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ABSTRACT 

‘Personal comfort systems’ and thermally active clothing are able to warm and cool individual 

building occupants by transferring heat directly to and from their body surfaces. Such systems 

would ideally target local body surfaces with high temperature sensitivities. Such sensitivities 

have not been quantified in detail before. Here we report local thermal sensations and sensi-

tivities for 318 local skin spots distributed over one side of the body, measured on a large 

number of subjects. Skin temperature changes were induced with a thermal probe 14 mm in 

diameter, and subjective thermal sensations were surveyed after 10 seconds. Our neutral base 

temperature was 31oC and the spot stimulus was ±5oC. Cool and warm sensitivities are seen to 

vary widely by body part. The foot, lower leg and upper chest are much less sensitive than 

average; in comparison, the cheek, neck back, and seat area are 2-3 times as sensitive to both 

cooling and warming stimuli. Every body part exhibits stronger sensitivity to cooling (1.3–1.6 

times stronger) than to warming. Inter-personal differences and regional variance within body 

parts were observed to be 2-3 times greater than potential sex differences. These high-density 

thermal sensitivity maps with appended dataset provide the most comprehensive distributions 

of cold and warm sensitivity across the human body.  
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NOMENCLATURE 

ANOVA analysis of variance 

BMI  body mass index 

BSA  body surface area 

C   cooling sensitivity 

PCS   personal comfort systems 

r   Pearson correlation coefficient 

R2   coefficient of determination 

SD   standard deviation 

TSV  thermal sensation vote 

Tsk   skin temperature 

ΔTsk  skin temperature difference 

W   warming sensitivity 

1 INTRODUCTION 

1.1 Background 

The thermal sensations elicited by skin surface temperatures are a primary input to our 

sensing the surrounding environment, and our judging whether we are comfortable [1,2]. The 

skin’s warm and cool sensitivities determine the thermal sensations experienced at different 

temperatures. They are important for the design of heating and cooling systems, especially 

those that condition local body parts via radiant beams, jets of air, or by contact with warmed 

or cooled conductive surfaces. Such systems include personal comfort systems (PCS) in 

furniture such as chairs, desks, and workstations [3,4], wearable comfort devices [5], and 

sport and protective clothing [6]. They serve both to mitigate thermal discomfort and to 

induce positive sensations of thermal pleasure through heating or cooling [7]. Designers of 
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such systems would benefit from knowing the sensitivity of different parts of the body surface 

in order target the more sensitive ones.  

1.2 Thermal sensitivity of the skin 

Physiologies related to thermal sensitivity have been mapped in the past, such as the 

location of thermal sensory neurons in the skin [8], skin temperature distributions [9], and 

sweating patterns [10]. Researchers have also measured thermal sensitivity of the human skin 

for various purposes, in studies summarized in Table 1. The earliest studies detected and 

mapped the distribution of thermally sensitive spots in the skin. Contact stimulators 

(thermodes) with controlled tip temperatures and tiny diameters (around 1-2.5 mm) were 

applied to neighboring points within a small surface area of a body part. Melzack et al. [11] 

mapped the distribution of sensitivity within 5×5 cm areas on the back and forearm using a 

2.5mm diameter round stimulator tip. They found skin sensitivity to cooling and warming 

stimuli to be distributed in relatively large sensory fields rather than in isolated spots. 

Subsequent researchers stimulated larger skin surface areas by applying radiant heating 

[12,13]. They found that both the irradiation level and the area of the stimulated surface 

contributed to the magnitude of the warm sensation, which they termed the ‘spatial 

summation effect’ [13]. In recent studies [14–16], larger contact stimulators have been used to 

test thermal perception and pain thresholds across various body parts, observing large 

differences in these variables among the parts. Stevens and Choo [16], in mapping cooling 

and warming perceptional thresholds for young, middle-aged and elderly adults, found that 

these thresholds vary 10- to 100-fold over the body surface, depending on age.  

The most detailed sensitivity mapping are from [17–19], where the authors tested 31 

locations using a 25 cm2 stimulus probe studying sensitivity under rest and exercise on males 

and females. Li et al. [20] measured thermal sensitivity at high density with 23 spots on the 

palm. Our previous study used a heating and cooling stimulus probe of 1.54cm2 for 

comparing the sensitivity of glabrous and hairy skin, and the data was used in the design of a 

thermally conditioned insole [4].  

1.3 Objective 

For the purpose of designing personal comfort systems, wearables, and clothing, existing 

sensitivity data is either not dense enough or is focused only on a few body parts [17]. This 

study aims to describe the distribution of thermal sensitivity across the entire body (assuming 
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that thermal sensitivity is symmetrically distributed over the left and right body halves) at a 

high enough resolution to be used for locating specific areas of thermal input or extraction. It 

also intended to quantify the extent of sex differences, and add to knowledge about inter- and 

intrapersonal variation in warm and cool sensitivity.   
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Table 1 A summary of human body thermal sensitivity studies 

Year Ye
ar

Stimula
tors

Stimul
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surface 
area 
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Test   
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ons

Test spots in the various body segments
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m
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F
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t 
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u
m

T
ot
al 
te
st 
sp
ot
s

Melzack 
et al. [11]

19
62

Tip 
type 
stimula
tor

0.05
Warmt
h and 
cold

__ __ __

Nadel et 
al. 
[12]

19
73

Irradiat
ion

300~1
000

Warmt
h 1 1 1 1 1 1 1 7

Stevens et 
al. [13]

19
74

Irradiat
ion 3.7~22 Warmt

h 1 1 1 1 1 1 1 1 1 1 10

Meh et al.  
[14]

