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Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured
from a 3D surface photogrammetry system.
Methods: The authors have developed a robust and fast surface reconstruction method on point
clouds acquired by the photogrammetry system, without explicitly solving the partial differential
equation required by a typical variational approach. Taking advantage of the overcomplete nature
of the acquired point clouds, their method solves and propagates a sparse linear relationship from
the point cloud manifold to the surface manifold, assuming both manifolds share similar local
geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression
(SR) model to directly approximate the target point cloud as a sparse linear combination from the
training set, assuming that the point correspondences built by the iterative closest point (ICP) is
reasonably accurate and have residual errors following a Gaussian distribution. To accommodate
changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors
further propose a modified sparse regression (MSR) model to model the potentially large and sparse
error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical
point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent
occlusions. The authors quantitatively evaluated the reconstruction performance with respect to
root-mean-squared-error, by comparing its reconstruction results against that from the variational
method.
Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter
reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a
subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has
demonstrated its advantage in achieving consistent and robust performance despite the introduced
occlusions.
Conclusions: The authors have developed a fast and robust surface reconstruction method on
point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter
reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking
in radiotherapy, with clear surface structures for better quantifications. C 2016 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4945695]

Key words: surface reconstruction, real-time, point cloud, photogrammetry system, sparse
regression

1. INTRODUCTION

Motion monitoring and tracking play an important role
in radiotherapy. Surface photogrammetry-based systems are
gaining increasing popularity on patient positioning and
motion tracking1 in radiotherapy. Such systems, e.g., Vi-
sionRT (VisionRT Ltd., London, UK) and C-RAD (C-RAD

AB, Uppsala, Sweden), captures dynamic point clouds of
patient surface in real-time and provides an intensive yet a
noninvasive way for monitoring patient motion. VisionRT, for
example, projects a speckle pattern of visible (red) light on
the thoracoabdominal surface of a supine patient, and such
pattern is captured at about 10–25 Hz via optical cameras.
A common occurrence in surface photogrammetry systems
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F. 1. The basic idea of the proposed method: the target point cloud is first approximated as a sparse linear combination of the training point clouds with
coefficient ŵ; the target level-set surface is subsequently reconstructed from the corresponding training surfaces using the same coefficients, assuming that any
given point cloud and its level-set surface shares similar local topological geometry.

is noisy or missing measurements, due to, e.g., chest hair or
the presence of immobilizing devices and fixtures which may
partially occlude the patient surface. Blindly registering such
intrinsically discordant point clouds is subject to large errors
in the order of centimeters.2 Our group has recently developed
a variational method to reconstruct a continuous surface
from the point cloud by optimizing a regularized functional.3

The reconstructed continuous surface is robust to noise and
missing measurements and permits better quantification of the
surface structure and subsequent motion tracking. However,
the variational method requires solving a partial differential
equation (PDE), which is usually time consuming, as the
time step is restricted by the Courant–Friedrichs–Lewy (CFL)
condition. Studies have been conducted to speed up the PDE
evolution by restricting computations to be within a small
narrowband of the level-set function,4 using multiresolution,5

and utilizing convex optimization schemes.6 Despite these
efforts, current approaches are still far from meeting the real-
time reconstruction requirement, as desired in adaptive radio-
therapy for managing respiratory motion. To bridge the gap,

this study builds upon recent developments on sparse shape
composition and representation7–9 and proposes a fast yet
robust method to reconstruct patient surface without explicitly
solving the PDE. The overarching premise is that normal
variations of patient motion (mostly respiratory) are largely
repetitive with limited physiological variations, and any point
cloud or its underlying surface can be embedded within a
local submanifold. Given a sufficient set of training point
clouds with their corresponding surfaces, we first approximate
the target point cloud as a sparse linear combination from
the training point clouds. The target level-set surface is
subsequently reconstructed from the corresponding training
surfaces using the same linear coefficients, assuming that
alternating from point clouds to their corresponding surfaces
does not change the topological relationship in their low-
dimensional embeddings. To the best of our knowledge, this
is the first time a real-time continuous surface reconstruction
method has been developed in a photogrammetry system. The
proposed method provides a new pathway to achieve fast and
reliable patient position monitoring and serves as a robust

A I. Fast surface reconstruction.

