interactionshavea somewhatdifferent interpretation
to those between SNPs located in different regions, in that they
may reflect haplotype-specific risks or, equivalently, the effects
of untyped rarer variants. The iCOGS array included several
hundred additional variants across this region in order to inform
the search for the likely causal variant(s); these fine-mapping
SNPs were not included in the present analysis since they are
being analysed as part of a separate, ongoing project, but it may
be informative to perform a separate analysis of all possible
cis-interactions in the future.

The results from our exhaustive assessment of all two-way
interactions using BOOST were consistent with the largely
null result from our first set of analyses, although the power of
this second analysis is difficult to ascertain. BOOST is generally
more powerful than other comparable methods, except in the
presence of per-allele departure from independent SNP effects
(29). The 18 SNP pairs for which strongest evidence of inter-
action (P , 10210) was observed all included one of three
SNPs with poor or questionable genotype clustering and a
second SNP relatively close to (≤178 kb) and in LD with
(r2 ≥ 0.50) the first. All 18 were ruled out as possible interac-
tions, either because the evidence disappeared in a sensitivity
analysis excluding a very small proportion of the data from
one study with particularly poor genotype clustering or

because the SNP was considered to have failed genotyping on
visual inspection of the intensity cluster plots. Where possible,
interactions were reassessed with other SNPs in LD with the
failed SNP and no consistent results were observed. This high-
lights the need to check manually the cluster plots of SNPs poten-
tially involved in interactions, since poor clustering is not always
picked up in standard quality-control checks for high-throughput
genotyping data.

It is possible that other types of two-way SNP–SNP interaction
(not tested for in the present study) exist, as may higher order inter-
actions. These might be discovered by other analytical approaches.
Our results, particularly those from the 4 d.f. genotype-based test,
suggest that the genotyping quality of SNPs involved in potential
interactions should be checked to rule out artefacts resulting from
poor clustering. Even so, our results are consistent with those of
other large studies that have assessed two-way interactions
between established susceptibility SNPs and other risk factors
for breast cancer (30–33). Together, these results suggest that
established risk factors for breast cancer tend to be related to
disease risk such that their associated effects, expressed as ORs,
can be multiplied together. This has important implications for
risk prediction, simplifying the modelling required. Related to
this, Aschard et al. (27) have shown by simulation that even if
gene–gene and gene–environment interactions exist in regard
to breast cancer risk, they are unlikely to improve dramatically
the discrimination ability of risk-prediction models.

That we found no strong evidence of two-way SNP interac-
tions might be surprising, given the consistent evidence of
genetic epistasis in model systems (34). However, the main
effects in model systems also tend to be larger than those
observed for SNPs. It may be that the influence on disease risk
of the biological processes that are modified by SNP interactions
is too small to be detected, even using combined studies with
large sample size, at least for breast cancer. This may also be
related to the much more complex genetic background present
in humans, perhaps together with the influence of lifestyle
factors that may dilute genetic interactions. More sophisticated
analyses could possibly tease out SNP interactions in breast
cancer susceptibility, but this will probably require a much
better understanding of how to classify SNPs in terms of their
functional basis. Two-way SNP interactions have been reported
for other diseases such as Psoriasis, Ankylosing Spondylitis and
Behcet’s disease, suggesting that such interactions can be found
for complex phenotypes in humans (35–37).

The key strengths of our study are, in addition to the extremely
large sample size (and resulting high statistical power), the very
large set of SNPs (potentially associated with breastcancer suscep-
tibility) considered, the uniform genotyping procedures and
quality-controlmeasuresadoptedand the large-scaleanalyses con-
ducted to evaluate two-way interactions in a comprehensive way.
A non-trivial issue for analyses of this kind is the establishment of a
statistical significance threshold that adequately controls the pro-
portion of false-positive findings. Since permutation-testing was
not feasible, we dealt with the issue of non-independence of the
multiple tests for interaction under our first approach by estimating
the effective number of independent SNPs and used this to
compute an effective number of independent interactions. No
SNP pairs were robust to correction for multiple testing on this
basis. However, further work is required to determine whether
this approach gives a reasonable estimate for the effective
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number of interaction tests. The appropriateness of the Bonferroni
correction in this context could also be questioned. For the second
approach, we applied a statistical significance threshold of 10210,
which is almost an order of magnitude greater than the Bonferroni-
corrected value based on the 2.5 billion interactions tested and can,
therefore, be considered liberal.