19
94

Contact
ing 
surface

12.5 1 1 1 1 1 1 1 1 1 9

Stevens et 
al. [16]

19
98

Contact
ing 
surface

4.84
Warmt
h and 
cold

1 2 1 1 1 1 1 1 1 1 1 1 13

Norrsell et 
al. [8]

19
99

Contact
ing 
surface

3.75
Warmt
h and 
cold

Nakamura 
et al. [15]

20
08

Contact
ing 
surface

270
Warmt
h and 
cold

1 1 1 1 1 5

Li et al.  
[20]

20
08

Contact
ing 
surface

2
Warmt
h and 
cold

23 23

Ouzzahra 
et al. [21]

20
12

Contact
ing 
surface

25 Cold 4 2 6 2 2 16

Gerrett et 
al. [18]

20
14

Contact
ing 
surface

25 Warmt
h 1 1 2 4 3 7 2 2 4 3 1 1 31

Gerrett et 
al. [19]

20
15

Contact
ing 
surface

25 Cold 1 1 2 4 2 6 2 2 4 3 1 1 29

Filingeri 
et al. [17]

20
18

Contact
ing 
surface

1.32
Warmt
h and 
cold

24 25 23 22 10
4

Current 
study

Contact
ing 
surface

1.32
Warmt
h and 
cold

35 30 12 13 14 24 28 14 28 16 24 25 23 32 31
8
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2 METHODS  

The testing was carried out in the Center for the Built Environment (CBE), University of 

California, Berkeley climate chamber where temperature and humidity were maintained at 

25°C and 40%, a neutral condition for the subjects and their clothing. The test protocol was 

reviewed by University of California Berkeley’s Committee for the Protection of Human Sub-

jects, and awarded approval number 2015-08-7882.  

2.1 Participants 

Because of the length of the tests, we planned the measurements in three groups of body 

segments, each represented by a particular group of subjects. All subjects met uniform re-

cruitment criteria. Their profiles are given in Table 2. They were all college students or junior 

researchers living in the Berkeley area (California, USA) for at least 3 months prior to the test. 

They all had light-to-none caffeine, alcohol, smoking habits – less than 2 cups of coffee or 2 

cigarettes a day, and normal exercise intensity with 2-4 times per week.  

Both sex groups had similar proportion of ethnicities. Male subjects included 13 Cau-

casian, 13 Asian, 4 Hispanic, and 2 others, while female subjects had 15 Caucasian, 14 Asian, 

4 Hispanic, and 3 others. The female subjects were evenly distributed across a typical 28-day 

menstrual cycle (mean day = 13.4; SD = 7.8).  

We informally selected subjects to reduce the difference in body surface areas (BSA) be-

tween the sexes (using larger women, smaller men). The number of test points in a given body 

part (and therefore its stimulated area) is the same for the sexes. Since the sensation is be pro-

portional to the relative area of stimulation [13,18], matching the surface area of both sexes 

helps ensure that similar proportions of their surfaces are directly stimulated by the area of the 

thermal probe (see Table 2“proportion of BSA stimulated (%)” column), reducing the con-

founding effect of body size on sex differences. Each subject’s body surface area was calcu-

lated following the Du Bois method [22]. Then, a proportion was defined as the ratio between 

stimulus probe surface area (1.54 cm2) and BSA. Statistical differences between groups for 

each characteristic were assessed by independent group t-tests. The BSA for the two sexes in 

each subject group were not significantly different from each other.  

Table 2 Subjects’ profile.  
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2.2 Test Spots 

The spot heating and cooling stimuli were applied to 318 spots, over the left half of the 

whole body, front and back. Figure 1 shows an overall picture of the test spots from front and 

back views of the body, and the number of test spots for each body area. The following body 

areas were tested: the face, neck ventral, neck dorsal, chest, abdomen, back, upper-arm, 

forearm, palm, dorsum of hand, buttock, thigh, lower leg, sole, dorsum of foot. We repeated 

our previous testing of the foot sole and dorsum [17] at the same spot locations as before, 

using a stronger heating and cooling stimulus level (± 7°C vs ± 5°C). So, we tested 15 body 

parts in total, with two of them at additional higher stimulus levels. As shown in Figure 1, the 

density and anatomical location of the test spots were selected to provide uniform coverage at 

high density, with increased density for the small but thermally important body parts: hands, 

feet, neck, and face. Detailed descriptions of test spots can be found in Appendix A.  

Tested 

areas 
Sex

Age 

(year)

Mass 

(kg)

Height 

(m)

BSA  

(m2)

Proportion of BSA 

stimulated (%)

Group 1 

（142 

test 

spots）

 Face, 
upper 
arm, 

chest, 
abdomen, 
buttock, 

thigh, 
lower leg

Male  
(n = 14)

22.3 ± 3.4 68.9 ± 8.1 1.70 ± 0.07 1.79 ± 0.12 0.0074 ± 0.0003

Female  
(n = 18)

23.7 ± 3.7 62.0 ± 4.9 1.67 ± 0.08 1.70 ± 0.06 0.0078 ± 0.0005

Probabilit
y (P)

0.248 0.013 0.35 0.054 0.065

Group 2 

（104 

test 

spots）

Hand 
dorsum, 
palm, 

foot 
dorsum, 
sole [17]

Male  
(n = 8)

30.2 ± 5.8 67.8 ± 13.4 1.69 ± 0.1 1.77 ± 0.2 0.0076 ± 0.0009

Female  
(n = 8)

27.7 ± 5.1 58.0 ± 5.4 1.67 ± 0.08 1.64 ± 0.1 0.0081 ± 0.0005

Probabilit

y (P)
0.381 0.076 0.546 0.076 0.184

Group 3 

（72 test 

spots）

Neck, 
back, 

forearm

Male  
(n = 10)

29.3 ± 6.2 66.6 ± 11.6 1.72 ± 0.07 1.75 ± 0.16 0.0076 ± 0.0007

Female  
(n = 10)

21.5 ± 1.2 58.3 ± 7.3 1.62 ± 0.06 1.62 ± 0.11 0.0082 ± 0.0005

Probabilit

y (P)
0.003 0.065 0.004 0.16 0.17
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!  

