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Functional Modularity Methods and Applications for Human Diseases 
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Professor Shankar Subramaniam, Chair 
Professor Ratneshwar Lal, Co-Chair 

 

 Community detection in complex networks (graphs) has been the subject of investigation 

in numerous domains. In biological networks, communities are functionally contextual and 

often provide insights into mechanisms. Detecting communities and analyzing their biological 

functions is an important aspect of studying biological networks. Communities (aka modules) 

can yield useful insights into the structure of networks and serve as a basis for analyzing them 
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at topological and functional levels. The work presented in this dissertation is aimed at 

community detection in human disease (specifically colorectal cancer) networks using different 

approaches, with the focus on analyzing their biological functions. 

 The study begins with the exploration of existing community detection algorithms and 

evaluation of their findings on two important Protein-Protein Interaction (PPI) networks, 

namely, Saccharomyces cerevisiae (Yeast) and Homo sapiens (Human) at both topological and 

functional levels. The main criteria to assess the performance of each method are 1) appropriate 

community size (neither too small nor too large), 2) representation of only one or two broad 

biological functions within a community, 3) most genes from the network belonging to a 

pathway should also belong to only one or two communities, and 4) performance speed. These 

criteria enable us to select one of the best methods for detecting communities in biological 

networks. 

 Next, a gene expression microarray dataset of colorectal cancer (CRC) is analyzed to 

detect stage-specific biomarkers as well as modular mechanisms, potentially causal for the 

progression of CRC from normal to stages I to IV. Constructing unweighted and weighted 

correlation networks for each stage, communities are identified and compared topologically and 

functionally across stages. Short Time-series Expression Miner (STEM) algorithm is also used 

to detect potential biomarkers having a role in CRC. Constructing a drug-target-PPI network 

provides insight, in the light of analyzed data, into understanding the functional mechanisms 

for some of the current drugs used in CRC treatment. 

Lastly, gene modules across stages of CRC are analyzed from a single cell 

transcriptomic dataset to decipher mechanistic changes likely contributing to tumor growth and 

cancer progression. Cell down-sampling process is firstly performed at stages pT2 to pT4 (as 
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well as right colon) to make cell count equal across different stages and tissue sites. Functional 

modules at early stage (pT1) and also right colon are identified utilizing Weighted Gene Co-

expression Network Analysis (WGCNA). In particular, WGCNA’s preservation statistics are 

used to detect gene modules that exhibit weak/strong preservation of network topology in late 

stages (pT234) vs. early stage (pT1) as well as left colon vs. right colon. Functional enrichment 

analysis of the non-preserved modules reveals mechanisms related to the initiation, progression 

and metastasis of CRC. 

  



1 
 

 INTRODUCTION 
 

Network science plays a significant role in modeling and understanding complex systems 

in many domains including but not limited to physics, sociology, computer science, economics, 

biology, and neuroscience [1, 2, 3]. A network consists of nodes (vertices) and connections or edges 

between the nodes. The topology of networks is by itself complex. However, it is possible to 

identify groups of nodes that are relatively densely connected to each other but sparsely connected 

to other groups of the network. These interconnected groups of nodes are often called communities 

(clusters or modules) and occur in a wide variety of networks [4, 5, 6, 7]. Communities mark groups 

of nodes which could share common properties or have similar functions within the network of 

interest. 

Community detection is important for many reasons; first, to classify the functions of nodes 

in accordance with their structural positions in their communities [8, 9], second, to help better 

understand the properties of dynamic processes taking place in a network [10], and third, to improve 

the performance and efficiency of processing, analyzing, and storing networked data [11]. 

Communities also have concrete applications. In social networks, communities represent 

groups of individuals with mutual interest and background [12]. In citation networks, they represent 

groups of related papers in one research area and identify scholars sharing research interests [13]. 

In brain networks, they represent groups of nodes that are intricately interconnected and that could 

perform local computations and give insights into structural units of the brain [14]. In biological 

networks, they represent groups of nodes that enable functional annotation of constituent 

biomolecules, detection of regulatory elements associated with disease phenotypes, or discovery of 

targets for therapeutic interventions [15, 16].  
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Considering the importance of community detection in networks, it is not surprising that 

many algorithms and methods have been developed for community detection algorithms during the 

past decade [17, 18, 19, 20]. The goal of all these methods is to identify meaningful communities, 

while keeping the computational complexity as low as possible. 

Community detection methods can be broadly categorized into two types, agglomerative 

(bottom-up) methods and divisive (top-down) methods. In agglomerative methods, starting from 

the set of all nodes and no edges, links are iteratively added between pairs of nodes in the order of 

decreasing weight. Nodes are then grouped into larger and larger communities until the whole 

network is constructed. Louvain algorithm is one of the famous agglomerative algorithms [20]. 

Divisive methods start from the whole network and iteratively cut the edges, which results in the 

division of the network into smaller and smaller disconnected subnetworks (aka communities). The 

crucial point in a divisive algorithm is the selection of the edges to be cut, which have to be those 

connecting the communities and not those within communities. The Edge-Betweenness (or Girvan-

Newman) [15, 17] and Leading Eigen [21] are a few examples of the divisive algorithms. 

 
Figure 1.1 Agglomerative vs. divisive clustering. 
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1.1 Chapter Outline 
 

Chapter 2, in full, is the material of the manuscript published in BMC Bioinformatics [22] 

and reviews different algorithms for detecting communities in biological networks with application 

to two important Protein-Protein Interaction (PPI) network, namely, Yeast and Homo Sapiens and 

compares them topologically and functionally. This study provides the first documented example 

for benchmarking community detection algorithms which could be used in biological networks. 

Overall, one of the divisive algorithms (Louvain) is found to be the best method for biological 

networks to find reasonably sized communities in a reasonable time. 

Chapter 3, in full, is the material of the manuscript published in BMC Cancer [23], focuses 

on modeling each stage of Colorectal Cancer (CRC) as a molecular network and identifying their 

communities separately and then analyzing their progression for a better mechanistic interpretation 

of how CRC progresses. A few approaches are also used to detect candidate biomarkers with 

substantial/monotonic changes across stages. Additionally, a drug-target-PPI network is generated 

to provide insights into understanding stage-specific functional mechanisms associated with some 

of the current drugs used in CRC treatment. 

Chapter 4 is a modified presentation of the manuscript being prepared for submission, 

analyzing gene modules (communities) across stages of CRC from a single-cell transcriptomics 

dataset. Due to the unequal number of cells at different stages and tissue sites, a cell down-sampling 

procedure is first applied to make the number of cells equal. Then, Weighted Gene Co-expression 

Network Analysis (WGCNA) is performed on the first stage as well as the right colon to detect 

their communities and also find the low/non-preserved modules out of them. 

Chapter 5 represents the major findings of my research and conclusions of the dissertation.  
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 TOPOLOGICAL AND FUNCTIONAL COMPARISON OF COMMUNITY 
DETECTION ALGORITHMS IN BIOLOGICAL NETWORKS 

 

2.1 Abstract 
 

Background: Community detection algorithms are fundamental tools to uncover important 

features in networks. There are several studies focused on social networks but only a few deals with 

biological networks. Directly or indirectly, most of the methods maximize modularity, a measure 

of the density of links within communities as compared to links between communities. Results: 

Here, we analyze six different community detection algorithms, namely, Combo, Conclude, Fast 

Greedy, Leading Eigen, Louvain, and Spinglass, on two important biological networks to find their 

communities and evaluate the results in terms of topological and functional features through Kyoto 

Encyclopedia of Genes and Genomes pathway and Gene Ontology term enrichment analysis. At a 

high level, the main assessment criteria are 1) appropriate community size (neither too small nor 

too large), 2) representation within the community of only one or two broad biological functions, 

3) most genes from the network belonging to a pathway should also belong to only one or two 

communities, and 4) performance speed. The first network in this study is a network of Protein-

Protein Interactions (PPI) in Saccharomyces cerevisiae (Yeast) with 6,532 nodes and 229,696 edges 

and the second is a network of PPI in Homo sapiens (Human) with 20,644 nodes and 241,008 edges. 

All six methods perform well, i.e., find reasonably sized and biologically interpretable 

communities, for the Yeast PPI network but the Conclude method does not find reasonably sized 

communities for the Human PPI network. Louvain method maximizes modularity by using an 

agglomerative approach, and is the fastest method for community detection. For the Yeast PPI 

network, the results of Spinglass method are most similar to the results of Louvain method with 

regard to the size of communities and core pathways they identify, whereas for the Human PPI 
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network, Combo and Spinglass methods yield the most similar results, with Louvain being the next 

closest. Conclusions: For Yeast and Human PPI networks, Louvain method is likely the best method 

to find communities in terms of detecting known core pathways in a reasonable time. 

 

2.2 Background 
 

The use of networks to study complex interacting systems has been applied to many 

domains during the last two decades, including sociology, physics, computer science, and biology. 

An important task in the analysis of networks lies in the identification of communities or modules 

whose membership share one or more common features of the system. The problem that community 

detection attempts to solve is the identification of groups of nodes with more and/or better 

interactions amongst its members than between its members and the remainder of the network [17, 

24]. For example, in social networks, a community may correspond to groups of friends who attend 

the same school or live in the same neighborhood; while in a biological network, communities may 

represent functional modules of interacting proteins. 

Edges in a biological network may represent various types of direct interactions and indirect 

effects. Examples of direct interactions include protein-protein interactions as part of signaling 

pathways or as part of protein complexes and substrate-enzyme interactions. Indirect effects may 

include transport processes and regulatory effects, which, in most cases, can be substituted with a 

subnetwork of several direct interactions when modeled at a finer granularity. Examples of the latter 

are cholesterol and ion transport across the plasma membrane and protein-DNA interactions in 

gene-regulatory networks. Thus, in the context of a cell or tissue, subnetworks or communities may 

correspond to various cellular processes, pathways and functions, in which its components (nodes) 

exhibit a higher-degree of interaction as compared to those from outside the pathway. 
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Majority of the methods for community detection in networks are based on maximization 

of modularity. While the modularity metric Q, of a network, is defined in the Methods section, 

intuitively, given a network, if it can be partitioned in such a way that only a few connections exist 

between the nodes of different partitions and most connections are among the nodes within the 

partitions, then the modularity will be high. It is interesting to note that the modularity of a sparse 

network of fully connected subnetworks is higher than that of a fully connected network, which is 

zero. Any partition of a fully connected network results in Q < 0. Brandes et al. have carried out 

extensive theoretical analysis of properties of modularity and complexity of its maximization [25]. 

One of the most important objectives of any large-scale omics study is to identify 

mechanisms for specific functions and phenotypes in a chosen context. Biological networks derived 

from genome-scale experimental data and/or legacy knowledge are generally large and complex 

with thousands of nodes and many thousands of connections. Associating meaningful biological 

functions and interpretations to such networks is impossible. However, these large networks can be 

broken down into smaller (sub) networks (also called as modules or communities) which are more 

amenable to biological interpretation. Such communities are expected to represent one or a few 

biological functions and they may facilitate discovery of mechanisms relating the causes or 

perturbations to the observed phenotypes. Thus, community detection can provide valuable 

biological insights. 

Several methods have been developed to find communities in networks using tools and 

techniques from different disciplines such as applied mathematics or statistical physics [26]. All 

these methods try to identify meaningful communities, while keeping the computational complexity 

of the underlying algorithm low [27]. Although these methods have proven to be successful in some 

cases, there is no guarantee that the resulting communities provide the best functional description 
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of the system. Hence, selecting a suitable method to detect communities in a network is challenging. 

While there have been some studies comparing different methods for community detection [27], 

their focus has been on Lancichinetti, Fortunato, Radicchi (LFR) benchmark networks (artificial 

networks that have heterogeneity in the distributions of degree of nodes and the size of 

communities) [28]; comparisons with respect to biological networks are lacking. 

Classical community detection algorithms initially divide networks into communities 

according to some network features such as edge betweenness. One of the most popular and 

prominent algorithms that uses edge betweenness is the Girvan-Newman algorithm [15, 17]. In this 

method edges are progressively removed from the original network till the modularity reaches its 

maximum value, making it an optimization problem. The connected nodes of the remaining network 

are the communities. The Girvan-Newman algorithm has been successfully applied to a variety of 

networks, including networks of email messages. However, its computational complexity, O(m2n) 

for a network with n nodes and m edges, practically restricts its use to networks of at most a few 

thousand nodes. There are other optimization-based algorithms with different objective functions 

that provide different approaches to solve the community detection problem. For example, Leading 

Eigen [21] algorithm also tries to maximize modularity but the modularity is expressed in the form 

of the eigenvalues and eigenvectors of a matrix called the modularity matrix. Spinglass method 

minimizes the Hamiltonian of the network [29]. 

Since the early 2000s, several methods have been developed that divide networks into 

communities based on the modularity [18, 20, 30, 31, 32, 33]. The modularity criterion was revisited 

in 2005 when Duch and Arenas proposed a divisive algorithm [34] that optimizes the modularity 

using a heuristic search based on the Extremal Optimization (EO) algorithm proposed by Boettcher 

and Percus [35, 36]. Pizzuti has suggested an algorithm named GA-net that uses a special 
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assessment function described as the community score in addition to the modularity function [37]. 

There are also other approaches to the community detection problem in which the use of multiple 

objectives is preferred over the use of a single objective for complex networks. Since the objectives 

are usually directly related to the network properties, one advantage of using multi-objective 

optimization is that it balances among the multiple (important) properties of the network. The 

benefits of using multi-objective approach have been explained by Shi et al. [38]. 

In this manuscript, we briefly review eight algorithms for finding communities in biological 

networks such as Protein-Protein Interaction (PPI) networks (discussed in the Methods section). In 

such networks, each node represents a protein (or gene) and each edge represents an interaction 

between two proteins. In particular, we will apply six algorithms to the Yeast PPI network with 

6,532 nodes and 229,696 edges and the Human PPI network with 20,644 nodes and 241,008 edges. 

Using several topological metrics, we assess which methods provide similar (or dissimilar) results. 

We evaluate the biological interpretation of the communities identified and compare the results in 

terms of their functional features. At a high level, the main criteria for assessment of the methods 

are 1) appropriate community size (neither too small nor too large), 2) representation within the 

community of only one or two broad biological functions, 3) most genes from the network 

belonging to a pathway should also belong to only a few communities, and 4) performance speed. 

This paper is organized as follows: in the next section we will present the results of applying 

six methods on the Yeast and Human PPI networks and compare the communities based on their 

topological and functional features. In the last part of this section, we will describe an orthology 

analysis between the communities detected for the Yeast PPI network and the communities detected 

for the Human PPI network. In the following section, we will present discussion on the results 

providing insights into the algorithmic similarities and robustness of some of the methods. In the 
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section after that, we will provide the conclusion of our paper. In the Methods section, we will 

describe eight different methods for finding communities in networks. We will also introduce three 

metrics to compare the communities identified by the algorithms. 

 

2.3 Results 
 

Six community detection methods, namely, Combo, Conclude, Fast Greedy, Leading Eigen, 

Louvain, and Spinglass, have been applied to the Yeast PPI network with 6,532 nodes and 229,696 

edges and the Human PPI network with 20,644 nodes and 241,008 edges. A detailed description of 

the methods is included in the Methods section. We used the BioGRID database [39, 40] for the 

PPI networks for Yeast and Human. Since our focus in this paper is on undirected and unweighted 

networks, we removed repeated edges and self-loops from our data set. 

In the first part of this section, we will present the results for the Yeast PPI network. In the 

second part, the results for the Human PPI network will be presented. In the third part, an orthology 

comparison will be provided between the Yeast and Human PPI networks. 

 

2.3.1 Yeast PPI Network 
 

Among the methods tested to find communities of the Yeast PPI network, Combo, 

Conclude, Fast Greedy, Leading Eigen, Louvain, and Spinglass give good partitioning results, i.e., 

the size of communities detected are not too small or too large compared to the size of the original 

network. Since the Yeast PPI network has 6,532 nodes, Girvan-Newman algorithm is not an 

appropriate method to detect communities. It takes about 44 minutes (on a PC with 4 GB RAM and 

4 2.4 GHz processors) for Rattus PPI network with 3,379 nodes and 4,580 edges. Its computational 

complexity is proportional to m2n (n: number of nodes and m: number of edges), so, it will take 
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~ 148 days to find communities in the Yeast PPI network (using the computational resource 

mentioned above). Infomap is also not a good method based on the size of communities it detects; 

the largest community has 6,195 nodes and the smallest one has just 2 nodes. Since very small 

communities (e.g., those with less than 100 nodes) are not expected to yield significant biological 

insights, we will not consider them in our analysis. We note that there may be some exceptions. 

In the next subsection, first we will compare the methods from a topological perspective of 

the communities identified. Then we will provide a functional comparison. To begin with, the 

results for all these methods applied on the Yeast PPI network are described in Table 2.1. 

 
Table 2.1: Number of nodes and edges for communities detected using different methods for the 

Yeast PPI network with 6,532 nodes and 229,696 edges. 

Combo (8) 
Q = 0.2654 

# nodes 2,231 1,514 1,337 1,284             
# edges 25,137 23,690 38,523 30,585             

Conclude (66) 
Q = 0.2468 

# nodes  788 744 602 468 423 359 288 271  252 199  
# edges 14,585  10,506 3,272 988 5,826 4,123 1,404 3,486 940 1,703 

F. Greedy (10) 
Q = 0.2112 

# nodes 2,608 2,410 1,466               
# edges 61,665 72,998 7,180               

L. Eigen (4) 
Q = 0.1686 

# nodes 2,661 1,910 984 977             
# edges 75,812 28,664 7,373 7,203             

Louvain (9) 
Q = 0.2643 

# nodes 1,538 1,472 1,190 1,151 993 131         
# edges 16,015 23,394 13,247 31,202 22,553 676         

Spinglass (9) 
Q = 0.2681 

# nodes 1,607 1,473 1,194 1,148 1,076           
# edges 16,616 23,876 12,282 32,641 23,854           

The number in parenthesis after the name of each method represents the number of communities detected 
by that method. Modularity scores are also provided for different methods. For each method, we only 
consider the communities with 100 or more nodes and list up to 10 communities. 

 

2.3.1.1 Comparison based on topological features of communities 
 

Using three different metrics, namely, Rand Index (RI), Adjusted Rand Index (ARI), and 

Normalized Mutual Information (NMI) (described in the Methods section), we are able to compare 
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different pair of methods. Table 2.2 represents the results of comparing six methods (Combo, 

Conclude, Fast Greedy, Leading Eigen, Louvain, and Spinglass) with respect to three topological 

metrics (RI, ARI and NMI). 

 
Table 2.2: Comparison of different methods with respect to three topological metrics for the Yeast 

PPI network. 
    Combo Conclude F. Greedy L. Eigen Louvain Spinglass 
RI Combo 1 0.7608 0.7157 0.6788 0.8319 0.8409 
ARI Combo 1 0.1466 0.3125 0.1942 0.5163 0.5479 
NMI Combo 1 0.2905 0.4024 0.2447 0.5413 0.5723 
        

RI Conclude  1 0.6815 0.7061 0.8083 0.8012 
ARI Conclude  1 0.0818 0.0825 0.1659 0.1637 
NMI Conclude  1 0.1956 0.1472 0.3016 0.2924 
        

RI F. Greedy   1 0.6334 0.7098 0.7129 
ARI F. Greedy   1 0.146 0.2629 0.2764 
NMI F. Greedy   1 0.1918 0.3545 0.3652 
        

RI L. Eigen    1 0.6952 0.6936 
ARI L. Eigen    1 0.188 0.1914 
NMI L. Eigen    1 0.2231 0.2285 
        

RI Louvain     1 0.9021 
ARI Louvain     1 0.6922 
NMI Louvain     1 0.6644 
        

RI Spinglass      1 
ARI Spinglass      1 
NMI Spinglass      1 

When a method is compared with itself, RI, ARI and NMI are 1 (diagonal elements). Larger (smaller) 
the value of RI, ARI and NMI, the more (less) similar are the two methods being compared. 

 

Based on the results of Table 2.2, Louvain and Spinglass are most similar to each other 

amongst all pairs of comparisons. To maintain consistency in finding dissimilar methods, we 

selected a method which is dissimilar to Louvain, e.g., Conclude or Leading Eigen. Since Conclude 

finds 66 communities with sizes (number of nodes) ranging from 3 to 788, we compare Louvain 
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with Leading Eigen here. We present the results from comparing Louvain and Conclude in the 

Supplementary Tables. 

Table 2.3 provides Jaccard index (as a percentage) between communities identified by 

Louvain and Spinglass. We used the intersect function in R to find common genes between two 

communities and then divided the number of common genes by the total number of unique genes 

between the two communities (union function in R) to get the Jaccard index. Table 2.4 uses the 

same approach to calculate Jaccard index for communities detected by dissimilar methods, in 

particular, Louvain and Leading Eigen. The rest of Jaccard index matrices amongst all pairs of 

communities for all methods can be found in Table S2.1. 

 
Table 2.3: Jaccard index (%) between the communities identified by two similar methods 

(Louvain and Spinglass) for the Yeast PPI network. 

  L1 (1,538) L2 (1,472) L3 (1,190) L4 (1,151) L5 (993) 

S1 (1,607) 75.7 2.35 1.79 0.15 2.43 
S2 (1,473) 4.66 70.53 2.03 1.16 1.07 
S3 (1,194) 2.01 1.1 74.27 2.95 1.03 
S4 (1,148) 1.32 1.08 2.18 81.02 0.36 
S5 (1,076) 0.74 0.33 0.46 0.09 85.56 

L1 to L5: communities detected by Louvain; S1 to S5: communities detected by 
Spinglass. The numbers in parenthesis represent the number of genes in each 
community. Community pairs with maximum overlap are indicated in bold text. 

 
Table 2.4: Jaccard index (%) between the communities identified by two dissimilar methods 

(Louvain and Leading Eigen) for the Yeast PPI network. 

  L1 (1,538) L2 (1,472) L3 (1,190) L4 (1,151) L5 (993) 

LE1 (2,661) 15.29 40.67 15.16 4.64 2.78 
LE2 (1,910) 3.7 2.98 12.08 44.87 15.43 
LE3 (984) 10.13 1.4 14.18 0.85 27.47 
LE4 (977) 33.14 6.29 3.78 0.76 4.23 

L1 to L5: communities detected by Louvain; LE1 to LE4: communities detected 
by Leading Eigen. The numbers in parenthesis represent the number of genes in 
each community. Community pairs with maximum overlap are indicated in bold 
text. 
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2.3.1.2 Comparison based on biological/functional features of communities 
 

As described in the previous subsection, Louvain and Spinglass are most similar to each 

other and Louvain and Leading Eigen are most dissimilar. In order to know which communities of 

similar and dissimilar methods have to be compared to each other, we analyzed Tables 2.3 and 2.4 

(Jaccard index) for all pairs of communities between similar and dissimilar methods. After selecting 

pairs of communities with highest value of Jaccard index for each column, we used Database for 

Annotation, Visualization and Integrated Discovery (DAVID) version 6.8 [41, 42] to perform 

Kyoto Encyclopedia of Genes and Genomes (KEGG) [43] pathway and Gene Ontology (GO) term 

(GOTERM_BP_3) enrichment analysis for each community. In the following Tables (Table 2.5 

through Table 2.7), we have considered pathways with more than 10 genes and with p-values less 

than or equal to 0.01. The number in parenthesis (e.g., after L1 or S1) is the number of genes that 

DAVID could annotate for that specific community for the Yeast PPI network. For example, the 

first community of Louvain (L1) has 1,538 genes (Table 2.1) and of those, DAVID is able to 

annotate 1,481 genes. In Tables 2.5, 2.6, and 2.7, the first column lists the broad category of 

pathways (M: Metabolism, CP: Cellular Processes, GIP: Genetic Information Processing, HD: 

Human Diseases, and OS: Organismal Systems). The second column lists the different pathways 

enriched. Columns 3 and 7 (#) represent number of genes enriched in the pathways, columns 4 and 

8 (p-val) represent p-values for those pathways in the communities compared, and columns 5 and 

9 (FE) represent Fold Enrichment for the pathways. FE is defined as (s/b)/(k/N) where b is the total 

number of genes in a chosen pathway; s, the number of genes from the community in this pathway; 

N, the total number of genes for the species; and k, the number of genes in the community; all the 

four numbers are based on intersection/overlap with the respective DAVID database (e.g., KEGG). 

