
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Prediction of Coronary Heart Disease Using Metabolite-based Machine Learning Models

Permalink
https://escholarship.org/uc/item/3kn8f48x

Author
Zhou, Xintong

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3kn8f48x
https://escholarship.org
http://www.cdlib.org/


 
 

UNIVERSITY OF CALIFORNIA SAN DIEGO 

 

Prediction of Coronary Heart Disease Using Metabolite-based Machine Learning Models 

 

A thesis submitted in partial satisfaction of the requirements  

for the degree Master of Science 

 

 

in 

 

 

Electrical Engineering (Machine Learning & Data Science) 

 

 

by 

 

 

Xintong Zhou 

 

 

 

Committee in charge: 

 Professor Ramesh Rao, Chair 

    Professor Mohit Jain, Co-Chair 

 Professor Farinaz Koushanfar   

 

 

2021



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 

Xintong Zhou, 2021 

All rights reserved.



iii 
 

 

The thesis of Xintong Zhou is approved, and it is acceptable in quality and form for 

publication on microfilm and electronically. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

University of California San Diego 

2021



iv 
 

DEDICATION 

 

 

For 

my mother 

my maternal grandmother 

my maternal grandfather 

my father 

 

 

 

  



v 
 

TABLE OF CONTENTS 

Thesis Approval Page ........................................................................................................ iii 

Dedication .......................................................................................................................... iv 

Table of Contents .................................................................................................................v 

List of Figures .................................................................................................................... vi 

List of Tables .................................................................................................................... vii 

Abstract of the Thesis ...................................................................................................... viii 

1. Introduction ................................................................................................................. 1 

2. Related Work ............................................................................................................... 3 

3. Dataset ......................................................................................................................... 5 

4. Method ......................................................................................................................... 9 

4.1 Data Preprocessing ............................................................................................... 9 

4.2 Feature Selection ................................................................................................ 11 

4.3 Modeling ............................................................................................................ 12 

5. Results ....................................................................................................................... 16 

6. Discussion & Future Work ........................................................................................ 32 

 Bibliography .....................................................................................................................36 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



vi 
 

 

LIST OF FIGURES  

Figure 3.1 Distribution of CHD event within 5, 10 and 15 years  .......................................9 

Figure 4.1 Flowchart of proposed workflow .....................................................................15 

Figure 5.1 ROC curves for 4 machine learning models. Each row is the prediction of 

CHD in 5, 10 & 15 years from left to right. The top row is prediction with risk factors. 

The middle row is prediction with top 25 selected metabolites. The last row is prediction 

with top 25 selected metabolites & risk factors .................................................................25 

Figure 5.2 Average AUC of the best performed models for 3 different sets of features: 

metabolite, risk factors, metabolite & risk factors, in 5-, 10- and 15-year prediction of 

CHD ...................................................................................................................................26 

Figure 5.3 Best F2 score for 3 different sets of features: metabolite, risk factors, 

metabolite & risk factors, in 5-, 10- and 15-year prediction of CHD ................................27 

Figure 5.4 ROC curves for 4 machine learning models with top 25 selected metabolites 

for prediction of CHD in 5 years .......................................................................................27 

Figure 5.5 ROC curves for 4 machine learning models with top 25 selected metabolites 

for prediction of CHD in 10 years .....................................................................................28 

Figure 5.6 ROC curves for 4 machine learning models with top 25 selected metabolites 

for prediction of CHD in 15 years .....................................................................................28 

Figure 5.7 Feature importance from random forest of top 25 selected metabolites for 

prediction of CHD in 5 years .............................................................................................29 

Figure 5.8 Feature importance from random forest of top 25 selected metabolites for 

prediction of CHD in 10 years ...........................................................................................30 

Figure 5.9 Feature importance from random forest of top 25 selected metabolites for 

prediction of CHD in 15 years ...........................................................................................31 

Figure 5.10 Feature importance of the common metabolites among the top 10 metabolites 

in each of 5, 10, 15 years ...................................................................................................32 

 

 

 

 

 

 

 

 



vii 
 

LIST OF TABLES  

Table 3.1 Risk factor features used in the research  ............................................................7 

Table 3.2 Examples of defining class label for the occurrence of CHD in 5 years  ............8 

Table 3.3 Counts of CHD event within five, 10, and 15 years  ...........................................8 

Table 5.1 Model performance results with 25 selected metabolites in 5 years .................21 

Table 5.2 Model performance results with 25 selected metabolites in 10 years ...............21 

Table 5.3 Model performance results with 25 selected metabolites in 15 years ...............21 

Table 5.4 Model performance results with risk factors in 5 years .....................................22 

Table 5.5 Model performance results with risk factors in 10 years ...................................22 

Table 5.6 Model performance results with risk factors in 15 years ...................................22 

Table 5.7 Model performance with 18 common ones out of 25 selected metabolites & 

risk factors in 5 years  ........................................................................................................23 

Table 5.8 Model performance with 18 common ones out of 25 selected metabolites & 

risk factors in 10 years .......................................................................................................23 

Table 5.9 Model performance with 18 common ones out of 25 selected metabolites & 

risk factors in 15 years .......................................................................................................24 

 

 

 



viii 
 

ABSTRACT OF THE THESIS 

 

 

Prediction of Coronary Heart Disease Using Metabolite-based Machine Learning Models 

 

 

by 

 

 

Xintong Zhou 

 

Master of Science in Electrical Engineering (Machine Learning & Data Science) 

University of California San Diego, 2021 

 

Professor Ramesh Rao, Chair 

Professor Mohit Jain, Co-Chair 

 

  Coronary heart disease (CHD) is a leading cause of death in the United States. 

Currently, the main method of risk assessment is carried out through established risk score 

algorithms by using traditional risk factors. These algorithms mainly focus on long-term 

prediction, with the limitation on assessing risk for younger adults.  In recent years, with 

the advancement of serum nuclear magnetic resonance (NMR), more studies of using 

metabolites to predict CHD have merged. Assessing the risk with metabolites provides 
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insights into the underlying molecular mechanisms of CHD. This thesis explores that 

possibility of using metabolites as the predictors and is aiming to understand how much 

prediction power that machine learning methods could bring in this prediction task. 
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1. Introduction 

 

 Cardiovascular disease is the leading cause of noncommunicable death worldwide, 

according to WHO, causing 17.5 million deaths in 2012 (World Health Organization, 2014). 