Association analyses, including analyses of interactions, may
be subject to confounding due to population structure. We aimed
to correct for potential population stratification by adjusting for
study and the six leading principal components. Little evidence
of inflation of test statistics was observed after these adjustments
in the main-effects analysis of the iCOGS data (3), suggesting
that correction for population structure was adequate, and that
any bias in the interaction tests was likely to be small. In any
event, such confounding would be more likely to lead to
false–positive associations, which we did not observe.

In conclusion, we observed little evidence of two-way SNP
interactions for breast cancer susceptibility, despite the large
number of SNPs (with potential marginal effects) considered

and the very large sample size. More comprehensive, large-scale
genome-wide interaction studies may identify novel interacting
loci if the inherent logistic and computational challenges can be
overcome.

METHODS

Study subjects

A total of 38 case–control studies contributed data and DNA
samples for 46 450 breast cancer cases and 42 461 controls of
white European origin from 13 European countries, Canada,
Australia and the USA. Details are provided in Table 3 and Sup-
plementary Material, Table S2. The ER status of the tumour was
known for 34 479 cases, 27 074 were ER-positive and 7405 were
ER-negative. All study participants gave informed consent and
all studies were approved by the corresponding local research
ethics committees.

Table 3. Studies contributing white European cases and controls

Study Country Controls Cases ER+ ER2

Australian Breast Cancer Family Study (ABCFS)a Australia 551 790 456 261
Amsterdam Breast Cancer Study (ABCS) Netherlands 1429 1325 420 153
Bavarian Breast Cancer Cases and Controls (BBCC) Germany 458 564 460 83
British Breast Cancer Study (BBCS) UK 1397 1554 507 114
Breast Cancer In Galway Genetic Study (BIGGS) Ireland 719 836 495 154
Breast Cancer Study of the University Clinic Heidelberg (BSUCH) Germany 954 852 499 154
CECILE Breast Cancer Study (CECILE) France 999 1019 797 144
Copenhagen General Population Study (CGPS) Denmark 4086 2901 1919 357
Spanish National Cancer Centre Breast Cancer Study (CNIO-BCS) Spain 876 902 242 88
California Teachers Study (CTS) USA 71 68 0 17
ESTHER Breast Cancer Study (ESTHER) Germany 502 478 304 98
Gene Environment Interaction and Breast Cancer in Germany (GENICA) Germany 427 465 328 119
Helsinki Breast Cancer Study (HEBCS) Finland 1234 1664 1295 237
Hannover-Minsk Breast Cancer Study (HMBCS) Belarus 130 690 37 0
Karolinska Breast Cancer Study (KARBAC) Sweden 662 722 338 63
Kuopio Breast Cancer Project (KBCP) Finland 251 445 304 97
kConFab/Australian Ovarian Cancer Study (kConFab/AOCS) Australia 897 613 162 59
Leuven Multidisciplinary Breast Centre (LMBC) Belgium 1388 2671 2071 379
Mammary Carcinoma Risk Factor Investigation (MARIE) Germany 1778 1818 1349 399
Milan Breast Cancer Study Group (MBCSG) Italy 400 488 149 42
Mayo Clinic Breast Cancer Study (MCBCS) USA 1931 1862 1486 295
Melbourne Collaborative Cohort Study (MCCS) Australia 511 614 352 119
Multi-ethnic Cohort (MEC) USA 741 731 415 87
Montreal Gene-Environment Breast Cancer Study (MTLGEBCS) Canada 436 489 421 64
Norwegian Breast Cancer Study (NBCS) Norway 70 22 0 22
Oulu Breast Cancer Study (OBCS) Finland 414 507 407 100
Ontario Familial Breast Cancer Registry (OFBCR)b Canada 511 1175 630 268
Leiden University Medical Center Breast Cancer Study (ORIGO) Netherlands 327 357 211 70
NCI Polish Breast Cancer Study (PBCS) Poland 424 519 519 0
Karolinska Mammography Project for Risk Prediction of Breast Cancer (pKARMA) Sweden 5537 5434 3672 702
Rotterdam Breast Cancer Study (RBCS) Netherlands 699 664 368 131
Singapore and Sweden Breast Cancer Study (SASBAC) Sweden 1378 1163 663 144
Sheffield Breast Cancer Study (SBCS) UK 848 843 377 105
Study of Epidemiology and Risk factors in Cancer Heredity (SEARCH) UK 8069 9347 5160 1181
Städtisches Klinikum Karlsruhe Deutsches Krebsforschungszentrum Study (SKKDKFZS) Germany 29 136 0 136
IHCC-Szczecin Breast Cancer Study (SZBCS) Poland 315 365 165 60
Triple Negative Breast Cancer Consortium Study (TNBCC) Various 542 881 0 881
UK Breakthrough Generations Study (UKBGS) UK 470 476 96 22
Total 42 461 46 450 27 074 7405