Essentially, FE represents the relative increase or decrease of the fraction of genes from the set of 
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interest belonging to a pathway as compared to the genes from a background set (generally covering 

the whole-genome) belonging to the same pathway. The values in columns 5 and 9 are shaded from 

light orange to dark orange with increasing FE. Column 6 (Com) is the number of genes common 

to both communities for the different pathways. 

 

2.3.1.2.1 Comparing similar methods 
 

As the first column of Table 2.3 shows, the first community of Louvain (L1) and the first 

community of Spinglass (S1) have the maximum overlap and the results of comparing KEGG 

pathway enrichment analysis between L1 and S1 are presented in Table 2.5. Table S2.2 shows the 

results of comparing GO term enrichment analysis between these two communities. L2 and S2 are 

71% similar to each other based on Table 2.3 and they are compared in Table 2.6 for KEGG 

pathway enrichment analysis and in Table S2.3 for GO term enrichment analysis. The rest of the 

comparison Tables (KEGG pathway enrichments analysis for L3 vs. S3, L4 vs. S4, and L5 vs. S5) 

are in the Tables S2.4-S2.6. Since DAVID did not find any pathways for small communities, such 

as L6 which has 131 nodes, those communities are not considered in the comparison Tables. 

Based on Table 2.3, L1 and S1 are 76% similar to each other in terms of Jaccard index. In 

Table 2.5, KEGG pathway enrichment results of these two communities reveal that majority of 

these genes are related to various metabolic pathways such as carbohydrate metabolism, energy 

metabolism, amino acid metabolism, and metabolism of cofactors and vitamins. The top four 

pathways represent broad metabolism pathways. There are 13 pathways categorized as amino acid 

metabolism such as cysteine and methionine metabolism, or glycine, serine and threonine 

metabolism. Among pathways that are categorized as energy metabolism, oxidative 

phosphorylation is the one with the lowest p-value.  
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Table 2.5: A Comparison of KEGG pathway enrichment results between the first community of 
Louvain (L1) and the first community of Spinglass (S1) for the Yeast PPI network. 

  L1 (1,481)  S1 (1,556) 

  Term (Pathway/function) # p-val FE Com # p-val FE 

M Metabolic pathways 346 6.62E-86 2.16 337 357 2.64E-86 2.13 
M Biosynthesis of secondary metabolites 164 5.41E-38 2.37 156 167 5.61E-37 2.31 
M Biosynthesis of antibiotics 128 6.73E-32 2.5 123 131 1.04E-31 2.44 
M Carbon metabolism 79 5.22E-26 2.97 78 84 3.85E-29 3.01 
M Oxidative phosphorylation 55 3.83E-21 3.27 55 55 4.44E-20 3.12 
M Citrate cycle (TCA cycle) 30 5.55E-16 4.02 29 30 2.32E-15 3.83 
M Biosynthesis of amino acids 68 1.20E-14 2.37 67 74 1.39E-17 2.46 
CP Peroxisome 30 4.38E-12 3.38 30 31 1.45E-12 3.33 
M 2-Oxocarboxylic acid metabolism 27 1.70E-10 3.31 27 28 5.42E-11 3.27 
M Pyruvate metabolism 27 7.41E-09 2.97 27 30 4.83E-11 3.14 
M Glyoxylate and dicarboxylate metabolism 20 8.84E-08 3.3 20 22 1.89E-09 3.46 
M Cysteine and methionine metabolism 24 1.87E-07 2.86 24 27 1.49E-09 3.06 
M Glycine, serine and threonine metabolism 21 2.05E-06 2.81 21 23 1.22E-07 2.94 
M Arginine and proline metabolism 16 3.54E-06 3.26 14 15 4.72E-05 2.92 
M Pentose phosphate pathway 19 3.79E-06 2.91 19 19 7.91E-06 2.77 
M Tryptophan metabolism 14 4.85E-06 3.53 12 12 4.79E-04 2.88 
M beta-Alanine metabolism 12 4.90E-06 3.96 12 12 8.11E-06 3.77 
M Pentose and glucuronate interconversions 13 5.16E-06 3.71 13 13 8.84E-06 3.54 
M Glycolysis / Gluconeogenesis 30 6.30E-06 2.22 30 32 1.39E-06 2.25 
M Starch and sucrose metabolism 23 1.22E-05 2.46 22 22 1.06E-04 2.25 
M Sulfur metabolism 12 1.81E-05 3.67 12 12 2.95E-05 3.5 
M Selenocompound metabolism 11 1.82E-05 3.93 11 11 2.86E-05 3.75 
M Methane metabolism 18 2.16E-05 2.75 18 21 1.75E-07 3.06 
M Tyrosine metabolism 11 1.73E-04 3.37 11 13 2.27E-06 3.79 
M Vitamin B6 metabolism 10 2.10E-04 3.57 10 10 3.12E-04 3.4 
M Glutathione metabolism 15 2.18E-04 2.68 15 16 7.62E-05 2.72 
M Fatty acid degradation 13 2.23E-04 2.93 12 12 1.79E-03 2.58 
M Porphyrin and chlorophyll metabolism 12 3.05E-04 3.02 12 12 4.79E-04 2.88 
M Alanine, aspartate and glutamate metabolism 17 3.18E-04 2.43 17 19 3.14E-05 2.59 
M Galactose metabolism 14 9.73E-04 2.5 14 14 1.57E-03 2.38 

  Unique genes for all pathways 406     394 417     

The numbers inside parenthesis after L1 and S1 represent the number of genes that DAVID could annotate, 
which is generally less than the number of genes in those communities. The first column lists the broad 
category of pathways (M: Metabolism, CP: Cellular Processes). Many pathways enriched in L1 and S1 have 
good overlap (a large number of genes are common). FE: Fold Enrichment. False Discovery Rate (FDR) 
values for all pathways and both communities are approximately 1.10E+3 times p-value (the factor 1.10E+3 
is related to the size of the community). 
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In terms of enzyme commission annotation, there are 1,738 enzyme-coding genes in the 

entire network. L1 and S1 have 571 and 605 enzyme-coding genes, respectively. Of these, 529 

enzyme-coding genes are common between the two communities, showing a significant overlap. 

There are a few enzyme-coding genes which are present in L1 but not in S1 such as aminoacyl-

tRNA hydrolase (PTH1) or glutamate 5-kinase (PRO1). Similarly, for genes that are present in S1 

but not in L1, sulfuric ester hydrolase (BDS1) is an example. Since both Louvain and Spinglass 

find 9 non-overlapping communities, all enzyme-coding genes are part of one of the communities. 

Table 2.6 shows KEGG pathway enrichment results for the communities L2 and S2. All 

pathways are related to genetic information processing with approximately similar genes enriched 

in the two methods. The first pathway with the lowest p-value is ribosome which is a complex 

molecule made of ribosomal RNA molecules and proteins. There are 151 genes enriched in L2 and 

141 genes enriched in S2 for this pathway. Of these, 139 genes are common (a 92% overlap). 

Similar trend is observed for other pathways as well, e.g., there is a 95% overlap between L2 and 

S2 for Spliceosome and 95% overlap for RNA transport. 

 
Table 2.6: A comparison of KEGG pathway enrichment results between the second community of 

Louvain (L2) and the second community of Spinglass (S2) for the Yeast PPI network. 
  L2 (1,378)  S2 (1,344) 

  Term (Pathway/function) # p-val FE Com # p-val FE 

GIP Ribosome 151 7.06E-65 3.25 139 141 1.96E-49 2.87 
GIP Spliceosome 74 9.60E-38 3.65 70 70 3.19E-30 3.26 
GIP RNA transport 82 2.37E-37 3.44 78 79 1.46E-31 3.13 
GIP Ribosome biogenesis in eukaryotes 75 2.86E-31 3.28 72 74 2.69E-28 3.06 
GIP RNA degradation 40 1.78E-10 2.56 38 42 3.90E-11 2.53 

  Unique genes for all pathways 380     356 365     

The numbers inside parenthesis after L2 and S2 represent the number of genes that DAVID could annotate, 
which is generally less than the number of genes in those communities. The first column lists the broad 
category of pathways (GIP: Genetic Information Processing). Many pathways enriched in L2 and S2 have 
good overlap (a large number of genes are common). FE: Fold Enrichment. False Discovery Rate (FDR) 
values for all pathways and both communities are approximately 1.05E+3 times p-value. 
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The GO term enrichment results shown in Tables S2.2 and S2.3 also verify the similarity 

between L1 and S1, and L2 and S2, respectively. Counting all genes for all pathways in Table S2.2 

yields 1,062 unique genes for L1 and 1,103 unique genes for S1 and of these, 957 genes are common 

between the two communities, which is an 87% overlap. This similarity value is 84% between L2 

and S2 (Table S2.3). 

Table S2.4 provides a comparison between the communities L3 and S3. The pathways 

enriched are classified into four different groups (metabolic processes, environmental information 

processing, cellular processes, and human diseases) as opposed to just one or two. Still, the overlap 

between L3 and S3 communities for each of the pathways is more than 80%. 

L4 and S4 are 81% similar to each other based on Table 2.3 and the results of their 

comparison are shown in Table S2.5. Most pathways for these two communities are related to 

genetic information processing category. There are two pathways related to cellular processes and 

two pathways related to metabolic processes. Based on KEGG pathway enrichment results, there is 

a good overlap between genes enriched in different pathways for these two communities. For 

example, 71 genes of L4 are enriched in cell cycle pathway and 77 genes of S4 are also enriched in 

this pathway. Among genes enriched in cell cycle pathway, 70 genes are common between L4 and 

S4, giving a 91% overlap. 

Table S2.6 compares L5 and S5. Based on Table 2.3, they are 86% similar to each other. 

KEGG pathway enrichment results of these two communities show that most pathways are related 

to metabolic processes and there are also other pathways related to other categories such as 

endocytosis, which is in the cellular processes category. The results of KEGG pathway also verify 

the similarity of Table 2.3. As seen from the enriched pathways, almost all of them have the same 
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genes enriched in both communities. For example, there are 29 genes for L5 enriched in N-Glycan 

biosynthesis and the same genes are found in S5 in the same pathway. 

 

2.3.1.2.2 Comparing dissimilar methods 
 

In this subsection, we will compare the methods that are most dissimilar to each other, 

namely, Louvain and Leading Eigen. As Table 2.4 shows, the first community of Louvain has the 

maximum overlap with the fourth community of Leading Eigen (LE4). The results of this 

comparison based on KEGG and GO term enrichment analysis are shown in Tables 2.7 and Table 

S2.7, respectively. The rest of the comparisons can be found in Table S2.8 for L2 vs. LE1, Table 

S2.9 for L4 vs. LE2, and Table S2.10 for L5 vs. LE3. 

The first pathway of Table 2.7 with the lowest p-value is metabolic pathways with 346 genes 

enriched in L1 and 253 genes enriched in LE4. Of these genes, 224 genes are common between the 

two communities, which is a 65% overlap. In contrast, the first pathway of Table 2.5 shows that 

337 genes are common between L1 and S1, which is a 94% overlap. There are some pathways in 

Table 2.7 that are blank for LE4 such as biosynthesis of amino acids. For these pathways, although 

there are some genes enriched in L1, there are no genes enriched in LE4 or if there are any, the p-

value for the pathway is higher than the defined cut-off of 0.01. Counting all genes for all pathways 

yields 406 unique genes for L1 and 273 unique genes for LE4 and of these, 239 genes are common 

between the two communities, which is a 59% overlap. Based on GO term enrichment analysis 

shown in Table S2.7, there are 474 genes common between L1 and LE4 out of 1,062 unique genes 

for L1 and 662 unique genes for LE4, which is a 45% overlap. These relatively low best-overlaps 

also confirm that these two methods are dissimilar to each other. 
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Table 2.7: A comparison of KEGG pathway enrichment results between the first community of 
Louvain (L1) and the fourth community of Leading Eigen (LE4) for the Yeast PPI network. 

  L1 (1,481)  LE4 (902) 

  Term (Pathway/function) # p-val FE Com # p-val FE 

M Metabolic pathways 346 6.62E-86 2.16 224 253 6.65E-56 2.14 
M Biosynthesis of secondary metabolites 164 5.41E-38 2.37 107 124 2.69E-27 2.43 
M Biosynthesis of antibiotics 128 6.73E-32 2.5 84 96 3.08E-22 2.54 
M Carbon metabolism 79 5.22E-26 2.97 56 62 7.38E-20 3.15 
M Oxidative phosphorylation 55 3.83E-21 3.27 49 50 2.07E-22 4.02 
M Citrate cycle (TCA cycle) 30 5.55E-16 4.02 25 25 6.78E-13 4.52 
M Biosynthesis of amino acids 68 1.20E-14 2.37 51 57 4.16E-14 2.68 
CP Peroxisome 30 4.38E-12 3.38     

M 2-Oxocarboxylic acid metabolism 27 1.70E-10 3.31 21 21 8.73E-08 3.47 
M Pyruvate metabolism 27 7.41E-09 2.97 19 21 9.37E-07 3.12 
M Glyoxylate and dicarboxylate metabolism 20 8.84E-08 3.3 14 15 2.11E-05 3.34 
M Cysteine and methionine metabolism 24 1.87E-07 2.86 18 21 1.66E-07 3.38 
M Glycine, serine and threonine metabolism 21 2.05E-06 2.81 13 14 1.42E-03 2.53 
M Arginine and proline metabolism 16 3.54E-06 3.26 10 10 5.12E-03 2.76 
M Pentose phosphate pathway 19 3.79E-06 2.91 15 16 1.15E-05 3.31 
M Tryptophan metabolism 14 4.85E-06 3.53 9 9 4.14E-03 3.06 
M beta-Alanine metabolism 12 4.90E-06 3.96 8 8 2.83E-03 3.56 
M Pentose and glucuronate interconversions 13 5.16E-06 3.71 8 8 7.75E-03 3.09 
M Glycolysis / Gluconeogenesis 30 6.30E-06 2.22 19 25 9.78E-06 2.5 
M Starch and sucrose metabolism 23 1.22E-05 2.46     

M Sulfur metabolism 12 1.81E-05 3.67     

M Selenocompound metabolism 11 1.82E-05 3.93     

M Methane metabolism 18 2.16E-05 2.75 11 13 1.24E-03 2.69 
M Tyrosine metabolism 11 1.73E-04 3.37 7 8 4.84E-03 3.31 
M Vitamin B6 metabolism 10 2.10E-04 3.57     

M Glutathione metabolism 15 2.18E-04 2.68 12 14 3.88E-05 3.38 
M Fatty acid degradation 13 2.23E-04 2.93     

M Porphyrin and chlorophyll metabolism 12 3.05E-04 3.02     

M Alanine, aspartate and glutamate metabolism 17 3.18E-04 2.43     

M Galactose metabolism 14 9.73E-04 2.5         

  Unique genes for all pathways 406     239 273     

The numbers inside parenthesis after L1 and LE4 represent the number of genes that DAVID could annotate, 
which is generally less than the number of genes in those communities. The first column lists the broad 
category of pathways (M: Metabolism, and CP: Cellular Processes). FE: Fold Enrichment. False Discovery 
Rate (FDR) values for all pathways and both communities are approximately 1.10E+3 times p-value. 
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Based on Table 2.2, Louvain and Conclude methods are also dissimilar to each other. We 

compared the communities obtained from these two methods. As Table S2.1 shows, the first 

community of Louvain (L1) has the maximum overlap with the third community of Conclude 

(CL3). The results of this comparison based on KEGG pathway enrichment analysis are shown in 

Table S2.11. The metabolic pathway is the most enriched pathway with 346 genes enriched in L1, 

230 genes enriched in CL3, and 173 genes common between the two communities, which is a 50% 

overlap. Counting all unique genes for all pathways yields 406 genes for L1 and 241 genes for CL3 

and of these, 181 genes are common between the two communities (45% overlap). This similarity 

value is close to what we calculated for Louvain vs. Leading Eigen, using KEGG pathway and GO 

term enrichment analysis (Table 2.7 and Table S2.7). The rest of the comparisons can be found in 

Table S2.12 for L2 vs. CL2, Table S2.13 for L4 vs. CL1, and Table S2.14 for L5 vs. CL5. Overall, 

dissimilarity at the topological level translates into dissimilarity at the functional level as well. 

 

2.3.2 Human PPI Network 
 

Six methods, namely, Combo, Conclude, Fast Greedy, Leading Eigen, Louvain, and 

Spinglass, have been applied to the Human PPI network with 20,644 nodes and 241,008 edges. 

Although all of them were able to find communities, we will not consider the results of Conclude 

because it finds 495 communities, many of which are very small communities with less than 50 

nodes. For Combo and Spinglass, since they use a random number generator in the procedure of 

finding communities, we ran them 10 times with 10 different seeds between 0 and 10,000 and used 

the results from the run with the largest modularity. Modularity scores and the number of 

communities detected in each run for Combo and Spinglass are summarized in Table 2.8 and Table 

2.9, respectively. 
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Table 2.8: Modularity scores and number of communities detected by Combo for the Human PPI 
network. 

Modularity 0.3735 0.3734 0.3734 0.3729 0.3723 
# of communities detected 11 13 11 15 11 
Modularity 0.3723 0.3718 0.3715 0.3711 0.3704 
# of communities detected 13 12 10 12 13 

 
 

Table 2.9: Modularity scores and number of communities detected by Spinglass for the Human 
PPI network. 

Modularity 0.3729 0.3727 0.3725 0.3725 0.3724 
# of communities detected 21 22 22 24 21 
Modularity 0.3721 0.3716 0.3716 0.3711 0.3688 
# of communities detected 22 23 21 23 23 

 

After finding modularity scores and communities for 10 runs, we selected communities 

corresponding to the largest modularity score which is 0.3735 for Combo (11 communities) and 

0.3729 (21 communities) for Spinglass. 

The results of comparing all methods excluding Conclude are presented in Table 2.10. As 

seen from the table, Louvain and Spinglass are more similar to each other as compared to all other 

pairs of methods except Combo and Spinglass. Hence, we will compare Combo and Spinglass as 

well here. Since they are more similar to each other than Louvain and Spinglass, they will be 

compared first. The first community of Combo (C1) and the first community of Spinglass (S1) have 

been compared to each other using KEGG pathway enrichment analysis and the results for top 10 

pathways are presented in Table 2.11. Table 2.12 presents the results of comparing top 10 pathways 

for the first community of Louvain (L1) and the first community of Spinglass (S1). Organization 

of these two tables is the same as that for Tables 2.5, 2.6, and 2.7 in the previous subsection. The 

complete versions of Tables 2.11 and 2.12 are in the Tables S2.15 and S2.16, respectively. The 

results of comparing all pathways for the communities C1 and S1 and L1 and S1 (with p-values 
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less than 0.01) are illustrated in Figure 2.1 and Figure 2.2, respectively. The pie charts in Figures 

2.1 and 2.2 show the broad functional categories. Essentially, pathways belonging to a broad 

category are selected and the genes of these pathways combined together and the number of unique 

genes is expressed as a percentage of total unique genes in all pathways with p-values less than 

0.01. As an example, there are three different pathways belong to cellular processes in C1: 

lysosome, peroxisome and phagosome. There are 61 genes enriched in lysosome, 46 genes enriched 

in peroxisome, and 63 genes enriched in phagosome. Together, they have 159 unique genes, which 

is about 14% of the total unique genes for all pathways with p-value less than 0.01. We performed 

these calculations for all six broad categories of pathways for two community-pairs of Tables S2.15 

and S2.16 and the corresponding results are shown in Figures 2.1 and 2.2, respectively. 

 
Table 2.10: Comparison of different methods with respect to three topological metrics, for the 

Human PPI network with 20,644 nodes and 241,008 edges. 
  Combo F. Greedy L. Eigen Louvain Spinglass 

RI Combo 1 0.7314 0.3606 0.8805 0.8948 
ARI Combo 1 0.1806 0.0315 0.416 0.4998 
NMI Combo 1 0.3025 0.0936 0.4601 0.5551 

       

RI F. Greedy  1 0.444 0.7243 0.7258 
ARI F. Greedy  1 0.0624 0.1609 0.1739 
NMI F. Greedy  1 0.0787 0.2682 0.3063 

       

RI L. Eigen   1 0.3531 0.3649 
ARI L. Eigen   1 0.0191 0.0326 
NMI L. Eigen   1 0.0711 0.0951 

       

RI Louvain    1 0.8832 
ARI Louvain    1 0.4479 
NMI Louvain    1 0.4679 

       

RI Spinglass     1 
ARI Spinglass     1 
NMI Spinglass     1 

When a method is compared with itself, RI, ARI and NMI are 1 (diagonal elements). 
Larger (smaller) the value of RI, ARI and NMI, the more (less) similar are the two methods 
being compared. 
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Table 2.11: Top 10 pathways for a comparison of KEGG pathway enrichment results between C1 
with and S1 for the Human PPI network. 

  C1 (3,028)  S1 (2,921) 

  Term (Pathway/function) # p-val FE Com # p-val FE 

M Oxidative phosphorylation 102 2.04E-53 4.69 98 99 4.47E-49 4.48 
M Metabolic pathways 385 1.62E-48 1.92 350 370 1.13E-39 1.81 
HD Parkinson's disease 87 1.73E-33 3.75 85 86 5.17E-32 3.65 
HD Alzheimer's disease 84 5.23E-24 3.06 80 82 4.30E-22 2.94 
HD Huntington's disease 83 1.02E-18 2.65 81 84 7.34E-19 2.63 
CP Lysosome 61 9.08E-18 3.09 55 56 6.40E-14 2.79 
GIP SNARE interactions in vesicular transport 29 3.24E-17 5.22 29 31 6.64E-20 5.49 
CP Peroxisome 46 1.96E-15 3.39 46 49 1.07E-17 3.55 
HD Non-alcoholic fatty liver disease (NAFLD) 66 3.63E-15 2.68 65 65 3.30E-14 2.59 
M N-Glycan biosynthesis 32 1.58E-13 4 31 31 2.14E-12 3.81 

The numbers inside parenthesis after C1 and S1 represent the number of genes that DAVID could annotate. 
The first column lists the broad category of pathways (M: Metabolism, HD: Human Diseases, CP: Cellular 
Processes, and GIP: Genetic Information Processing). FE: Fold Enrichment. 