While cardiovascular disease includes a group of different types of diseases in heart and 

blood vessels, coronary heart disease (CHD) is the most common type, which is a major 

cause of death in developed countries (Sanchis-Gomar et al., 2016) and is projected to be 

the leading cause of death in developing countries too (Okrainec et al., 2004). CHD is a 

disease that the buildup of plaque in the heart’s arteries narrows the coronary arteries over 

time and then limits or even blocks the blood flood to heart muscles (American Heart 

Association, 2013). Health professionals may interchangeably use the term coronary artery 

disease (CAD) and the term coronary heart disease (CHD), which is the result of the former 

(Sanchis-Gomar et al., 2016).  

 According to Hajar (2017), “there is still no cure for any form of heart disease”. The 

assessment of the risk becomes more important in prevention practice and in reducing the 

burden of CHD. Currently, in clinical practice, risk factors are the main metrics being used 

to predict the risk of CHD. The major risk factors used in the assessment are age, sex, blood 

pressure, total cholesterol, high-density-lipoprotein cholesterol, low-density-lipoprotein 

cholesterol, smoking status and diabetes (Wilson et al., 1998). The mainly used algorithms 

to calculate the risk score are Framingham Risk Score (FRS), which is the most widely used 

for clinical guidelines, the Systematic COronary Risk Evaluation (SCORE) and 

the Prospective Cardiovascular Munster (PROCAM) mode (Lloyd-Jones, 2010). These 

models are for the prediction of the risk of CHD in 10 years, which is a “substantial 
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improvement over clinical judgement alone for appropriate risk stratification” ((Lloyd-Jones, 

2010). However, there is certain limitation of these 10-year risk prediction models. Because 

these models are heavily dependent on age, for younger adults (men <45 years of age and 

women <65 years of age, moderate elevation in risk factors would only reflect little effect in 

the 10-year risk prediction (Cavanaugh-Hussey et al., 2008). This means that even for 

younger adult has a substantial life-time risk in CHD, the 10-year risk assessment would still 

categorize him or her into the low-risk interval.  

 Besides the risk factors, multiple studies have indicated that CHD risk assessment 

could be improved by utilizing novel biomarkers, such as coronary artery calcium and 

cardiac troponim-T, but only a few tractable biological pathways have been identified (Wang 

et al., 2019). However, the recent development of nuclear magnetic resonance (NMR) has 

enabled faster and low-cost metabolite detection (Miggiels et al., 2019). With this innovation, 

more studies have been conducted to understand the possibility of predicting CHD by using 

metabolites. Metabolites are small molecules produced during metabolism and the end-

product of gene expression (Forssen et al., 2017). There are studies of understanding the 

association between metabolomic profile and CHD (Vaarhorst et al., 2014) (Wang et al., 

2019). These studies demonstrate that metabolites are a promising tool to improve the 

prediction of CHD. The feasibility of predicting CHD by using metabolite can present a 

molecular level reflection, which has the potential to enable professionals to understand 

CHD by the metabolic pathway. Additionally, due to the cause of CHD, metabolites may 

provide insights into the chronic changes of the artery walls. In this research, machine 
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learning algorithms are utilized to predict the development of CHD within five, 10 and 15 

years.  

2. Related Work 

 

 Currently, there are multiple studies in applying machine learning methods to predict 

CHD using risk factors and in investigating the association between metabolites and CHD 

by survival analysis. However, there are not many studies or research on utilizing machine 

learning to predict CHD with metabolites in searching related work.  

 Forssen et al. (2017) investigate the prediction performance for CHD by using three 

machine learning algorithms, logistics regression, principal components analysis (PCA) and 

random forest. They use Clinical Cohorts in Coronary disease Collaboration (4C) as the 

dataset, which are collected through UK NHS hospitals. In their studies, the occurrence of 

CHD is defined if more than 50% stenosis can be found in more than one coronary arteries, 

which is different from the interest of this research, a timely-basis prediction. Their studies 

can help to associate metabolites with CHD but not in a timely manner. They use PCA as a 

feature selection method and the two algorithms, logistic regression and random forest, as 

the classifier. They first apply PCA on 256 metabolites and select the first six components 

that account for more than 95% data variability as the selected metabolite predictors. Then 

they implement the selected six PCA-derived metabolite factors into logistic regression with 

L1 penalization and random forest. For comparison, they also run these two models 

including both the six PCA-derived metabolite factors and four risk factors (age, sex, use of 

statins, hypertension) as their adjusted models. In the result, random forest has both a better 
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AUC (0.675) and accuracy (0.713) than the logistic regression with PCA-derived features 

whose AUC is 0.625 and accuracy is 0.686. However, for the adjusted models, the adjusted 

logistic regression (0.767 AUC and 0.759 accuracy) outperforms the adjusted random forest 

(0.711 AUC and 0.732 accuracy). Using PCA as feature selection is a good way to improve 

model performance, however, losing the interpretability, since PCA is to project features 

into lower dimension. Their studies show that risk factors can improve the prediction of 

using metabolite only. 

 In the work of  Vaarhorst et al. (2014), prediction of CHD using metabolites is 

assessed and compared with using traditional risk factors (lipid levels, blood pressure, 

lifestyle factors, family history, sex and age). They use logistic regression with LASSO to 

select relevant metabolites associated CHD and compare with the prediction performance of 

using metabolites that are not associated with risk factors.  They find out that using 

metabolites that are independent of traditional risk factors could not improve risk prediction 

based on traditional risks in the groups of people who are free from CHD. They infer that 

the performance is due to the reason that many of metabolites in their data are dependent of 

risk factors. Those dependent metabolites are demonstrated in some studies that have 

important weights in predicting CHD. Since they compare the risk prediction of using only 

metabolites independent of risk factors, the lack in the quantities of metabolites is the main 

reason that the performance could not be beyond that of using risk factors.  

