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ABSTRACT OF THE DISSERTATION

Universal Probability and Its Applications

by

Alankrita Bhatt

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California San Diego, 2022

Professor Young-Han Kim, Chair

In modern statistical and data science applications, the probability distribution generat-

ing the data in question is unknown (or even absent) and decisions must be taken in a purely

data-driven manner. Thus motivated, in this dissertation the information-theoretic approach of

universal probability is revisited and expanded upon. This approach gives us general principles

and guidelines for assigning sequential probabilities to data (based on which a decision can

then be made), and has been used successfully over the years to problems in compression and

estimation among others. The utility of this approach is then demonstrated through three example

problems, motivated by the aforementioned modern statistical applications—-universal com-

pression of graphical data, sequential prediction with side information, and universal portfolio
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selection with side information.
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Chapter 1

Introduction

Statistical applications in the current era present a host of new challenges that require one

to move beyond traditional methods and assumptions. Some of these challenges include unknown

data distribution, sequentially available data (as opposed to batch) [1, 2], high-dimensionality [3,

4], limited memory, and outliers in data [5]. This dissertation focuses on some techniques and

methods that confront the first aforementioned challenge. In particular, the information-theoretic

approach of universal probability is taken. Presently, we explain this approach and outline some

key ideas underpinning it.

1.1 Universal Probability Assignment

Consider the problem of a weatherperson trying to predict whether or not it will rain

tomorrow in La Jolla. On day t, she has access to the history of the weather yt−1 ∈ {0,1}t−1

(where 1 represents rain and 0 represents no rain), and needs to form an estimate ŷt ∈ {0,1} of

what yt will be (i.e., tell whether or not it will rain tomorrow). After the day is over and the true

weather (i.e. yt) is revealed, she suffers a loss of 1{ŷt ̸= yt} := |ŷt−yt |, which adds up over time.

The final goal is to suffer as little cumulative loss as possible over some time horizon n (say

n = 365 representing a year).

Now, one may reasonably assume that the rain will fall on any given day with probability

θ ∈ [0,1] (i.e. that all yi ∼ Bern(θ) independently). Unfortunately, the weatherperson doesn’t

1



have access to this true probability θ . If indeed she knew θ , she could just output ŷt = 1{θ ≥

1/2} everyday; and in a certain sense this is the optimal action to take (for example, θ ≈ 0.1

for La Jolla, and so the optimal action to take is to declare θ = 0 everyday). However, she must

create an estimate ŷt ∈ {0,1} using just the history yt−1.

This is where the universal probability assignment approach of information theory can

be employed. We know that the data yn ∼ Bern(θ) independently and identically distributed

(i.i.d.) for some unknown θ ∈ [0,1] (let us call this distribution pθ ). The key idea is to construct

a universal probability assignment q for the class of i.i.d. Bernoulli random variables; i.e.

construct a measure q such that q≈ pθ (in some sense) for every θ ∈ [0,1]. Once this measure is

constructed, we can simply pretend that the actual data is being drawn from this distribution can

take the optimal action as per this distribution. In the rain prediction example, the weatherperson

can simply calculate q(1|yt−1)= q(yt−11)
q(yt−1)

and then declare her prediction ŷt =1{q(1|yt−1)≥ 1/2}.

Since q is a universal probability assignment for the class of all Bernoulli i.i.d. random variables

by assumption, it can well approximate the true underlying distribution pθ , and so intuitively

we don’t expect to lose too much and have performance almost as good as if θ was known in

advance! The key question, of course, now becomes how does one construct such a q? Does it

even exist?

1.1.1 Construction Of Universal Probability

First, we precisely define universality.

Definition 1 (Universality). A probability assignment q is said to be universal for the class of

distributions {pθ ,θ ∈Θ} if
1
n

D(pθ (yn)∥q(yn))−→ 0

for all θ ∈Θ, where D(·∥·) represents the Kullback–Leibler (KL) divergence. Thus, q≈ pθ in a

KL divergence sense for every θ ∈Θ.