 

As seen in Table 2.11, there is a good overlap between enriched genes in C1 and S1 

communities for different pathways. The first pathway is oxidative phosphorylation with the lowest 

p-value. This pathway has 102 genes enriched in C1 and 99 genes enriched in S1. Of these genes, 

there are 98 genes common between the two communities, which is a 96% overlap. Counting all 

genes for all pathways yields 778 unique genes for C1 and 756 unique genes for S1. Of these genes, 

there are 696 genes common between the two communities, which is an 89% overlap. The results 

of GO term enrichment analysis between these two communities are presented in Table S2.17, 

where a similarity of 91% is observed. 

As seen in Figure 2.1, communities C1 and S1 represent six different broad categories of 

functions and they are similar to each other in terms of the percentage of enriched genes in each 

category. 
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Figure 2.1: Pie charts for KEGG pathway enrichment results of C1 with 3,252 and S1 with 3,206 genes for 
the Human PPI network. Left chart shows the results for C1 and right chart shows the results for S1. 

 
The results of comparing the top 10 pathways for L1 and S1 are summarized in Table 2.12 

(Table S2.16 for the full list). Figure 2.2 shows the broad functional categories for comparing all 

pathways with p-values less than 0.01 for L1 and S1. Comparison of Figures 2.1 and 2.2 reveals 

that L1 and S1 are less similar as compared to C1 and S1. However, it is appropriate to say that 

Combo, Louvain, and Spinglass broadly yield similar and reasonably sized communities. 

 
Table 2.12: Top 10 pathways for a comparison of KEGG pathway enrichment results between L1 

and S1 for the Human PPI network. 
  L1 (3,217)  S1 (2,921) 

  Term (Pathway/function) # p-val FE Com # p-val FE 

M Oxidative phosphorylation 103 5.51E-48 4.06 97 99 4.47E-49 4.48 
M Metabolic pathways 398 1.08E-35 1.7 341 370 1.13E-39 1.81 
HD Parkinson's disease 91 8.68E-32 3.36 83 86 5.17E-32 3.65 
HD Alzheimer's disease 88 3.96E-22 2.75 80 82 4.30E-22 2.94 
HD Huntington's disease 87 8.64E-17 2.38 81 84 7.34E-19 2.63 
GIP SNARE interactions in vesicular transport 30 9.97E-17 4.63 30 31 6.64E-20 5.49 
HD Non-alcoholic fatty liver disease (NAFLD) 70 4.06E-14 2.43 64 65 3.30E-14 2.59 
M N-Glycan biosynthesis 34 1.69E-13 3.64 31 31 2.14E-12 3.81 
CP Phagosome 69 3.29E-13 2.37 61 66 1.80E-14 2.6 
CP Peroxisome 44 1.65E-11 2.78 40 49 1.07E-17 3.55 

This table is arranged similar to Table 2.11. 
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Figure 2.2: Pie charts for KEGG pathway enrichment results of L1 with 3,585 and S1 with 3,206 genes for 
the Human PPI network. Left chart shows the results for L1 and right chart shows the results for S1. 

 

2.3.3 Orthology Comparison of Communities from Yeast and Human PPI Networks Using 
Louvain Method 
 

In this sub-section, we will compare communities detected by Louvain for the Yeast PPI 

network and communities detected by the same method for the Human PPI network. Louvain could 

find 9 communities with sizes ranging from 4 to 1,538 for the Yeast PPI network (named SC1 for 

the biggest and SC9 for the smallest community) and 14 communities with sizes ranging from 3 to 

3,585 for the Human PPI network. Using biomaRt package of R [44], we were able to find 

orthologous genes between Yeast and Human. Since the sizes of communities (the number of genes 

in the community) detected for the Human PPI network are larger than the size of communities 

detected for the Yeast PPI network, we found orthologous genes of the communities detected for 

the Human PPI network in Yeast (denoted HS ➔ SC) and then used DAVID to perform KEGG 

pathway enrichment for those genes. KEGG pathway enrichment results for the HS ➔ SC genes 

were compared to that for the communities of the Yeast PPI network. Table 2.13 shows the Jaccard 

index (as a percentage) between different pairs of communities and guided us on which community 
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pairs should be compared with each other. For example, SC2 should be compared with HS3 ➔ SC. 

The results of comparing SC2 and HS3 ➔ SC are presented in Table 2.14. Tables for other 

comparisons of this sub-section are in the supplementary section (SC4 vs. HS1 ➔ SC in Table 

S2.18 and SC5 vs. HS2 ➔ SC in Table S2.19). 

 
Table 2.13: Jaccard index (%) between the communities detected by Louvain for the Yeast PPI 
network and orthologous genes of the communities detected by the same method for the Human 

PPI network in Yeast. 
  SC1 (1,538) SC2 (1,472) SC3 (1,190) SC4 (1,151) SC5 (993) 

HS2 (3,511)  SC (702) 12.11 3.52 4.53 2.04 18.36 
HS3 (2,660)  SC (621) 3 20.84 4.92 2.9 3.46 
HS1 (3,585)  SC (531) 2.58 3.46 5.65 19.97 2.21 
HS6 (1,561)  SC (408) 8.29 4.56 4.58 2.63 4.86 
HS7 (1,308)  SC (367) 3.87 5.75 5.85 3.19 4.61 
HS4 (2,547)  SC (335) 3.54 2.84 6.27 3.12 6.67 
HS5 (1,639)  SC (244) 2.29 2.32 5.83 2.27 4.56 

Community pairs with maximum overlap ≥ 10% (e.g., SC2 vs. HS3  SC) are indicated in bold text. 

 

Table 2.14: A comparison of KEGG pathway enrichment results between the second community 
detected by Louvain for the Yeast PPI network (SC2) and orthologous genes of the third 

community of the Human PPI network in Yeast (HS3  SC). 
  SC2 (1,378)  HS3 (2,660)SC (621) 

  Term (Pathway/function) # p-val FE Com # p-val FE 

GIP Ribosome 151 7.06E-65 3.25 104 112 6.72E-49 3.86 
GIP Spliceosome 74 9.60E-38 3.65 48 52 2.71E-23 4.1 
GIP RNA transport 82 2.37E-37 3.44 26 29 3.60E-04 1.94 
GIP Ribosome biogenesis in eukaryotes 75 2.86E-31 3.28 37 37 1.33E-08 2.59 
GIP RNA degradation 40 1.78E-10 2.56 14 17 2.60E-02 1.74 

The first column lists the broad category of pathways (GIP: Genetic Information Processing). FE: Fold 
Enrichment. 

 

As seen in Table 2.14, the most enriched pathway is the ribosome pathway with 151 genes 

enriched in SC2 and 112 genes enriched in HS3 ➔ SC. Of these, 104 genes are common between 
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the two communities, which is a 69% overlap. Counting all genes for all pathways yields 380 unique 

genes for SC2 and 233 unique genes for HS3 ➔ SC. Of these genes, there are 218 genes common 

between the two communities, which is a 57% overlap. Although this similarity level is not 

impressive by itself, we did not expect much overlap between the two communities since Table 

2.13 represents only a 21% similarity between them. 

 

2.4 Discussion 
 

As mentioned in the Results section, Louvain and Spinglass are most similar to each other 

for the Yeast PPI network (Table 2.2). Louvain tries to maximize the modularity (Q) whereas 

Spinglass tries to minimize the Hamiltonian (ℋ). However, it has been shown that there is a relation 

between Q and ℋ as 𝑄𝑄 = − ℋ
2𝑀𝑀

 (Equation 2.16 in the Methods section). Thus, minimizing ℋ is 

equivalent to maximizing Q. Still, since they use different algorithms to optimize their objective 

functions, the results are not exactly the same. Combo also tries to maximize modularity but in a 

different way than that in Louvain, thus resulting in slightly different communities as compared to 

those obtained by the Louvain method. 

Table 2.2 suggests that Louvain and Spinglass are most similar to each other while Louvain 

and Leading Eigen are most dissimilar for the Yeast PPI network. Figure 2.3 illustrates the 

differences (as a percentage, i.e., 100*(#genes different between L1 and S1 (or L1 and 

LE4))/(max(L1,S1,LE4)) for each pathway) between the number of genes enriched in different 

pathways (with more than 10 genes and p-values less than 0.01) for L1 and S1 (blue columns), and 

for L1 and LE4 (orange columns). As seen from Figure 2.3, there is more difference between the 

number of genes enriched in L1 and LE4 compared to the difference between L1 and S1. This also 
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verifies our results of topological comparison between L1 and S1, and L1 and LE4 (see also Table 

2.2). 

 
Figure 2.3: Comparing number of genes enriched in different pathways for the first community detected by 
Louvain (L1), the first community detected by Spinglass (S1), and the fourth community detected by 
Leading Eigen (LE4) for the Yeast PPI network. 

 

KEGG pathway enrichment results for communities detected for the Yeast PPI network 

show that almost all pathways of each community belong to one broad function. For example, the 

first community of Louvain mostly includes pathways related to metabolic processes, the second 

community consists of pathways related to genetic information processing. On the other hand, the 

functions/pathways represented by communities detected for the Human PPI network are somewhat 

mixed and include several broad biological functions. Vis-a-vis the functional similarity of the 

methods, for the Human PPI network, Combo and Spinglass are similar, e.g., Figure 2.1 shows that 
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in the first community of Combo (C1), 15% of the genes belong to pathways related to human 

diseases and the first community of Spinglass (S1) also has 15% of the genes related to the same 

broad category. 

In order to confirm that the size of communities detected by different methods are reliable, 

we found sub-communities of the communities detected by Combo, Louvain, and Spinglass for the 

Yeast PPI network and analyzed the results to see if detected sub-communities of one community 

include pathways related to different biological functions or to the same one as the main 

community. As an example, most pathways of L1 belong to metabolic processes and the pathways 

for its sub-communities also belong to metabolic processes. Due to the result of this comparison 

and other comparisons for all communities and sub-communities detected by Combo, Louvain, and 

Spinglass, we can conclude that the size of communities detected are reliable. 

We were also curious to know if all genes enriched in each pathway belong to one 

community or to different communities. To find this, we compared genes enriched in different 

pathways for all communities detected by Combo, Louvain, and Spinglass for the Yeast PPI 

network. The results of this comparison are shown in Tables 2.15, 2.16, and 2.17. The first column 

lists the broad category of pathways (M: Metabolism and GIP: Genetic Information Processing). 

The second column lists the different pathways enriched, columns 3 through 7 represent the number 

of enriched genes for each community, column 8 is the summation of all enriched genes, and the 

last column specifies the total number of genes in each pathway in the DAVID KEGG database. 

Some numbers in these tables are colored in gray, meaning their p-values are larger than the cut-

off of 0.01. As seen in these tables, most enriched genes in each pathway belong to one community 

and the corresponding pathway is also significantly enriched. There are only a few exceptions such 

as metabolic pathways (which has a total of 685 genes and they are mainly distributed into two 
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communities while still maintaining p-value less than 0.01 for the pathway (Tables 2.15-2.17, for 

the Yeast PPI network)), biosynthesis of amino acids (Table 2.16), and ribosome (Table 2.15). For 

the other pathways, most of the enriched genes belong to one community and if another community 

has some enriched genes, the p-value is greater than the cutoff of 0.01 (colored gray). 

 
Table 2.15: Number of genes enriched in each pathway for different communities detected by 

Combo for the Yeast PPI network. 
    C1 C2 C3 C4 C5     
  Term (Pathway/function) Count Count Count Count Count Sum Pop Hits 
M Metabolic pathways 384 83 73 140  680 685 
M Biosynthesis of secondary metabolites 186 60 10 38   294 296 
M Biosynthesis of antibiotics 146 40 7 25   218 219 
M Carbon metabolism 89 18 5    112 114 
M Biosynthesis of amino acids 81 33 6 2   122 123 
M Glycolysis / Gluconeogenesis 34 19 3 2   58 58 
GIP Ribosome 3 145  2 24 174 181 
GIP RNA transport  5 79 8     92 93 

The first column lists the broad category of pathways (M: Metabolism, and GIP: Genetic Information 
Processing). Column 2 lists the different pathways enriched. Columns 3 through 7 represent number of 
enriched genes for different communities. Column 8 lists the total of all enriched genes of all communities 
together and the last column represents the maximum number of genes in that pathway. For example, in 
DAVID database, “metabolic pathways” contains 685 genes and of these, 384 were found in C1 and 140 
were found in C4. 

 
Table 2.16: Number of genes enriched in each pathway for different communities detected by 

Louvain for the Yeast PPI network. 
    L1 L2 L3 L4 L5     
  Term (Pathway/function) Count Count Count Count Count Sum Pop Hits 
M Metabolic pathways 346 93 34 71 138 682 685 
M Biosynthesis of secondary metabolites 164 63 18 10 40 295 296 
M Biosynthesis of antibiotics 128 46 14 6 25 219 219 
M Carbon metabolism 79 19 9 5 2  114 114 
M Biosynthesis of amino acids 68 40 7 6 2 123 123 
M Glycolysis / Gluconeogenesis 30 19 5 3   57 58 
GIP Ribosome 21 151  2   174 181 
GIP RNA transport   82 4 5   91 93 

This table is arranged similar to Table 2.15. 
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Table 2.17: Number of genes enriched in each pathway for different communities detected by 
Spinglass for the Yeast PPI network. 

    S1 S2 S3 S4 S5     
  Term (Pathway/function) Count Count Count Count Count Sum Pop Hits 
M Metabolic pathways 357 85 30 69 140 681 685 
M Biosynthesis of secondary metabolites 167 61 17 8 41 294 296 
M Biosynthesis of antibiotics 131 43 14 5 25 218 219 
M Carbon metabolism 84 18 6 4 2  114 114 
M Biosynthesis of amino acids 74 35 6 5 2  122 123 
M Glycolysis / Gluconeogenesis 32 17 5 3   57 58 
GIP Ribosome 32 141     173 181 
GIP RNA transport 5 79 2 6   92 93 

This table is arranged similar to Table 2.15. 

 

We note that the analysis provided above does not fully address the issue of selecting the 

best method. It is likely to be subjective and network specific. Hence, we recommend applying a 

few different methods, such as Louvain (from the group of similar methods) and one or two other 

(dissimilar) methods, and compare and interpret the results to obtain a consensus best method. 

 

2.4.1 Robustness of Communities Obtained by the Louvain Method 
 

We also analyzed the robustness of communities obtained by Louvain method for small 

perturbations in the network. Essentially, the network is randomly perturbed by deleting some nodes 

(and edges involving them) and the communities are identified. This is carried out 100 times to 

assess the robustness of the communities. First, the communities of the original Yeast PPI network 

are identified using Louvain method. Then, the following steps are repeated 100 times: 

1. Remove 1% of nodes randomly (e.g., 65 nodes out of 6532 nodes for the Yeast PPI 

network). 

2. Find the communities of the new network using Louvain method. 



32 
 

3. From the communities of the original network, delete the random nodes of step 1. 

4. Calculate the Jaccard index matrix between the communities obtained in steps 2 and 3. 

We considered all communities with more than 100 nodes. 

5. Compute the maximum value for each column of the Jaccard index matrix. 

6. Compute the average of the resulting row-vector. 

After performing the above steps 100 times, we have the vector of average of column-wise-

maximum (avg-max) of Jaccard index values. Then, we generate scatter plots of avg-max. The 

scatter plots of avg-max for the Yeast and the Human PPI networks are shown in Figure 2.4 (left 

panel: Yeast, right panel: Human). 

 

 
Figure 2.4: Scatter plots of avg-max (average of column-wise-maximum of Jaccard index matrix) values vs. 
run number. Panel A shows the results for the Yeast PPI network and panel B shows the results for the 
Human PPI network. 

 

The mean and standard deviation of the avg-max vector are 72.21 and 9.02%, respectively 

for the Yeast PPI network, whereas, for the Human PPI network, they are 60.11 and 7.14%, 

respectively. These relatively large numbers for the mean suggest that the communities identified 

by Louvain method are robust to small perturbations. We repeated the process for Leading Eigen. 
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The mean and standard deviation of the avg-max vector for the Yeast network is 53.4 and 5.63%, 

respectively. Thus, Louvain is a better method, at least for the Yeast PPI network; for the Human 

PPI network, Leading Eigen finds only two or three very large communities, making avg-max 

artificially high (98%). 

 

2.4.2 Generality of the Overall Results 
 

The PPI networks that we used in our analysis were from BioGRID and included both 

physical and genetic interactions (combined network). Hence, we have also applied the various 

approaches for finding communities to a Yeast PPI network comprising of only physical 

interactions, which has 6,298 nodes and 83,788 edges, to find out if our broad conclusions based 

on the combined network are still valid for the physical interaction-only network. Table S2.20 

shows the modularity scores and the number of communities detected by different methods for the 

physical interaction-only network. While Q is smaller for the combined network as compared to 

that for the physical interaction-only network for all methods, their relative trend for the different 

methods remain almost the same. Interestingly, the Q values for Louvain, Combo, and Spinglass 

are similar and among the largest. Thus, these three methods are one of the best methods in terms 

of Q value as well. 

We have compared the various methods using three topological metrics (namely Rand 

Index, Adjusted Rand Index, and Normalized Mutual Information) with respect to the physical 

interaction-only network. The results for these comparisons are given in Table S2.21. Based on 

results of Table S2.21, Combo, Louvain, and Spinglass are similar to each other in terms of the 

topological metrics. We also compared the KEGG pathway enrichment results for the first 5 

communities of Louvain and Spinglass. To find which communities from Louvain and Spinglass 
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methods are similar, we generated the Jaccard index matrix for communities with more than 100 

nodes for both methods (Table S2.22). After selecting pairs of communities with highest value of 

Jaccard index for each column, we used DAVID version 6.8, to perform KEGG pathway 

enrichment analysis. The results of those comparisons are presented in Tables S2.23-S2.25 for the 

L1 vs. S1, L2 vs. S2, and L3 vs. S4 comparisons, respectively. These tables are arranged similar to 

Table S2.4. 

Two main results from Tables S2.23-S2.25 are: 1) good functional similarity between the 

communities from Louvain and Spinglass methods (e.g., an overlap of 73.06% between L1 and S1, 

79.41% between L2 and S2, and 85.24% between L3 and S4) and 2) segregation of biological 

functions represented by the communities, e.g., communities L2, L3, and L4 represent mostly 

metabolism related pathways. L1 shows a mixed enrichment, akin to the mixed pathways 

represented by the L3 and L5 communities of the combined network (Tables S2.4 and S2.6). Some 

differences in the nature of the broad results for the combined network vs. the physical interaction-

only network are likely due to the fact that the physical interaction-only network is much sparser 

(just 1/3rd of the edges are retained) as compared to the combined network. Using Cytoscape [45], 

we also analyzed the properties (Table S2.26) and node-degree distribution for the combined 

network and the physical interaction-only network (Figures 2.5A and 2.5B). Figure 2.5C shows a 

comparison of count of nodes for a given degree between the combined and the physical interaction-

only networks. As can be seen from Figure 2.5C, good R2-value suggests good agreement between 

the two degree distributions. 
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Figure 2.5: A Node-degree distribution for the combined network. B Node-degree distribution for the 
physical interaction-only network. C Comparison of counts of nodes between the combined network and the 
physical interaction-only network. 

 

2.4.3 Optimization of Method-specific Parameters 
 

We wanted to find out if the Q value for the different methods could be improved by 

optimizing their parameters, if any, or if their results varied across different runs. Of six methods, 
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three of them, namely, Combo, Conclude, and Spinglass used a random number generator in the 

procedure for finding communities, although they do not have any parameters to be optimized. We 

carried out 10 repeats of Combo, Conclude, and Spinglass on the combined Yeast PPI network to 

assess the variation in Q across the runs. Table S2.27 shows the results of 10 runs for these methods 

(similar to those for the Combo and Spinglass methods for the Human PPI network in Tables 2.8 

and 2.9, respectively). The standard deviations of Q across the 10 runs are much larger for Conclude 

(5.11%, std./mean) as compared to those for Combo (0.05%) and Spinglass (0.36%). Thus, for a 

small number of allowed runs, the results from Combo and Spinglass are more reliable. 

We selected the run with the highest modularity for Conclude method and performed KEGG 

pathway enrichment analysis. Then we compared these enrichment results with the enrichment 

results for the communities from the Conclude method reported earlier. Although the size of 

communities is a little different, the broad categories of pathways for majority of the communities 

are still the same. For example, there is one community in both runs which has pathways mainly 

related to metabolic processes. Table S2.28 shows the results for comparison between the two 

communities with pathways related to metabolic processes (CL3) in the two runs. 

Spinglass method uses simulated annealing in its procedure. Hence, we ran it 10 times with 

10 different start and stop temperatures and cooling factor, but the default values in the igraph 

package in R yielded the best result in terms of the largest modularity. Overall, at a broad level, we 

found that in our case studies, the methods providing well-interpretable communities also resulted 

in near-optimal (largest) Q values. The fact that the Q value for Conclude in one of the runs is 

slightly higher (0.29) than those for Combo and Spinglass (0.265) does not violate this conclusion 

because some of the communities from Conclude are also well-interpretable. However, we note 
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that the Q values across different runs vary substantially for Conclude as compared to those for 

Combo and Spinglass, suggesting that Combo and Spinglass are likely more robust than Conclude. 

 

2.5 Conclusion 
 

In this paper, we tested six methods to detect communities within the Yeast and Human PPI 

networks. An in-depth comparison of communities detected by these different methods has led us 

to conclude that Louvain and Spinglass are most similar for the Yeast PPI network whereas Combo 

and Spinglass are most similar for the Human PPI network. In terms of finding communities that 

include core pathways based on KEGG pathway and GO term enrichment results, Combo, Louvain, 

and Spinglass were able to find similar communities in which important biological functions and 

pathways were enriched. For the Yeast PPI network, all genes from the network belonging to a 

pathway also generally belong to only one or two communities. In terms of running time or 

computational complexity, for the Yeast PPI network, Louvain was the fastest method and Combo 

was faster than Spinglass. For the Human PPI network, Louvain was much faster than Spinglass, 

and Spinglass was faster than Combo. Overall, Combo, Louvain, and Spinglass provide reasonable 

results for community detection in biological networks. Their corresponding modularity values 

were also among the highest, except that Conclude yielded slightly better modularity for the Yeast 

PPI network in some runs; variation in modularity for Conclude was much larger than that for 

Combo and Spinglass across multiple runs. Overall, since Combo and Spinglass use stochastic 

search in their procedure and their running time is also more than that for Louvain, Louvain is likely 

the best method to find reasonably sized communities for biological networks in a reasonable time. 

While we applied these methods to PPI networks, we expect the broad results to be applicable to 

other types of networks such as gene-coexpression networks and hybrid/integrated networks. 
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2.6 Methods 
 

The focus of this work is on undirected, unweighted, and connected graphs defined as 

G(n,m) where n = {n1, n2, …, n|n|} is an ordered set of nodes and m, a subset of n*n, is the set of 

edges; for convenience, here, n and m represent sets. In our case studies on the Yeast and Human 

PPI networks, each node represents an Entrez gene ID and each edge represents an interaction 

between two nodes. By finding communities, we imply the segregation of nodes into groups such 

that there is a higher density of edges within each group than between groups. Although there are 

many algorithms for detecting communities, we selected six algorithms that performed well in 

terms of finding core pathways in biological networks with several thousands of nodes and 

hundreds of thousands of edges within reasonable time (e.g., one day on a 24-processor machine). 