 Yu et al. (2020) take a retrospective study on finding the significant risk factors of 

metabolic syndrome by utilizing machine learning algorithms. In their research, they 

consider every known risk factor of metabolic syndrome and utilize machine learning 
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algorithms to select the significant ones based on the prediction performance. Metabolic 

syndrome is a cluster of disorders that affect the development of numerous diseases, 

including cardiovascular disease. They sample the data from all the Taiwanese aged 18 and 

above who utilize FibroScan for self-health examination. The data is collected from the score 

generated by FibroScan, a non-invasive device to assess the hardness of liver and generate 

relevant metric scores. In their study, they use the definition of metabolic syndrome by 

National Cholesterol Education Program Adult Treatment Panel II to identify if a participant 

has the metabolic syndrome or not. In total, there are 193 individuals diagnosed with 

metabolic syndrome and 1140 without. They use multiple algorithms for this study, 

including classification tree, Chi-square, random forest, generalized linear model and 

logistic regression. Their results show that random forest has the best accuracy because the 

model removes the bias that a decision tree model might have and thus improving the 

predictive power. They discuss that one limitation of their study is that as a retrospective 

one, it is not sufficiently powerful to demonstrate the usefulness of machine learning in 

diagnose metabolic syndrome if under a prospective study. Another limitation is that their 

data population is all from people who are using a self-check device for possibility of 

metabolic syndrome, which could be bias and should be validated in other populations. 

3. Dataset 

 

 The dataset used in this research is derived from FINRISK, a population-based study 

for noncommunicable disease monitoring and intervention of Finland, coordinated by the 

National Institute for Health and Welfare in Finland from 1972 to 2012. Data in FINRISK 

are collected from the questionnaires, health examination and blood samples of each 
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participants at baseline, who are followed up every 5 years and collected all these three types 

of in each follow-up year (Borodulin et al., 2017). In 1992, high throughput profiling of 

circulating metabolites is collected from participants via NMR (Delles et al., 2017). With a 

systematic and standardized data collection procedure for 40 years, the data of FINRISK 

provides professionals insights into understanding noncommunicable diseases and 

approaches to promote public health.  

 The participants in FINRISK are from age of 25 to 74 years old in selected areas of 

Finland, including North Karelia, Northern Savo, Turku and Loimaa, Helsinki and Vantaa, 

Northern Pohjanmaa and Kainuu and Lapland (Borodulin et al., 2017). For the purpose of 

the research work in this thesis, 7643 participants (N=7643) are used with10 risk factor 

features (Table 3.1) and 247 metabolite features as predictors, all of which are collected at 

baseline from FINRISK. The class labels in this research are derived by using two features, 

‘CHD’ and ‘CHD_time’. ‘CHD_time’ is a non-negative continuous value, presenting the 

final follow-up time. If CHD occurs, ‘CHD_time’ is recorded and stopped. ‘CHD’ is a 

discrete value, indicating if CHD occurs or not at ‘CHD_time’: 1 meaning that CHD occurs 

and 0 meaning not. The class label is defined by if there is a CHD event within given years. 

Table 3.2 is an example of defining the class label within 5 years (CHD_time ≤ 5). In this 

research, for comparison, we consider the case if CHD occurs within 10 years, a time length 

that is used the current risk score algorithm. For exploration of the prediction power of the 

machine learning models, cases of ‘CHD_time’ is five and 15 years are also tested. Table 

3.3 shows the count of CHD event of each class within five, 10 and 15 years.  
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Table 3.1 Risk factor features used in the research 

Name Type Description 

Age Continuous Ranging from 25 to 74 years old 

Sex Discrete 0 = Female, 1 = Male 

BMI Continuous Body Mass Index, ranging from 15.8 to 53.5 

Diabetes Discrete Diabetes status, 0 = No, 1 = Yes 

Smoking Discrete Smoking status, 0 = No, 1 = Yes 

LDL Continuous Low-density lipoproteins (mmol/L) 

HDL Continuous High-density lipoproteins (mmol/L) 

TG Continuous Triglycerides (mmol/L) 

Hypertension Discrete Hypertension status, 0 = No, 1 = Yes 

sysBP Continuous Systolic blood pressure (mmHg) 
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Table 3.2 Examples of defining class label for the occurrence of CHD in 5 years 

CHD_time 

(years) 

CHD 

(0 = No, 1 = Yes) 

Class Label 

(1: CHD = 1 & CHD_time<=5) 

4.7 1 1 

6 1 0 

6  0 0 

 

Table 3.3 Counts of CHD event within five, 10, and 15 years 

CHD Within 5 years Within 10 years Within 15 years 

Not occur (0) 7538 7395 7236 

Occurs (1) 105 248 407 

 

  



9 
 

 

Figure 3.1 Distribution of CHD event within 5, 10 and 15 years  

4. Method 

 

4.1 Data Preprocessing 

 

 Data preprocessing is to ensure that the data is consistent and ready to implement in 

machine learning models. Three major aspects are checked and prepared for this dataset: 

missing data, data standardization, and class imbalance.  

 Missing Data 

 For missing data, dropping and imputation are used based on features. For the risk 

factor data, there are 138 out of 7643 participants with missing data in different features: 

‘diabetes’, ‘smoking’, ‘LDL’, ‘hypertension’, and ‘sysBP’. These 138 participants are 

dropped directly. Some of the features are from personal response to questionnaire, such as 
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‘smoking’ and ‘diabetes’, which is nearly impossible to infer without asking the participant. 

Some features are obtained from the results of health examination and blood sample, such 

as ‘hypertension’ and ‘LDL’, which may have some underlying relationship. Imputing these 

data without the certainty of knowing that relationship may undermine the model 

performance and gives misguided results. For these reasons above, participants with missing 

data in the risk factor features above are dropped. For the metabolite data, missing data is 

replaced by 0 because it is highly possible that the missing metabolite data is due to the low 

values of metabolite detected. 

 Data Standardization 

 Some machine learning models are optimized based on distance, such as K-nearest 

neighbors. Some are optimized by applying gradient descent, such as support vector machine.  