2



Remark 1 (Why KL divergence?). The reader may wonder why Definition 1 utilizes the KL

divergence and not another measure of distance between two distributions such as the total

variation (TV) distance or the χ2 divergence. One reason why the KL divergence is utilized is

because universality was initially considered in the context of compression where the log-loss

makes a natural appearance; with close operational connections to several other problems as

well (such as gambling). Moreover, it is known that universality in KL divergence suffices to deal

with several other loss functions as well, a point discussed further in Section 1.1.2 (see also [6]).

Remark 2 (Random sequence vs. individual sequence). We have so far considered the data to

be random and following a certain distribution, and this is reflected in Definition 1. However, in

several cases it is more reasonable to assume that the data is generated by a malicious adversary

(for example when dealing with the stock market). In such cases, a more stringent definition of

universality must be employed, the so-called pointwise universality, which requires that q satisfy

max
θ∈Θ,yn

1
n

log
pθ (yn)

q(yn)
−→ 0,

clearly a more rigid requirement than that employed for mean universality in Definition 1. In

this thesis, for the most part, we will deal with random data and sources.

Next, we talk about a few approaches to constructing such a universal probability assign-

ment. The first approach, which forms a major workhorse for obtaining the results presented in

this thesis, is the mixture approach. The idea is to construct a universal probability assignment q

for a class of distributions pθ ,θ ∈Θ by taking a weighted mixture of all pθ with some appropri-

ate choice of prior w(θ). For example, consider the aforementioned problem of constructing a

universal probability assignment for the class of binary i.i.d. probabilities. Using this mixture

idea, we could construct, for yn ∈ {0,1}n

q(yn) =
∫ 1

0
pθ (yn)w(θ)dθ
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=
∫ 1

0
θ ∑

n
i=1 yi(1−θ)n−∑

n
i=1 yiw(θ)dθ

where the second equality follows since for some yn ∈ {0,1}n an i.i.d. Bernoulli(θ ) probability

distribution would assign pθ (yn) = ∏
n
i=1 pθ (yi) = ∏

n
i=1 θ yi(1− θ)1−yi . One can then choose

an appropriate prior w(θ) and obtain a q accordingly. We consider two important and relevant

choices of prior distribution, that yield a universal probability assignment. The omitted proofs of

universality may be found in Appendix A.1.

• Uniform prior (w(θ) = 1): Perhaps the simplest choice would be to take a uniform prior

over all θ ∈ [0,1]. In this case, recalling the definition of the Beta function (as well as its

relationship to the Gamma function) given by

B(a,b) :=
∫ 1

0
ta−1(1− t)b−1dt =

Γ(x)Γ(y)
Γ(x+ y)

it follows that for all yn ∈ {0,1}n

qL(yn) :=
∫ 1

0
θ ∑

n
i=1 yi(1−θ)n−∑

n
i=1 yidθ =

1
(n+1)

( n
∑

n
i=1 yi

)
and it can be shown that qL(yn) is universal for the class of Bernoulli i.i.d. distributions.

Moreover, we can this probability assignment in a very convenient sequential form as

qL(1|yt) =
qL(yt1)
qL(yt)

=
∑

t
i=1 yi +1
t +2

and therefore this is often called the add-1 probability assignment. A simpler and more

direct combinatorial proof for the add-1 rule can be found at [7], [8]. It is also known as the

Laplace probability assignment, as when asked to calculate the probability that the sun will

not rise tomorrow given that it rose for t days, Laplace answered with 1
t+2 (which is the

same answer as the above probability assignment would provide, substituting ∑
t
i=1 yi = 0).
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Even though Laplace’s answer appears to yield a somewhat alarmingly large probability

of doom, we can see that it is nonetheless somewhat justified by the universality of qL and

Cromwell’s rule.1

• Beta(1
2 ,

1
2) prior

(
w(θ) = 1

π
√

θ(1−θ)

