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Abstract
Study Design: In vivo retrospective study of fully automatic quantitative imaging feature extraction from clinically acquired lumbar spine mag-
netic resonance imaging (MRI).

Objective: To demonstrate the feasibility of substituting automatic for human-demarcated segmentation of major anatomic structures in clinical
lumbar spine MRI to generate quantitative image-based features and biomechanical models.

Setting: Previous studies have demonstrated the viability of automatic segmentation applied to medical images; however, the feasibility of
these networks to segment clinically acquired images has not yet been demonstrated, as they largely rely on specialized sequences or strict
quality of imaging data to achieve good performance.

Methods: Convolutional neural networks were trained to demarcate vertebral bodies, intervertebral disc, and paraspinous muscles from sagittal
and axial T1-weighted MRIs. Intervertebral disc height, muscle cross-sectional area, and subject-specific musculoskeletal models of tissue load-
ing in the lumbar spine were then computed from these segmentations and compared against those computed from human-demarcated masks.

Results: Segmentation masks, as well as the morphological metrics and biomechanical models computed from those masks, were highly similar
between human- and computer-generated methods. Segmentations were similar, with Dice similarity coefficients of 0.77 or greater across net-
works, and morphological metrics and biomechanical models were similar, with Pearson R correlation coefficients of 0.69 or greater when
significant.

Conclusions: This study demonstrates the feasibility of substituting computer-generated for human-generated segmentations of major ana-
tomic structures in lumbar spine MRI to compute quantitative image-based morphological metrics and subject-specific musculoskeletal models
of tissue loading quickly, efficiently, and at scale without interrupting routine clinical care.

Keywords: Deep Learning; Magnetic Resonance Imaging; Musculoskeletal; Biomechanics; Quantitative Imaging; Lumbar Spine; Chronic Low Back Pain;
BACPAC

Introduction

Chronic lower back pain (cLBP) is a leading cause of disabil-
ity in the United States [1] and is estimated to affect 540 mil-
lion people worldwide [2]. Within the United States, cLBP is
responsible for an estimated loss of 150 million workdays
annually [3, 4] and is associated with an estimated annual
cost of $100 to $200 billion [5, 6]. cLBP is one of the most
common drivers of visits to a physician, but despite rapidly
increasing treatment costs, patient outcomes have not
improved substantially over time [7, 8]. cLBP is nonspecific in
62.2% of cases [9], making patient-specific treatment inter-
ventions difficult to develop. The etiology of cLBP is multifac-
torial and includes physical, psychological, environmental,
and socioeconomic factors [10]. Challenges in isolating the
causes of pain can lead to overuse of imaging, opioids, and
surgical treatment options.

Magnetic resonance imaging (MRI) and other medical imag-
ing techniques are often used to design and monitor treatment
strategies for patients with cLBP. Imaging alone is a weak pre-
dictor of pain presence and pain drivers because of a lack of
consistent associations between imaging studies and clinical
symptoms [11, 12]. There is debate in the literature about the
relationships between different image-based morphological met-
rics and spine-related health indicators [11–22], in part because
of limited sample sizes and inconsistent measurement of imag-
ing features across readers and institutions.

Segmentation of medical images is essential to unlocking
scalable and reliable quantitative image-based markers of
cLBP from spine morphology, but it can be prohibitively
costly to perform. Manual segmentation is expensive and
time intensive, requiring experienced readers between
15 minutes and several hours to annotate each exam,
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depending on the number of slices and structures of interest.
Furthermore, despite the time and expertise investment
required, annotations are subject to human error and bias
across readers, which makes them difficult to generate and
assess consistently in large-scale studies. Segmentation of the
vertebral bodies, intervertebral discs, and paraspinous
muscles in MRI can be valuable for diagnosing and character-
izing spine degeneration and various pathologies related to
cLBP, including stenosis, scoliosis, and osteoporosis [23].
Estimation of internal tissue loading demands is a promising
potential indicator for evaluating subject-specific risks for
back pain and injury prevention [24]. Tissue loading cannot
be directly measured, but biomechanical musculoskeletal
models based on medical images can be used to provide valid
estimates of tissue loading [25]. Segmentation of images of
the spine is an essential step to creating subject-specific mus-
culoskeletal models, which improve on generic models by
incorporating measurements like spine curvature and muscle
morphology [26]. If segmentation can be performed in a fast,
low-cost manner, personalized biomechanical models of
patients could be automatically created as part of a clinical
workflow. These models could then be used to evaluate meas-
ures of tissue loading as a component of back pain and to
design patient-specific interventions.