ER+, oestrogen-receptor-positive cases; ER2, oestrogen-receptor-negative cases.
aAustralian site of the Breast Cancer Family Registry.
bOntario site of the Breast Cancer Family Registry.
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SNP selection and genotyping

SNP selection and genotyping methods have been described pre-
viously (3). The 75 380 SNPs eligible for inclusion in the present
study were selected primarily based on statistical evidence of as-
sociation with breast cancer risk from a combined analysis of
nine GWAS involving 10 052 cases and 12 575 controls (46%
SNPs) or from analyses of disease-subtype- or population-
specific GWAS (24% SNPs). Additional SNPs were selected
based on other evidence of association with breast (2% SNPs)
or other cancers (4% SNPs), with overall survival following
breast cancer (9% SNPs) or with risk factors for breast or other
hormone-related cancers (12% SNPs) or because they tagged
genes in the DNA repair pathway (2% SNPs).

Genotyping was carried out at four centres using a custom-built
Illumina iSelect array (iCOGS) as part of a multi-consortium
project (COGS), as described previously (3). Genotypes were
called using Illumina’s proprietary GenCall algorithm. Two
percent of samples were provided in duplicate by all studies,
and 270 HapMap2 samples were genotyped at all four centres.
Subjects with an overall call-rate ,95% were excluded. We
excluded SNPs with call-rates ,95% and those for which statis-
tical evidence of deviation from Hardy–Weinberg equilibrium
was observed for controls at a significance threshold of 1027,
based on a stratified 1 d.f. test in which the deviations were
summed across study-based strata (38). We also excluded SNPs
for which genotypes were discrepant for more than 2% of dupli-
cate samples. A total of 72 611 of the eligible SNPs were

successfully genotyped according to these criteria; 70 917 of
those had a MAF of at least 0.01 in controls and were considered
for the present analysis. The cluster plots of SNPs for which evi-
dence of interaction was observed were individually re-evaluated
and, where appropriate, manually recalled.

Statistical methods

Evidence of interaction between SNP pairs in susceptibility to
breast cancer was assessed using logistic regression, primarily
based on a 1 d.f. likelihood ratio test (LRT) comparing two
models: one model included main effects for study (categorical
variable) and seven principal components (each continuous),
a per-allele main effect for each of the two SNPs under consider-
ation and an interaction parameter for the product of the latter
two; the other model included main-effect parameters only.
Thus, interaction was primarily considered to be per-allele de-
parture from multiplicativity between ORs corresponding to
SNP main effects. This was done for breast cancer risk overall,
for risk of ER-positive breast cancer and for ER-negative
breast cancer. Based on a series of pilot analyses, we estimated
that, even with access to super-computing facilities with 1000
processors, an exhaustive analysis of all 2.5 billion (×109)
two-way SNP interactions, while desirable (39), would take
more than one year to complete. This was due to the number of
SNP pairs to be tested, the large sample size and the inclusion

Figure 2. Schematic representation of the two strategies applies to assess pairwise interactions in susceptibility to overall breast cancer risk between the 70 917 SNPs
considered.
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of 37 dummy variables in the adjustment for study, the latter two
factors increasing substantially the run-time per interaction.