Data standardization could enable features in different units to contribute equally to the 

model, such as ‘age’, ranging from 25 to 74, and ‘BMI’, ranging from 15.8 to 53.5. In this 

research, data is scaled by applying z-score standardization, which is by removing the mean 

and scaling to unite variance.  

 Class Imbalance 

 Class imbalance is when the number of events in each class is not equal. The class 

with more events is called the majority class. The class with fewer events is called the 

minority class. Class imbalance becomes an issue if the minority class has too few in the 

training sample or has too few events compared to the majority class, such as 1 to 100. In 

this research, the class of not having CHD event is over 100 times more than the class of 
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having CHD, the class of interest. With such imbalanced data, the classification models 

would have difficulty in distinguishing the minority class. As a result, the classifiers would 

have poor predictive ability for the minority class and has the tendency to classify most new 

samples into the majority class. To alleviate the imbalanced class issue, an oversampling 

method, Synthetic Minority Oversampling TEchnique (SMOTE) is used. SMOTE is an 

oversampling technique to randomly generate synthetic samples, linear combination of the 

two similar samples from the minority class. SMOTE is a widely used and efficient method 

to reduce the class imbalance issue after feature selection (Blagus & Lusa, 2013). Given the 

sample size, 7643 and the class size ratio, 1 to 100, an oversampling method is more 

preferrable than an undersampling method, which discards the majority class till the 

skewness is less severe, such as 1 to 10.  

4.2 Feature Selection 

 

 Feature selection is a method to select the relevant features to the prediction target 

and to discard the irrelevant features. It can reduce the irrelevant information and overfitting. 

Also, with a smaller feature space after feature selection, not only the computation 

performance can be improved but the possibility of curse of dimensionality could also be 

avoided. Curse of dimensionality is an issue that in a high-dimensional feature space, the 

features are so sparse that the classifier has a poor performance to learn about the relationship 

between features and the classification target. In this research, two feature selection methods 

are used for metabolite data, ANOVA and LASSO. Both methods are to select features that 

are relevant to the classification target. After comparing the overall performance of all the 

models by using two feature selection methods, ANOVA is used for further analysis. 
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 ANOVA  

 ANOVA, Analysis of Variance, is a technique to determine if a feature could well 

separate two classes by examining if there is a significant different in the means of two or 

more samples. It is a filter method in feature selection, which selects the features by ranking 

the usefulness or correlation of features to the model, based on F-statistics (Fonti & Belitser, 

2017). In this research, top 50 features based on ANOVA are selected for each of 5, 10 and 

15 years. Then, the common ones among these three sets of 50 features are chosen. There 

32 metabolites in common. This is because we would like to know how well one set of 

metabolites can do to make the prediction.  

 

4.3 Modeling 

 

 Four supervised learning models are implemented for this classification task, logistic 

regression, support vector machine (SVM), random forest and K-Nearest Neighbors (KNN). 

These four models are the common classifiers that have been investigated in others’ research 

work for predicting heart diseases or related health condition using metabolite data. Forssen 

et al. (2017) tests the performance of logistic regression in the prediction of CHD using 

metabolite data. Gutiérrez-Esparza et al. (2020) implements random forest to predict 

metabolic syndrome, “a health condition that increases the risk of heart disease”. Decision 

tree, a unit in random forest, SVM and KNN are investigated and compared by Pouriyeh et 

al. (2017). Although their research work uses different data source to implement these 
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models, the modeling results show that these four classifiers have provided useful insights 

in terms of model performance and interpretation. 

 Logistic Regression (LR) 

 Logistic regression is an algorithm that uses sigmoid function to transfer a linear 

regression model into a binary classification model. With the sigmoid function 

transformation, the predicted result of a linear regression is scaled to the range from 0 to 1. 

This scaled result represents the odds of the class of interest. Then, a certain threshold is set 

to determine which class the model predicts the data into based on the odds.  

 Support Vector Machine (SVM) 

 SVM is a very popular supervised learning machine learning algorithm for 

classification (Ramalingam et al., 2018). SVM finds a hyper-plane in the feature space, a 

plane that separates classes with an optimization in the margin distance between the data 

points to the hyper-plane. For example, in the case of two classes, SVM works on finding a 

hyper-plane that could separate two classes so that the distance between the data point closet 

to the hyper-plane is the widest for both classes. SVM uses kernel functions to project data 

into a higher dimensional space where the data is separable (Campbell & Ying, 2011).  In 

this research, radial basis function kernel is used as it could form a non-linear classifier, 

which is different from the linear classifier formed by logistic regression. 

 Random Forest (RF) 

 Random forest is an ensemble classifier consisting of multiple decision trees. 

Decision tree is a simple tree-based classification algorithm. It has three types of nodes, 
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chance node, decision node, and end node. A chance node shows the possible outcomes of 

a particular node; a decision node is where a decision is made based on the outcome; an end 

node is a node that gives the final decision. A decision tree starts from a root node and splits 

into various nodes and branches based on Gini index and entropy rule. Each node derives 

some information on the features. Each link indicates a decision rule to the following node 

(Krishnani et al., 2019). However, decision tree may have overfitting issue due to its 

mechanism of nodes and decision making. Random forest is a remedy to that overfitting 

issue. It uses bagging approaching and learns the model based on the overall performance of 

all the decision trees. The general institution of random forest is that more decision trees 

would make a better decision. It produces manifold decision trees and decides the class based 

on a voting system, choosing the class that most decision trees agree on.  