Deep learning–based segmentation methods offer improve-
ments in standardization and scalability when compared with
human segmentation and can be leveraged to improve data
collection in cLBP research. Combining computational meth-
ods with MRI presents opportunities for improved diagnosis,
with potential for multifactorial analysis, quantitative analy-
sis, and increased sample sizes.

We propose a framework for automatic segmentation of
vertebral bodies, intervertebral discs, and paraspinous
muscles in clinically acquired sagittal and axial T1-weighted
MRIs of the lumbar spine and assess its efficacy as a substitute
for manual segmentation in calculating intervertebral disc
height, muscle cross-sectional area, and metrics of lumbar
spine loading with subject-specific biomechanical models.

Methods

This study was approved by the University of California, San
Francisco (UCSF), Institutional Review Board. A retrospective

clinical dataset of 206 MRI exams with both axial and sagit-
tal T1-weighted acquisitions was aggregated as part of
UCSF’s Back Pain Consortium. All exams were randomly
selected from clinical scans at UCSF between 2008 and 2018.
Of that set, 24/27/45 (vertebral body / disc / muscle) exams
were annotated with the respective anatomic structure. Cases
with bone fractures, extensive implants, primary tumors, and
wide-spread metastatic disease to the spine were excluded. All
volumes included were drawn from clinical exams obtained
on GE scanners and followed the image acquisition parame-
ters detailed in Table 1. Images were captured with subjects in
head-first or feet-first supine position.

Manual vertebral body segmentations were performed on
all slices in 24 exam volumes by one reader (GI).
Intervertebral disc segmentations were similarly annotated on
all slices in 27 exams by two readers (GI, MH). Paraspinal
muscle segmentations were annotated on one to three slices at
each lumbar disc level in 45 exams by one reader (GI). Both
readers were trained by a board-certified radiologist (UB). All
annotations were performed with MD.ai annotation software
(MD.ai, New York, NY) (see Figure 1). When annotating the
vertebral bodies and intervertebral discs, readers were
instructed to segment all structures visible on every slice of a
volume, excluding 1) any bodies and discs that were not com-
pletely pictured in the field of view and 2) structures inferior
to the S1 vertebral body and L5–S1 intervertebral disc. All
readers were trained to identify respective anatomy by a
board-certified radiologist.

Separate 2D V-Nets [27] were trained to segment each ana-
tomic structure on each sequence. The V-Net architecture and
associated Dice-based loss function have previously been
demonstrated to have improved performance and conver-
gence time on medical image segmentation tasks over other
popular network architectures. A 2D instead of 3D approach
was selected to maximize use of available data, as the wide
variation in number of annotated slices per exam would have
required substantial slice-dimension coercion, which could
impart bias through duplication or interpolation and loss of
information through cropping. Because slice thickness in clini-
cal images is greater than the in-plane resolution, segmenta-
tion of these sequences was a good candidate for a two-
dimensional method. Two versions of each convolutional
neural network were trained to segment the vertebral bodies,

Table 1. Image acquisition parameters

MR Imaging Sequence Acquisition Parameters Associated Network

T1 sagittal TR¼500–735 ms,
TE¼8.184–21.1 ms,
ETL¼2–6,
Acquisition size¼ [0, 288, 224, 0]—[384, 0, 0, 224]
Image size¼512�512,
Resolution¼0.4688�0.4688 mm—