Figure 1. Distribution of test spots. All the spots were medial or on the left side of the body, 

assuming symmetry [14]. 

2.3 Experimental apparatus 

The test apparatus was almost identical to that of our previous study described by Filin-

geri et al.[23]. We summarize it here. Figure 2 depicts the apparatus employed in the test, and 

Fig.2A shows the thermal probe with its 1.54 cm2 surface area (14 mm diameter, NTE-2A, 

Physitemp Instruments Inc., USA). The temperature of the probe surface can be precisely con-

trolled within a range of 15-45oC within 0.1oC accuracy, with a response rate of 2.43oC/s.  

We monitored the temperature changes at the interface between the skin and thermal 

probe before, during, and after the application of each heating/cooling stimulus. In order to 

read the spot skin temperature (Tsk) induced by the probe, a 0.6mm diameter spherical Type T 

thermocouple bead was centered on the probe surface. It has a 0.7 sec time constant and was 

read by a BAT-12 Microprobe Thermometer (accuracy of ±0.1°C between 0-50°C; Physitemp 

Instruments Inc., USA). We judge that half of the sphere’s surface area is in direct contact 

with the skin into which it is pressed, while the contact area between the spherical bead and 

the planar steel probe surface is very small.  

We made two changes from our previous study [25]: 1) we increased the stimulation time 

prior to sensation measurement from 5 seconds to 10 seconds to assure that the skin tempera-

ture reached stability. We observed in the earlier tests that though the cooling stimulus reached 
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a stable skin temperature value in 3 seconds, warming sensation required 4 to 7 seconds. Mea-

surements must be taken soon after this, because over longer durations adaptation causes the 

thermal sensation to diminish. 2) the thermistor bead had been smaller (0.3mm) in the previ-

ous study but proved fragile. The increase in time constant for the larger bead (0.7 vs 0.5 sec) 

is very small compared to the length of the stimulation time prior to sensation measurement.  

Fig.2C presents the programmed temperature cycling of the probe. The temperatures 

were selected as described in [17]. The neutral skin temperatures for different body parts are 

largely between 30 and 32.5oC, the average skin temperature of the human body is around 

31oC [24], and the temperature range for maximal activation of cutaneous cold thermorecep-

tors is 27-22°C, and for warm thermoreceptors is 36-42°C [25]. We could not practically vary 

the baseline temperature during the course of the study because of large interpersonal and in-

traregional variation. Instead we adopted 31oC as the baseline temperature and pre-adapted 

the skin to it for 5 seconds before applying the warm or cool thermal stimulus. Subjects do not 

perceive a temperature change when 31oC is applied (they perceive it as neutral), and their 

skin temperature adapts to that temperature within the five seconds. The subsequent warming 

and cooling stimulus temperatures were selected to be ±5°C from 31°C, thus 26°C for the 

cool stimulus and 36°C for the warm stimulus. We made an exception for the foot dorsum and 

sole: because we had measured them before in our earlier study at ±5°C and found low sensi-

tivity for both heating and cooling [25]; in this study we increased the stimulus temperature to 

±7°C and re-measured each of the earlier test spots to see whether our previous map of the 

foot would change with increased stimulus temperature. 

Sensation voting happened upon the investigator’s verbal request at the 10th second of 

each stimulus’s application. The subjects were instructed that they should report the magni-

tude of the very first local thermal sensation resulting from each stimulus application. Fig. 2D 

gives the 0-10 numerical thermal sensation vote scale (TSV). The anchor points 0 and 10 are 

labeled as “Not hot/Not cold at all” and “Very Hot/Very Cold” respectively. This scale is simi-

lar to the one used in similar studies [18,21], and its choice was based on extensive evidence 

supporting the applicability and reliability of numerical rating scales for somatic sensations in 

humans [26,27]. For each body segment, the order of heating or cooling stimulus was ran-

domly arranged.  
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!  

Figure 2. A) and B) Experimental apparatus, thermal probe diameter 14 mm; C) Temperature 

cycling of the probe; D) Thermal sensation voting scale.  

2.4 Test protocol 

Groups 1 and 2 were carried out in two separate 2-hour tests on different days because of 

the large number of points. Group 3 with less points was done in one day. The test protocol is 

described in [25].  

Adapting, calibrating and training.  

Upon arrival in the chamber, subjects changed into shorts and short-sleeve shirt, without 

shoes. Then five wireless skin temperature sensors (iButtons, Maxim, USA) were taped with 

medical paper tape (3M, USA) at five locations on the right side of their body (i.e. cheek, up-

per arm, abdomen, lower back and thigh) to record local Tsk in 10s intervals. The whole-body 

mean skin temperature Tsk was estimated from the iButton measurements according to the fol-

lowing equation [28]:  
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!

(1) 

Once instrumented, subjects sat for 30-minutes to adapt to the ambient temperature. Dur-

ing this time the experimenter marked the targeted test spots with washable marker manually 

following a photographic template. These marks fixed the position of the test spots throughout 

the period of the test. The experimenter informed the subjects that non-painful warming and 

cooling stimuli would be applied. To avoid expectation bias, subjects were uninformed about 

the temperature of the stimulus, or whether the same stimulus would be applied to different 

test spots.  