Each of these algorithms tries to optimize an objective function which in most cases is 

modularity. However, two algorithms with the same objective function will generally yield slightly 

different communities using different amounts of run time if they use different optimization 

strategies. The algorithms that will be briefly described below are: Girvan-Newman [15, 17], Fast 

Greedy [18], Combo [46], Louvain [20], Conclude [47], Infomap [48], Leading Eigen [21], and 

Spinglass [29]. We used an R package named igraph [49] to run Fast Greedy, Louvain, Leading 

Eigen, and Spinglass. There is a Cytoscape plugin, named GLay, to visualize the network and the 

communities [50]. The GLay plugin utilizes igraph C library which provides the same methods as 

the igraph R package [49]. For the other two methods (Conclude and Combo), authors have made 

java [51] and C++ [52] codes of their algorithms available online. Girvan-Newman method did not 

provide any result for our networks in 24 hours on a 24-processor machine, so we did not consider 

its results in our comparison. Another method, called Infomap, did not find reasonably-sized 

communities (e.g., for the Yeast PPI network with 6,532 nodes, one community has 6,195 nodes, 
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and the rest have less than 10 nodes). Due to these reasons, we did not consider Girvan-Newman 

and Infomap methods in our analysis. However, Fast Greedy and Louvain, which we have used in 

our comparison, are based on the original Girvan-Newman method. So, we will briefly describe 

Girvan-Newman algorithm in the next subsection. 

 

2.6.1 Algorithms for Community Detection 
 
Girvan-Newman 

This is a divisive algorithm for identifying communities in networks where edges are 

iteratively removed based on the value of their betweenness. The steps of the algorithm are as 

follows [15, 17]: 

1. Calculate betweenness score for all edges in the network. Betweenness is a measure that 

favors edges that lies between communities and disfavors those that lie inside communities. While 

there are many measures to find betweenness, Girvan-Newman algorithm uses the fast algorithm 

of Newman to find betweenness scores [53]. 

2. Find the edge that has the maximum value of betweenness and remove it from the 

network. 

3. Recalculate betweenness for all remaining edges in the network and repeat from step 2 

for the new scores until there are no edges remaining. 

The output of this algorithm is a dendrogram that captures the possible divisions of the 

network into communities. In order to select the optimal division among all possible options, 

Modularity (Q) is used. 

𝑄𝑄 =
1

2𝑚𝑚
��𝐴𝐴𝑖𝑖𝑖𝑖 −

𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
2𝑚𝑚

�𝛿𝛿(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗)
𝑖𝑖,𝑗𝑗

  (2.1) 
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where Aij is the weight of the edge between node i and j (is equal to 1 when all edges have the same 

weight), ki is the sum of the weights of the edges attached to node i or degree of node i, ci is the 

community to which node i belongs to and the δ function is defined as δ(u,v) = 1 if u = v and 0 

otherwise. Local peaks in the modularity during the process of community detection indicate good 

divisions of the network into communities. While using this algorithm gives good results in many 

cases, its computational complexity is O(m2n) or O(n3) on a sparse graph, where n is the number of 

nodes and m is the number of edges. This makes it impractical for very large graphs with several 

thousands of nodes and hundreds of thousands of edges. 

 

Fast greedy by Clauset, Newman and Moore 

This algorithm (namely, Fast Greedy) involves finding the changes in modularity that 

results from combining pair of communities, selecting the combination yielding largest gain in 

modularity, and implementing the combination of the corresponding pair [18]. At the beginning, 

each node is considered as a community. One way of performing the combination process is to 

consider the network as a multigraph where a whole community is represented by a node and the 

elements of the adjacency matrix are equal to the number of edges between the communities. 

Joining two communities (namely i and j) corresponds to replacing the ith and jth rows and columns 

of the adjacency matrix by a single row and column formed by their sum, respectively; the record 

of the list of nodes in the communities formed thus far is updated. In the algorithm proposed by 

Newman [31], this operation is carried out explicitly on the entire adjacency matrix. Calculating 

the change of modularity (ΔQ) and finding the pair i, j with the largest gain is time-consuming. 

Hence, here, instead of using the adjacency matrix and calculating ΔQij, a matrix of ΔQij values is 

initialized and updated directly. For sparse matrices, e.g., adjacency matrices for large networks, 
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this results in substantial reduction in computation. The following parameters have to be set 

initially: 

∆𝑄𝑄𝑖𝑖𝑖𝑖 = �
1

2𝑚𝑚� − 𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
(2𝑚𝑚)2�    if i, j are connected 

0                     otherwise
 (2.2) 

𝑎𝑎𝑖𝑖 =
𝑘𝑘𝑖𝑖

2𝑚𝑚
 (2.3) 

for each i. The next steps are as follows: 

 1. Calculate the initial values of ΔQij and ai based on Equations 2.2 and 2.3, and form the 

max-heap, H, which contains the largest element of each row of the matrix ΔQij along with the 

labels i, j of the corresponding pair of communities. 

 2. Select the largest ΔQij from H, combine the corresponding communities, update the 

matrix ΔQ, H, and ai (Equation 2.4) and increase Q by ΔQij. 

 3. Repeat step 2 until only one community exists. 

Due to the sparsity of the original adjacency matrix A, we will be able to perform updates 

in step 2 quickly and we need to only adjust a few elements of ΔQ. If communities i and j are joined 

together, labeling the combined community as j, we update the jth row and column, and delete the 

ith row and column altogether. The update rules are as follows: 

If community k is connected to both i and j, then: 

∆𝑄𝑄𝑗𝑗𝑗𝑗′ = ∆𝑄𝑄𝑖𝑖𝑖𝑖 + ∆𝑄𝑄𝑗𝑗𝑗𝑗  (2.4a) 

If k is connected to i but not to j, then: 

∆𝑄𝑄𝑗𝑗𝑗𝑗′ = ∆𝑄𝑄𝑖𝑖𝑖𝑖 − 2𝑎𝑎𝑗𝑗𝑎𝑎𝑘𝑘  (2.4b) 

If k is connected to j but not to i, then: 

∆𝑄𝑄𝑗𝑗𝑗𝑗′ = ∆𝑄𝑄𝑗𝑗𝑗𝑗 − 2𝑎𝑎𝑖𝑖𝑎𝑎𝑘𝑘  (2.4c) 
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To update a: 𝑎𝑎𝑗𝑗′ = 𝑎𝑎𝑗𝑗 + 𝑎𝑎𝑖𝑖 

Fast Greedy algorithm runs in time O(m.d.logn) for a network with n nodes and m edges 

where d ~ logn is the depth of the dendrogram. For sparse networks (m ~ n), the running time is 

O(nlog2n), which is essentially linear [18]. 

 

Combo 

Most community detection algorithms use one of the following steps in the process of 

finding communities: they may join two communities, split a community into two, or move nodes 

between two distinct communities. Combo involves all three possibilities [46]. After selecting an 

initial partition made of a single community, the following steps are iterated until there is no gain 

in the objective function which may be modularity (Equation 2.1) or description code length: 

1. For each source community, the best possible repartition of every source node into each 

destination community (either an existing community or a new community) is calculated. It would 

be possible that the source community totally joined the destination community in this step. 

2. The best merger, split, or recombination is performed. 

The basis of Combo is the selection of the best repartition of nodes between two 

communities. For each pair of sources and (maybe empty) destination communities, a shift of all 

the nodes using Kernighan-Lin algorithm [54] is performed. Particularly, Combo recombines the 

two communities starting from several initial configurations including: a) the original communities, 

b) the case in which the whole source community is moved to the destination community and c) a 

few intermediate mergers, where a random subset of the source community is shifted to the 

destination community. 
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For each starting configuration, a series of Kernighan-Lin shifts [54] is iterated until no 

further improvement is possible. Each configuration is carried out by initializing a list of available 

nodes to cover all the nodes from the original source community and then iterating the following 

steps until there are no more nodes in the list: 

1. Find the node i in the list which when switched to another community results in the largest 

gain in modularity. 

2. Switch i to the other community, remove it from the original list and save the intermediate 

result. 

After performing a series of Kernighan-Lin iterations for each of the starting configurations, 

the intermediate result with the best score in terms of objective function (modularity) is selected. 

Combo outperforms all other known algorithms when the objective function is modularity. 

However, it has limitations on the size of the network it could handle within a reasonable time, 

which is currently around 30,000 nodes and is not a serious limitation for most biological networks. 

When the objective function is description code length, Combo’s results are similar to Infomap 

(which will be described later in this section) in most cases. Since the sequence of operations 

depends on the specific network, obtaining exact evaluations of the computational complexity of 

Combo is difficult, but the upper bound is O(n2logc) where n is the number of nodes and c is the 

number of communities in the network [46]. 

 

Louvain 

This algorithm detects communities in large networks by maximizing modularity and is 

much faster as compared to other methods [20, 55, 56]. The limiting factor for this method is the 

memory (RAM) requirement rather than the computation time, as is the case with Girvan-Newman 
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and Spinglass algorithms. The algorithm is divided in two phases, which are repeated iteratively. 

First phase is to assign a different community to each node of the network. So, in the beginning, 

there are as many communities as there are nodes. Then, the gain of modularity (Equation 2.5) is 

calculated for removing node i from its community and placing it in one of its neighboring 

communities. The gain of modularity in moving node i into a community C can be computed by: 

∆𝑄𝑄 = �
Ʃ𝑖𝑖𝑖𝑖 + 𝑘𝑘𝑖𝑖,𝑖𝑖𝑖𝑖

2𝑚𝑚
− �

Ʃ𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑘𝑘𝑖𝑖
2𝑚𝑚

�
2

� − �
Ʃ𝑖𝑖𝑖𝑖
2𝑚𝑚

− �
Ʃ𝑡𝑡𝑡𝑡𝑡𝑡
2𝑚𝑚

�
2

− �
𝑘𝑘𝑖𝑖

2𝑚𝑚
�
2

� (2.5) 

where Ʃin is the sum of the weights (or count for unweighted networks) of the edges inside C, Ʃtot 

is the sum of the weights of the edges incident to nodes in C, ki is the sum of the weights of the 

edges incident to nodes i (degree of i), ki,in is the sum of the weights of the edges from i to nodes in 

C and m is the sum of the weights of all the edges in the network. If the gain is positive, the node i 

is placed in the community for which the gain is maximum. This process is applied repeatedly for 

all nodes until no further improvement can be achieved. 

The second phase is to build a network whose nodes are now the communities detected 

during the first phase. In order to perform that, the weights of the edges between the new nodes are 

given by the sum of the edges between nodes in the corresponding two communities. Edges between 

nodes of the same community result in self-loops for this community in the new network. When 

this phase is completed, the first phase of the algorithm is reapplied to the new network. The 

combination of these two phases is referred to as a “pass”. The passes are iterated until a maximum 

of modularity is reached. This algorithm is extremely fast (O(nlogn)) and could be even faster by 

using some heuristics, e.g., stopping the first phase when the gain of modularity is less than a given 

threshold [20]. 
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COmplex Network CLUster DEtection (CONCLUDE) 

CONCLUDE is a fast community detection method. The algorithm takes a graph G, an 

integer κ, and an integer φ as inputs. The steps are: 

1. Compute κ-path edge centralities using Edge Random Walk κ-path Centrality (ERW-

Kpath) algorithm (described by De Meo, et al. [47]) on nodes of G by carrying out at most φ 

iteration. The output of ERW-Kpath algorithm is an array of weights. 

2. Calculate the distance among all pairs of nodes by taking two inputs: graph G and the 

array of weights from the previous step. It uses the following equation (Equation 2.6) to find 

pairwise distances: 

𝜎𝜎𝑖𝑖𝑖𝑖

= �∑ [𝐿𝐿𝜅𝜅(𝑒𝑒𝑘𝑘𝑘𝑘)]2𝑘𝑘𝑘𝑘𝑘𝑘(𝑖𝑖)−𝐶𝐶𝐶𝐶(𝑖𝑖,𝑗𝑗)

|𝑁𝑁(𝑖𝑖) − 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)|
+
∑ �𝐿𝐿𝜅𝜅(𝑒𝑒𝑘𝑘𝑘𝑘)�

2
𝑘𝑘𝑘𝑘𝑘𝑘(𝑗𝑗)−𝐶𝐶𝐶𝐶(𝑖𝑖,𝑗𝑗)

|𝑁𝑁(𝑗𝑗) − 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)|
+
∑ �𝐿𝐿𝜅𝜅(𝑒𝑒𝑘𝑘𝑘𝑘) − 𝐿𝐿𝜅𝜅(𝑒𝑒𝑘𝑘𝑘𝑘)�

2
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑖𝑖,𝑗𝑗)

|𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)|
 
(2.6) 

where Lκ is κ-path edge centrality and is calculated by: 

𝐿𝐿𝑘𝑘(𝑒𝑒𝑖𝑖𝑖𝑖) = �𝑃𝑃𝑃𝑃(𝑒𝑒, 𝑠𝑠)
𝑠𝑠𝑠𝑠𝑠𝑠

 (2.7) 

Pr(e,s) is the probability of selecting the edge e in a random simple κ-path originating from an 

arbitrary source node s. The symbol N(i) is the set of neighbors of the node i and CN(i,j) indicates 

the subset of neighbors common to i and j. 

 The output of this step is a matrix Δ containing all pairs of distances between nodes. 

 3. Finally, apply Louvain method [20] on matrix Δ to find communities of G. 

 

Maps of random walk (Infomap) 

The Infomap approach closely follows the Louvain approach [20]; neighboring nodes are 

joined together to make small communities which subsequently are joined into bigger communities. 
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The difference between these two methods is that the objective function of Louvain is modularity 

while the objective function of Infomap is a lower bound on a quantity referred to as code-length 

(M), defined as: 

𝐿𝐿(𝑀𝑀) = 𝑞𝑞↷𝐻𝐻(𝑄𝑄) −�𝑝𝑝𝑖𝑖↻𝐻𝐻(𝑃𝑃𝑖𝑖)
𝑐𝑐

𝑖𝑖=1

 (2.8) 

The aim of Infomap is to minimize the lower bound, L(M). The equation comprises of two 

terms: first is the entropy of the movement of nodes between communities and second is the entropy 

of movements of nodes within communities. Further details about this equation can be found 

elsewhere [48]. 

Each node is initially assigned to its own community. Then, in random sequential order, 

each node is placed into the neighboring community that results in the largest decrease in L(M) 

(Equation 2.8). If no move decreases L(M), the node will stay in its original community. This 

procedure is repeated in a new random sequential order each time until no move could decrease 

L(M). In each iteration, the nodes of the new network are the communities found at the last level 

and the process of joining nodes into communities is repeated on the new network until L(M) cannot 

be reduced further. The computational complexity of Infomap is a linear function of the number of 

edges, i.e., O(m) [48, 57]. 

 

Leading Eigen 

Leading Eigen method [21] is also based on the modularity maximization but here, the 

modularity is expressed in terms of the eigenvalues and eigenvectors of a matrix called the 

modularity matrix, B: 
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𝐵𝐵𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖 −
𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
2𝑚𝑚

  (2.9) 

where, A is the adjacency matrix, ki is the sum of the weights of the edges attached to node i (or 

degree of node i), kj is the degree of node j, and m is the total number of edges. The modularity 

matrix is a characteristic property of the network and is independent of any division of the network 

into communities. The procedure of finding communities of a network with this method consists of 

finding the eigenvector corresponding to the most positive eigenvalue of the modularity matrix, and 

then dividing the network into two groups based on the sign of the elements of the eigenvector. 

Defining an index vector, s, the signs of elements are: 

𝑠𝑠𝑖𝑖 = �+1    𝑖𝑖𝑖𝑖 𝑢𝑢𝑖𝑖(1) ≥ 0
−1    𝑖𝑖𝑖𝑖 𝑢𝑢𝑖𝑖(1) < 0

 (2.10) 

where, ui
(1) is the ith element of u1 (the normalized eigenvector of the modularity matrix). The nodes 

with positive sign form one community and the rest of the nodes form the other community. To 

avoid dividing the network into only two communities, an n (total number of nodes) by c (the 

number of non-overlapping communities) index matrix S has to be defined. Each column of this 

matrix is an index vector of (0,1) elements, such that: 

𝑆𝑆𝑖𝑖𝑖𝑖 = �
1
0

  
 𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗

 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                          
 (2.11) 

The modularity of this division of the network is then equal to: 

𝑄𝑄 = � �𝐵𝐵𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑗𝑗𝑗𝑗 = 𝑇𝑇𝑟𝑟(𝑆𝑆𝑇𝑇𝐵𝐵𝐵𝐵)
𝑐𝑐

𝑘𝑘=1

𝑛𝑛

𝑖𝑖,𝑗𝑗=1

 (2.12) 

This form of modularity is different from other forms in a leading multiplicative constant 

1/(2m) but since it has no effect on the position of the maximum of the modularity, it has been 
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omitted from the equation. Writing B=UDUT where U = (u1|u2| …) is the matrix of eigenvectors of 

B, and D is the diagonal matrix of eigenvalues Dii = βi, Q can be written as: 

𝑄𝑄 = � �𝛽𝛽𝑗𝑗(𝑢𝑢𝑗𝑗𝑇𝑇𝑠𝑠𝑘𝑘)2
𝑐𝑐

𝑘𝑘=1

𝑛𝑛

𝑖𝑖,𝑗𝑗=1

 (2.13) 

The aim is still maximizing the modularity Q, but now, there is no constraint on the number 

of communities, c [21]. 

 

Spinglass 

In this method, the community structure of a network is described as the spin configuration 

that minimizes the energy of the spin glass (Hamiltonian) with respect to the spin states (the 

community indices) [29]. Similar to any other quality function for an assignment of nodes into 

communities, Hamiltonian has to follow the principle of grouping together the nodes that are linked 

(there is an edge between them) and keep apart the ones that are not linked. From this, four 

requirements have to be satisfied: a) rewarding internal edges between nodes of the same 

community (in the same spin state), b) penalizing missing edges (non-links) between nodes in the 

same community, c) penalizing existing edges between different communities, and d) rewarding 

non-links between different communities. The following equation (Equation 2.14) satisfies these 

properties: 

ℋ({𝜎𝜎}) =−�𝑎𝑎𝑖𝑖𝑖𝑖 𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿�𝜎𝜎𝑖𝑖,𝜎𝜎𝑗𝑗��������
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

+ �𝑏𝑏𝑖𝑖𝑖𝑖 �1 − 𝐴𝐴𝑖𝑖𝑖𝑖�𝛿𝛿�𝜎𝜎𝑖𝑖,𝜎𝜎𝑗𝑗������������
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖≠𝑗𝑗𝑖𝑖≠𝑗𝑗

 

                   +�𝑐𝑐𝑖𝑖𝑖𝑖 𝐴𝐴𝑖𝑖𝑖𝑖(1 − 𝛿𝛿�𝜎𝜎𝑖𝑖,𝜎𝜎𝑗𝑗�)�����������
𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖≠𝑗𝑗

−�𝑑𝑑𝑖𝑖𝑖𝑖 (1 − 𝐴𝐴𝑖𝑖𝑖𝑖)(1− 𝛿𝛿�𝜎𝜎𝑖𝑖,𝜎𝜎𝑗𝑗�)���������������
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖≠𝑗𝑗

 

(2.14) 
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where, σi denotes the community index of node i in the graph, δ is the Kronecker delta function and 

aij, bij, cij, and dij represent the weights of the individual contributions, respectively. If links and 

non-links are each weighted equally, no matter they are external or internal, aij = cij and bij = dij, 

then it would be enough to consider the internal links and non-links. Convenient choices of 

coefficients are aij = 1 – γpij and bij = γpij where pij denotes the probability that a link exists between 

node i and j, normalized, such that ∑ pij=2mi≠j , where m is the total number of edges in the network. 

When γ = 1, it leads to the natural situation in which the total amount of energy that can possibly 

be contributed by links and non-links is equal, i.e., ∑ Aijaij=∑ �1-Aij�biji≠ji≠j . As we are dealing 

with undirected, unweighted networks, our choice of weights allows us to simplify the Hamiltonian 

(Equation 2.14):  

ℋ({𝜎𝜎}) = −��𝐴𝐴𝑖𝑖𝑖𝑖 − 𝛾𝛾𝑝𝑝𝑖𝑖𝑖𝑖�𝛿𝛿(𝜎𝜎𝑖𝑖,𝜎𝜎𝑗𝑗)
𝑖𝑖≠𝑗𝑗

 (2.15) 

where, pij, the probability, can be written as pij=
kikj

2m
 and ki and kj represent degree of node i and 

degree of node j, respectively. Now, minimizing ℋ gives the number of spin states (or communities) 

in a network. The minimization is carried out by using simulated annealing on the entire network. 

This method is rather fast and the computational complexity is approximately O(n3.2). However, it 

cannot be used for disconnected networks as there is no guarantee that nodes from disconnected 

parts of the network also have different spin states and belong to different communities. 

Substituting pij as kikj

2m
 and γ = 1 in Equation 2.15, we have: 

ℋ({𝜎𝜎}) = −��𝐴𝐴𝑖𝑖𝑖𝑖 −
𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
2𝑚𝑚

�𝛿𝛿(𝜎𝜎𝑖𝑖,𝜎𝜎𝑗𝑗)
𝑖𝑖≠𝑗𝑗

  

and comparing this equation with Equation 2.1 (modularity) yields: 
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𝑄𝑄 = −
ℋ({𝜎𝜎})

2𝑚𝑚
 (2.16) 

It is clear from Equation 2.16 that minimizing Hamiltonian is equivalent to maximizing 

modularity. Thus, we expect to get same results for Louvain (which maximizes modularity) and 

Spinglass (which minimizes Hamiltonian) when applied to our networks. 

Table 2.18 summarizes the above methods described in this section. 

 
Table 2.18: Summary of community detection methods. 

Name of method Equation # Complexity Reference 

Girvan Newman 1 O(m2n) [15, 17] 
Fast Greedy 2, 3, 4 O(nlog2n)  [18] 
Combo 1 O(n2logc) [46] 
Louvain 1, 5 O(nlogn) [20] 
Conclude 6, 7 O(m) [47] 
Infomap 8 O(m) [48] 
Leading Eigen 9, 10, 12 O(n2) [21] 
Spinglass 15 O(n3.2) [29] 

 

 

2.6.2 Metrics for Comparison of Different Algorithms 
 

To compare different methods, we used three metrics, namely, Rand Index (RI), Adjusted 

Rand Index (ARI), and Normalized Mutual Information (NMI). We also used Jaccard Index for 

measuring similarity between different communities. These metrics are based on topological 

similarities of the communities identified and hence are relevant for biological networks; we expect 

that topologically similar communities will likely yield similar biological interpretations. 
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Rand index (RI) 

Rand proposes a simple measure of agreement between the results of (i.e., the communities 

identified by) two methods A and B [58]. RI represents the fraction of node-pairs that are distributed 

to the communities obtained by the two methods in a similar manner. Let n11 be the number of pairs 

of nodes from a network G which are both in the same community detected by method A and are 

also in the same community detected by method B. Let n00 be the number of pairs of nodes from G 

which are in different communities in A and are also in different communities in B. n00 and n11 are 

interpreted as agreements in the classification of the nodes from a pair. Accordingly, two 

disagreement quantities n01 and n10 are also defined: n01 (n10) is the number of pairs of nodes from 

G which are in the same community detected by method A (B) but they are in different communities 

detected by method B (A). Then, Rand Index (RI) is given by [59]: 

𝑅𝑅𝑅𝑅(𝐴𝐴,𝐵𝐵) =
𝑛𝑛00 + 𝑛𝑛11

𝑛𝑛00 + 𝑛𝑛11 + 𝑛𝑛01 + 𝑛𝑛10
 (2.17) 

As seen from Equation 2.17, RI has a probabilistic interpretation with respect to picking a pair of 

nodes at random, i.e., 𝑛𝑛00+𝑛𝑛11
�𝑁𝑁2�

, which is a probability of agreement (N is the total number of nodes). 