0.5078�0.5078 mm,
Slice thickness¼3.0–4.0 mm
Space between slices¼3.0–5.0 mm

Vertebral body
segmentation network
Intervertebral disc
segmentation network

T1 axial TR¼503–983 ms,
TE¼7.672–17.376 ms,
ETL¼3–6,
Acquisition size¼ [0, 256, 160, 0]—[320, 0, 0, 224]
Image size¼256�256–512x512,
Resolution¼0.3125�0.3125–0.7031�0.7031 mm,
Slice thickness¼3.0–4.0 mm
Space between slices¼3.0–5.0 mm

Muscle segmentation network

ETL ¼ Echo train length; TE ¼ Echo time; TR ¼ Repetition time.
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intervertebral discs, and paraspinous muscles, respectively,
from T1-weighted MRI volumes. Two-version splitting was
required to maximize both training performance and
unbiased testing of biomechanical models; the standard split
was constructed to demonstrate expected network perform-
ance under typical conditions, while the shared split was con-
structed to maximize samples in a hold-out test set to assess

downstream performance without data leakage. The first ver-
sion of each of the three models was computed with a stand-
ard random split of approximately 75% train, 15%
validation, and 10% test to demonstrate optimal model per-
formance on segmentation of each anatomic structure; we call
this version the standard split. To accommodate limitations in
data quantity, the networks were then retrained with new

Figure 1. MD.ai annotation software. Each anatomic structure was annotated with a click-and-drag interface using the MD.ai annotation tool.
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splits, which reserved a shared set of 10 patients across mod-
els for testing to assess the performance of this segmentation
pipeline on automatic morphological metric and biomechani-
cal model generation; we call this version the shared split. All
networks were trained according to the hyperparameters
listed in Table 2.

Morphological metrics and biomechanical models were
evaluated only for the networks in the shared split.
Intervertebral disc, vertebral body, and paraspinous muscle
segmentations were inferred for each patient in the shared
hold-out test set of 10 exams, through the use of the respec-
tive V-Net. Postprocessing was applied to all segmentations to
smooth edges, fill holes, and isolate the largest connected
components. Intervertebral disc height (IVDH), muscle cross-
sectional area (CSA), and 2D and 3D centroid positions for
each anatomic structure in patient-based space were then
extracted from the segmentations. These quantitative features
were then leveraged as inputs to construct subject-specific bio-
mechanical models of the lumbar spine to extract measures of
compressive loading on the vertebral bodies.

To calculate IVDH, a 3D centroid was computed on each
segmented disc to identify its most central slice; a minimum
bounding rectangle was then constructed around the segmen-
tation on the center slice to extract the shortest side length as
a final height. Muscle CSA was constructed by calculating the
sum of foreground pixels for each muscle and then multiply-
ing by pixel spacing to yield area in square centimeters.
Finally, a center of mass was computed in 3D to identify
volume-wise centroids on each vertebral body and interverte-
bral disc and in 2D to identify slice-wise centroids on each
muscle (see Figure 2). Each centroid point was then mapped
to the patient-based coordinate system with an affine matrix
transformation by using the source exam’s metadata, yielding
results measured in distance from the scanner reference point.

Subject-specific musculoskeletal models of the trunk were
created with vertebral body centroids, muscle centroids, and
muscle CSA in OpenSim (SimTK) [28]. Starting with an
appropriate sex-specific base model, models were scaled to
the subject’s height and weight. Vertebral centroid locations
and muscle morphology parameters were then incorporated

into the model via custom Matlab 2019b (The MathWorks
Inc., Natick, MA) [29] scripts to build the final model with
subject-specific spine curvature and trunk muscle properties
[26]. Lumbar spine compressive loading was evaluated with
these models for a forward flexion activity (60 degrees of
trunk flexion with 5-kg weights in each hand) at L1–L5 for
each patient in the shared test set.

A volumetric Sørensen-Dice similarity coefficient [30] was
calculated to assess the overall performance of each of the
three networks. Each of the morphological metrics and bio-
mechanical model outcomes was calculated on both the man-
ual and inferred segmentations for each patient, creating
results that could be directly compared to assess the effective-
ness of substituting manual for automatic annotation. Bland-
Altman plots and Pearson R correlation coefficients were
computed to assess the relationships among IVDH, CSA, and
loading metrics generated from manually vs automatically
segmented data.