 K-Nearest Neighbors (KNN) 

 KNN is a nonparametric technique for pattern classification. It makes no assumption 

on the data, which is useful when there is no prior knowledge of the data distribution. KNN 

predicts the class of a data point based on how similar that data point is to the data with class 

labels in the training dataset. In other words, this algorithm compares the characteristics of 

a data point without a label to those with class labels in the training set. KNN computes the 

Euclidean distance from each feature of an unclassified data point to the features of classified 

data and selects the k closet classified data points (neighbors). Then, the unclassified data 

will be predicted as the class that has the most counts in these k selected neighbors.  
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Figure 4.1 Flowchart of proposed workflow   

predicting CHD in 5, 10 and 15 years with the test set & evaluating models

modeling on the training set and hyper-parameter tuning on validation set 

oversampling using SMOTE on the training set

feature selection using ANOVA on the training set

data standardization  on training set

train-validation-test split with a ratio 6:2:2

handle missing data
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5. Results 

 

 AUC, F2 score and accuracy are the major metrics used to evaluate the model 

performance. In this research, the dataset suffers from server imbalanced class. The SMOTE 

oversampling method can alleviate the imbalanced class issue but cannot enable the model 

to have the same metrics performance as the balanced class (Blagus & Lusa, 2013). Thus, 

the major metrics chosen for evaluation may have some differences from the common ones, 

such as accuracy. Several other metrics are also produced in the model evaluation but are 

not used as the main metrics for evaluation. Below is the definition of each metrics produced. 

 True Positive (TP): It is an outcome when the positive class is correctly classified as 

positive by the model 

 True Negative (TN): It is an outcome when the negative class is correctly classified 

as negative by the model 

 False Positive (FP): It is an outcome when the negative class is incorrectly classified 

as positive by the model  

 False Negative (FN): It is an outcome when the positive class is incorrectly classified 

as negative by the model  

 Accuracy: It is the ratio of number of correct predicts given by the total instances. In 

data with imbalanced class, accuracy may not be a good indicator for model evaluation due 

to its bias towards the majority class. For example, in a dataset with 1000 negative class and 

100 positive class, a model that predicts 970 negative class and 30 positive class correctly 

would give a high accuracy of 91% but only a low recall (defined in the following) of 0.3. 
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However, accuracy is a commonly used evaluation metrics even in imbalanced class 

modeling because it is the most intuitionistic metrics to interpret in classification (Haixiang 

et al., 2017). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

 Precision: In this research, it measures the proportion of individuals who develop 

CHD and are correctly predict out of all the individuals who are predicted to develop CHD 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 Recall: In this research, it measures how well the model could correctly predict the 

individuals who would develop CHD. It is the proportion of individuals who develop CHD 

and are correctly predicted out of all the individuals who develop CHD. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 F1 Score: It is the harmonic mean of precision and recall. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 F2 Score: It is based on F1 score but gives more weight to recall. In this research 

work, the class of interest (positive class) suffers from severe imbalanced class issue. 

Oversampling method can only alleviate the issue but cannot completely enable the model 

to have the same metrics performance as the balanced class. Thus, F2 score can provide more 

insights into the positive class for the imbalanced class data. 
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𝐹2 𝑆𝑐𝑜𝑟𝑒 = (1 + 22) ∗
𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

22 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
= 4 ×

𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

5 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

 Receiver Operator Characteristics (ROC): is a probability curve illustrating the 

capability that the model distinguishes two classes. ROC curve is a plot of the trade-off 

between True Positive Rate (TPR) and False Positive Rate (FPR) at different threshold. Area 

Under the ROC Curve (AUC) is a numerical measure ranging from 0 to 1. The closer the 

value of AUC to 1, the better the model distinguishes two classes. AUC is one of the most 

important metrics for model evaluation in this research. Although AUC is questionable by 

Hand (2009) for its consistency in measuring imbalanced class, it is still a useful and the 

most used metrics to measure model performance with some counter arguments to Hand’s 

(Haixiang et al., 2017) 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 In the task of predicting the development of CHD, we would like to see if we can 

find one set of metabolites that can predict CHD in five, 10 and 15 years compared to the 

performance of using risk factors. As using ANOVA is the main feature selection strategy, 

there are several different ways of selecting metabolites: selecting top K (K = 15, 20, 25, 30) 

for prediction model for each of those three years’ timeline; selecting the common metabolite 

features among top N (N=30, 40, 50) from each of three years’ timeline; using common top 

N metabolites plus risk factors; selecting K top features in the combination of metabolites 

and risk factors. Figure 5.1 to Figure 5.10 and Table 5.1 to 5.9 are examples of model results 
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of using different feature selection strategies.  There is no feature selection of risk factors 

because these 10 risk factors are the common ones used in existing risk assessment system.  

 In the result of implementing the model with the selected 25 metabolites, logistic 

regression has the best overall performance in terms of AUC with random forest followed, 

which has a similar performance with logistic regression. If ranking the performance by F2-

score, logistic regression still has the best overall performance but followed by SVM, which 

has a similar performance with logistic regression. The trend also appears in the result of 

predicting the development of CHD by using only risk factors and the result of predicting 

by using the combination of the selected top 25 metabolites and the risk factors. In predicting 

the development of CHD in 5 years, AUC of logistic regress is a little bit less than that of 

random forest and a little bit more than that of SVM; F2-score of logistic regression is a little 

bit less than that of SVM and a little bit more than random forest. For the prediction of the 

development of CHD in 10 and 15 years, logistic regression has the best performance in 

terms of both AUC and F2-score. According to the result, it can be observed that random 

forest has the highest accuracy but the lowest recall, which means that random forest has an 

outstanding performance in classify the negative class, which is the no occurrence of CHD 

in this research. Thus, random forest has a lower AUC than logistic regression because AUC 

is dependent on TPR and FPR, a rate that has negative class as the denominator. The less 

outstanding performance of SVM could be due to the method of oversampling. Since SVM 

is an algorithm to find an optimal hyper-plane to segregate two classes, the oversampling 

method of SMOTE may have effect on the performance of SVM. In all the prediction tasks, 

KNN has the lowest AUC score but the recall of KNN varies in predicting for different years: 
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some is the highest, some is the second or third highest. Overall, the ranking of the 

performance of each model varies by different evaluation metrics. If considering the 

integrated performance of the metrics, logistic regression and SVM are the two best models 

in the prediction of CHD in five years by using metabolites; logistic regression is the best 

model in the prediction of CHD in five, 10 and 15 years by using metabolite or risk factors 

or the combination of these two sets of features.  