Input: target point cloud pt and training point clouds {p1, p2, ..., pk}
Step 1: Reconstruct surfaces from training point clouds using the variational method (offline)

• {φ1, ..., φk}← PDE-based variational surface reconstruction ({p1, p2, ..., pk})
Step 2: Build training libraries on aligned point clouds and surfaces using ICP (offline)

• solve rigid transformation Ti, with p1 as reference: Ti← ICP(p1, pi)
• construct point cloud library: P = [p1, p2◦T2, ..., pk ◦Tk] ∈Rn×k
• construct surface library: Φ= [φ1, φ2◦T2, ..., φk ◦Tk] ∈RN×k

Step 3: Represent target point cloud on P through sparse linear regression (online):
• align target point cloud to the reference: p̃t← pt ◦Tt

• represent p̂t on P through sparse regression (SR): ŵ← min
w

∥ p̃t−Pw∥2
2+λ∥w∥1,

or through modified sparse regression (MSR): ŵ, ê← min
w,e

∥ p̃t−Pw−e∥2
2+λ∥w∥1+γ∥e∥1

Step 4: Propagate ŵ from point clouds to level-set surfaces (online)
• reconstruct target surface as: φ̂t =Φŵ

Output: final reconstructed surface φ̂t← φ̂t ◦T−1
t

Medical Physics, Vol. 43, No. 5, May 2016
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F. 2. Temporal plot of discrepancies between each of the 200 continuous
surfaces against the first surface based on RMSE.

prestep to facilitate real-time motion management during the
treatment.

2. METHOD
2.A. Variational surface reconstruction method

The level-set method10 is especially suitable for point
cloud representation, as it offers a continuous representa-
tion of underlying curves/surfaces and avoids constructing
explicit point correspondences for capturing and tracking
deformations. Specifically, given a surface C, it is implicitly
represented as the zero level-set of its corresponding level-set
function in a space that is one dimension higher. Given a point
cloud p, the level-set surface is constructed by optimizing the
following regularized functional:5,11

E(φ(x))=

Ω

d(x,p)δ(φ(x))|∇φ(x)|dx, (1)

where d(x,p) defines a distance function to the point cloud p,
φ(x) represents the level-set function, and δ is the Dirac delta

function. Equation (1) is usually solved with gradient descent
by evolving the following PDE:

∂φ

∂t
= |∇φ|

(
∇d · ∇φ|∇φ| +d∇· ∇φ|∇φ|

)
. (2)

Solving this PDE is time consuming, since its time step
is restricted by the CFL condition. An alternative fast and
robust surface reconstruction method is needed to meet the
real-time requirement in radiotherapy, where a subsecond
reconstruction time is desirable for point clouds acquired
under normal breathing (3–5 s/cycle) to meet the Nyquist
sampling criterion.

2.B. Proposed fast surface reconstruction method

In this study, we propose a fast yet robust surface
reconstruction method, taking advantage of the repetitive and
overcomplete nature of the acquired point cloud set. Given
sufficient number of training point clouds and their corre-
sponding level-set surfaces, we approximate the target point
cloud as a sparse linear combinations from the training set.
This can be perceived as a local linear descriptor for the open
subset of Euclidean space, as a small open set about the
given point cloud is transformed by its coordinate chart. The
target level-set surface is subsequently reconstructed by using
the same linear coefficients, assuming that the target surface
shares the same topological relationship as that from the
target point cloud. The validity of this assumption is based on
accurate reconstruction of the underlying continuous patient
surfaces from the training point clouds using the variational
method, which has been verified quantitatively in our previous
study.3 The basic idea of the proposed method is illustrated

F. 3. Example point cloud and reconstructed surfaces from both the variational method and our method: (a) example point cloud, (b) example surface
reconstructed by the variational method, (c) example surface reconstructed by the SR model, and (d) example surface reconstructed by the MSR model.

Medical Physics, Vol. 43, No. 5, May 2016
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F. 4. Example reconstructed surfaces represented by height functions and their error maps: (a) height function of the surface reconstructed by the variational
method, (b) height function of the surface reconstructed by the SR model, (c) height function of the surface reconstructed by the MSR model, (d) ROI in the
chest area from (a), (e) ROI in the chest area from (b), (f) ROI in the chest area from (c), (g) error map within the ROI from the SR model, depicting difference
between (d) and (e), and (h) error map within the ROI from the MSR model, depicting difference between (d) and (f).

in Fig. 1. Specifically, our proposed method consists the
following four consecutive steps.