Visual inspection for quality control after model training
revealed several errors. Errors on the vertebral body annota-
tions included segmentation of the S2 vertebral body or
lower, exclusion of lateral slices in which bone was visible,
and segmentation of both the vertebral body and bony
pedicles in some of exams. One exam was annotated with
paraspinous muscles on all slices. Major annotation errors
were identified on one exam after training; the exam had been
incompletely annotated and included fewer than half of the
intervertebral discs, and it was consequently excluded from
the hold-out test set on the shared split model.

Results

Volumetric Dice coefficients for each segmentation method
are summarized in Tables 3, 4, and 5. The three segmentation
networks with standard splits performed with Dice coeffi-
cients of 0.87 for the intervertebral disc network, 0.88 for the
vertebral body network, and 0.81/0.95/0.84/0.92 (mul/psoas/
QL/ES) for the muscle network on each respective test set.
After re-splitting and retraining to construct a set of the
shared split networks, Dice coefficients decreased to 0.86 on

Table 2. Hyperparameters on all trained networks

T1 Sagittal Disc Segmentation T1 Sagittal Vertebral Body Segmentation T1 Axial Muscle Segmentation

Standard split networks
Network architecture 2D VNet 2D VNet 2D VNet

Input image size 512�512 512�512 256�256
Batch size 8 slices 8 slices 32 slices
Learning rate 1e�4 1e�4 1e�4

Dropout 0.2 0.05 0.2
Levels in network 4 3 3
Optimizer Adam Adam Adam
Loss function Weighted Dice sigmoid Dice sigmoid Weighted Dice sigmoid
Iterations until convergence 14,700 12,000 13,500

Shared split networks
Network architecture 2D VNet 2D VNet 2D VNet
Input image size 512�512 512�512 256�256
Batch size 8 slices 8 slices 8 slices
Learning rate 1e�4 1e�4 1e�4

Dropout 0.2 0.05 0.2
Levels in network 4 3 4
Optimizer Adam Adam Adam
Loss function Weighted Dice sigmoid Dice sigmoid Weighted Dice sigmoid
Iterations until convergence 17,500 11,900 12,000

S142 Hess et al.



disc, 0.76 on vertebral body, and 0.81/0.87/0.79/0.88 (mul/
psoas/QL/ES) on muscle on the shared test set. Manual seg-
mentations of the same exam demarcated by different annota-
tors showed Dice coefficient similarities of 0.83 on disc, 0.93
on vertebral body, and 0.78 or greater on muscle. Manual
segmentations of the same exam from one reader after a
washout period of at least 3 weeks showed similar Dice coeffi-
cients of 0.88 on disc, 0.95 on vertebral body, and 0.87 or
greater on muscle. Example images of manual and automatic
segmentations are shown in Figure 3. The vertebral body net-
work performed with level-wise volumetric Dice coefficients
greater than or equal to its overall performance of 0.76 on all
levels. Level-wise performance on the intervertebral disc net-
work dropped below its overall performance of 0.86 on all
disc levels. Results on the S2 vertebral body and S1S2 inter-
vertebral disc are not reported, as annotators were instructed
to exclude the S2 vertebral body and S1S2 intervertebral disc.
Stratified volumetric Dice coefficients could not be computed
because of the absence of objective markers with which to
partition axial slices into level-based groups, given that the
annotators were not required to segment each slice. Instead,
two-dimensional slice-wise Dice coefficients were used to
measure stratified network performance for each muscle
group in the paraspinous muscle network (Figure 4).