 Overall, how many features are selected appears to have similar performance within 

the same type of set of features (metabolites only, risk factors only, metabolites and risk 

factors). Prediction of combing metabolites & risk factors show close or a little bit better 

performance than using risk factors, but risk factors have important roles in using 

metabolites and risk factors together. Prediction with metabolites has the least outstanding 

performance but the performance is getting closer to risk factors in longer timeline. Among 

all these models, logistic regression has the best performance. However, the differences are 

not significantly large for some
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Table 5.1 Model performance results with 25 selected metabolites in 5 years 

Model AUC F2 score F1 score Accuracy Recall Precision 

LR 0.71 0.11 0.05 0.74 0.53 0.03 

SVM 0.70 0.15 0.08 0.90 0.37 0.05 

RF 0.78 0.10 0.09 0.97 0.11 0.07 

KNN 0.62 0.1 0.04 0.69 0.58 0.02 

 

Table 5.2 Model performance results with 25 selected metabolites in 10 years 

Model AUC F2 score F1 score Accuracy Recall Precision 

LR 0.72 0.19 0.10 0.71 0.53 0.05 

SVM 0.65 0.16 0.08 0.61 0.58 0.04 

RF 0.69 0.10 0.08 0.93 0.11 0.07 

KNN 0.61 0.12 0.06 0.71 0.33 0.04 

 

Table 5.3 Model performance results with 25 selected metabolites in 15 years 

Model AUC F2 score F1 score Accuracy Recall Precision 

LR 0.76 0.32 0.18 0.68 0.69 0.10 

SVM  0.67 0.23 0.14 0.78 0.36 0.09 

RF 0.71 0.10 0.09 0.91 0.09 0.09 

KNN 0.66 0.25 0.13 0.64 0.64 0.07 
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Table 5.4 Model performance results with risk factors in 5 years 

Model AUC F2 score F1 score Accuracy Recall Precision 

LR 0.82 0.16 0.07 0.74 0.84 0.04 

SVM 0.69 0.11 0.05 0.86 0.32 0.03 

RF 0.76 0 0 0.98 0 0 

KNN 0.65 0.11 0.05 0.81 0.42 0.03 

 

Table 5.5 Model performance results with risk factors in 10 years 

Model AUC F2 score F1 score Accuracy Recall Precision 

LR 0.80 0.27 0.14 0.71 0.78 0.08 

SVM 0.73 0.21 0.12 0.78 0.49 0.07 

RF 0.75 0.07 0.07 0.95 0.07 0.07 

KNN 0.67 0.17 0.09 0.75 0.42 0.05 

 

Table 5.6 Model performance results with risk factors in 15 years 

Model AUC F2 score F1 score Accuracy Recall Precision 

LR 0.8 0.36 0.20 0.70 0.74 0.12 

SVM  0.71 0.3 0.18 0.74 0.56 0.11 

RF 0.75 0.14 0.14 0.92 0.13 0.14 

KNN 0.67 0.26 0.14 0.70 0.49 0.08 
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Table 5.7 Model performance with 18 common ones out of 25 selected metabolites & risk 

factors in 5 years 

Model AUC F2 score F1 score Accuracy Recall Precision 

LR 0.80 0.14 0.07 0.76 0.68 0.03 

SVM 0.70 0.10 0.07 0.95 0.16 0.04 

RF 0.78 0 0 0.98 0 0 

KNN 0.73 0.10 0.05 0.72 0.58 0.03 

 

Table 5.8 Model performance with 18 common ones out of 25 selected metabolites & risk 

factors in 10 years 

Model AUC F2 score F1 score Accuracy Recall Precision 

LR 0.80 0.27 0.14 0.74 0.71 0.08 

SVM 0.76 0.21 0.14 0.88 0.33 0.09 

RF 0.80 0.03 0.03 0.96 0.02 0.05 

KNN 0.70 0.22 0.11 0.66 0.69 0.06 
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Table 5.9 Model performance with 18 common ones out of 25 selected metabolites & risk 

factors in 15 years 

Model AUC F2 score F1 score Accuracy Recall Precision 

LR 0.80 0.36 0.2 0.71 0.74 0.12 

SVM  0.71 0.27 0.19 0.82 0.40 0.12 

RF 0.75 0.09 0.11 0.94 0.08 0.18 

KNN 0.70 0.29 0.16 0.62 0.70 0.09 
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Figure 5.1 ROC curves for 4 machine learning models. Each row is the prediction of CHD 

in 5, 10 & 15 years from left to right. The top row is prediction with risk factors. The middle 

row is prediction with top 25 selected metabolites. The last row is prediction with top 25 

selected metabolites & risk factors 
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Figure 5.2 Average AUC of the best performed models for 3 different sets of features: 

metabolite, risk factors, metabolite & risk factors, in 5-, 10- and 15-year prediction of CHD 
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Figure 5.3 Best F2 score for 3 different sets of features: metabolite, risk factors, metabolite 

& risk factors, in 5-, 10- and 15-year prediction of CHD 

 

Figure 5.4 ROC curves for 4 machine learning models with top 25 selected metabolites for 

prediction of CHD in 5 years 
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Figure 5.5 ROC curves for 4 machine learning models with top 25 selected metabolites for 

prediction of CHD in 10 years 

 

Figure 5.6 ROC curves for 4 machine learning models with top 25 selected metabolites for 

prediction of CHD in 15 years 



29 
 

 

 

 

 

Figure 5.7 Feature importance from random forest of top 25 selected metabolites for 

prediction of CHD in 5 years 
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Figure 5.8 Feature importance from random forest of top 25 selected metabolites for 

prediction of CHD in 10 years 
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Figure 5.9 Feature importance from random forest of top 25 selected metabolites for 

prediction of CHD in 15 years 
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Figure 5.10 Feature importance of the common metabolites among the top 10 metabolites 

in each of 5, 10, 15 years 

 

6. Discussion & Future Work 

 

 To the best of our knowledge, this is the first research of using machine learning and 

metabolites to predict CHD in a timely manner, which predicts the occurrence of CHD in 

different time frames and compares the prediction performance for those time frames. This 

method of prediction and comparison can provide more insights into the association between 

metabolites and the time progress of development of CHD. This research is an early-stage 

study of using metabolites and machine learning to predict CHD. However, it demonstrates 

that using a small number of metabolites (less than 20) can have closer prediction power in 
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long-term, such as 15 years. The similar prediction performance for longer time could be a 

possible tool for lifetime prediction. This research result also show how metabolites can be 

associated with the development of CHD in a timely manner. This could provide insights 

into the understanding of the complexity of CHD and metabolic in terms of time of 

development. Also, because of metabolites being the end-product of gene expression, longer 

time prediction could also help with lifetime personalized health care. The prediction 

performance of metabolites also aligns with the work of Vaarhorst et al. (2014). That is, 

metabolites improve the prediction of CHD based on risk factors but is a promising tool with 

larger profile of metabolites.   