)
: In this case, we can show that for any yn ∈ {0,1}n

qKT(yn) := π
−1
∫ 1

0
θ ∑

n
i=1 yi−1/2(1−θ)n−∑

n
i=1 yi−1/2dθ

=

( n
∑

n
i=1 yi

)(2n
n

)
4n
( 2n

2∑
n
i=1 yi

)
and qKT(yn) is universal for the class of Bernoulli i.i.d. distributions. Once again, this

probability assignment can be expressed in a very convenient sequential form as

qKT(1|yt) =
∑

t
i=1 yi +1/2

t +1

and therefore this is often called the add-1/2 probability assignment. This is also called

the Krichevsky–Trofimov probability assignment [9]. We remark that the Beta(1
2 ,

1
2)

prior is particularly special as it can be shown to be the Jeffreys prior for i.i.d. Bernoulli

distributions, which is known to be the optimal choice of prior in a certain sense; see [10].

The two examples above demonstrate the power of the mixture approach for the simple class of

Bernoulli i.i.d. distributions. Another illustration of the power of this mixture approach can be

seen in the construction of the context tree weighting (CTW) probability assignment [11], which

is universal for the class of all variable order Markov processes.

We also briefly mention another approach utilized by the seminal Lempel–Ziv probability

assignment [12–14], a so-called dictionary-based probability assignment which is universal for

1Cromwell’s rule states that unless a statement is logically true or false (such as “2+2 = 4” or “2+2 = 5”)
assigning it probability 1 or 0 should be avoided. This rule may be justified by observing that if one assigns 0
probability to an exceedingly rare event, and said event does in fact occur, certain loss functions (such as the
log-loss) might blow up to ∞.
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the extremely large class of all stationary ergodic processes. Indeed, it is known that for qLZ and

the class of stationary ergodic processes P [15]

max
yn,p∈P

1
n

log
p(yn)

qLZ(yn)
= Θ

(
1

logn

)
.

A data compressor based on the Lempel–Ziv probability assignment has been enormously

successful in practice and is deployed, among others, in the GIF image format.

Going back to the motivating problem of predicting tomorrow’s weather, we can show

that if the weatherperson predicts ŷt = 1{qKT(1|yt−1)≥ 1/2}, she will on average make not too

many more mistakes than she would have if she knew the true probability of rain tomorrow θ in

advance—see A.2.1 in the Appendix for the exact statement and proof, as well as a few remarks.

1.1.2 Other Example Applications

There are several other applications where universal probability can be leveraged to

accomplish the task at hand. One of the most well-known is universal sequential prediction [6,16].

Consider a sequence Y n ∼ pθ , where the distribution pθ is picked from a larger class where

θ ∈ Θ. This class Θ could be parametric, for example the class of binary i.i.d. processes

from earlier, or it could be far richer and nonparametric such as the class of stationary ergodic

processes. At time t, based on the history Y t−1, a learner (such as a weatherperson) must take an

action a(Y t−1) (such as choose a(Y t−1) = ŷt ∈ {0,1}) in order to minimize some loss function

ℓ(a(Y t−1),Yt) (such as 1{a(Y t−1) ̸= Yt}). If the data-generating distribution was known, then

the learner could take the Bayes optimal action, i.e. choose

a∗t = arg infEpθ
[ℓ(a(Y t−1),Yt)|Y t−1].
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However, if one has a measure q that is universal for the class of measures {pθ ,θ ∈Θ} then one

can take an action

ât = arg infEq[ℓ(a(Y t−1),Yt)|Y t−1]

and hope to perform not too poorly compared to how one would have performed had pθ been

known in advance. Apart from the weather prediction example from earlier, this framework

also encompasses the classical information theory problem of universal data compression [17],

where the learner is required to encode data in an efficient way using as few bits as possible,

without knowing the data distribution in advance (had the data distribution been known already,

it would make sense to encode more likely data using fewer bits in order to minimize the

average number of bits used). It can also be shown [6] that this universal prediction approach

works for any bounded loss function—a result striking in its generality (see Theorem 6 in

Section A.2 of the Appendix for the precise statement). Apart from prediction and compression,

this approach has been utilized to great success in domains such as portfolio selection [18, 19],

entropy estimation [20], and more recently online linear optimization [21, 22] and obtaining

anytime concentration inequalities [23].