Pearson R correlation coefficients and mean absolute error
were used to measure the relationship between morphological
metrics calculated from manually vs automatically generated
segmentations (Tables 6, 7, and 8). IVDH calculated from
network-generated segmentations vs manually generated seg-
mentations showed a correlation coefficient of 0.26 and a mean
absolute error of 1.98 mm between the two methods. Muscle
CSA from automatic segmentation was correlated with that of
manual segmentations with coefficients of 0.74/0.850.70/0.37
and mean absolute errors of 1.21/1.36/0.82/3.55 cm2 (mul/
psoas/QL/ES). Centroid locations differed, with mean absolute
errors of 3.03/3.64/7.23/3.58 mm in Euclidean distance between
ground truth and inference. Vertebral body compressive loading
computed between inferred and manually generated input data
was correlated with coefficients 0.93/0.90/0.78/0.68/0.52 (L1/
L2/L3/L4/L5). Bland-Altman and scatter plots for manually vs
automatically generated intervertebral disc height and muscle
CSA show correlation and agreement between the two methods
(see Figures 5 and 6).

Discussion

Previous studies have demonstrated the viability of automatic
segmentation applied to medical images but have left notable

Figure 2. Visualization of centroid construction. T1 axial and T1 sagittal MRI slices were input into each respective V-Net to generate inferred segmentation

masks of the vertebral bodies, intervertebral discs, and paraspinous muscles. After postprocessing, centers of mass were computed on each segmentation

mask to calculate the position of volume-wise centroids for each vertebral body and intervertebral disc and slice-wise centroids for each paraspinous muscle.

These centroids were then converted to patient-based space, yielding a 3D atlas of the lumbar spine for further biomechanical modeling.

Table 3. Overall segmentation network performance on hold-out test set

Network Intra-Reader (n) Inter-Reader (n) Standard Split (n) Shared Split (n)

T1 sagittal intervertebral disc 0.88 6 0.056 (3) 0.83 6 0.039 (3) 0.87 6 0.13 (2) 0.81 6 0.047 (9)
T1 sagittal vertebral body 0.95 6 0.013 (3) 0.93 6 0.025 (3) 0.82 (1) 0.86 6 0.033 (10)
T1 axial paraspinous muscle

Multifidus 0.88 6 0.065 (3) 0.87 6 0.049 (3) 0.81 6 0.11 (2) 0.78 6 0.082 (10)
Psoas 0.94 6 0.026 (3) 0.93 6 0.028 (3) 0.95 6 0.053 (2) 0.86 6 0.078 (10)
Quadratus lumborum 0.79 6 0.19 (3) 0.76 6 0.21 (3) 0.84 6 0.29 (2) 0.77 6 0.078 (10)
Erector spinae 0.92 6 0.028 (3) 0.92 6 0.029 (3) 0.92 6 0.24 (2) 0.84 6 0.092 (10)
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gaps in the problem space in designing methods that integrate
seamlessly into clinical workflow and create pathways to
apply the technology at scale to biomechanical research.
Demonstration of the feasibility of these networks to segment
clinically acquired images is limited, instead requiring a non-
routine protocol or strict quality controls [23, 31–33].
Published networks do not apply this technology across
planes and views to segment multiple anatomic structures or
construct a fully subject-specific 3D atlas of the lumbar spine
[34]. Additionally, published networks are specialized to
downstream anomaly detection, not biomechanical modeling
[35]. As a result, clinical translation of these methods is unfea-
sible on a large scale, as adding specialized imaging sequences
to existing clinical protocols is costly and time intensive to
institutions and patients. The generalizability of these meth-
ods to imaging studies routinely acquired in clinical settings is
not yet proven.

We demonstrate the feasibility of substituting manual with
automatic segmentation of the vertebral bodies, intervertebral
discs, and paraspinous muscles by using networks trained on
a small amount of clinical data. Overall segmentation net-
work performance indicates that manual and automatic seg-
mentation methods perform similarly, and morphological
metric calculation can largely be outsourced to neural net-
works. Although stratified performance results indicate value
in human oversight of network performance and morphologi-
cal metric generation, there are clear efficiency gains within
an acceptable margin of error to be found by implementing
fully automatic assistance when delineating vertebral bodies,
intervertebral discs, and paraspinous muscle in T1-weighted
MRI. The proposed segmentation pipeline and the associated

quantitative feature generation methods have applications in
both a clinical and a research context, as they will enable
researchers to analyze larger datasets of potential biomarkers
of cLBP and quickly provide those same features to clinicians
to improve disease characterization and treatment in real
time.