To ensure consistency in the use of the thermal sensation scale, subjects’ responses were 

calibrated to anchor points by evaluating 3 separately delivered stimuli using the thermal 

probe to a representative skin site [17]. The first stimulus was set as 31°C to induce neither 

warm nor cold thermal sensation. The second and third stimuli were set as 31 ± 10°C to in-

duce the anchor feelings of “Very Hot/Very Cold”. The order of the second and third stimuli 

was randomized.  

Test execution.  

The 1.5-hour formal test was initiated after the 30-minute adaptation period. Subjects 

were instructed to only focus on the numerical rating scale placed in front of them and to re-

port their local sensation upon researcher’s request.  

First, the investigator set the thermal probe at 31°C (the baseline temperature) and placed 

it gently on the skin test spot, with a pressure enough to ensure full contact with the skin. 10 

seconds were allowed for the local Tsk to stabilize, at which time it was measured via the sur-

face thermocouple and recorded as the Tsk at the 0th second before delivery of the first stimu-

lus. 

The first round of stimuli would be either all warming or all cooling (31 ± 5°C chosen in 

random order) and the second round would be entirely at the opposite temperature. 10s after 

delivery of the stimulus, the subjects were verbally requested by the experimenter to report 

their local thermal sensation. At the same time, the local Tsk was recorded, to determine the 

ΔTsk at the test spot between the 0th and the 10th second. Then the probe was lifted from the 

test spot, re-set to 31°C, and after a 5s break, the investigator placed the probe on the next 

Whole body mean Tsk = (Cheek Tsk × 0.07) + (Upper ar m Tsk × 0.19) + (Abdomen Tsk × 0.175) + (L ower back Tsk × 0.175) + (T high Tsk × 0.39)
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randomly chosen test spot, and the same procedure was repeated until all skin spots in the 

body segment had been tested. Then, the second-round stimuli at the opposite temperature 

were delivered to the same sequence of test spots.  

2.5 Data processing 

Quantifying thermal sensitivity  

Within the literature, ‘thermal sensitivity’ has had several general meanings, including for 

example describing thresholds. It is necessary to define ‘sensitivity’ more exactly here. We 

use local thermal sensation change divided by corresponding local skin temperature change 

(equation (2) [17]). Under the stimulus temperature of ±5oC the measured skin temperature 

change ranges between 2–4oC. Since we fix the base temperature to neutral, our thermal sen-

sation votes (TSV) represent the thermal sensation change. 

  

!    (2) 

To quantify the sensitivity variance within each body part, a coefficient (equation (3)) is 

calculated for each body part by dividing the body-part average by the whole-body average. 

!   (3) 

Thermal sensitivity maps 

In the maps, the measurement spots are represented as circles, each one enclosing the 

measured thermal sensitivity values for the spot. Values between the spots are extrapolated in 

order to present the body surface as heatmaps. Separate maps were created: for front and back 

views of the whole-body, for each of the individual body segments, for warming and cooling, 

and for male and female subjects. A custom MATLAB script (The MathWorks, Inc., USA) 

was used to generate the maps. Group-averaged thermal sensitivities were represented as Z 

values entered into a matrix of X and Y coordinates representing the test spot locations (see 

Appendix A). MatLab interpolation and extrapolation functions were used to create HeatMap 

objects, which were then superimposed over representative human body images, and morphed 

accordingly.  

T h er m a l se n s i t i v i t y (
vo t e

K
) =  

t h er m a l se n sa t i o n vo t e
Δ l o c a l Tsk (K )

Sensitivity coefficient =
Aver a ge t h er m a l se n s i t i v i t y o f a b o d y p a r t

Aver a ge t h er m a l se n s i t i v i t y o f wh ol e − b o d y
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Statistical analysis 

A range of statistical tools were used for data interpretation. To evaluate changes in 

whole-body thermal state during the test in male and females, mean Tsk data were analyzed by 

two-way ANOVA, with sex as an independent factor, and time as repeated factor. In the event 

of statistically significant main effects or interactions, post-hoc analyses were conducted with 

Tukey’s HSD tests. 

To test whether thermal sensitivity varies significantly between different body parts, two-

way ANOVA tests with body part and sex as main factors were used and repeated for cooling 

and warming stimulus. If there were significant main effects or interactions, Tukey’s HSD 

tests were applied to identify which interaction caused the difference. The Tukey’s HSD test 

results were considered statistically significant when p ≤ 0.05. The interpretation code was as 

follows: p ≤ 0.001 or ‘***’ means highly significant, 0.001 < p ≤ 0.01 or ‘**’ means signifi-

cant, 0.01 < p ≤ 0.05 or ‘*’ means weakly significant, and p > 0.05 means not significant. 

A sensitivity coefficient for each body part was calculated by dividing the mean sensitivi-

ty of that body part by the whole-body average for cooling and warming stimulus. To investi-

gate whether the human body is more sensitive to cooling than warming, a two-way ANOVA 

with body part and stimulus type as main factors was applied. If there were significant main 

effects or interactions, Tukey’s HSD tests were applied to verify each interaction’s signifi-

cance.  

To examine how the thermal sensitivity under the test condition was related to ΔTsk and 

TSV, Pearson correlation coefficients r were calculated separately for cooling and warming 

stimuli, with thermal sensitivity as y input and ΔTsk (or TSV) as x input. 