We used two strategies to reduce the number of SNP pairs con-
sidered (Fig. 2). Under the first, we selected individual SNPs
based on evidence of a marginal per-allele effect at P , 0.01.
For each outcome (overall, ER-positive and ER-negative),
SNPs were selected and then all possible two-way combinations
of this reduced set of SNPs were considered in testing for evi-
dence of interaction for that outcome. This strategy was
founded on the idea that even a purely epistatic interaction (i.e.
where the risk associated with one SNP is only manifest in indi-
viduals carrying a particular allele of another SNP) will give rise
to apparent marginal SNP effects when the interaction is not
modelled (40). Since the screening test is independent of the sub-
sequent interaction test, substantial gain in power is obtained
after correction for multiple (interaction) testing (41). Since per-
mutation testing was not possible, given the sample size and
number of interactions considered, we estimated instead the ef-
fective number of independent SNPs (VeffLi) using the method
described by Li and Ji (42). This method was applied via the
web-interface matSpDlite (http://gump.qimr.edu.au/general/da
leN/matSpDlite/, last accessed on 20 November 2013), based
on the observed correlations between SNPs, which was input as
a matrix of correlation coefficients (43). The number of two-
way interactions between VeffLi SNPs (T) was then used as a
basis on which to calculate Bonferroni-corrected P-values (P

∗
).

Under the second strategy, we applied BOOST (29) to screen
all possible SNP pairs and select a reduced set to test formally
using the LRT defined above. BOOST runs the equivalent of a
simplified logistic-regression-based LRT in a highly efficient
way, thereby permitting all 2.5 billion possible interactions to
be screened in a reasonable time-frame. However, it is based
on a co-dominant, genotype-based interaction model (4 d.f.)
and does not allow adjustment for covariates. We used this strat-
egy to select SNP pairs with the strongest evidence of interaction
(P , 1024) for more careful assessment using the less analytically
efficient, but more adequate, adjusted logistic-regression models.
The study- and principal-component-adjusted 4 d.f. interaction
LRT test was then applied to the selected SNP pairs, as was the
1 d.f. test described above. Since BOOST requires complete data
for all variants for all individuals, missing genotypes were
imputed as the most common of the three genotypes for each
SNP, across all subjects with available data. Imputed genotypes
were not used in the final logistic-regression analysis.

Statistical power calculations were performed based on a range
of MAF and OR using Quanto (http://hydra.usc.edu/gxe/, last
accessed on 20 November 2013), and all other statistical analyses
werecarriedoutusingRversion2.13.2.Q–Q plotsweredrawnfor
the first set of analyses based on the x2 statistics from the 1 d.f.
LRT using the qq.chisq function (44).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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Tübingen, Germany [H.B., Wing-Yee Lo,Christina Justenhoven],
Department of Internal Medicine, Evangelische Kliniken Bonn
gGmbH, Johanniter Krankenhaus, Bonn, Germany [Y.D.K.,
Christian Baisch], Institute of Pathology, University of Bonn,
Bonn, Germany [Hans-Peter Fischer], Molecular Genetics of
Breast Cancer, Deutsches Krebsforschungszentrum [DKFZ] Hei-
delberg, Germany [U.H.], Institute for Prevention and Occupa-
tional Medicine of the German Social Accident Insurance,
Institute of the Ruhr University Bochum (IPA), Germany [T.B.,
Beate Pesch, Sylvia Rabstein, Anne Lotz], Institute for Occupa-
tional Medicine and Maritime Medicine, University Medical
Center Hamburg-Eppendorf, Germany [Volker Harth], Tuomas
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