RI is not a normalized quantity, e.g., the upper bound is 1 but the lower bound is more than zero 

(network dependent). Due to this lack of normalization, Hubert and Arabie [60] suggested an 

improvement to RI as described below. 

 

Adjusted Rand index (ARI) 

ARI is equivalent to a normalized Rand Index. Consider a confusion matrix for methods A 

and B where rows correspond to the communities in A and columns correspond to the communities 

in B. Nij, the (i,j)th entry in this matrix, is the number of nodes in both community i of method A and 
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community j in method B. Denote by Ni. the sum of all columns for row i; thus Ni. is the number of 

nodes in community i of method A. Define N.j to be the sum of all rows for column j, i.e. N.j is the 

number of nodes in community j in method B. The Adjusted Rand Index (ARI), is calculated from 

the values Nij of the confusion matrix for the two methods as follows [60]: 

𝑡𝑡1=��
𝑁𝑁𝑖𝑖.
2
� ;  

𝑐𝑐𝐴𝐴

𝑖𝑖=1

𝑡𝑡2=��
𝑁𝑁.𝑗𝑗

2
� ;   𝑡𝑡3 =

2𝑡𝑡1𝑡𝑡2
𝑁𝑁(𝑁𝑁 − 1)

𝑐𝑐𝐵𝐵

𝑗𝑗=1

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴,𝐵𝐵) =
∑ ∑ �𝑁𝑁𝑖𝑖𝑖𝑖2 �

𝑐𝑐𝐵𝐵
𝑗𝑗=1 − 𝑡𝑡3

𝑐𝑐𝐴𝐴
𝑖𝑖=1
1
2 (𝑡𝑡1 + 𝑡𝑡2) − 𝑡𝑡3

 

(2.18) 

where, 𝑐𝑐𝐴𝐴 and 𝑐𝑐𝐵𝐵 are the number of communities detected by methods A and B, respectively. 

 

Normalized mutual information (NMI) 

Another metric to calculate the similarity between two methods is Normalized Mutual 

Information (NMI). NMI is the normalized form of Mutual Information (MI). MI measures 

similarity between the results of two methods and is given by [59]: 

𝑀𝑀𝑀𝑀(𝐴𝐴,𝐵𝐵) = ��
𝑁𝑁𝑖𝑖𝑖𝑖
𝑁𝑁
𝑙𝑙𝑙𝑙𝑙𝑙(

𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁
𝑁𝑁𝑖𝑖.𝑁𝑁.𝑗𝑗

)
𝑐𝑐𝐵𝐵

𝑗𝑗=1

𝑐𝑐𝐴𝐴

𝑖𝑖=1

 (2.19) 

where, A and B are the methods being compared. The terms used in this equation are the same as 

those used in the equation for ARI (Equation 2.18). Then, NMI between methods A and B is 

calculated as: 

𝑁𝑁𝑁𝑁𝑁𝑁(𝐴𝐴,𝐵𝐵) =
−2∑ ∑

𝑁𝑁𝑖𝑖𝑖𝑖
𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙(

𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁
𝑁𝑁𝑖𝑖.𝑁𝑁.𝑗𝑗

)𝑐𝑐𝐵𝐵
𝑗𝑗=1

𝑐𝑐𝐴𝐴
𝑖𝑖=1

∑ 𝑁𝑁𝑖𝑖.𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁𝑖𝑖.𝑁𝑁 )𝑐𝑐𝐴𝐴
𝑖𝑖=1 + ∑ 𝑁𝑁.𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙(

𝑁𝑁.𝑗𝑗
𝑁𝑁 )𝑐𝑐𝐵𝐵

𝑗𝑗=1

 (2.20) 
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Jaccard index 

Jaccard index is a measure of similarity for two sets of nodes, with a range from 0 to 1 and 

is defined as the size of the intersection (overlap) divided by the size of the union of the sets: 

𝐽𝐽(𝐴𝐴,𝐵𝐵) =
#(𝐴𝐴 ∩ 𝐵𝐵)
#(𝐴𝐴 ∪ 𝐵𝐵)

 (2.21) 

where, the numerator is the number of common elements between the sets A and B and the 

denominator is the number of all the elements in A and B combined. 

 

2.6.3 Overall Approach for Topological and Functional Comparison of Communities 
Detected by Different Algorithms 
 

Applying the above methods to PPI networks yields different number of communities with 

different number of nodes. The communities detected are compared in two ways: topological 

comparison and functional comparison. In topological comparison, methods are compared using 

different metrics (RI, ARI, and NMI). Based on the results of these metrics, we are able to figure 

out which methods are similar to each other and which are dissimilar. When a method is compared 

with itself, RI, ARI, and NMI are 1. Larger (smaller) the value of metrics, more (less) similar are 

the two methods being compared. After finding which methods are similar to each other from a 

topological perspective, functional comparisons (such as KEGG pathway enrichment analysis) 

have been used to further assess the functional similarity of the communities identified by these 

methods. Figure 2.6 shows a flow chart of our analysis pipeline. 
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Figure 2.6: Flow chart of the steps used in our analysis. 
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 MODULAR AND MECHANISTIC CHANGES ACROSS STAGES OF 
COLORECTAL CANCER 

 
 
3.1 Abstract 
 

Background: While mechanisms contributing to the progression and metastasis of colorectal 

cancer (CRC) are well studied, cancer stage-specific mechanisms have been less comprehensively 

explored. This is the focus of this manuscript. Methods: Using previously published data for CRC 

(Gene Expression Omnibus ID GSE21510), we identified differentially expressed genes (DEGs) 

across four stages of the disease. We then generated unweighted and weighted correlation networks 

for each of the stages. Communities within these networks were detected using the Louvain 

algorithm and topologically and functionally compared across stages using the normalized mutual 

information (NMI) metric and pathway enrichment analysis, respectively. We also used Short 

Time-series Expression Miner (STEM) algorithm to detect potential biomarkers having a role in 

CRC. Results: Sixteen Thousand and Sixty-Two DEGs were identified between various stages (p-

value ≤ 0.05). Comparing communities of different stages revealed that neighboring stages were 

more similar to each other than non-neighboring stages, at both topological and functional levels. 

A functional analysis of 24 cancer-related pathways indicated that several signaling pathways were 

enriched across all stages. However, the stage-unique networks were distinctly enriched only for a 

subset of these 24 pathways (e.g., MAPK signaling pathway in stages I-III and Notch signaling 

pathway in stages III and IV). We identified potential biomarkers, including HOXB8 and WNT2 

with increasing, and MTUS1 and SFRP2 with decreasing trends from stages I to IV. Extracting 

subnetworks of 10 cancer-relevant genes and their interacting first neighbors (162 genes in total) 

revealed that the connectivity patterns for these genes were different across stages. For example, 

BRAF and CDK4, members of the Ser/Thr kinase, up-regulated in cancer, displayed changing 
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connectivity patterns from stages I to IV. Conclusions: Here, we report molecular and modular 

networks for various stages of CRC, providing a pseudo-temporal view of the mechanistic changes 

associated with the disease. Our analysis highlighted similarities at both functional and topological 

levels, across stages. We further identified stage-specific mechanisms and biomarkers potentially 

contributing to the progression of CRC. 

 

3.2 Background 
 

Colorectal cancer (CRC) refers to cancers affecting both colon and rectum. According to 

GLOBOCAN 2020 data, CRCs are the third most diagnosed and the second most deadly form of 

cancer worldwide, comprising 11% of all cancer diagnoses [61]. The survival is highly dependent 

upon the stage of disease at diagnosis and earlier detection portends higher chance of survival [62]. 

Two types of risk factors contribute to the incidence of CRC. The first type includes the ones that 

are beyond the control of the individual, such as age and hereditary factors. The second type is 

related to environmental and lifestyle risk factors such as diets high in fat, physical inactivity, 

smoking, and heavy alcohol consumption [63]. 

CRC is said to progress through five stages. The earliest stage, stage 0 represents the 

presence of abnormal cells in the mucosa of the colon wall. In stage I, tumor penetrates the 

submucosa of the colon or rectum wall, while at stage II the cancer has spread through the wall to 

the serosa, but not the nearby organs. Stage III represents cancer in the mucosa, submucosa, serosa 

and the spread into the nearby lymph nodes. Stage IV represents the most aggressive form of CRC, 

where the cancer metastasizes and spreads to other parts of the body [64]. Biomarkers, agnostic of 

stages, have been used for detection of CRC [65]. For example, p53, a key biomarker, is a tumor 

suppressor gene, mutated in 34% of the proximal colon tumors and in 45% of the distal colorectal 
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tumors [66, 67]. Prior work from our group [68] and many others have identified potential causes 

and mechanisms of CRC, but a few have focused on identifying the stage-specific dysregulation, 

and biomarkers. Palaniappan et al. identified novel cancer genes that could underlie the stage-

specific progression and metastasis of CRC [69]. Cai et al. performed a comprehensive untargeted 

metabolomics analysis on normal and tumor colon tissues from CRC patients and identified 28 

highly discriminatory tumor tissue metabolite biomarkers [70]. 

In this study, we focused on modelling each stage as a molecular network and identifying 

subnetworks (communities) which enable better mechanistic interpretation [17, 24]. To this extent, 

we utilized a gene expression microarray dataset containing 104 human CRC samples (across stages 

I to IV) and 24 normal samples from Gene Expression Omnibus (GEO) to detect stage-specific 

biomarkers and modular mechanisms, potentially causal for the progression of CRC. We first 

constructed gene correlation networks for each of the stages, and detected communities using the 

Louvain algorithm [20, 22]. The communities are functionally interpreted in the context of CRC. 

We also developed stage-unique networks (by retaining edges unique to that specific stage) and 

functionally interpret them. Next, we utilized Short Time-series Expression Miner (STEM) 

approach to identify candidate biomarkers with substantial/monotonic changes across stages [71, 

72]. A biologically driven analysis enabled characterization of the evolution of molecular 

subnetworks across stages. Lastly, a drug-target-PPI (Protein–Protein Interaction) network is 

generated which may provide insight into understanding stage-specific functional mechanisms for 

some of the current drugs used in CRC treatment. Figure 3.1 shows a flow chart for our analysis 

pipeline. 
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Figure 3.1: Flow chart of the approach used in our analysis. 

 

3.3 Materials and Methods 
 
Microarray data pre-processing 

We used a CRC microarray dataset from the GEO (accession ID GSE21510) containing 

samples from 13 patients in stage I, 37 patients in stage II, 34 patients in stage III, and 20 patients 

in stage IV cancer along with 24 normal samples. There was only one sample associated with stage 

0 and we excluded it from our analysis. More details about the clinical characteristics of the 

GSE21510 have been presented in the original publication by Tsukamoto et al. [73]. The raw dataset 

had 54,675 probe IDs across 128 samples/patients and it was re-normalized using Robust Multi-

array Average (RMA) normalization [74]. Probe IDs with missing or multiple Entrez gene IDs 
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(based on annotation file from GEO) were removed from the dataset. Both linear and non-linear 

dimensionality reduction algorithms (Principal Component Analysis (PCA) [75] and t-Distributed 

Stochastic Embedding (t-SNE) [76]) were used to detect outliers in the data. PCA was performed 

in R, using prcomp and autoplot functions (of ggfortify package). t-SNE was also performed in R, 

using Rtsne package. 

 

Differentially expressed genes (DEGs) 
 

We identified DEGs at the probe level using limma [77] between each pair of neighboring 

stages (i.e., stage I vs. normal, stage II vs. I, stage III vs. II and stage IV vs. III). For genes with 

multiple probe IDs, the geometric mean of the p-values of the multiple probes was used as the p-

value for the gene. DEGs were then identified at p-value ≤ 0.05 for each comparison and their union 

across 4 comparisons (stage I vs. normal, stage II vs. I, stage III vs. II, and stage IV vs. III) was 

calculated as a master list of DEGs. 

 

Network construction 

Networks for each of the stages were constructed using correlation of gene expression 

values for the DEGs identified. Specifically, the Pearson Correlation Coefficient (PCC) [-1, 1], r, 

was calculated between all gene-pairs. Networks were then constructed using a cut-off for PCC at 

each stage (rth) based on the degree of freedom (number of patients at that specific stage - 2) and a 

p-value threshold of 0.001. Edges with p-value ≤ 0.001 (i.e., |r| ≥ rth) were retained. The weight of 

edges was binary (0 or 1) for unweighted networks and non-binary (0 ≤ w ≤ 1) for weighted 

networks, with the absolute value of PCC being used as weights. We refer to these networks as 

stage-specific networks (whole networks for the normal, stage I, II, III, and IV). Stage-unique 
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networks were also constructed for each of the stages by removing edges from stage-specific 

network of each stage that were common with any other stage-specific network. 

 

Community detection 

We used the Louvain algorithm to detect communities within each stage-specific network 

given its established status as the leading method for community detection [20, 22]. Louvain detects 

network communities by maximizing modularity (a measure of the density of links (edges) within 

communities compared to links between communities). Briefly, the search for communities using 

the algorithm proceeds in two phases. During the first phase, communities are detected by 

optimizing modularity locally. During the second phase, nodes of the same community are 

aggregated as pseudo-nodes to generate a new network. The combination of these two phases is 

iterated, until the modularity reaches a local maximum. The computational complexity of this 

algorithm is (O(nlogn)) which makes it extremely fast [20] (also see Supplementary Methods). 

 

Topological and functional comparison of communities 

Normalized Mutual Information (NMI) metric was utilized to compare communities of 

different stages at a topological level [59]. NMI is 1 when a network is compared with itself. Larger 

(smaller) the value of NMI, more (less) similar are the networks being compared (see 

Supplementary Methods). To assess the statistical significance of the NMI values, we needed to 

compute their p-value. Hence, we generated 1000 random networks with the same number of nodes, 

edges and degree distribution as the stage I-, II-, and III-specific networks. Communities of random 

networks were identified using the Louvain algorithm and compared between stage I- and II- and 
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stage II- and III-specific networks using the NMI metric. p-values for comparing the stage-specific 

networks were then calculated from the histogram of the 1000 NMI values. 

Jaccard index (JI), the ratio of the count of common genes to the count of union of genes in 

two groups, was used to identify pairs of communities which were similar to each other in terms of 

genes common between them. The most similar communities were then compared at a functional 

level. We used Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment available 

via DAVID version 6.8 [41, 42] for functional analysis [78]. 

 

Edge-based functional enrichment 

p-values for edge-based enrichment were computed using a hypergeometric test for edges 

(gene pairs) [79] which accounted for the topology of the network. For d DEGs, the total number 

of edges, N, is calculated as d(d - 1)/2. Similarly, for a given KEGG pathway with dKEGG enriched 

genes (from our master list of d DEGs), mKEGG edges are calculated (mKEGG = dKEGG(dKEGG - 1)/2). 

Suppose a network contains n edges, of which k edges are between dKEGG genes of the given KEGG 

pathway, then a p-value for the edge-based enrichment of this pathway is calculated from a 

hypergeometric distribution as: 

𝑝𝑝(𝑘𝑘|𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑤𝑤𝑤𝑤𝑤𝑤) = � 𝑃𝑃(𝑋𝑋 = 𝑖𝑖|𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑤𝑤𝑤𝑤𝑤𝑤)
𝑚𝑚𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾

𝑖𝑖=𝑘𝑘

 

              = �
�𝑚𝑚𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾

𝑖𝑖 ��𝑁𝑁−𝑚𝑚𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾
𝑛𝑛−𝑖𝑖 �

�𝑁𝑁𝑛𝑛�

𝑚𝑚𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾

𝑖𝑖=𝑘𝑘

 
 
(3.1) 

Equation 3.1 provides an estimate for the probability of observing k or more edges between 

pKEGG genes for the given KEGG pathway [79]. The R function phyper with 4 parameters was used 

to calculate the edge-based p-value using phyper (k - 1, n, N - n, mKEGG, lower.tail = FALSE). 
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Biomarker identification 

The STEM algorithm [71, 72] (see Supplementary Methods) was utilized to identify 

potential biomarkers. Since there were different number of patients at each stage, the median of 

gene-expression for patients at each stage was considered as the representative gene expression for 

that stage. STEM works by first selecting a set of potential profiles and then assigning genes to the 

profile that best captures their expression trend. We selected 60 model profiles and a maximum unit 

change of 1, which represents the change a gene could have between successive time points. Gene 

Expression Profiling Interactive Analysis (GEPIA2) [80] was next used to validate the biomarkers 

identified using STEM analysis within independent cohort (TCGA COAD-READ) at |log2FC| ≥ 1 

and q-value (FDR adjusted p-value) ≤ 0.05. 

 

Supervised analysis with key genes 

We identified the interacting proteins of 10 key genes with known roles in CRC using STRING-

db [81]. A subnetwork of the key genes and their first neighbors were extracted from each stage-

specific network, separately. The analysis consisted of the following steps: 

• Detection of the first neighbors of 10 key genes from STRING-db with two criteria: score 

threshold ≥ 0.4 and up to 20 connections between genes. 

• Identification of unique genes from the union of 10 key genes and their first neighbors found 

in STRING-db. 

• Extraction of subnetworks of the unique genes from each stage-specific network and their 

visualization using Cytoscape [45]. |PCC| between the genes were used as edge-weights. 
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Drug-target-PPI network 

Approved drugs and their target genes for CRC were identified from National Cancer 

Institute (NCI) [82] and DrugBank databases [83]. We then projected the PPI information from 

STRING-db (score threshold ≥ 0.9) [81] and gene weights from the stage-specific networks onto 

the drug-target interactions detected above. We also identified important KEGG pathways related 

to these target genes. The constructed network was visualized using Cytoscape [45]. 

 

3.4 Results and Discussion 
 
3.4.1 Identification of DEGs 
 

The CRC dataset used here contained 41,834 probe IDs across 128 samples after pre-

processing (see Materials and Methods). Outlier detection using PCA and t-SNE identified two 

normal samples as outliers which were eliminated, leaving 126 samples for our analysis. The first 

two PCs and the first two dimensions of t-SNE are shown in Figures S3.1A and S3.1B, respectively. 

In order to capture the most significant genes, we identified DEGs (see Materials and Methods) 

between neighboring stages with p-value ≤ 0.05 resulting in 15,634 DEGs between stage I and 

normal, 528 DEGs between stages II and I, 745 DEGs between stages III and II, and 503 DEGs 

between stages IV and III. The union of all DEGs (16,062 unique genes) was considered as the 

master list of DEGs for all downstream analysis. 

 

3.4.2 Correlation-based Network Analysis 
 

PCC was calculated for all pairs of DEGs to construct the networks (see Materials and 

Methods). For each stage, based on the number of patients and a fixed p-value, we identified the 

corresponding threshold for PCC. Unweighted, stage-specific and stage-unique networks were 
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subsequently constructed using the 16,062 DEGs [49]. Table 3.1 lists some basic properties for 

different stage-specific networks. Properties for unweighted networks are listed in Table S3.1. 

Number of nodes and edges for all communities of stage-specific and unweighted networks can be 

found in Tables S3.2 and S3.3, respectively. 

 
Table 3.1: Properties for stage-specific networks 

Network 
# of 

patients 
PCC 

cut-off 
# of 

edges 
# of 

communities 
Modularity 

Normal 22 0.6523 1,809,792 18 0.43 
Stage I 13 0.8009 507,603 17 0.51 
Stage II 37 0.5186 1,063,390 9 0.44 
Stage III 34 0.5392 1,214,109 9 0.45 
Stage IV 20 0.6788 763,554 11 0.45 

 

In the following section, we compare communities detected within stage-specific networks 

at the topological and functional levels. The NMI metric was used to compare networks at a 

topological level. Highly similar networks (at the topological level) were further analyzed at a 

functional level. KEGG pathway enrichment analysis was used to assess functional similarity of 

the communities detected. 

 

3.4.2.1 Neighboring stages are functionally and topologically similar 
 

Using the NMI metric, we evaluated the similarity between networks. Table 3.2 and S3.4 

represent the results of comparing communities of stage-specific networks and unweighted 

networks using NMI. Based on the results of Table 3.2 (and Table S3.4), neighboring stages were 

found to be more similar to each other than non-neighboring stages. A permutation test was also 

performed to assess the statistical significance of the NMI values seen in Table 3.2 (see Materials 

and Methods). Figures 3.2A and 3.2B show histograms for the values of NMI between communities 
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of the random networks of stages I and II, and II and III, respectively. Our analysis highlighted that 

the NMI calculated between stage-specific networks was highly significant (e.g., p-value of NMI 

between communities of the stages I- and II-specific networks was 0.001 and between communities 

of the stages II- and III-specific networks was 0.05). 

 
Table 3.2: Comparing stage-specific networks using NMI 

 Normal Stage I Stage II Stage III Stage IV 
Normal 1 0.0282 0.0403 0.0444 0.0276 
Stage I  1 0.0729 0.0689 0.045 
Stage II   1 0.1501 0.0887 
Stage III    1 0.0771 
Stage IV     1 

 

 

Figure 3.2: Histogram of a permutation test for comparing communities of different stages with degree 
preservation. A NMI metric between random networks with sizes equal to stage I- and II-specific networks. 
The actual value of NMI for comparing those stages is 0.0729 (vertical dotted line), corresponding to a p-
value of 0.001 (significant for a p-value threshold of 0.05). B NMI metric between random networks with 
sizes equal to stage II- and III-specific networks. The actual value of NMI for comparing those stages is 
0.1501 (vertical dotted line), (p-value of 0.05, significant). 
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We next used JI values for direct topological comparison of individual communities across 

stage-specific networks. The higher the value of JI, the more similar were the communities being 

compared. For example, JI values for comparing the communities of stage I-specific network with 

the communities of other stages is shown in Figure 3.3A (see also Table S3.5). Likewise, a 

functional comparison of the third community of stage I with the corresponding communities of 

other stages revealed that the third community of stage I was more similar to the first community 

of stage II (the neighboring stage) than the corresponding communities of other stages (based on 

JI) (see Figure 3B and Tables S3.6 through S3.9). Pathways indicated in this comparison were 

chosen at a p-value ≤ 0.01 and with more than 10 genes from the third community of stage I. For 

some pathways such as Ras signaling pathway, the number of enriched genes and the p-values were 

similar between the third community of stage I and the first community of stage II but did not meet 

the threshold for the corresponding communities of other stages. 

Analyzing each community individually can leave out important functions due to the 

distribution of functionally related genes between them. Hence, we carried out an edge-based 

functional analysis (see Materials and Methods) at the whole network level (consisting of 16,062 

genes). We constructed stage-unique networks and compared both types of networks (stage-specific 

and stage-unique) at a functional level. 

 

3.4.2.2 Functional analysis at the whole network level 
 

Some of the edges were common among two or more stage-specific networks. To identify 

edges unique to each stage, we constructed stage-unique networks (See Materials and Methods). 

We identified 1,668,692 edges for normal-, 430,446 edges for stage I-, 839,058 edges for stage II-
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, 967,358 edges for stage III-, and 627,558 edges for stage IV-unique networks. The number of 

edges for the stage-specific networks are listed in Table 3.1. 