To analyze whether there is a statistically significant difference in thermal sensitivity be-

tween sexes, a two-way ANOVA was conducted setting sex and body parts as main factors 

and repeated for cooling and warming stimulus.  

The test results were prepared in Microsoft Excel 2016. Statistical calculation and signifi-

cance analysis were performed in R (Version 3.5.1, RStudio Inc. Boston, MA, USA). Some 

figures were made in OriginPro (Version 2018, OriginLab, Northampton, MA, USA).  
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3 RESULTS 

3.1 Whole-body thermal sensitivity mapping and comparisons of local body part thermal 

sensitivities 

Fig.3A shows the mapping of cool and warm sensitivities across the human body from 

both front and back views. The values average male and female results.  

There is clearly a large regional variation in thermal sensitivity for different body parts. 

In general, the face is highly sensitive. The back of torso and neck is more sensitive than the 

front (note the darker colors for back than front for both heating and cooling). The abdomen is 

more sensitive than the chest. The seat is more sensitive than other parts of the trunk. The dor-

sum of the hand is more sensitive than the palm. The lower extremities are the least sensitive. 

Table 3 presents the sensitivity magnitude and variation for each body part.  

The thermal sensation votes that underlie sensitivity values are mapped in Fig.3B. Spot 

thermal sensation values range between 0.5 and 8.6 for cooling, and between 0.3 and 7.1 for 

warming, across the whole body. This indicates that our heating and cooling stimulus temper-

atures produce a wide range of responses without extreme sensations. The maps of thermal 

sensitivity and thermal sensation are very similar, showing the same pattern. In the following 

sections, we will focus on the sensitivity results.  
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Figure 3. A) Whole-body thermal sensitivity mapping, within 4 major levels. B) Whole-body 

thermal sensation mapping. The hair area on the head was not measured due to hair coverage. 

The test spots as indicated in Figure 1 are too many to be colour-mapped in this graphic. They 

are shown in the more expanded views in Figure 5, 7, and Appendix A.  

Table 3. Thermal sensitivity values for each body part 

Body part
Cooling Warming

Average SD Average SD

Face 1.89 0.43 1.36 0.53

Neck dorsal 1.73 0.22 1.38 0.44

Neck ventral 1.53 0.4 0.62 0.33

Chest 1.8 0.33 1.28 0.35

Abdomen 1.98 0.16 1.51 0.26

Back 2.02 0.21 1.3 0.37

Upper arm 2.07 0.23 1.3 0.39

Forearm 1.87 0.23 1.14 0.35

Hand palm 1.84 0.32 1.11 0.25
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Examining whether thermal sensitivity varies significantly between different body parts, 

Table S1 in Appendix B shows that both cooling sensitivity (F(16,8955) = 116.1; p < 0.001) 

and warming sensitivity (F(16,8955) = 62.0; p < 0.001) exhibit significant variance. Table S3 

presents the significance levels between each pair of body parts. It indicates that the extremi-

ties (like the sole, foot dorsum, and hand palm) and highly sensitive areas (like the face and 

buttock) are significantly different from most other body parts.  

Figure 4 shows that body parts like buttock, face, dorsum of hand, and abdomen have co-

efficients greater than 1 while the foot, lower leg, and chest are less sensitive than the whole-

body average. The neck overall is close to the whole-body average, but the back part of the 

neck is much more sensitive than the front part. Body parts with a high cooling sensitivity co-

efficient tend to be sensitive to warming as well.  

!  

Hand dorsum 2.35 0.24 1.35 0.34

Buttock 2.16 0.48 2.14 0.45

Thigh 1.92 0.13 1.31 0.27

Lower leg 1.5 0.11 0.93 0.18

Sole 5 0.75 0.38 0.45 0.2

Foot dorsum 5 1.1 0.13 0.56 0.17

Sole 7 1.02 0.27 0.43 0.13

Foot dorsum 7 1.08 0.18 0.67 0.15
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Figure 4. Sensitivity coefficients for 15 different body parts. Note that the neck is here divided 

into back and front parts. A coefficient greater than 1 means the body part is more sensitive 

than the whole-body average, otherwise it is less sensitive than the whole-body average. 

3.2 Local sensitivity within example body parts 

Figure 5 provides a more detailed look at sensitivity variance within a few individual 

body parts, with examples for face, neck, wrist, hand, foot, and the seat area. Sensitivity data 

for all test spots and maps of other body parts are given in Appendix A. 

Fig.5A shows that the cheek (cooling average = 2.31, SD = 0.24; warming average = 

1.93, SD = 0.36), ear (cooling average = 1.73, SD = 0.85; warming average = 1.72, SD = 

0.96), and back of the neck (cooling average = 1.84, SD = 0.05; warming average = 1.17, SD 

= 0.20) are very sensitive to both heating and cooling [ ]. The ventral (front of the) wrist (cool1 -

ing average = 1.87, SD = 0.19; warming average = 1.40, SD = 0.27) is more sensitive than the 

dorsal (back of the) wrist (cooling average = 1.50, SD = 0.18; warming average = 0.84, SD = 

0.23).  

Fig.5B maps the thermally sensitivity for the foot as measured by both ±5oC and ±7oC 

thermal stimuli (marked as Sole 5 or Sole 7 in the figure). It shows that the dorsum of the foot 

(cooling average = 1.10, SD = 0.13; warming average = 0.56, SD = 0.17) is more sensitive 

than the sole (cooling average = 0.75, SD = 0.38; warming average = 0.45, SD = 0.20); the 

foot arch area (cooling average = 1.18, SD = 0.26; warming average = 0.54, SD = 0.08) is 

more sensitive than the toes (cooling average = 0.44, SD = 0.12; warming average = 0.29, SD 

= 0.07) or the heel (cooling average = 0.35, SD = 0.21; warming average = 0.33, SD = 0.12)

[ ]. The ±7oC stimulus created slightly larger areas of cooling and warming sensitivity in both 2

the sole and dorsum than the ±5oC stimulus, but the patterns for both stimulus levels are simi-

lar. 