Performance for both the vertebral body and intervertebral
disc segmentation networks is strongest on the central-most
lumbar levels, which was consistent variation in training data
and anatomic boundaries. Because of natural variation in
patient anatomy, exams in model training exhibited a range
of numbers of vertebral bodies and intervertebral discs in the
lumbar spine. Annotators were instructed to exclude vertebral
bodies that were not completely pictured in the field of view,
as well as to exclude the S2 vertebral body or the S1S2 inter-
vertebral disc, but features of vertebral body and interverte-
bral disc boundaries are similar across the lumbar spine. This
led to a pattern in which trained networks inconsistently seg-
mented the most superior and most inferior vertebral bodies
and intervertebral discs in the field of view, as networks were
arbitrarily penalized for correctly identifying these bodies in
training. This phenomenon is reflected in the network’s rela-
tively poorer performance when segmenting the S2 vertebral
body and T11T12 and S1S2 intervertebral discs (Table 3).
Segmentation of the multifidus, psoas, and erector spinae per-
formance variance has no demonstrated correlation with slice
level in most exams. Segmentation performance on the quad-
ratus lumborum tends to drop on the most inferior and supe-
rior slices, consistent with anatomic expectation above L1
and below L5 (Figure 4).

Figure 3. Visualization of segmentation results from each network. The first, second, and third columns show examples of vertebral body, intervertebral

disc, and paraspinal muscle segmentation results, respectively, along with a 3D Dice coefficient of each network’s performance.
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Error trends in automatic calculation of intervertebral disc
height reflected trends in model error on the disc segmenta-
tion network, with statistical significance occurring only at
the T12L1/L1L2 level. Results of all levels except L2 and L3
were inconclusive in the lumbar loading comparison. The
decline in correlation from L1 to L5 could suggest greater

sensitivity of lower lumbar loads to the subject-specific model
inputs, as models generate less reliable results on slices at the
boundaries of anatomy. Automatic segmentation as an input
might have tended to underestimate the height of each disc
and load per vertebral body, but conclusions cannot be drawn
given the small sample size.

Figure 4. Stratified network performance (shared split). Vertebral body network performance at each vertebral body level (top left). Intervertebral disc
network performance at each disc level (top right). Paraspinal muscle network performance at each slice level (middle, bottom). Note that the number

of slices in each volume was normalized to a shared size, and each slice index was adjusted accordingly, to enable a visual comparison across patients.

Performance was measured with spatial Dice. Different shades of blue indicate different exams.
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We present a highly scalable, fully automatic framework to
generate quantitative measures of spine morphology and
subject-specific biomechanical models from lumbar spine
MRI. We demonstrate that results generated by this pipeline
are highly correlated and agree with those generated by
human readers, without human-in-the-loop correction. This
work indicates that computer-generated segmentations could
successfully substitute for human-demarcated masks, which
are time intensive and costly to obtain, in the quantification
of metrics of lumbar spine morphology and biomechanical
models to quantify tissue loading. The networks used to cre-
ate the predicted segmentations were trained on clinical

Table 4. Level-stratified vertebral body network performance (shared

split, n¼ 10)

Level

Shared Split Intra-Reader Inter-Reader

6 95% CI 6 95% CI 6 95% CI

T11 0.0243 0.947 0. 956
T12 0.888 6 0.0218 0.968 6 0.0113 0.957 6 0.0252
L1 0.900 6 0.0529 0.972 6 0.0129 0.955 6 0.0340
L2 0.888 6 0.0642 0.971 6 0.00449 0.939 6 0.0341
L3 0.902 6 0.0247 0.973 6 0.00616 0.943 6 0.00634
L4 0.863 6 0.0753 0.972 6 0.00542 0.951 6 0.00957
L5 0.865 6 0.0501 0.959 6 0.0334 0.940 6 0.0710
S1 0.684 6 0.203 0.957 6 0.0087 0.927 6 0.162