To ascertain the functional relevance for the networks, we first selected 24 pathways 

associated with cancer progression (from initiation to metastasis) and carried out a supervised 

analysis. A list of all pathways enriched for the master list of genes can be found in Table S3.10. 

We calculated the edge-based p-values and performed an enrichment for the 24 pathways for the 

stage-specific (see Table 3.1) and stage-unique networks (see Figure 3.3C). The p-value cut-off was 

0.05. The number of edges associated with genes enriched in the stage-unique networks were less 

than the stage-specific networks for all stages and for all 24 pathways. We noted that the number 

of edges for each stage-unique network was less than its value for the stage-specific network of that 

stage. For example, stage I-unique network had 430,446 edges as compared to the stage I-specific 

network with 507,603 edges. 

Among the 24 cancer-related pathways, we observed that central carbon metabolism 

pathway was enriched across stages II and III and is known to play a role in cancer progression 

[84]. Cell cycle and DNA replication pathways were significantly enriched in almost all stages with 

more edges in the Cell cycle pathway. Several signaling pathways including PI3K-Akt, Ras, 

MAPK, TGF-beta, p53, and T cell receptor signaling pathway associated with cell growth were 

enriched across stages. PI3K-Akt signaling pathway plays an important role in the growth and 

progression of CRC. Both MAPK and PI3K-Akt serve as a molecular target for treatment of CRC 

[85, 86]. TGF-beta signaling pathway was particularly enriched only in stages II, and IV. TGF-beta 

is known to play a significant role in inflammation and tumorigenesis by modulating cell growth, 

differentiation, apoptosis, and homeostasis, contributing to tumor maintenance and cancer 

progression [87]. Besides changes in enrichment of specific pathways, changes in connectivity 
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pattern of specific genes in key pathways were also observed across the CRC stages. For example, 

Figures 3.3D and 3.3E show the connectivity pattern of genes in the p53 signaling pathway across 

stages I-IV and normal, respectively. p53 signaling pathway has a critical role in the regulation of 

Cell cycle, DNA replication and apoptosis [88]. Comparing Figures 3.3D and 3.3E revealed that 

hub genes were different between cancer stages and normal. For example, CCND1 and CDK6 were 

two genes with high connectivity (degree) in normal only. CCND1 is a proto-oncogene which is 

known to play a critical role in promoting the G1-to-S transition of the cell cycle in many cell types 

[89]. Likewise, CCNE1, also a proto-oncogene, displayed high degree of connectivity in stages II 

and III which was not present in normal. CCNE1 serves as a positive regulator of cell cycle and 

promotes G1-to-S phase transition by activating CDK2 [90, 91]. CDK2 also showed high degree of 

connectivity in stage III, although it was not present in normal.  

Focal adhesion pathway was more enriched in normal, stage II and stage III than in other 

stages. Focal adhesion kinase (FAK or PTK2) is a major integrin-dependent tyrosine 

phosphorylated protein in this pathway and known to contribute significantly to inflammatory 

signaling pathways. PTK2 has been suggested to be a potential target for CRC therapies [92]. NF-

kappa B signaling pathway was enriched in normal, and stages I, II and III, and is a regulator of 

immune response and inflammation and associated with carcinogenesis [93]. VEGF signaling 

associated genes, with known roles in angiogenesis and metastasis, were enriched in stages I and II 

[94], while Notch signaling pathway, a main pathway in metastasis and tumor angiogenesis 

processes, was enriched in stages III and IV. 

Overall, most of the cancer related pathways were enriched across all stage-specific 

networks. However, the enrichment of those pathways was distinct across stage-unique networks. 
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Figure 3.3: Topological and functional analysis of the weighted correlation networks. A Heat map for JI 
values for comparing the communities of stage I-specific network with the communities of other stages. The 
color-scale is from white for the minimum value of JI (0%) to green for the maximum value (36%). B 
Functional comparison of the KEGG pathways with p-values ≤ 0.01 and more than 10 genes for the third 
community of stage I-specific network with the corresponding communities of other stages. C Functional 
comparison (edge-based enrichment) of the stage-specific and stage-unique networks for 24 cancer-related 
pathways divided into five categories: cancer related, cell cycle/proliferation/growth, inflammation, 
angiogenesis, and metastasis. Number of edges related to the genes enriched in each pathway are indicated 
by the size of the dots. Color scale of the dots indicate p-value with a cut-off of 0.05. D Connectivity of p53 
signaling pathway genes across different stage-unique networks. The nodes are colored based on the log2FC 
values (in a specific stage vs. normal) across the four stages I-IV (dark blue (log2FC of -2) to white (0) to 
dark red (2)). Each node represents four log2FC values, going from left to right. Edges are colored differently 
across stages as follows: green for edges in stage I, cyan in stage II, yellow in stage III, and purple in stage 
IV. E Connectivity of p53 signaling pathway genes in normal. 
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3.4.2.3 In-silico validation 
 

To validate our result at the gene and pathway level, we analyzed the TCGA COAD-READ 

data available through GEPIA2 by identifying DEGs with q-value < 0.05 for COAD and READ 

cohorts, resulting in 16,438 DEGs common to both. Since GEPIA2 does not allow for stage-wise 

identification of DEGs, we calculated DEGs across all stages (104 samples) and normal (22 

samples) at q-value < 0.05 within our dataset. A total of 16,641 DEGs were identified, of which 

11,389 were common with the TCGA COAD-READ cohort. A hypergeometric test on the overlap 

indicated that the number of DEGs as common were statistically significant (p = 0.05). The total 

number of genes used for the hypergeometric test was 24,136. The log2FC of genes identified as 

common between the COAD, READ, and our dataset are also provided in Table S3.11. Of the 

11,389 genes, ~ 65% of the genes showed expression trends in the same direction within COAD-

READ as DEGs identified in our current study. Functional analysis of the 11,389 genes further 

revealed several signaling pathways enriched crucial to CRC consistent with our results including 

Ras, MAPK, PI3K-AKT, TGF-beta and WNT signaling (Figure 3.3C). 

 

3.4.3 Biomarkers 
 

We performed STEM analysis to identify potential biomarkers and validated them using 

TCGA COAD-READ cohort, available through GEPIA2 [80]. 

 

3.4.3.1 Four distinct biomarker trends identified in CRC via STEM analysis 
 

We selected 60 model profiles and the maximum unit change of 1 for the STEM analysis 

(see Materials and Methods). Most of the genes were clustered in two main trends, (0,1,1,1,1) and 

(0,-1,-1,-1,-1), implying that the expression of genes changed extensively up or down from the 
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normal condition but with little or no difference across stages I-IV (Figures 3.4A-D). The trends 

identified were consistent with TCGA COAD-READ cohort results from GEPIA2 (Figures S3.2A-

D). Tables S3.12 through S3.17 list the genes belonging to each trend. 

 

Figure 3.4: Biomarkers. A-D Boxplots for 4 biomarkers from STEM analysis and E–F boxplots for 2 stage-
specific biomarkers, consistent with GEPIA2 COAD-READ cohort results. Each color indicates one stage 
and dots show the expressions of biomarker gene for patients in every stage. A HOXB8 with trend 
(0,1,2,3,4), B WNT2 with trend (0,1,1,1,1), C MTUS1 with trend (0,-1,-2,-3,-4), D SFRP2 with trend (0,-
1,-1,-1,-1), E PROCR, stage I-specific biomarker, and F MLXIPL, stage IV-specific biomarker. 

 

We highlighted some genes which exhibit the aforementioned trends including HOXB8, 

with monotonically increasing expression from normal through the cancer stages (Figure 3.4A). 

Studies have shown that knockdown of HOXB8 inhibits cellular proliferation and invasion in vitro, 

as well as carcinogenesis and metastasis in vivo. HOXB8 has been suggested as an independent 

prognostic factor in CRC [95, 96]. Likewise, WNT2, an oncogene, exhibited an increasing STEM 

trend and was over-expressed in CRC (Figure 3.4B), across stages, compared to normal tissues. 

WNT2 is known to be involved in canonical Wnt signaling activation during CRC tumorigenesis, 
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and has been suggested to enhance tumor growth and the invasion in a paracrine fashion [97, 98]. 

WNT2 has been previously identified as a stool marker with a sensitivity of 74–78% and specificity 

of 88–89% [99, 100]. MTUS1 expression (Figure 3.4C), was significantly down-regulated in human 

colon cancer tissues and has been documented in earlier studies [101]. It has been suggested to be 

involved in the loss of proliferative control in human colon cancer via its interference of ERK2 

pathway activation [102]. SFRP2 gene, located upstream of the canonical Wnt signaling pathway, 

was also found to be suppressed across all stages [103]. SFRP2 was the first reported DNA 

methylation marker in stool with a sensitivity of 32.1–94.2% and specificity of 54–100% [104]. 

DNA hypermethylation of SFRP2 leads to the downregulation of the gene expression, inhibition of 

gene function and promotion of CRC [100]. GEPIA2 was additionally used to generate disease-free 

survival (DFS) plots of the four biomarkers identified by STEM analysis (Figures S3.3A-D). DFS 

plot of HOXB8 confirmed that high expression of this genes was associated with poor disease-free 

survival of patients with CRC. 

 

3.4.3.2 Stage-specific biomarkers 
 

Biomarkers specific to each stage were identified as the intersection of four sets of DEGs 

between that stage and other stages with p-value ≤ 0.05. In total, 110 potential stage-specific 

biomarkers including 41 for stage I, 21 for stage II, 8 for stage III, and 40 for stage IV were 

identified (listed in Table S3.18). p-values for 10 comparisons (e.g. normal vs stage I) for all 110 

potential biomarkers were listed in Table S3.19. Figures 3.4E and 3.4F show boxplots for PROCR, 

a stage I-specific biomarker and MLXIPL (ChREBP), a stage IV-specific biomarker, respectively. 

The trends for these two biomarkers identified were consistent with TCGA COAD-READ cohort 

results obtained through GEPIA2 (Figures S3.2E-F). High expression of PROCR and MLXIPL was 
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associated with poor disease-free survival of CRC patients (Figures S3.3E-F). It has been shown 

that PROCR overexpressed in CRC epithelial tumor cells, through immunohistochemistry [105]. 

This upregulation is caused by gene amplification and DNA hypomethylation and occurs in concert 

with a cohort of neighboring genes on chromosome locus 20q [106]. Studies have shown that 

ChREBP mRNA and protein expression levels are significantly increased in colon cancer tissues 

compared to normal tissues [107]. Their expression positively correlated with colon malignancy 

and was suggested to contribute to cell proliferation. Given its functional roles in CRC, and its 

distinct expression with stage IV, we propose that ChREBP could serve as a clinically useful 

biomarker. 

The results presented above were based on an unsupervised analysis at a global network 

level. We additionally carried out a more focused analysis, emphasizing key drivers of CRC. 

 

3.4.4 Evolution of Subnetworks of Key Genes and First Neighbors across Different Stages 

We performed a supervised analysis with 10 key genes with known roles in CRC (see 

Materials and Methods). The key genes were TP53, APC, KRAS, BRAF, PIK3CA, EGFR, MLH1, 

TGFBR2, PTEN, and SMAD4. The union of key genes and their first neighbors from STRING-db 

yielded 188 unique genes of which 162 were present within our master list of genes. 

The subnetworks of 162 unique genes in stages I- and II-specific networks are shown in 

Figures 3.5A and 3.5B, respectively. The subnetworks from stages III- and IV-specific networks 

are shown in Figures S3.4A and S3.4B, respectively. The nodes were clustered based on the 

communities they belonged to in the stage-specific networks described in the earlier sections. The 

subnetwork of stage I was sparser but with stronger edge weights since the stage I-specific network 

had fewer and stronger edge weights (PCC ≥ 0.8009) than other stages. We observed these networks 



75 
 

to be enriched for several drug targets including BRAF, EGFR, and PDGFRB, and several signaling 

pathways including Chemokine, PI3K-Akt, ErbB, Ras, TGF-beta, Wnt, p53, NF-kappa B, VEGF 

and MAPK (Figure 3.5). The subcommunities of both subnetworks included both up- and down-

regulated genes. For instance, Figure 3.5A highlights a subcommunity in stage I enriched for several 

up-regulated genes associated with Chemokine and ErbB signaling pathways, both with known 

roles in cancer etiology [108, 109]. Likewise, there was a subcommunity in stage II, shown in 

Figure 3.5B, with genes mostly up-regulated and enriched for Ras signaling and mismatch repair 

pathways. We also detected a subcommunity within stage II with genes mostly down-regulated 

(Figure 3.5B) and enriched for pathways such as ErbB and VEGF signaling. VEGF family members 

play an essential role in tumor-associated angiogenesis, tissue infiltration, and metastasis formation 

[110]. 

 
Figure 3.5: Subnetwork of 162 genes in stages I and II. A Stage I-specific network and B Stage II-specific 
network. Nodes of each subnetwork are grouped together based on the communities they belonged to in the 
stage-specific networks and colored based on the value of log2FC between that stage and normal: dark blue 
(log2FC of -2), to white (0) to dark red (2). The width of edges shows the strength of connections based on 
PCC between them. The thicker the edges are, the larger the PCC between the nodes is. 
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These subnetworks all showed differences in connectivity patterns for key genes. For 

example, EGFR, whose degree was zero in all subnetworks except for stage II, is known to play a 

critical role in oncogenesis, particularly in colon cancer development and is a potential target for 

therapy [111]. We identified that its expression was down-regulated in the subnetwork of stage II 

and was connected to OTUD3 (a tumor promoter in lung cancer [112]). EGFR also serves as a drug 

target for Cetuximab and Panitumumab. BRAF, another key player in CRC was up-regulated across 

all cancer stages compared to normal, yet had distinct connectivity patterns across different stages. 

BRAF was connected to TGFB3, TP53BP2, and SOS1 in the subnetwork of stage I. Although the 

stage II-specific network had more edges compared to stage I-specific network, BRAF was 

connected to only one gene, YWHAG, in the subnetwork of stage II. The chemotherapy drug for 

CRC, Regorafenib, targets BRAF and modulates the activity of its protein. 

Finally, we sought to understand the functional mechanisms for some of the current drugs 

used in CRC treatment in the context of our current analysis and identify if any temporal variation 

in gene-expression of the drug-targets may indicate stage-specificity of the drugs. 

 

3.4.5 Drug-target-PPI Network 

We identified 14 FDA-approved drugs for CRC from the NCI website and 32 target genes 

(included in the master list of DEGs) for these 14 drugs from the DrugBank website [113]. There 

were 20 edges between the target genes based on STRING-db [81]. Figure 3.6 shows a drug-target-

PPI network constructed with the approved drugs. Gene weight, the sum of the weights of edges 

connected to each gene, in each stage-specific network, are shown beside target genes. Some 

important pathways involving target genes, such as PI3K-Akt or Ras signaling, are also highlighted 
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in the figure. We can see that the weight of different genes changes across the four stages 

extensively. log2FC (with respect to normal) for genes also changes albeit to a lesser degree. 

 
Figure 3.6: Drug-target-PPI network for CRC. Fourteen drugs approved by FDA for treating CRC (mainly 
when the cancer metastasizes) are used to construct this network; the drug nodes are shown in the center 
area. The target genes have been found from DrugBank. For each target gene node, four circles are associated 
with that gene corresponding to four stages I-IV, and are colored based on the log2FC values between a 
stage and normal (dark blue (log2FC of -1) to white (0) to dark red (log2 FC of 1)). The size of each circle 
represents the sum of the weights of edges connected to that gene (i.e., gene weights) in each stage. For 
example, MAPK11 weight is greater in stage I as compared to that in other stages. PPI edges from STRING-
db (score threshold ≥ 0.9) are also incorporated in this network by dashed grey-lines between the genes. For 
select functionally important genes, the related functions are listed. 

 

Several targets of Regorafenib, a popular CRC drug, were found to be differentially 

regulated within our networks (Figure 3.6). Studies have shown that Regorafenib targets kinases 

involved in tumor angiogenesis (e.g. VEGFR1/2/3, FGFR1/2), proliferation (e.g. MAPK11, RET), 

tumor microenvironment, and metastasis [114, 115]. It can also disrupt tumor immunity through 
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inhibition of CSF-1R, important for macrophage differentiation and survival [116]. Out of its 

targets, MAPK11 and RET were both down-regulated and had greater weights in early stages. 

MAPK11 is a member of protein kinases family involved in several cellular processes, including 

cell proliferation or differentiation. It was also enriched for MAPK and VEGF signaling pathways. 

RET, as a member of the tyrosine protein kinases family, has been identified as a novel tumor 

suppressor gene in the colon which can reduce apoptosis and is considered as a target for CRC 

treatment [117, 118]. There were also some targets for Regorafenib with larger weights in later 

stages, such as FLT1 and DDR2. FLT1, a member of the vascular endothelial growth factor receptor 

(VEGFR) family, was up-regulated in CRC and strongly connected (PPI edge) to three ligands, 

namely, VEGFA, VEGFB, and PGF [119]. DDR2, down-regulated in CRC, is considered a critical 

regulator of cancer invasion and an attractive therapeutic target in metastatic CRC (mCRC) [120]. 

Two up-regulated and highly connected genes in this network, VEGFA and VEGFB are 

targets of the drug Ziv-Aflibercept, and participated in Ras and PI3K-Akt signaling pathways with 

known roles in CRC progression. VEGFA had larger weights in stage I whereas VEGFB had larger 

weights in stage II. TYMS (part of the Folate‐mediated one‐carbon metabolism pathway) is a crucial 

player of DNA methylation and repair and a critical target for Fluorouracil Injection (5-FU) drug, 

used in CRC treatment [121]. Studies have shown that TYMS is highly expressed in patients with 

CRC and might be used as a predictor for efficacy of chemotherapy [122]. Its weight was higher in 

stage III than in other stages. TOP1 and TOP1MT, both up-regulated in CRC, had also greater 

weight in stage III and were targets for Irinotecan Hydrochloride which is one of the key drugs for 

the treatment of mCRC [123]. 

Besides Regorafenib, two other drugs, Cetuximab and Bevacizumab, commonly used in 

treating CRC also showed several targets enriched within our networks. C1QB, a target for both of 



79 
 

those drugs, was up-regulated with greater weights in stage III. Cetuximab blocks ligand-induced 

receptor signaling and modulates tumor-cell growth by binding to the extracellular domain of 

EGFR. Studies have also shown that Cetuximab improves overall survival and progression-free 

survival and preserves quality-of-life measures in CRC patients in whom other treatments have 

failed [124]. Bevacizumab, which binds to and targets VEGF, also has demonstrated improved 

overall survival for patients with mCRC [125]. 

The pathogenesis of CRC is yet to be fully understood. In this study we detected a few 

potential biomarkers which were further validated in-silico, using a large cohort database (TCGA 

COAD-READ). However, further experimental validation is required to decipher their pathology-

associated mechanisms. Additionally, we were limited by the unequal number of patient samples 

across stages and lacked sufficient clinical metadata to support downstream survival analysis. 

Nevertheless, the modular-network-based approach presented in this work will be useful for 

understanding mechanisms for disease progression and may contribute to identifying potential 

targets for disease intervention. In addition, while digital sequencing data are more robust, this 

microarray analog gene expression data set has been used extensively and our quest was to explore 

topological network analyses to demonstrate the ability to obtain stage-specific biomarkers and 

mechanisms. We demonstrate the validity of our conclusions through extant results and additional 

analyses. 

 

3.5 Conclusion 
 

In this study, we utilized a published transcriptomic data from 128 patients at various stages 

of CRC to find modular mechanisms potentially causal for progression of CRC from normal to 

stages I-IV and to find stage-specific biomarkers. We constructed stage-specific networks and 



80 
 

identified their communities using the Louvain algorithm. Comparing communities of different 

networks at the topological and functional levels revealed that neighboring stages were more similar 

to each other than non-neighboring stages. We also carried out the functional analysis at the whole 

network level for the stage-specific and stage-unique networks by analyzing the enrichment of 24 

cancer-related pathways across different stages. For the stage-specific networks, most of the 

pathways related to CRC such as PI3K-Akt and MAPK signaling pathways were enriched at all 

stages. However, stage-unique networks revealed functional differences across the stages. For 

example, MAPK signaling pathway was enriched across stages I-III and Notch signaling pathway 

(important for metastasis and tumor angiogenesis) was enriched in stages III and IV. We then 

identified key biomarkers to differentiate between CRC (any stage) and normal using STEM 

analysis. WNT2 and SFRP2 were two biomarkers validated by others in stool DNA and were over-

expressed and under-expressed in CRC tissues, respectively. To incorporate legacy knowledge in 

our analysis, we performed a supervised analysis with 10 key genes related to CRC and their first 

neighbors based on STRING-db, across different stages. The subnetworks were analyzed to study 

the progression of cancer across stages. In particular, we identified that BRAF, a Ser/Thr kinase that 

activates MAP kinases, appeared in all subnetworks and was upregulated in stages I-IV as compared 

to normal. Its connectivity pattern changed across the subnetworks for normal and different stages 

of CRC. Finally, we constructed a drug-target-PPI network enabling us, in the light of present data, 

to understand the functional mechanisms for some of the current drugs for CRC treatment. We saw 

that the target gene weights changed across the four stages extensively. For example, TYMS, 

associated with folate-mediated one carbon metabolism and a target for some drugs such as 

Fluorouracil Injection (5-FU) and Capecitabine, was found to be upregulated in cancer stages with 

larger weights in stage III than in other stages. 
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3.7 Supplementary Methods 
 
t-Distributed Stochastic Neighbor Embedding (t-SNE) 
 

t-SNE is a nonlinear dimensionality reduction algorithm. It maps multi-dimensional data to 

a few (two or more) dimensions, which can be easily visualized [76]. 

The algorithm comprises three steps as follows: 
 
1.  In the 1st step, t-SNE measures similarities between points in the high dimensional space. For 

each data point, 𝑥𝑥𝑖𝑖, the algorithm centers a Gaussian distribution over that point and measures 

the density of all points under the distribution and renormalizes the densities. This gives a set 

of probabilities, 𝑝𝑝𝑖𝑖𝑖𝑖, proportional to the similarity and is calculated by Equation S3.1 [76]. 

𝑝𝑝𝑖𝑖𝑖𝑖 =
exp (−�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�

2/2𝜎𝜎2)
∑ exp (−‖𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑙𝑙‖2/2𝜎𝜎2)𝑘𝑘≠𝑙𝑙

 
 
(S3.1) 

where 𝑥𝑥’s are the points in the high-dimensional space and 𝜎𝜎 is the variance of the Gaussian 

distribution. 
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2. This step is similar to step 1 but here, the algorithm uses a student-t distribution rather than a 

Gaussian distribution to compute the similarities, 𝑞𝑞𝑖𝑖𝑖𝑖, in the low-dimensional space (two or 

more). Mathematically, 𝑞𝑞𝑖𝑖𝑖𝑖 is given by. 

𝑞𝑞𝑖𝑖𝑖𝑖 =
exp (−�𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗�

2/2𝜎𝜎2)
∑ exp (−‖𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑙𝑙‖2/2𝜎𝜎2)𝑘𝑘≠𝑙𝑙

 
 
(S3.2) 

where 𝑦𝑦’s are the points in the low-dimensional space. 

3. In the last step, the algorithm matches the two probability distributions in the high and low 

dimensional spaces, by minimizing the Kullback-Leibler (KL) divergence. The KL 

divergence (cost function) is given by Equation S3.3 and the algorithm uses gradient descent 

to minimize it [76]. 