[ ] The cheek data are from face test spots 9-17 (see Appendix A); the ear data from face test spots 32, 34; the ear 1

back data from face test spots 33, 35; the back of neck data from back test spots 15-17, 24-26; the wrist data 
from forearm test spots 1-6, 10, 11, 15-20, 24, 25; the ventral wrist data from forearm test spots 1-6; and the dor-
sal wrist data from forearm test spots 15-20.

[ ] The toe data are from sole test spots 23-30; the heel data from foot dorsum test spots 40-43; the foot arch data 2

are from sole test spots 34-39.
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Fig.5C presents the sensitivity variance in the seat area [ ]. The lower buttocks are “ex3 -

tremely” sensitive to both heating and cooling (cooling average = 2.11, SD = 0.44; warming 

average = 2.04, SD = 0.38), more sensitive than the whole-body average (cooling average = 

1.53, SD = 0.53; warming average = 1.12, SD = 0.59).  

!  

!  

[ ] The seat-area data are from buttock test spots 1-14, and thigh and leg test spots 3-6; the hip data are from but3 -
tock test spots 5-10.
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Figure 5. Thermal sensitivity of A) Face area; B) Foot area; C) Seat area. Note: the circles in-

dicate the test spots and the colours within them represent their measured sensitivity.  

3.3 Stronger cooling sensitivity than warming sensitivity 

Fig. 6 shows the thermal sensitivity distributions for different body parts. Almost every 

body part (except the buttock area) tends to have significantly (30~60%) higher cooling sensi-

tivities than warming ones. The average cooling sensitivity (1.9; SD = 0.37) is stronger than 

the average warming sensitivity (1.25; SD = 0.46).  

!  

Figure 6. Cooling and warming sensitivity for individual body parts.  

To verify whether cooling sensitivity is stronger than warming sensitivity, Table S2 in 

Appendix B shows a significant difference for both the female group (F(1,9598) = 668.0; 

p<0.001) and the male group (F(1,8312) = 1178.2; p<0.001). Table S4 lists the main statistics, 

including TSV, skin temperature change (ΔTsk) and thermal sensitivity, together with signifi-

cance levels of the Tukey HSD test for each body part. It strongly indicates (with most P val-

ues less than 0.001) that the human body is more sensitive to cool stimuli than warm ones. 

The only exception is in the buttock area where the sensitivities are equal. It should be noted 

that only 5 subjects participated in the buttock test for privacy reasons.  
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3.4 Skin temperature changes  

Although the temperature of the stimulus probe was fixed at 5 or 7oC throughout the 

study, the skin temperatures change induced by the probe varied in different locations based 

on the skin’s thermal conductivity, thickness, and thermal capacity. To address whether larger 

ΔTsk causes stronger thermal sensitivity, Fig. 7 shows skin temperature and ΔTsk for individual 

body parts. Note that during the test, the whole-body mean Tsk (average = 31.55°C; SD = 

0.24) did not change significantly over the 1.5-hour formal test period (F(10, 60) = 0.3046; p = 

0.537), with no difference (F(1, 4) = 0.1931; p = 0.418) between males (average = 31.75°C; SD 

= 0.12) and females (average = 31.39°C; SD = 0.20), and was maintained within a neutral 

range (29.6-32.7°C), close to the assumed neutral baseline temperature 31oC.  

Among various body parts. The average skin temperature of body parts is not identical 

across the human body, varying in a range of 29.6-32.7oC (Fig. 7 bottom figure). Areas like 

face, neck, and chest have slightly higher Tsk than the baseline temperature 31oC while the 

foot areas have lower Tsk than 31oC. The regional variance in Tsk , as well as in physical fac-

tors such as skin thickness and capillary bloodflow, lead to different spot temperature changes 

(ΔTsk) when the same intensity of cooling (31-5oC) and warming (31+5oC) stimuli are applied 

to these body parts. 

Within a body part. For each body part, in general, the lower/higher the skin temperature 

is, the larger the skin temperature changes caused by the warming/cooling stimulus. This can 

be seen by the upper chart in Fig. 7 where warming stimuli applied to foot areas led to a larger 

ΔTsk (average = 3.15; SD = 0.15) than that induced by cooling stimuli (average = 2.96; SD = 

0.10). Other body parts like face, neck, and chest where skin temperatures were higher than 

31oC, had larger cooling ΔTsk (average = 3.11°C; SD = 0.32) compared to warming ΔTsk (av-

erage = 2.85; SD = 0.18).  
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Figure 7. Skin temperature changes. Tsk of each local body part was measured by the thermo-

couple attached to the thermal probe surface. Whole-body mean Tsk was calculated from ibut-

ton records using Equation 1. Sole7 and foot dorsum 7 cases had the stronger cooling (31–

7oC) and warming (31+7oC) stimuli. 

 

4 DISCUSSION 

4.1 Stronger cooling than warming sensitivity 

Consistent with previous findings [16], our results show that sensitivities across all body parts 

are stronger for cooling than for heating (Fig. 6). This is due to the features of 

thermoreceptors and afferent nerve fibers. The number of cold-sensory spots greatly exceeds 

that of warm-sensory spots [29,30], and the cold receptors are located in or immediately 

beneath the epidermis at an average depth of 0.1 to 0.15 mm, while the less numerous warmth 

receptors are deeper at an average depth of 0.3 to 0.6 mm [35, 36]. Cold receptors emit higher 
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numbers of impulses than warm receptors for a given level of stimulation, and afferent cold 

fibers exhibit greatly higher conduction velocities than those of warm fibers [32,33].   