2.B.1. Reconstruct level-set surfaces on training point
clouds (offline)

We first reconstruct training level-set surfaces from
the training point clouds, following steps from previ-
ously proposed variational reconstruction method described
in Sec. 2.A.3 Specifically, given k training point clouds
{p1, p2, . . ., pk}, we reconstruct their corresponding sur-
faces as {φ1, φ2,..., φk}, with φi ∈ RN being the level-set
function representing each reconstructed surface. This step
requires the most computational efforts and is performed
offline.

2.B.2. Build training libraries on aligned point clouds
and surfaces with iterative closest point (ICP) (offline)

The ICP algorithm is used to align the training point
clouds.12 Specifically, we arbitrarily choose a point cloud
p1 ∈ Rn in the training set as the reference and transform the

rest of the point clouds into the same coordinate system with
correspondences using ICP: {p2 ◦T2, ..., pk ◦Tk}, where Ti

represents the rigid transformation of each training point cloud
to the reference and ◦ represents the composition operator.
Our training libraries for both the point clouds and their
corresponding surfaces are built as follows: P = [p1, p2 ◦
T2, ..., pk ◦Tk] ∈Rn×k and Φ= [φ1, φ2◦T2, ..., φk ◦Tk] ∈RN×k.

2.B.3. Represent target point cloud on P through
sparse linear regression (online)

Given the repetitive and overcomplete nature of the
respiratory signals, it is reasonable to expect high-dimensional

T I. Error statistics of the reconstructed surfaces from 100 testing point
clouds based on RMSE (in mm).

Mean S.D. Median

SR model 0.65 0.63 0.01
MSR model 0.62 0.59 −0.02

Medical Physics, Vol. 43, No. 5, May 2016
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T II. Comparison of computational time from different models (in sec-
ond), with k = 100 (training size) and n = 335 (point cloud size).

Mean S.D. Median

SR model 0.52 0.02 0.52
MSR model 0.94 0.13 0.94
Variational model 82.23 1.15 82.35

point clouds and the corresponding level-set surfaces to lie in a
low-dimensional manifold. With sufficient training data, any
target point cloud/surface can be approximated by a sparse
linear combination of examples in the training set. Given any
target point cloud pt ∈ Rn, we propose to solve its sparse
representation with

min
w

∥ p̃t−Pw∥2
2+λ∥w∥1, (3)

where p̃t = pt ◦Tt is prealigned to the reference coordinates,
and λ is the regularization coefficient that controls the
sparseness of w. Note that Eq. (3) explicitly assumes that
ICP finds relatively accurate point-to-point correspondences
among different point clouds in P, and the error of the
built correspondences follows a Gaussian distribution. This
is generally true if we have reasonably consistent point cloud
acquisitions over time.

However, problems may arise when inconsistent noise
levels or occlusions are present, which results in large errors
caused by the many-to-one correspondences built by ICP.
Inspired by Refs. 7 and 13, we propose a modified model
by directly considering such large error,

p̃t � Pw+e, (4)

where e ∈ Rn represents the error vector, whose nonzero
entries indicate errors in p̃t that are either caused by
inconsistent noise levels or occlusions. Assuming that the
noise/occlusion in e is sparse, our modified sparse coefficient
can be solved by

min
w,e

∥ p̃t−Pw−e∥2
2+λ∥w∥1+γ∥e∥1, (5)

where γ is the regularization coefficient which controls
the sparseness of the inconsistent noise level and missing
measurements, with p̂t = Pŵ approximates the clean point
cloud. Both Eqs. (3) and (5) are convex and can be efficiently
solved by various iterative algorithms.14,15

F. 5. Effects of different training sizes on the reconstruction results evalu-
ated on 100 testing point clouds based on RMSE.

2.B.4. Propagate the sparse coefficients from point
clouds to level-set surfaces (online)

Assuming that training point clouds and their level-set
surfaces share the same topological geometry (reflected in
the local linear coefficients), we propose to reconstruct the
target level-set surface as φ̂t =Φŵ ∈ RN . Finally, the target
surface is transformed back to its original coordinates φ̂t◦T−1

t .
Algorithm I illustrates details of the proposed method.