𝐶𝐶 =  𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄) = ��𝑝𝑝𝑖𝑖𝑖𝑖 log
𝑝𝑝𝑖𝑖𝑖𝑖
𝑞𝑞𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖

  
(S3.3) 

 

Normalized Mutual Information (NMI) metric 
 

NMI is a metric to calculate the similarity between two groups. It is the normalized form of 

Mutual Information (MI). MI measures similarity between two methods (stages) and is given by 

[126]: 

𝑀𝑀𝑀𝑀(𝐴𝐴,𝐵𝐵) = ��
𝑁𝑁𝑖𝑖𝑖𝑖
𝑁𝑁

log�
𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁
𝑁𝑁𝑖𝑖.𝑁𝑁.𝑗𝑗

�
𝑐𝑐𝐵𝐵

𝑗𝑗=1

𝑐𝑐𝐴𝐴

𝑖𝑖=1

 (S3.4) 

where, A and B are the stages being compared. Denote by Ni. the number of nodes (genes) in 

community i of stage A and N.j the number of nodes in community j in stage B. Nij is the number of 

nodes in both community i of stage A and community j of stage B. 

Then, NMI between stages A and B is calculated as [59]: 
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𝑁𝑁𝑁𝑁𝑁𝑁(𝐴𝐴,𝐵𝐵) =
−2∑ ∑

𝑁𝑁𝑖𝑖𝑖𝑖
𝑁𝑁 log �

𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁
𝑁𝑁𝑖𝑖.𝑁𝑁.𝑗𝑗

�𝑐𝑐𝐵𝐵
𝑗𝑗=1

𝑐𝑐𝐴𝐴
𝑖𝑖=1

∑ 𝑁𝑁𝑖𝑖. log �𝑁𝑁𝑖𝑖.𝑁𝑁 �𝑐𝑐𝐴𝐴
𝑖𝑖=1 +∑ 𝑁𝑁.𝑗𝑗 log �

𝑁𝑁.𝑗𝑗
𝑁𝑁 �𝑐𝑐𝐵𝐵

𝑗𝑗=1

 (S3.5) 

 

Community detection algorithm, Louvain 
 

As described in the main manuscript, Louvain algorithm detects communities in networks 

by maximizing modularity, calculated by Equation S3.6: 

𝑄𝑄 =
1

2𝑚𝑚
��𝐴𝐴𝑖𝑖𝑖𝑖 −

𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
2𝑚𝑚

�𝛿𝛿�𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗�
𝑖𝑖,𝑗𝑗

 
 
(S3.6) 

where Aij is the weight of the edge between node i and j (is equal to 1 when all edges have the same 

weight), ki is the sum of the weights of the edges attached to node i or degree of node i, ci is the 

community to which node i belongs to, and the δ function is defined as δ(u,v) = 1 if u = v and 0 

otherwise. m is the total number of edges in an unweighted network and the sum of the weights of 

all edges in a weighted network. 

The algorithm is divided in two phases, which are repeated iteratively. First phase is to 

assign a different community to each node of the network. So, in the beginning, there are as many 

communities as there are nodes. Then, the gain of modularity (Equation S3.6) is calculated for 

removing node i from its community and placing it in one of its neighboring communities. The gain 

of modularity in moving node i into a community C can be computed by: 

∆𝑄𝑄 = �
∑𝑖𝑖𝑖𝑖 + 𝑘𝑘𝑖𝑖,𝑖𝑖𝑖𝑖

2𝑚𝑚
− �

∑𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑘𝑘𝑖𝑖
2𝑚𝑚

�
2

� − �
∑𝑖𝑖𝑖𝑖
2𝑚𝑚

− �
∑𝑡𝑡𝑡𝑡𝑡𝑡
2𝑚𝑚

�
2

− �
𝑘𝑘𝑖𝑖

2𝑚𝑚
�
2

� 
 
(S3.7) 

where Ʃin is the sum of the weights (or count for unweighted networks) of the edges inside C, Ʃtot 

is the sum of the weights of the edges incident to nodes in C, ki is the sum of the weights of the 
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edges incident to nodes i (degree of i), ki,in is the sum of the weights of the edges from i to nodes in 

C. If the gain is positive, the node i is placed in the community for which the gain is maximum. 

This process is applied repeatedly for all nodes until no further improvement can be achieved. 

The second phase is to build a network whose nodes are now the communities detected in 

the first phase. In order to perform that, the weights of the edges between the new nodes are given 

by the sum of the weights of the edges between nodes in the corresponding two communities. Edges 

between nodes of the same community result in self-loops for this community in the new network. 

When this phase is completed, the first phase of the algorithm is reapplied to the new network. The 

combination of these two phases is referred to as a “pass”. The passes are iterated until a maximum 

of modularity is reached [20]. 

 

STEM algorithm 
 

Short Time-series Expression Miner (STEM) is an algorithm designed for clustering short 

time expression data. First, the algorithm selects a set of potential profiles and then genes are 

assigned to the profile that best represents their trend among the pre-selected profiles. 

To define a set of model profiles, the user must specify a parameter c that controls the 

amount of maximum change a gene has between successive time points. For example, if c is 2, then 

a gene can go up either one or two units, stay the same or go down either one or two units between 

successive time points. So, for n time points, this strategy would give (2𝑐𝑐 + 1)𝑛𝑛−1 distinct profiles. 

Since most of these profiles are likely to be sparsely populated, a subset of them, R, has to be 

selected, such that the minimum distance between any two profiles in R, namely p1 and p2 is 

maximized. This can be formulized as: 

max𝑅𝑅⊂𝑃𝑃,|𝑅𝑅|=𝑚𝑚min𝑝𝑝1,𝑝𝑝2∈𝑅𝑅𝑑𝑑(𝑝𝑝1,𝑝𝑝2)  (S3.8) 
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where P represents the total set of possible profiles, d is a distance metric, and m is the size of R 

(i.e., |R| = m). A greedy algorithm is used to calculate R. The algorithm starts with one of the two 

extreme profiles and in each iteration, selects the profile that is farthest from all profiles located in 

R so far. This process is repeated until m profiles have been selected. 

In the next step, each gene g∈G is assigned to a model profile mi in the set of profiles M, 

such that d(eg, mi) is the minimum over all m’s, where eg is the temporal expression profile for gene 

g. If the above equation is minimized by more than one profile (h > 1), then g is assigned to all 

those profiles, but the assignments is weighted as 1/h. Further details about the algorithm can be 

found elsewhere [71, 72]. 

 

3.8 Supplementary Figures 
 

 
Figure S3.1: Dimensionality reduction techniques applied on 41834 probe IDs and 128 samples including 
13 patients in stage I, 37 patients in stage II, 34 patients in stage III, 20 patients in stage IV, and 24 normal 
samples. A PC1 vs PC2. There are two outliers in normal, in a red circle. B First two dimensions of t-SNE 
method. There are two outliers in normal which are very close to each other, highlighted in a red circle. 
These two outliers are similar to the outliers found by PCA analysis. 
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Figure S3.2: Gene expression boxplots of 6 biomarkers using TCGA COAD-READ cohort through GEPIA2. 
A-D Boxplots for 4 biomarkers from STEM analysis. E-F Boxplots for 2 stage-specific biomarkers. Red 
rectangles represent tumor and gray rectangles represent normal in each boxplot. 
 

 
Figure S3.3: Kaplan-Meier curves for Disease-Free Survival (DFS) using TCGA COAD-READ cohort 
through GEPIA2. A-D DFS plots for 4 biomarkers from STEM analysis. E-F DFS plots for 2 stage-specific 
biomarkers. Red lines represent the samples with highly expressed genes and blue lines represent the samples 
with lowly expressed genes. Dotted line shows a 95% confidence interval. HR: hazard ratio. 
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Figure S3.4: Subnetwork of 162 genes in A stage III-specific network and B stage IV-specific network. 
Nodes of each subnetwork are grouped together based on the communities they belonged to in the stage-
specific networks and colored based on the value of log2FC between that stage and normal: dark blue 
(log2FC of -2), to white (0) to dark red (2). The width of edges shows the strength of connections based on 
PCC between them. The thicker the edges are, the larger the PCC between the nodes is.   
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 ANALYSIS OF GENE MODULES ACROSS STAGES OF COLORECTAL 
CANCER FROM SINGLE CELL TRANSCRIPTOMICS 

 
 
4.1 Abstract 
 

Background: The underlying mechanisms of how colorectal cancer (CRC) develops, 

progresses through stages pT1-pT4, and its manifestation in the left and right colons are poorly 

understood. The focus of this study is to analyze a single cell transcriptomic dataset of CRC from 

a modular perspective towards understanding mechanisms. Methods: Using previously published 

data (GEO-GSE178341), we parsed cells by stage and down-sampled cells at stages pT2-pT4 to 

make cell counts equal across different stages w.r.t pT1. We also down-sampled cells from the right 

colon to have the same cell count as the left colon. Using Weighted Gene Co-expression Network 

Analysis (WGCNA), we identified and functionally analyzed gene modules from the early stage 

(pT1) and the right colon that were not/lowly preserved in late stages (pT234) and the left colon, 

respectively. We also calculated Spearman’s rank correlation (ρ) for gene degrees of non-preserved 

modules. Finally, we validated our results from this dataset with those from another scRNA-seq 

dataset on CRC. Results: All stages (pT1-pT4) had 7,540 cells after down-sampling. Modules tan 

and greenyellow of the early stage were found to be non-preserved in late stages. Both modules had 

different connectivity patterns between the early and late stages with low values for ρ. Module tan 

captured myeloid cells, the most abundant cell population in the tumor microenvironment, with 

genes enriched for cytokine-cytokine receptor interaction and signaling pathways. Module 

greenyellow was mostly enriched for transcriptional misregulation in cancer and bile secretion 

pathways. Both right and left colons had 46,379 cells after down-sampling. Modules greenyellow 

(ρ = 0.66) and purple (ρ = 0.69) of the right colon were non-preserved in the left colon. Module 

greenyellow was enriched for transcriptional misregulation in cancer and neuroactive ligand-
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receptor interaction pathways. Module magenta (mostly B cells) was enriched for B-cell receptor 

signaling and intestinal immune network for IgA production. Conclusions: We highlight 

topological and functional differences existing between the early and late stages as well as the right 

and left colons in CRC, using a co-expression network theoretic approach on scRNA-seq dataset. 

The non-preserved modules were enriched for important broad functions such as immune function 

and transcriptional misregulation in cancer. 

 

4.2 Background 
 

Despite the substantial progress in diagnosis and treatment of cancers, it continues to be one 

of the leading causes of death worldwide. Of all cancer types, colorectal cancer (CRC), as a term 

used to describe both colon and rectal cancers, is the second most common cause of cancer death 

in the US. It has been estimated that approximately 153,020 individuals will be diagnosed with 

CRC in 2023 and 52,550 will die from the disease [127]. CRC is a multifactorial disease involving 

genetic, environmental, and lifestyle risk factors. Although there are hereditary and non-hereditary 

types, the majority are non-hereditary and caused by somatic mutations in response to 

environmental factors [128]. 

CRC is staged using the American Joint Committee on Cancer’s TNM system in which T 

(tumor) refers to the size of the primary tumor, N (node) describes the involvement of lymph nodes 

near the primary tumor, and M (metastasis) indicates whether the cancer has spread to other organs 

or not. The letter ‘p’ is sometimes used before the letters TNM to indicate pathological stage. A 

number from 0 to 4 is assigned to each factor, with the higher number indicating increasing severity. 

Stage 0 is where the cancer cells are contained to the rectum's or colon's inner lining. In stage 1, the 

cancer cells are found in deeper layers of the colon or rectum wall, but have not spread beyond the 
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wall. In stage 2, the cancer cells have not spread to the lymph nodes, but may have spread through 

and beyond the wall of the colon or rectum (sometimes into nearby tissues or organs too). In stage 

3, the cancer cells have spread to one or more nearby lymph nodes and colon or rectum wall. In 

stage 4, which is also called metastatic CRC (mCRC), the cancer cells have spread beyond the 

lymph, colon or rectum to distant areas of the body, including other tissues and/or organs. 

According to the location of the tumor, CRCs are divided into the right-sided or proximal tumors 

(including the cecum, ascending colon, and the hepatic flexure), the left-sided or distal tumors 

(including the splenic flexure, descending colon, sigmoid colon, rectosigmoid, and rectum), and the 

transverse colon. Left-sided CRC accounts for two-thirds of CRCs as they are likely diagnosed 

earlier, and found to occur more commonly in men and in younger patients, whereas right-sided 

CRC occurs more frequently in women and older ages [129, 130]. 

The relationship between stage and outcome is evident: the higher the tumor stage, the 

shorter the survival time. Most patients with CRC are already in the advanced stage of diagnosis 

and tend to relapse after first-line treatment and chemotherapy. The 5-year survival rate for CRC 

has improved from 50% during the mid-1970s to 65% for patients diagnosed during 2011 through 

2017, reflecting both earlier diagnoses and advances in surgical techniques and therapies. However, 

the 5-year overall survival rate of metastatic CRC (mCRC) is only ~4-12%. Tumor sidedness has 

been shown to affect clinical outcomes as well. Therefore, there are ongoing studies investigating 

more efficacious treatments for CRC [131]. 

In recent years, single-cell RNA sequencing (scRNA-seq) has contributed significantly to 

quantify the transcriptome status of tumor tissue at a single-cell resolution. scRNA-seq helps to 

gain better analysis and understanding of the different/rare cell types [132, 133], to detect the 

genetic information as well as the difference between gene expression in individual cells [134], and 
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to describe the regulatory networks and developmental trajectories [135]. In CRC, single-cell omics 

analysis of the genome, transcriptome, and epigenome have elucidated the diversity within and 

between tumors. Dai et al. utilized scRNA-seq analysis to profile cells from cancer tissue of a CRC 

patient to provide more insight into the heterogeneity of the cell populations affected by the disease 

[136]. Willems et al. utilized scRNA-seq data to improve CRC survival prediction [137]. 

The current study aimed to analyze CRC tissues and investigate the events occurring at early 

stage (pT1) compared to late stages (stages pT2, pT3, and pT4 combined as pT234) and in the right-

sided colon compared to the left-sided colon. To this end, we utilized a scRNA-seq dataset on CRC 

from Gene Expression Omnibus (GEO-GSE178341) containing 370,115 cells from 62 cancerous 

patients and adjacent normal tissues. Due to an unequal number of cells at different stages (and 

different sides), we first down-sampled each stage separately to make the number of cells equal. 

Then, we analyzed the data at the cell level using the Seurat package in R. Weighted Gene Co-

expression Network Analysis (WGCNA) was employed to analyze the data at the gene level. We 

identified and functionally characterized gene modules that were not/lowly preserved using module 

preservation analysis between pT234 and pT1 [138, 139]. Similarly, we identified and compared 

gene modules from the right vs. left colon. Finally, we compared the broad results from this dataset 

with those from another scRNA-seq dataset on CRC. Figure 4.1 shows a flow chart for our analysis 

pipeline. 
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Figure 4.1: Flow chart of the approach used in our analysis. 

 

4.3 Materials and Methods 
 
Single-cell RNA sequencing data 

In this study, we analyzed publicly available scRNA-seq data from a study on single cell 

atlas of mismatch repair-deficient (MMRd) and mismatch repair-proficient (MMRp) colorectal 
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cancer (GEO accession ID GES178341). The data included 370,115 cells from 62 patients at 

different pathological stages of cancer (pT1 for early invasive cancer through pT4 for growth of the 

tumor through the outer layer of the bowel wall) and 36 adjacent normal tissues. Of the total number 

of cancerous cells, there were 62,654 cells from the left colon and 194,597 cells from the right 

colon. We utilized the R Seurat package for processing the data [140, 141, 142, 143]. 

 

Data Filtering 

The data was filtered at the cell level by excluding cells based on the following criteria: 

more than 15% mitochondrial reads, less than 300 detected transcripts, less than 500 expressed 

genes, and a complexity (log10 genes/UMI) of less than 70%. Gene level filtering was also 

performed by excluding genes expressed in less than 10 cells. 

 

Data scaling and dimensionality reduction 

The data was normalized using the LogNormalize method and the scale factor of 10,000. Top 

20% variable genes were then calculated and the data was scaled. Principal Component Analysis 

(PCA) was used on the data for dimensionality reduction, with npcs = 40. The optimal dimension 

for clustering was selected using the following approach: 

1. Determine the percentage of variance (PV) captured by each PC. 

2. Calculate cumulative percentage (CM) for each PC. 

3. Find PCs which have CM > 90% and PV < 5% variation. 

4. Calculate the difference between variation of each PC and subsequent PC which had 

percentage change in variation < 0.1%. 

5. Select the minimum value from steps 3 and 4 as the optimal number. 
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Uniform Manifold Approximation and Projection (UMAP) was performed on the optimal 

number of dimensions, with the cells clustered using the Louvain algorithm (FindClusters function 

in Seurat with resolution 2). 

 

Cells down sampling using scSampler 

Due to the different number of cells at different stages, stage 1 (pT1) with the lowest number 

of cells was selected as the reference and cells of other stages were down-sampled using scSampler 

[144], implemented in python, to have the same number of cells as in pT1. Clustered cells (detected 

in the previous step) were annotated based on major cell types, namely, T/natural killer (NK)/innate 

lymphoid cell (ILC), B, plasma, mast, myeloid, stroma/endothelial, and epithelial cells. Then, major 

cell types of each stage (pT2, pT3, pT4, and normal) were down-sampled in such a way that the 

sum of all cells in each stage was equal to the number of cells in pT1 and the (ratio) relative count 

of cells from different cell types was maintained for each stage as before down-sampling. After 

down-sampling, a subset of the original data with the down-sampled cells and all genes were 

selected and the previous steps (data scaling and dimensionality reduction) was applied on it. 

 

Module detection and module preservation 

We utilized the WGCNA R package [138] to find gene modules. In the first comparison, 

the early stage (pT1) was set as the reference network and late stages (pT2, pT3, and pT4 together 

referred to as pT234) were considered as the test network. To detect the most variable genes 

between the two networks, we selected the top 20% variable genes of the early and late stages 

separately and calculated their intersection as the list of variable genes. A ‘cell x gene’ expression 

matrix was then constructed for each network and the gene modules of the reference network were 
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found using the blockwiseModules function of WGCNA. The preservation statistics of the detected 

modules were calculated w.r.t late stages. Non -preserved modules were selected based on two 

criteria; median rank ≥ 10 and module size ≤ 100. 

In the second comparison, the right colon was selected as the reference network and the left 

colon as the test network. Other steps are similar to the first comparison except that here the top 

20% variable genes of the reference network were used as the list of variable genes. 

 

Change of non-preserved modules between early and late stages 

Non-preserved modules were selected based on the median rank plot and visualized in a 

circle plot. A co-expression network was constructed for genes of non-preserved modules in 

reference (pT1) and test (pT234) networks separately. Edge weight in the circle plot represents the 

co-expression value between two genes and node (gene) degree is the sum of edge weights 

connected to that node. Nodes are colored based on the z-score between reference and test networks, 

changing from blue (-2 or lower) to white (0) and to red (2 or greater). Functional analysis on the 

modules or a subset of the nodes (genes) was carried out using Enrichr [145, 146, 147]. 

 

Spearman’s rank correlation 

To check the similarity/dissimilarity of non-preserved modules between two networks, we 

calculated Spearman’s rank correlation coefficient (ρ) [148]. We first ranked the nodes of two 

networks based on their degrees. Then we used Equation 4.1 to calculate the correlation value, ρ. 

The lower (larger) the value, the less (more) similar the modules are between the two networks. 

𝜌𝜌 = 1 −
6∑𝑑𝑑𝑖𝑖2

𝑛𝑛(𝑛𝑛2 − 1)
 

 
(4.1) 

where di is the difference between node degrees in two networks and n is the total number of genes. 
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Normalized two sample z-test for genes 

z-score for a gene between the early and late stages was calculated using two sample z-test. 

𝑧𝑧 =
(𝑥̅𝑥1 − 𝑥̅𝑥2)− (𝜇𝜇1 − 𝜇𝜇2)

�𝜎𝜎1
2

𝑛𝑛1
+ 𝜎𝜎22
𝑛𝑛2

 
 

(4.2) 

in which 𝑥̅𝑥1 and 𝑥̅𝑥2 are the sample mean of first sample and second sample respectively, 𝜇𝜇1 and 𝜇𝜇2 

are the mean of first and second population, 𝜎𝜎12 and 𝜎𝜎22 are the population variance in first and 

second population, and 𝑛𝑛1 and 𝑛𝑛2 are the sample size of first and second groups respectively. Since 

the null hypothesis is 𝜇𝜇1 = 𝜇𝜇2, the equation will be: 

𝑧𝑧 =
𝑥̅𝑥1 − 𝑥̅𝑥2

�𝜎𝜎1
2

𝑛𝑛1
+ 𝜎𝜎22
𝑛𝑛2

 

 

4.4 Results and Discussion 
 
4.4.1 Down-sampling to Equalize the Number of Cells at Different Stages 
 

The CRC dataset used in this study contained different numbers of cells at different stages 

(see Table 4.1). Since the number of cells in pT1 was less than the others, we selected pT1 as the 

reference and down-sampled cells of other stages to have the same number as in pT1. As described 

in the Materials and Methods, seven major cell types, i.e., T/natural killer (NK)/innate lymphoid 

cell (ILC), B, plasma, mast, myeloid, stroma/endothelial, and epithelial cells were selected for the 

down-sampling process (see Figures S4.1) [149]. Cell counts in each major cell type before and 

after down-sampling are listed in Table S4.1. The (ratio) relative count of cells from different cell 

types was maintained for each stage as before down-sampling. Figures 4.2A and 4.2B show UMAP 
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plots for all cells before and after down-sampling, respectively. As seen from the figure, there was 

a good separation between major cell types. 

 
Table 4.1: Properties of different stages 

 # of samples Tissue site # of specimens # of cells 

Cancer 129 

Left 
62,654 cells 

1 in pT1 4,502 
2 in pT2 10,956 
5 in pT3 24,790 
5 in pT4 22,406 

Right 
 
194,597 cells 

1 in pT1 4,677 
7 in pT2 33,571 
27 in pT3 90,138 
14 in pT4 66,211 

Normal 52 
Left 8 37,263 
Right 39 75,601 

 

 
Figure 4.2: UMAP plot for all cells A before and B after down-sampling. 

 

4.4.2 Early vs. Late Stages Comparison 
 

After down-sampling, the early stage (pT1) had 7540 cells and late stages (pT234) had 

22,620 cells. The intersection of top 20% of the most variable genes from the two networks yielded 
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3,107 unique genes. Using blockwiseModules function of WGCNA, we detected 13 modules for 

the early stage, out of which two modules, tan and greenyellow, were not preserved and magenta 

was the most preserved module in late stages based on the median rank plot (Figure 4.3). Figure 

4.4 shows cell coverage of different modules in UMAP space. In the following section, we analyze 

non-preserved and preserved modules from a topological and functional perspective. 

 
Figure 4.3: Median rank of module preservation between the early (reference) and late stages (test). 