Figure 5. Correlation (left) and agreement (right) between manually and automatically generated segmentations for each biomarker. Correlation

between disc height from manual vs inferred disc segmentations is displayed on a scatter plot, where the line x¼y is indicated in grey. Agreement is

displayed with Bland-Altman plots for disc height on each disc.
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exams with standard diagnostic sequences, which suggests
strong generalizability with no extra costs associated with
exam acquisition. A human-in-the-loop system to catch fail-
ures but improve time to acquire each segmentation could be
of value to account for variation in performance with scan
quality. A fully automatic, quantitative method for generating
image-based features of spine morphology and validated esti-
mates of tissue loading from clinically acquired MR exams
combined with biomechanical modeling, like this one, would
provide a scalable approach with which to evaluate drivers of
cLBP across patients, institutions, and imaging archives with-
out interrupting routine care.

Supplementary Data

Supplementary Data may be found online at http://painmedi-
cine.oxfordjournals.org.
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Figure 6. Stratified loading performance. Difference (left) and correlation (right) between loading metrics generated from human- vs computer-

generated segmentation masks, stratified by vertebral body level.

Table 5. Level-stratified intervertebral disc network performance (shared

split, n¼ 9)

Level

Shared Split Intra-Reader Inter-Reader

6 95% CI 6 95% CI 6 95% CI

T11T12 0.54 6 0.311 0.867 0.791
T12L1 0.844 6 0.0567 0.886 6 0.0165 0.864 6 0.0471
L1L2 0.731 6 0.213 0.848 6 0.0850 0.799 6 0.127
L2L3 0.813 6 0.0586 0.868 6 0.173 0.654 6 0.804
L3L4 0.730 6 0.220 0.908 6 0.018 0.582 6 1.25
L4L5 0.711 6 0.216 0.871 6 0.142 0.831 6 0.116
L5S1 0.650 6 0.200 0.899 6 0.0470 0.554 6 1.19

Table 7. Stratified intervertebral disc height calculation performance

(n¼ 9)

Level Pearson R (P Value) Mean Absolute Error (mm)

All levels 0.846 (2.48�10–18) 1.45 6 0.38
T11T12/T12L1 0.951 (8.02�10–05) 1.05 6 1.03
T12L1/L1L2 0.847 (0.00396) 1.23 6 0.85
L1L2/L2L3 0.155 (0.69) 2.17 6 1.81
L2L3/L3L4 0.696 (0.0372) 0.90 6 0.52
L3L4/L4L5 0.795 (0.0105) 1.24 6 1.02
L4L5/L5L6 0.562 (0.115) 2.24 6 1.26
L5S1/L6S1 0.945 (0.000124) 1.32 6 1.18

Table 8. Lumbar load performance (n¼ 9)

Level Pearson R (P Value) Mean Absolute Error (Newtons)

All levels 0.767 (8.29�10–10) 143.26 6 50.25
L1 0.699 (0.0361) 101.0 6 104.45
L2 0.869 (0.00234) 136.66 6 98.7
L3 0.795 (0.0105) 142.86 6 146.32
L4 0.688 (0.0405) 163.64 6 145.5
L5 0.547 (0.127) 172.14 6 160.08

Table 6. Overall performance of manually vs automatically generated

morphometrics

Biomarker Pearson R (P Value) Mean Absolute Error

Intervertebral disc
height, mm

0.846 (2.48�10–18) 1.45 6 0.380

Muscle CSA—multifi-
dus, cm2

0.720 (3.50�10–63) 0.489 6 0.122

Muscle CSA—psoas,
cm2

0.892 (2.36�10–135) 0.457 6 0.152

Muscle CSA—quadra-
tus lumborum

0.905 (1.34�10–145) 0.197 6 0.0584

Muscle CSA—erector
spinae

0.897 (4.08�10–139) 0.964 6 0.208

Lumbar loading,
Newtons

0.767 (8.29�10–10) 143 6 50.3
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