3. EXPERIMENTS AND RESULTS

We tested the proposed method on 200 clinical point
clouds, which were captured continuously from the thora-
coabdominal surface of a supine subject by the VisionRT
system at 15 Hz and spanned about 14 s. The temporal
plot of discrepancies between each of the 200 continuous
surfaces against the first surface is shown in Fig. 2, where clear
respiratory cycles and motion variations can be observed. We
chose the first 100 point clouds as the training set and evaluated
the performance of our method on the rest of the 100 testing
point clouds. The reconstruction accuracy was evaluated
based on root-mean-squared-error (RMSE) by comparing
our reconstructed surfaces against surfaces reconstructed by
the variational method,3 which has validated accuracy and

F. 6. Illustration of adding additional occlusions to the testing point cloud: (a) the original point cloud, (b) point cloud with additional occlusions.

Medical Physics, Vol. 43, No. 5, May 2016
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T III. Error statistics of the reconstructed surfaces on 100 testing point
clouds with inconsistent occlusions based on RMSE (in mm).

Mean S.D. Median

SR model 1.06 0.89 −0.48
MSR model 0.65 0.61 −0.26

could be considered as benchmark in this scenario. We
further evaluated both the proposed reconstruction models by
including inconsistent occlusions to the testing point clouds.
For all experiments, we evaluated the performance of both
the sparse regression (SR) model and the modified sparse
regression (MSR) model.

3.A. Parameter settings

The PDE-based variational surface reconstruction was
implemented on a rectangular grid with size 200×150×75,
with time step ∆t = 0.01. The proposed method was tested
with  2013b on Mac OS 10.9.4, running on a macbook
laptop with quad-core I7 2.3 GHz, 8GB RAM. The original
point cloud has a size of 5107 and was downsampled
to 335 by keeping every 15th sample for speed-up. We
solved both the proposed regression models using , a
package for solving convex problems.14,15 We empirically
chose regularization coefficients in our regression models to
be λ = 1,γ = 0.05.

3.B. Surface reconstruction results and evaluations

Figure 3(a) shows one typical point cloud acquired
by the VisionRT system. Figures 3(b)–3(d) compare the

reconstruction results from the SR and MSR models with
the result from the variational method. For the convenience of
performance evaluation, we represent reconstructed surfaces
as height functions in a Cartesian coordinates: z = f (x,y).
Figures 4(a)–4(c) illustrate example height functions from our
reconstructed surfaces against the benchmark. We evaluated
the reconstruction error within selected ROI in the chest area,
as shown in Figs. 4(d)–4(f). The reconstruction accuracy
was evaluated based on RMSE. Specifically, on a regular
grid with size m × n, we calculated RMSE and standard
deviation as the following: RMSE =


(1/mn)m

i

n
j e2

i, j,

and S.D. =

(1/mn)m

i

n
j

(
ei, j−

(m
i

n
j ei, j/mn

))2
, where

ei, j is the point-wise error defined as ei, j = zvar(i, j)
− zfast(i, j), with zvar and zfast being the height functions
of the surfaces reconstructed by the variational method
and our method, respectively. We tested both SR and
MSR models on 100 testing point clouds. The error
statistics are reported and compared in Table I, where
sub-millimeter reconstruction accuracy was achieved from
both models. In this experiment, we observed similar
reconstruction accuracy from both models, with relative
consistent acquisitions from both training and testing point
clouds. The computational time was compared in Table II,
where both of our models achieved subsecond reconstruction
speed, as opposed to the mean 82.2 s from the variational
approach. The MSR model required more computational
efforts, since it required solving a larger linear system by
considering the errors caused by inconsistent noise levels or
occlusions.

We further evaluated the effect of training size on the end
reconstruction results for both the proposed models. As shown

F. 7. Example reconstructed surfaces from point clouds with inconsistent occlusions: (a) height function of the reconstructed surface by the variational method,
(b) height function of the reconstructed surface by the SR model, (c) height function of the reconstructed surface by the MSR model, (d) error map depicting
difference between (a) and (b), and (e) error map depicting difference between (a) and (c).
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T IV. Comparison of computational time from different models with
inconsistent occlusions (in second), with k = 100 (training size) and n = 335
(point cloud size).