 
Figure 4.4: Cell coverage of different modules detected for the early stage (pT1). There is a number after 
each module’s name representing the number of genes in that module. Non-preserved (or preserved) modules 
are highlighted by a dashed (or solid) purple rectangle around them.  
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4.4.2.1 Topological and functional differences of non-preserved modules between the early 
and late stages 
 

As mentioned in the previous section, modules tan and greenyellow were non-preserved 

among all modules. Spearman’s rank correlation (0 for the least similar and 1 for the most similar 

modules) also confirmed the non-preservation of gene degrees for these modules between the early 

and late stages (0.63 for module tan and 0.42 for module greenyellow). Figures 4.5A and 4.5B show 

top 10% of unique edges in the early and late stages for modules tan and greenyellow in circle plots, 

respectively. As seen from the figures, the connectivity pattern and the degree of genes changed 

from early to late stages. For both modules, the degree of genes and average weights of edges in 

the early stage was greater than late stages. 

Module tan captured myeloid cells (see Figure 4.4) which are the most abundant cell 

population in the tumor microenvironment. Genes of module tan were mostly enriched for cytokine-

cytokine receptor interaction, chemokine signaling, and NF-κB signaling pathways. It has been 

shown that inflammatory cytokines may promote tumor formation and enhance the progression of 

cancer from adenoma to invasive carcinoma [150]. Chemokines have been used as effective 

biomarkers in early diagnosis of CRC and they have contributed to making clinical decisions 

leading to improved survival [151]. NF-κB is hypothesized to promote tumorigenesis via pro-

inflammatory factors, which can be activated by inflammatory cytokines [152]. The gene with the 

largest degree in the early stage of module tan (Figure 4.5A) was CCL19 which is expressed 

abundantly in the T-cell zones, such as lymph nodes and thymus. It is also a vital regulator of 

immune responses, regulating the migration of DCs and T cells into secondary lymphatic tissues 

[153, 154]. The gene with the second largest degree was FSCN1 which is an actin-bundling protein, 

oftentimes upregulated in different human cancers. In particular, FSCN1 overexpression is known 

to promote cancer cell migration, invasion, and metastasis in vitro and in vivo [155]. LAMP3, the 
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gene with the third largest degree, is known to participate in tumor metastasis and drug resistance 

with significant contribution to tumor cells proliferation, migration, and invasion [156]. 

Module greenyellow was mostly enriched for carbohydrate digestion and absorption, 

transcriptional misregulation in cancer, and bile secretion pathways. Carbohydrates lead to the 

proliferation of cancer cells through alterations in insulin levels and circulating glucose [157]. 

Transcriptional misregulation pathway is involved in the occurrence and development of CRC. 

DEFA5 and DEFA6, two genes of the transcriptional misregulation pathway were down-regulated 

in the late stages as compared to the early stage and identified within this module (see Figure 4.5B). 

DEFA5 was found to be closely related to colorectal adenocarcinoma and its high expression is also 

associated with better prognosis of CRC [158]. DEFA6 was shown to have a promoting effect on 

the proliferation, migration, invasion, and colony invasion of CRC cell lines in vitro [159]. Bile 

acids are known to act as strong stimulators of the initiation of CRC by damaging colonic epithelial 

cells. They promote CRC progression through multiple mechanisms including apoptosis inhibition, 

enhancement of cancer cell proliferation, invasion, and angiogenesis [160]. Other markers that have 

been previously implicated with important roles in CRC were identified within this module. For 

example, TTR, whose degree in the early stage is higher than late stages, possesses cytokine 

functions to stimulate myeloid cell differentiation (known to play roles in the tumor environment) 

[161]. Likewise, HEPACAM2 had a higher degree in the early stage compared to late stages. Studies 

have shown that it may be a diagnostic and prognostic biomarker for colon adenocarcinoma. 

HEPACAM2 is also involved with immune response progress, chemokine signaling, Ras signaling 

and Hematopoietic cell lineage pathways [162]. NEUROD1 is known to be highly expressed in 

CRC and its silencing induces the expression of p21, a master regulator of the cell cycle, leading to 

G2-M phase arrest and suppression of CRC cell proliferation and colony formation potential [163].  
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Figure 4.5: Circle plot for top 10% unique edges of module A tan and B greenyellow. Each cyan (or purple) 
edge represents the co-expression value between the two corresponding genes in the early stage (or late 
stages). The left (or right) circle near each gene represents the sum of weights of edges connected to that 
gene in the early stage (or late stages). Circles are colored based on the z-score between late stages and the 
early stage from blue (z-score ≤ -2) to white (0) to red (z-score ≥ 2). PPI edges are shown in dashed lines. 

 
 
4.4.2.2 Mixed role of the preserved module in colorectal cancer 
 

As seen from the median rank plot (Figure 4.3), module magenta was the most preserved 

module in the early vs. late stages comparison (ρ = 0.88). It was mostly enriched for renin-

angiotensin metabolism, Fc epsilon RI signaling, and histidine metabolism pathways. It has been 

shown that the higher circulating levels of histidine, the lower the risk of colorectal cancer [164]. 

MAOB and HDC, two genes of the histidine metabolism pathway, had higher z-scores in late stages 

compared to the early stage. IL5 and IL13 were another two important genes enriched for Fc epsilon 

RI signaling pathway. Studies have shown that IL5 has antitumor properties in CRC and it has been 

found elevated in mid CRC stages (pT2 and pT3) [165]. We also observed a higher z-score value 

for IL5 in late stages compared to the early stage. Likewise, IL13 was upregulated in late stages 

(higher z-score). It has been shown that IL13 signaling could be involved early in intestinal stem 

cell self-renewal and homeostasis. It can also promote a tumorigenic microenvironment [166, 167]. 

Module magenta captured most of the mast cells. Although mast cells contribute to the transition 
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from chronic inflammation to cancer, their exact role in tumor initiation and growth remains 

controversial. According to recent studies [168, 169] mast cell-derived mediators can either exert 

pro-tumorigenic functions and cause the progression and spread of the tumor or exert anti-

tumorigenic functions limiting the tumor growth.  

 

4.4.3 Right vs. Left Colon Comparison 
 
Both right and left colons had 46,379 cells after down-sampling (see Table S4.2 for detailed 

cell counts). We constructed a data expression matrix with the top 20% variable genes (5,150 genes) 

of the right colon and found its modules using blockwiseModules of WGCNA. Of 12 modules found 

for the reference network (right colon), modules greenyellow and magenta were not preserved and 

module pink was preserved in the test network (left colon) (see Figure 4.6 for median rank plot). 

Spearman’s rank correlation of gene degrees (0.66 for greenyellow and 0.69 for magenta) 

confirmed the non-preservation of these modules between the right and left colons as well. In the 

following section, we analyze non-preserved and preserved modules topologically and functionally. 

 

 
Figure 4.6: Median rank of module preservation between the right (reference) and left colon (test). 
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4.4.3.1 Different roles of non-preserved modules between the right and left colons 
 

Module greenyellow was mostly enriched for transcriptional misregulation in cancer and 

neuroactive ligand-receptor interaction pathways based on KEGG and KRAS signaling down and 

epithelial mesenchymal transition based on MSigDB hallmark. Previous studies have shown that 

neuroactive ligand-receptor interaction pathways interact with the microenvironment cells and 

tumor cells in CRC and are significantly related to the development of the disease [170]. Epithelial 

mesenchymal transition (EMT), a collection of events during which cells lose their epithelial 

characteristics, is involved in the initial steps, progression and metastasis of CRC [171]. 

Module magenta captured B cells (see Figure S4.2) and it was enriched for B cell receptor 

signaling, hematopoietic cell lineage, and intestinal immune network for IgA production based on 

KEGG and notch signaling based on MSigDB Hallmark pathways. Hematopoietic cells play a 

central role in tumor growth and progression in the solid tumor microenvironment which could 

differentiate into hematopoietic cells [172]. Studies have shown that the intestinal immune network 

for IgA production was significantly enriched in the right-sided colon and the genes related to this 

pathway were expressed in CRC tumor tissues [173, 174]. 

In the following section, we analyze differences between the early and late stages for the 

non-preserved modules, i.e., modules greenyellow and magenta.  

 

4.4.3.2 Changes in the connectivity pattern between the early and late stages for non-
preserved modules 
 

Figures 4.7 and 4.8 highlight the distinct differences in connectivity and edge weights for 

the two non-preserved modules, greenyellow and magenta, respectively. Degree of genes of module 

greenyellow did not change much between the early stage and late stages for the left colon (Figure 

4.7A). However, in the right colon, genes had higher degrees and edge weights in the early stage 
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compared to late stages (Figure 4.7B). Most genes of module greenyellow were up-regulated in late 

stages compared to the early stage in the left colon (Figure 4.7A), i.e., higher z-scores, whereas in 

the right colon, some genes were up-regulated and some genes were down-regulated in late stages 

vs. the early stage (Figure 4.7B). Of 38 genes of module greenyellow, 17 genes were common with 

the module greenyellow of the previous analysis (the early stage vs. late stages). Some of these 

genes, such as PAX4, HEPACAM2, TTR, DEFA5, and DEFA6, have important roles in CRC. PAX4, 

the node with the largest degree in the right colon and enriched in the “KRAS signaling down” 

pathway (or gene set), is known to play an important role in the proliferation of CRC cells. Studies 

suggest a potential therapeutic role for PAX4 inhibition in limiting cancer cell growth [175]. KRAS 

mutations are also associated with right-sided colon tumors [176]. HEPACAM2, as noted in our 

earlier comparison, was also present in this comparison (both in the early stage vs. late stages and 

the right vs. the left colon). It has been shown that the highly expressed HEPACAM2 has a better 

prognosis and the reduced risk of death in patients with COAD based on different adjusted models. 

Therefore, HEPACAM2 might be an independent diagnostic and prognostic biological indicator in 

patients with COAD [36]. TTR also had higher degree in the early stage in the right colon and down-

regulated in late stages compared to the early stage. Studies have shown that its level in patients 

with CRC metastasis is significantly lower than that in patients without CRC metastasis [177]. TTR 

can be used as an indicator to evaluate the occurrence and prognosis of CRC. DEFA5 and DEFA6 

are both down-regulated (in late stages vs. the early stage) in the right colon and up-regulated (in 

late stages vs. the early stage) in the left colon. Arijs et.al found a marked upregulation of DEFA5 

and DEFA6 expression in the inflamed colon of patients with ulcerative colitis [178]. 
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Figure 4.7: Circle plot for top 10% unique edges of module greenyellow in A the left colon and B the right 
colon. The plots are arranged similar to those in Figure 4.5. 

 

Most genes of module magenta had larger degree in the early stage compared to late stages 

in the left colon and were mostly downregulated in late stages compared to the early stage (Figure 

4.8A), whereas in the right colon the gene degrees in the early stage were lower than late stages and 

most genes were upregulated (Figure 4.8B). MS4A1, the gene with the largest degree in the circle 

plots, has been shown to be downregulated in colorectal carcinoma and its expression is positively 

correlated with CRC patient survival [179]. CD19, CD22, and CD79B, which were upregulated in 

late stages (vs. the early stage) in the right colon but downregulated in late stages of the left colon 

and enriched in B cell receptor signaling pathway, play a central role in colon cancer initiation and 

development [180]. TCL1A, was another high degree gene which was downregulated in late stages 

of the left colon but upregulated in late stages of the right colon. It has been shown to have higher 

expression in CRC cancer stages compared to normal which correlates with tumor differentiation 

and clinical stage [181]. TCL1A is also a useful biomarker for prognostic evaluation of patients at 

stages 2 and 3 of CRC [182]. RGS13, upregulated in late stages of both left and right colons, was 

connected to other genes in the early stage of the left colon (all RGS13’s connections are cyan in 
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Figure 4.8A) and connected to other genes in late stages of the right colon (all RGS13’s connections 

are purple in Figure 4.8B). Studies have shown that RGS13 regulates mast and T cell migration and 

activation [183]. RGS proteins may also serve as a prognostic factor in CRC diagnosis [184].   

 

 
Figure 4.8: Circle plot for top 10% unique edges of module magenta in A the left colon and B the right 
colon. The plots are arranged similar to those in Figure 4.5. 

 

4.4.3.3 Preserved module is mostly enriched for signaling pathways 
 

As seen from Figure 4.6, module pink was the most preserved module enriched for renin 

angiotensin system, Fc epsilon RI signaling, and JAK-STAT signaling pathway based on KEGG 

and IL-2/STAT5 signaling, fatty acid metabolism, and angiogenesis based on MSigDB hallmark 

gene sets. Spearman’s rank correlation for the gene degrees of module pink between the right and 

left colons was 0.96 which confirms the preservation of this module. Renin angiotensin system 

(RAS) components are known to be dysregulated in CRC, which indicates their potential role in 

CRC pathology with a pivotal role in metastasis [185]. JAK/STAT signal transduction is a common 

signaling pathway through which many growth factors and cytokines transmit signals in cells. 

Studies have shown that the JAK/STAT signal may be used as a novel tumor marker and prognostic 

factor for the diagnosis, assessment, and prognosis of CRC [186]. Fatty acid metabolism supports 
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tumorigenesis and disease progression through a range of processes including energy storage and 

production [187]. Angiogenesis, the formation of new blood vessels, is a critical step in the cancer 

progression with an important role from the early stage of CRC to the late phase of metastasis [188].  

 

4.4.3.4 In-silico validation 
 
To validate our results of the comparison between right and left colon, we utilized another 

scRNA-seq data (henceforth referred to as validation dataset) from GEO (accession IDs are 

GSE132465 and GSE144735). The data contained 47,285 cells from 23 Korean and 17,678 cells 

from 6 Belgian patients at different stages of CRC [189]. We merged two datasets and followed the 

similar procedure (with similar values for the parameters) as the one for the original dataset to detect 

modules of the right colon and identify the non-preserved ones using blockwiseModules and 

modulePreservation functions of WGCNA, respectively (see Materials and Methods). The focus of 

this validation was on the right colons of the original and validation datasets. There was about 60% 

overlap between the top 20% variable genes of the right colon of original data and top 20% variable 

genes of the right colon of the validation data. We detected 12 modules for the right colon cells of 

the validation dataset, of which two of them were non-preserved in the left colon of the validation 

dataset. The size of modules is listed in Table S4.3. 

Jaccard Index (JI) values were calculated between all modules of the original and validation 

datasets (Table S4.3). Although the maximum value of JI was only 48%, the non-preserved modules 

of the validation dataset represented biological functions similar to that for the non-preserved 

modules of the original dataset. They were enriched for pathways such as KRAS signaling down, 

notch signaling and angiogenesis. KRAS is one of the most frequently mutated oncogenes with a 

prevalence of about 40% in CRC and is involved in the occurrence, progression, treatment and 
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recurrence of the disease [190]. Notch signaling, necessary to maintain intestinal homeostasis, is 

involved in regulating tumor progression and aggressiveness of CRC [191]. As mentioned in the 

previous section, angiogenesis plays a critical role in cancer progression because solid tumors need 

a blood supply to grow [188].  

 

4.5 Conclusion 
 

In this study, we utilized a scRNA-seq data containing 370,115 cells from 62 CRC patients 

and adjacent normal tissues of CRC to detect modular mechanisms different between early (pT1) 

and late stages (pT234) and between right and left colons. We first pre-processed the data and made 

the number of cells equal at all stages and right and left colons. Then, we constructed data 

expression matrices at early and late stages and detected modules at the early stage, of which two 

were non-preserved in late stages. Spearman’s rank correlation of gene degrees also confirmed the 

non-preservation of these modules. The non-preserved modules captured myeloid cells and were 

enriched for cytokine-cytokine receptor interaction, NF-κB signaling, carbohydrate digestion and 

absorption, and bile secretion pathways. There were also important genes in these modules. For 

example, FSCN1, whose overexpression is known to promote cancer cell migration, invasion, and 

metastasis in vitro and in vivo, had higher z-score in late stages compared to the early stage. The 

most preserved module of this comparison captured mast cells with a mixed role in CRC. 

The comparison between the right and the left colons revealed that two modules were non-

preserved and enriched for neuroactive ligand-receptor interaction pathways, hematopoietic cell 

lineage, and intestinal immune network for IgA production based on KEGG, and KRAS signaling 

down and epithelial mesenchymal transition and notch signaling based on MSigDB hallmark gene 

sets. TTR, an important gene in these modules, can be used as an indicator to evaluate the occurrence 
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and prognosis of CRC. DEFA5 and DEFA6 were two other genes and both were down-regulated 

(in late stages vs. the early stage) in the right colon and up-regulated (in late stages vs. the early 

stage) in the left colon. Studies have shown a marked upregulation of DEFA5 and DEFA6 

expression in the inflamed colon of patients with ulcerative colitis. The preserved module of this 

comparison was mostly enriched for signaling pathways such as Fc epsilon RI and JAK-STAT. 

Overall, we were able to detect topological and functional differences between the early 

stage (pT1) and late stages (pT234) of CRC as well as the right vs. left colon. 
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4.7 Supplementary Methods 
 
scSampler 
 

The input to the algorithm is a matrix 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛×p with columns corresponding to p features 

(top p PCs from a cell-by-gene log(count+1) matrix and scaled to [0,1]) and rows corresponding to 

n cells. Then, there is a set of cells X = {x1, x2, … xn} where xi € Rp is a row vector of X. The goal 

is to find a size ns subset Xs subset of X which minimizes the Hausdorff distance: 

𝑑𝑑𝐻𝐻(𝑋𝑋𝑠𝑠,𝑋𝑋) = max
𝑥𝑥𝑖𝑖∈𝑋𝑋

min
𝑥𝑥𝑗𝑗∈𝑋𝑋𝑠𝑠

𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)  (S4.1) 

where d(.,.) is the Euclidean distance. The Hausdorff distance measures the distance from Xs to X. 

A small value of the distance means that all data points in X are represented by at least one data 
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point in Xs. Since the direct optimization of Equation S4.1 is computationally expensive, the authors 

proposed to approximate the optimality and search for Xs via the following optimization problem: 

min
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗∈𝑋𝑋𝑠𝑠

� �
1

[𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)]𝛼𝛼

𝑛𝑛𝑠𝑠

𝑗𝑗=𝑖𝑖+1

𝑛𝑛𝑠𝑠−1

𝑖𝑖=1

 
 
(S4.2) 

for a sufficiently large alpha [ref]. Cells in Xs obtained from equation 2 have maximized distance 

and minimized similarity between each other and therefore can represent the diversity of X. The 

authors showed that 𝛼𝛼 = 4𝑝𝑝 is big enough and keeps the algorithm numerically stable [144]. 

 

blockwiseModules function 
 

The function first pre-clusters nodes (genes) into large clusters, named as blocks, using a 

variant of k-means clustering (projectiveKMeans) [138]. Then, hierarchical clustering is applied to 

each block and modules are defined as branches of the resulting dendrogram. Afterwards, an 

automatic module merging step (mergeCloseModules) is performed to merge modules whose 

eigengenes are highly correlated. 

 

modulePreservation function 
 

The function detects the conservation of gene pairs between two networks (early and late 

stages of cancer here). There are three types of network-based module preservation statistics: 1) 

Density based: determines if module nodes remain highly connected in the test network, 2) 

Separability based: determines if network modules remain distinct from one another in the test 

network, and 3) Connectivity based: determines if the connectivity pattern between nodes in the 

reference network is similar to that in the test network [192]. 
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As those statistics measure different aspects of module preservation, two composite 

preservation statistics have been defined: 

Zsummary: summarizes the individual Z statistic values resulting from permutation test and is 

calculated by: 

𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2
  (S4.3) 

medianRank: is a rank-based measure which relies on observed preservation statistics and 

less dependent on module sizes. It is calculated by the following equation:  

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2
  (S4.4) 

Permutation was performed 100 times due to the computational complexity of our network 

sizes. As prescribed in [192], modules with a Zsummary > 10 indicate strong evidence of preservation, 

2 to 10 indicate low to moderate evidence of preservation and less than 2 indicate no preservation. 

 

4.8 Supplementary Figures 
 

 
Figure S4.1: Feature plots for cell markers of major cell types before down-sampling. 
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Figure S4.2: Cell coverage of different modules detected for the right colon. There is a number after each 
module’s name representing the number of genes in that module. Non-preserved (or preserved) modules are 
highlighted by a dashed (or solid) purple rectangle around them.  
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 CONCLUSIONS 
 

In this dissertation we explored community detection as an effective computational tool to 

analyze and understand biological networks and gain valuable insights about the networks from a 

topological and functional perspective. A variety of biological datasets have been utilized as case 

studies to illustrate the applicability of community detection in the field of biological networks. 

In Chapter 2, we explored the existing community detection algorithms and evaluated 

findings of six algorithms, namely, Combo, Conclude, Fast Greedy, Leading Eigen, Louvain and 

Spinglass, on two important PPI networks, namely, Saccharomyces cerevisiae (Yeast) and Homo 

sapiens (Human) at both topological and functional levels. An in-depth comparison of communities 

detected by different methods has led us to conclude that Louvain and Spinglass are most similar 

for the Yeast PPI network whereas Combo and Spinglass are most similar for the Human PPI 

network. However, since Combo and Spinglass use stochastic search in their procedure and their 

running time is also more than that for Louvain, we concluded that Louvain is likely the best method 

to find reasonably sized communities for biological networks in a reasonable time. 

In Chapter 3, we utilized a microarray gene expression data from 128 patients at various 

stages of CRC to detect modular mechanisms potentially causal for progression of disease from 

normal to stages I-IV and to find stage-specific biomarkers. Comparing communities of different 

stages, detected by Louvain algorithm, revealed that neighboring stages were more similar to each 

other than non-neighboring stages at both topological and functional levels. We carried out the 

functional analysis at the whole network level for the stage-specific and stage-unique networks by 

analyzing the enrichment of 24 cancer-related pathways. For the stage-specific networks, most of 

the CRC related pathways such as PI3K-Akt and MAPK signaling pathways were enriched at all 

stages. However, stage-unique networks revealed functional differences across the stages. We also 
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identified key biomarkers to differentiate between any stages of CRC and normal using STEM 

analysis. WNT2 and SFRP2, two biomarkers validated by other researchers in stool DNA, were 

over-expressed and under-expressed in CRC tissues, respectively. Finally, we constructed a drug-

target-PPI network enabling us, in the light of the present data, to understand the functional 

mechanisms associated with some of the current drugs associated with CRC treatment. We found 

that the target gene weights changed across the stages extensively. For example, TYMS, a target for 

some drugs such as 5-FU, was upregulated in cancer stages with larger weights in stage III. 

In Chapter 4, we analyzed a scRNA-seq dataset consisting of 370,115 cells from 62 CRC 

patients and adjacent normal tissues to detect modular mechanisms different between the early 

(pT1) and late stages (pT234) and between the right and left colons. After preprocessing the data, 

we constructed data expression matrices at the early and late stages as well as the right and left 

colons and detected modules using WGCNA. Of the modules detected for the early stage, two of 

them were non-preserved in late stages, capturing myeloid cells, and enriched for cytokine-cytokine 

receptor interaction, NF-κB signaling, carbohydrate digestion and absorption, and bile secretion 

pathways. FSCN1, an important gene of these modules, had a higher z-score in late stages compared 

to the early stage. Its overexpression has been known to promote cancer cell migration, invasion, 

and metastasis in vitro and in vivo. The comparison between the right and left colons also revealed 

that two modules were non-preserved and enriched for hematopoietic cell lineage, intestinal 

immune network for IgA production, KRAS signaling down, and notch signaling pathways. DEFA5 

and DEFA6, both down-regulated in the right colon and up-regulated in the left colon, have been 

shown to be upregulated in the inflamed colon of patients with ulcerative colitis. 

The research presented in this dissertation paves the way for topological and functional 

network analyses in complex biological processes and diseases. 
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