 This research uses an imbalanced class dataset containing 7643 instances, each of 

which has 247 metabolite features. The scarcity of sample size and the imbalanced class 

issue are both common in clinical settings. To solve the imbalanced class issue and to avoid 

the possibility of curse of dimensionality become more important in applying machine 

learning to the biomedical area. In the past decade, hundreds of algorithms have been 

proposed for imbalanced class data (Haixiang et al., 2017). Solving the issue of imbalanced 

class is complex procedure. Choosing the proper algorithm is critical to improve the 

performance of the classifiers. Feature selection is another important piece to enhance the 

model performance. An ideal set of features are relevant to the target but irrelevant with each 

other (Fonti & Belitser, 2017). The nature of interaction between metabolites creates 

challenges to select the ‘ideal’ set of features that contribute the most to classification but 

also have a good interpretation. The model performance could be possibly significantly 
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improved with an integration of a more sophisticated algorithm to balance classes and an 

algorithm that could select harmonic features with the balanced classes. 

 In this research, the class label is based on the integration of the first occurrence of 

cardiovascular incident and the follow-up time to that incident. If more data of the physical 

development of CHD are accessible, such as stenosis of coronary arteries, the result could 

be different. Since the stenosis degree could signalize the development of CHD, metabolites 

may have underlying relationship with those changes. This dataset is derived from FINRISK, 

in which the participants are mainly white people. Some studies have shown that the current 

risk assessment system by using risk factors have visible errors in South Asians living in the 

U.K because the existing risk assessment systems are mainly based on white race (Bhopal 

et al., 2005). The effect of different races could be considered as a factor in the performance 

in using metabolites to predict as well. It can be intriguing comparison with the result of this 

research. 

  With the advancement of NRM, over 250,000 samples of metabolites could be 

generated annually (Soininen et al., 2015). With this fast and low-cost high throughput 

metabolite detection platform, numerous possibilities could be studied for and achieved by 

understanding the association between metabolites with disease. Low-cost in the detection 

of metabolites could increase the accessibility to CHD detection, which could enable earlier 

preventative medical intervention. Based on this research, we could see that one single 

measure of metabolites have the potential to have the same prediction power as risk factors. 

One single measure could be achieved through, for example, finger prick blood sampling. 

There is already commercialized home-kit finger prick sampling for testing hormones 
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(Everlywell, n.d). It is possible that CHD could be tested in this convenient way in the future. 

Metabolites also enable quantitative molecular data, which could become a promising tool 

for personalized health care. Combined with the power of machine learning and artificial 

intelligence (AI), the detection of any signal for the development of CHD could be accessible 

in a daily life setting. The intersection of using machine learning and metabolites to predict 

CHD opens countless possibilities to study the underlying molecular mechanism. It would 

become as a promising tool with more machine learning algorithms specialized for data like 

clinical data, imbalanced class and high-dimensional.  

 

 

 

 

 

 

 



36 
 

Bibliography 

 

World Health Organization. (2014). Global status report on noncommunicable diseases 

2014 (No. WHO/NMH/NVI/15.1). World Health Organization. 

Sanchis-Gomar, F., Perez-Quilis, C., Leischik, R., & Lucia, A. (2016). Epidemiology of 

coronary heart disease and acute coronary syndrome. Annals of translational 

medicine, 4(13). 

American Heart Association. (2013). Coronary artery disease-coronary heart 

disease. Obtenida el, 13. 

Okrainec, K., Banerjee, D. K., & Eisenberg, M. J. (2004). Coronary artery disease in the 

developing world. American heart journal, 148(1), 7-15. 

Hajar, R. (2017). Risk factors for coronary artery disease: historical perspectives. Heart 

views: the official journal of the Gulf Heart Association, 18(3), 109.  

Wilson, P. W., D’Agostino, R. B., Levy, D., Belanger, A. M., Silbershatz, H., & Kannel, W. 

B. (1998). Prediction of coronary heart disease using risk factor 

categories. Circulation, 97(18), 1837-1847. 

Lloyd-Jones, D. M. (2010). Cardiovascular risk prediction: basic concepts, current status, 

and future directions. Circulation, 121(15), 1768-1777. 

Borodulin, K., Tolonen, H., Jousilahti, P., Jula, A., Juolevi, A., Koskinen, S., Kuulasmaa, 

K., Laatikainen, T., Männistö, S., Peltonen, M., Perola, M., Puska, P., Salomaa, V., Sundvall, 

J., Virtanen, S. M., & Vartiainen, E. (2017). Cohort Profile: The National FINRISK Study. 

International Journal of Epidemiology, 47(3), 696–696i. https://doi.org/10.1093/ije/dyx239 

Delles, C., Rankin, N. J., Boachie, C., McConnachie, A., Ford, I., Kangas, A., Soininen, P., 

Trompet, S., Mooijaart, S. P., Jukema, J. W., Zannad, F., Ala-Korpela, M., Salomaa, V., 

Havulinna, A. S., Welsh, P., Würtz, P., & Sattar, N. (2017). Nuclear magnetic resonance-

based metabolomics identifies phenylalanine as a novel predictor of incident heart failure 

hospitalisation: results from PROSPER and FINRISK 1997. European Journal of Heart 

Failure, 20(4), 663–673. https://doi.org/10.1002/ejhf.1076 

Wang, Z., Zhu, C., Nambi, V., Morrison, A. C., Folsom, A. R., Ballantyne, C. M., 

Boerwinkle, E., & Yu, B. (2019). Metabolomic Pattern Predicts Incident Coronary Heart 

Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(7), 1475–1482. 

https://doi.org/10.1161/atvbaha.118.312236 

Miggiels, P., Wouters, B., van Westen, G. J., Dubbelman, A. C., & Hankemeier, T. (2019). 