Mean S.D. Median

SR model 0.52 0.03 0.51
MSR model 0.94 0.17 0.94
Variational model 82.23 1.15 82.35

in Fig. 5, the proposed MSR model performed consistently
better than the SR model. There was a sharp error drop at
training size 40, which roughly spans two respiratory cycles
and covers most of the physiological motion variations of this
subject. In practice, we recommend the training acquisition to
at least cover a few respiratory cycles of one subject to ensure
accurate reconstruction results.

3.C. Surface reconstruction with inconsistent
occlusions

In the previous experiment, acquisitions from both our
training and testing sets were relatively consistent. However,
inconsistent noise level and/or occlusions might appear during
the acquisition due to either changing of lighting conditions
or patient movement. To further test the robustness of the
proposed two models under such inconsistent acquisitions,
we included additional occlusions in the chest area in all
the 100 testing point clouds, as shown in Fig. 6. We tested
both of our models on the new testing set and reported
error statistics in Table III. Figure 7 illustrates and compares
example reconstructed surfaces and their error maps from
both models. The MSR model demonstrated its advantage
in this experiment, despite the presence of the inconsistent
occlusions, as opposed to the large accuracy drop from
the SR model. The computational time was compared in
Table IV.

4. DISCUSSION AND CONCLUSION

We have proposed a fast and robust surface reconstruction
method on point clouds acquired by the photogrammetry
system, with two specific models to accommodate surface
reconstructions under different noise/occlusion scenarios.
Taking advantage of the overcomplete nature of the training
point clouds, both of the proposed models solve and propagate
a sparse linear relationship from the point cloud manifold to
the surface manifold, assuming that any given point cloud and
its level-set surface shares similar local topological geometry.
The proposed SR model directly approximates the target point
cloud as a sparse linear combination from the training set,
assuming relatively consistent point cloud acquisitions, and
the error from the point correspondences built by ICP follows a
Gaussian distribution. This model has achieved sub-millimeter
reconstruction accuracy, with subsecond reconstruction time
from 100 clinical point clouds. To accommodate for the
situations when there are changing noise levels and/or the

presence of inconsistent occlusions during the acquisition, we
have further proposed a MSR model that explicitly models
potentially sparse and large one-to-one correspondence errors
built by ICP. The MSR model has achieved both sub-
millimeter accuracy and subsecond reconstruction time on all
clinical testing points, and has demonstrated consistent and
robust performance even on point clouds with inconsistent
occlusions.

In the proposed method, both the regularization coefficients
λ and γ have clear physical meanings, and they are easy to
tune in practice. Specifically, λ controls the sparseness of
the weighting coefficient for the training point clouds and
γ controls the sparseness of the inconsistent noise levels
and/or occlusions. In our experiments, we empirically chose
and fixed those two parameters, and we find our algorithm
robust to values of these parameters within reasonable
ranges.

This study assumes that the given point cloud and its
level-set surface share similar local topological geometry,
which permits the subsequent propagation of the sparse linear
relationship from the point clouds to the level-set surfaces. The
validity of this assumption is based on accurate reconstruction
of the underlying continuous patient surfaces from the training
and sufficient coverage of the physiological variations by the
training. The variational reconstruction approach we used
in this study has been quantitatively validated to have sub-
millimeter accuracy.3 Should an alternative method be used, its
continuous reconstruction performance needs to be rigorously
validated or the overall performance may be affected. The
second assumption on sufficient coverage of motion variations
is easily satisfied given the semiperiodic nature of the thora-
coabdominal motion due to respiration and the fast acquisition
rate of most photogrammetry systems. Note that our method
does not require consistent acquisition of training point clouds,
as consistent samples can be acquired from the correspond-
ing reconstructed continuous surfaces (from inconsistent
acquisition).

When the lighting condition is consistent during test acqui-
sition, we expect consistent point cloud representations and
recommend using the computationally economical SR model.
Otherwise, the MSR model is suggested to provide more
robust reconstruction, at the cost of solving a linear system
that is (n+ k)/k times larger than that from the SR model,
where k is the number of training point clouds, n is the size of
each point cloud. In this study, under the setup of k = 100 and
n= 335, solving the regression of the SR model is roughly four
times faster than that of the MSR. However, such efficiency is
sacrificed by the additional cost of ICP alignment (the same
for both models), and the overall computational cost of the
SR model was about half of that from the MSR model in our
experiment.
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