4.2 Large interpersonal sensitivity differences and within-body-part variance 

The sensitivity differences among people, and also the regional variances within 

individuals’ body parts [12,34,35], are large. Fig. S2 in Appendix B interprets these two 

factors at 3 levels: interpersonal level difference as shown in Fig. S2a; intrapersonal body-

part-level variance as in Fig. S2b; and individual test-spot level as in Fig. S2c. 

The variance coefficient in Fig. S2a is defined as the sensitivity of each subject divided by 

the average of all subjects. The percentile distribution shows interpersonal individual 

differences leading to a 0.5-1.5 variance coefficient. The most-thermally-sensitive people tend 

to have 1.5 times the thermal sensitivity of the group average, while the least-sensitive people 

tend to have 50% lower sensitivities. The large individual differences can be attributed to 

many factors related to physiological, psychological, and context drivers. A recent review [34] 

shows clear contributions from body composition, metabolic rate, thermal adaptation and 

perceived control, while the role of other potential contributors such as age and sex remain 

uncertain. 

The variance coefficient in Fig. S2b is defined as the sensitivity of each test spot divided 

by the average of all spots within a body part. With coefficients ranging from 0.8-1.2, the 

most thermally sensitive spots can have 20% larger sensitivity than the body-part average, 

while the least sensitive spot sensitivity is likely to be 20% less. The large within-part 

variance suggests that the thermoreceptor or innervation distribution is non-uniform.  

The standard deviations in Fig. S2c shows large differences between subjects for results 

from same test spot. Thermal sensitivity variance at a given spot ranges from 0.6-1.5 scale 

units since the standard deviations are mainly distributed in that range. By comparing Fig.3a 

and Fig. S2c, we find that individual difference at a given spot tends to be larger in the highly 

sensitive areas. 

It is worthy to note that, although the test spots were assembled from three subject groups 

(Table 2), the above three levels of variance exist even within the same subject group, and the 

magnitude of the variances for the subject groups does not show a significant difference. This indicates 
that the inter-personal and inter- and intra-body-part variances are not caused by the different test 
subject groups. 
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4.3 Small differences between BSA-matched males and females 

To test whether sex entails thermal sensitivity differences, we matched our male and fe-

male groups in both the 2016 and 2018 studies for age and body surface area (see Table 2). 

Fig. 9 plots both sexes’ cooling and warming sensitivity distributions in individual body 

parts. Together with the statistical significance test, we conclude that, given comparable body 

size, males and females have small thermal sensitivity differences except in the chest-warm-

ing and forearm-warming cases. Fig. 10 maps the chest-cooling and warming sensitivity for 

both sexes. It shows that the difference exists mainly in the breast area [ ], where females tend 4

to be more cooling- and warming-sensitive than males (with independent t-test of p < 0.001).  

Figure 9. BSA-matched female and male thermal sensitivity comparison with Tukey HSD test 

P values. More detailed ANOVA test results are listed in Table S1 in Appendix B. 

[ ] The breast area data were from chest and abdomen test spots 4-6, 7-9, 10-12. 4
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Figure 10. Chest thermal sensitivity for males and females.  

Several studies have analyzed sex-differences in thermal sensation, yet no clear picture 

has emerged. Some have reported that females are more sensitive than males [18,19] while 

others found that there is no sex difference [14]. These contradictory findings might be caused 

by the body surface area differences among the sex groups, and some have suggested match-

ing the surface areas for the sex groups when analyzing differences. For example, sex differ-

ences in the thermal physiological responses of hands and feet have previously been found to 

be reduced when male and female groups are matched by their body surface areas [36,37]. 

When we analyzed individual differences among people, we found that the differences 

are very large, exceeding the magnitude of potential sex differences. The observed thermal 

sensitivity sex differences are mostly in the range of 0.2-0.5 scale units (Fig. 9), while the in-

ter-personal differences can be 0.8-1.5 scale units (Fig. S2 in Appendix B), about 3 times that 

of sex difference. These findings suggest that the individual difference and within-body-part 

variance are large enough to cover up the effects of other factors such as sex difference, and 

might explain the lack of significant difference observed in Fig. 9’s sex comparison.  

4.4 Practical applications 

The high-density thermal sensitivity maps developed in the current study are the most 

detailed sensitivity visualization mapping to date covering all body parts. They provide a win-

dow into the peripheral mechanisms of human body thermal sensation.  

Research applications: The sensitivity maps may have methodological value in locating 

skin temperature measurement spots that best represent body segments or parts thereof. Given 

the within-body-part sensitivity variance (Fig. S2b), it is inaccurate to represent an entire body seg-
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ment with a few spots. The uncertainty in the traditional selection of a few spots to represent an en-

tire segment is presented in Table 4. It varies greatly from 5%~20% for cooling and 15%~30% 

for warming.  

Table 4. Uncertainty percentage at 99% confidence level 

Design applications: The maps also can help to guide future development of personal 

comfort devices that heat or cool people locally [3]. For example, some of the more sensitive 

areas seen in these maps are already targets of wearable comfort devices [4,5], which must 

focus their limited battery power, an inherent constraint in wearable devices. Devices resem-

bling watches, necklace, and headphones are designed to press conductive surfaces against the 

wrists (dorsal or ventral), back of neck, and facial areas. The arch area of the foot’s sole, and 

the base of the toes, have also been targeted with small heated surfaces mounted in a battery-

powered insole. 