Novel technologies for metabolomics: More for less. TrAC Trends in Analytical 

Chemistry, 120, 115323. 

https://doi.org/10.1093/ije/dyx239


37 
 

Vaarhorst, A. A., Verhoeven, A., Weller, C. M., Böhringer, S., Göraler, S., Meissner, A., 

Deelder, A. M., Henneman, P., Gorgels, A. P., van den Brandt, P. A., Schouten, L. J., van 

Greevenbroek, M. M., Merry, A. H., Verschuren, W. M., van den Maagdenberg, A. M., van 

Dijk, K. W., Isaacs, A., Boomsma, D., Oostra, B. A., van Duijn, C.M., Jukema, J.W., Boer, 

J.M.A., Feskens, E., Heijmans, B.T., Slagboom, P. E. (2014). A metabolomic profile is 

associated with the risk of incident coronary heart disease. American Heart Journal, 168(1), 

45–52.e7. https://doi.org/10.1016/j.ahj.2014.01.019 

Marcinkiewicz-Siemion, M., Kaminski, M., Ciborowski, M., Ptaszynska-Kopczynska, K., 

Szpakowicz, A., Lisowska, A., Jasiewicz, M., Tarasiuk, E., Kretowski, A., Sobkowicz, B., 

& Kaminski, K. A. (2020). Machine-learning facilitates selection of a novel diagnostic panel 

of metabolites for the detection of heart failure. Scientific Reports, 10(1). 

https://doi.org/10.1038/s41598-019-56889-8 

Gutiérrez-Esparza, G. O., Infante Vázquez, O., Vallejo, M., & Hernández-Torruco, J. (2020). 

Prediction of metabolic syndrome in a Mexican population applying machine learning 

algorithms. Symmetry, 12(4), 581 

Blagus, R., & Lusa, L. (2013). SMOTE for high-dimensional class-imbalanced data. BMC 

Bioinformatics, 14(1). https://doi.org/10.1186/1471-2105-14-106 

Fonti, V., & Belitser, E. (2017). Feature selection using lasso. VU Amsterdam Research 

Paper in Business Analytics, 30, 1-25. 

Pouriyeh, S., Vahid, S., Sannino, G., De Pietro, G., Arabnia, H., & Gutierrez, J. (2017, July). 

A comprehensive investigation and comparison of machine learning techniques in the 

domain of heart disease. In 2017 IEEE symposium on computers and communications 

(ISCC) (pp. 204-207). IEEE. 

Parthiban, G., & Srivatsa, S. K. (2012). Applying machine learning methods in diagnosing 

heart disease for diabetic patients. International Journal of Applied Information Systems 

(IJAIS), 3(7), 25-30. 

Forssen, H., Patel, R., Fitzpatrick, N., Hingorani, A., Timmis, A., Hemingway, H., & 

Denaxas, S. (2017). Evaluation of machine learning methods to predict coronary artery 

disease using metabolomic data. In Stud Health Technol Inform (Vol. 235, pp. 111-115). 

IOS Press. 

Krishnani, D., Kumari, A., Dewangan, A., Singh, A., & Naik, N. S. (2019, October). 

Prediction of coronary heart disease using supervised machine learning algorithms. 

In TENCON 2019-2019 IEEE Region 10 Conference (TENCON) (pp. 367-372). IEEE. 

https://doi.org/10.1186/1471-2105-14-106


38 
 

Ramalingam, V. V., Dandapath, A., & Raja, M. K. (2018). Heart disease prediction using 

machine learning techniques: a survey. International Journal of Engineering & 

Technology, 7(2.8), 684-687. 

Campbell, C., & Ying, Y. (2011). Learning with support vector machines. Synthesis lectures 

on artificial intelligence and machine learning, 5(1), 1-95. 

Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning 

from class-imbalanced data: Review of methods and applications. Expert Systems with 

Applications, 73, 220-239. 

Hand, D. J. (2009). Measuring classifier performance: a coherent alternative to the area 

under the ROC curve. Machine learning, 77(1), 103-123. 

Marma, A. K., & Lloyd-Jones, D. M. (2009). Systematic examination of the updated 

Framingham heart study general cardiovascular risk profile. Circulation, 120(5), 384. 

Cavanaugh-Hussey, M. W., Berry, J. D., & Lloyd-Jones, D. M. (2008). Who exceeds ATP-

III risk thresholds? Systematic examination of the effect of varying age and risk factor levels 

in the ATP-III risk assessment tool. Preventive medicine, 47(6), 619-623. 

Cuperlovic-Culf, M. (2018). Machine learning methods for analysis of metabolic data and 

metabolic pathway modeling. Metabolites, 8(1), 4. 

Bhopal, R., Fischbacher, C., Vartiainen, E., Unwin, N., White, M., & Alberti, G. (2005). 

Predicted and observed cardiovascular disease in South Asians: application of FINRISK, 

Framingham and SCORE models to Newcastle Heart Project data. Journal of public 

health, 27(1), 93-100. 

Soininen, P., Kangas, A. J., Würtz, P., Suna, T., & Ala-Korpela, M. (2015). Quantitative 

serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and 

genetics. Circulation: cardiovascular genetics, 8(1), 192-206. 

Everlywell. (n.d.). Home Health Testing | Results You Can Understand. Retrieved June 2, 

2021, from https://www.everlywell.com/ 

Yu, C. S., Lin, Y. J., Lin, C. H., Wang, S. T., Lin, S. Y., Lin, S. H., Wu, J. L., & Chang, S. 

S. (2020). Predicting Metabolic Syndrome With Machine Learning Models Using a Decision 

Tree Algorithm: Retrospective Cohort Study. JMIR Medical Informatics, 8(3), e17110. 

https://doi.org/10.2196/17110 

 

https://www.everlywell.com/