Desk-based comfort devices have targeted the palmar hands and wrists with heated and 

cooled contact surfaces on the desktop, keyboard, and computer mouse [38]. The dorsal hand 

and wrist has been cooled by small air jets emerging from wristpads and by desk fans. Fans 

Body part Cooling Warming

Face 12.5% 19.2%

Neck 19.3% 28.7%

Chest 14.7% 26.1%

Abdomen 7.7% 17.9%

Back 9.4% 27.2%

Upper arm 7.9% 21.8%

Forearm 8.1% 20.8%

Hand palm 10.8% 15.6%

Hand dorsum 6.8% 17.1%

Buttock 20.6% 20.5%

Thigh 4.4% 14.1%

Lower leg 6.3% 18.1%

Sole 5 20.8% 27.2%

Foot dorsum 5 8.7% 22.5%

Sole 7 19.7% 22.1%

Foot dorsum 7 10.1% 12.7%
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are also commonly used to cool the face and neck [39]. Below the desk, foot- and leg warmers 

have been more difficult to make energy-efficient. Radiation applied to the dorsum of the foot, 

ankles shins, and top of thighs has been the most efficient [40] but there are few commercial 

products at present. Reviewing the power ratings of current commercial products, warming 

the lower extremities by heated air requires more than 4x the energy needed for focused radia-

tion, and more also more than conductive heat transfer even if it is happening through the in-

sulating soles of shoes. Cooling the lower body requires air movement provided by fans; in 

recent inventions cooled air may be efficiently provided http://mobilecomfort.us/. Finally, 

chair cooling and heating systems [41–43] target the highly sensitive seat and lower back area 

for both contact heating and convective cooling. The front of the pelvis and abdomen have 

been cooled by air jets emerging from the leading edge of a desk [44]. Each of these ap-

proaches could ultimately benefit from human thermal physiology and comfort modeling in 

which the skin sensitivity will be a component. 

For all body parts, the phenomenon that cooling sensitivity is stronger than warming sen-

sitivity tells us to pay more attention to cooling stimuli in cooling devices, because overly 

strong cooling may pass beyond neutral and cause cold discomfort.  

4.5 Limitations 

The measured skin temperature change that determines sensitivity is overestimated on 

both the cool and warm sides, in that the 0.6mm diameter thermocouple bead is influenced to 

an unknown extent by its direct conductive heat exchange with the stimulus surface. The mi-

croenvironment of the bead is complex, influenced also by radiant exchange in the cavity and 

by the lateral blood flow in the skin. Recognizing this, we experimented with placing a tiny 

rubber insulator between the probe surface and the bead, but it resulted in no measurable dif-

ference (<0.1oC) from the uninsulated bead. In addition, because it was difficult to keep in 

alignment, we did not use it. We reasoned that by pressing the bead into the skin, the bead’s 

skin contact area is much greater than the area contacting the probe surface, weighting the 

measurement toward the skin temperature. Ultimately this issue might warrant further study. 

We can also directly compare sensitivity with our measured sensation values, which re-

flect the +/-5oC stimulus only. Using the sensation metric, the relative influences of skin con-

ductivity and neurosensor density remain unknown, whereas the sensitivity metric permits 
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accounting for the temperature differences caused by varying skin conductance, thickness and 

blood flow. Our measured sensation maps do not show appreciable differences from the sensi-

tivity maps; for those wishing to delve into this detail, sensation values are given in Appendix 

A. 

We were limited to using a fixed baseline temperature (31oC), and a fixed level of stimu-

lus temperature difference for both warming and cooling (except for the additional level that 

we tested for the foot). Either of these temperature parameters could be varied in future stud-

ies to see whether they produce any differences in sensitivity from those of the current study. 

Comparing our two foot-stimulus temperatures, the patterns of sensitivity varied only slightly. 

Age is a limitation, since our subjects were all healthy young adults. We might expect 

different sensitivity levels on both the warm and cool sides for older people and infirm people, 

whose innervation, skin properties, blood circulation, and metabolic rate may have changed.  

Our matched-surface-area subjects represent a limited data set for examining sex and in-

dividual differences in thermal sensitivity. Finally, the current study used data from 3 different 

groups of participants (see Table 2) to cover all the body parts. This increases error when 

comparing the sensitivity of body parts that were measured on different groups. Although we 

found the error to be minor, it would be more consistent if future studies could manage to re-

cruit the same subject group for all the test spots.  

5. CONCLUSIONS 

The distribution of warm and cold sensitivities across the entire body was determined 

using 68 subjects divided into three groups. Measurements were taken at a high density (318 

spots covering half the body), providing the most detailed thermal sensitivity mapping of the 

body to date. The findings are summarized below. 

1) Thermal sensitivity varies largely across different body parts. Using cooling and 

warming coefficients (local sensitivity/average whole-body sensitivity) as the comparison 

parameter, foot (cooling coefficient of 0.6/warming coefficient of 0.7), lower leg (0.7/0.7) and 

upper chest (0.8/0.8) are much less sensitive, while cheek (1.6/1.7), back of neck (1.6/1.7), 

and seat area (1.6/1.7) are very sensitive to both cooling and warming. 

2) The human body has (30~60%) stronger sensitivity to cooling than to warming in most 

of its local areas.  
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3) Small thermal sensitivity differences were observed between body-surface-matched 

males and females. But there were large inter-personal sensitivity differences and large vari-

ance between body parts and within them. These differences can be 2-3 times larger than po-

tential sex difference, making sex differences appear relatively insignificant.  
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