1.2 Some Prior Work

Recall that universal compression is simply sequential prediction with log-loss, so

universal compression was one of the first universal prediction problems considered with several

landmark methods proposed for this and related problems. Some milestone results include (see

also [17, Chapter 13] and the references therein for more details): [24] which created a universal

probability assignment for the class of stationary ergodic processes, [9] provided the minmax

optimal probability assigment for binary i.i.d. processes, [11] proposed a widely used universal

probability for the class of variable order Markov processes. A line of work [25–27] quantified

the exact minmax redundancy for probability assignment for finite alphabet i.i.d processes, and

highlighted operational connections to problems such as gambling. Such a connection was
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also noted by Cover and Ordentlich, who studied sequential portfolio selection [18, 19] for an

adversarial stock market, see [17, Chapters 6 and 16] for a thorough treatment of connections

between data compression and gambling.

Parallel and closely related to this, a new line of thinking pioneered by Rissanen and

others focused on viewing learning as essentially data compression and culminated in the

development of the minimum description length (MDL) principle [28, 29] with the Kolmogorov

complexity as a notion of the algorithmic complexity of describing an object, see [17, Chapter

14] for a detailed treatment of this subject.

As mentioned, universal compression is universal prediction under the log-loss—a natural

counterpart to study is universal prediction of binary sequences under the Hamming loss. This

was considered in the case of individual sequences by [16], see also the detailed survey of

Feder and Merhav [6]. Prior to this, Cover [30] studied a similar binary prediction problem and

characterized the optimal solution, as well as the achievable performance.

On the applications side, there has been much work on using this theoretical framework

to study practical statistical problems arising in modern settings. For example, [31] studied

universal compression when the alphabet size is unknown, and could potentially be quite large.

The universal approach was applied to denoising problems such as image denoising in [32, 33].

Universal probability principles have also been applied to estimation problems such as estimating

directed information [20] and entropy/mutual information [34]. Some application domains for

these methods include areas like genomics [35, 36] and finance [18].

1.3 An Outline Of This Thesis

In Chapter 2, universal compression of data that is in the form of a graph is studied. By

creating a universal probability assignment for a class of graphical distributions known as the

stochastic block model, in turn a universal compressor is provided and its performance analyzed

theoretically and empirically.
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In Chapter 3, the earlier example of sequential prediction is expanded upon by introducing

some additional (sequential) side information that governs the distribution of the data at each

time step. Taking the mixture idea further, a universal sequential predictor (with log-loss being

the loss function) is constructed and its performance analyzed.

Finally, in Chapter 4, the classical problem of universal portfolio selection is studied,

with the additional introduction of continuous-valued side information (i.e. side information

taking values from an infinite set). Using results from Chapter 3 the landmark result of Cover

and Ordentlich [19] is extended.
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Chapter 2

Universal Graph Compression

2.1 Introduction

In many data science applications, data appears in the form of large-scale graphs. For

example, in social networks, vertices represent users and an edge between vertices represents

friendship; in the World Wide Web, vertices are websites and edges indicate the hyperlinks

from one site to the other; in biological systems, vertices can be proteins and edges illustrate

protein-to-protein interaction. Such graphs may contain billions of vertices. In addition, edges

tend to be correlated with each other since, for example, two people sharing many common

friends are likely to be friends as well. How to efficiently compress such large-scale structural

information to reduce the I/O and communication costs in storing and transmitting such data is a

persisting challenge in the era of big data.

The literature on graph compression is vast. Existing compression schemes follow various

different methodologies. Several methods exploited combinatorial properties such as cliques

and cuts in the graph [37, 38]. Many works targeted at domain-specific graphs such as web

graphs [39], biology networks [40, 41], and social network graphs [42]. Various representations

of graphs were proposed, such as the text-based method, where the neighbor list of each vertex

is treated as a “word” [43, 44], and the k2-tree method, where the adjacency matrix is recursively

partitioned into k2 equal-size submatrices [45]. Succinct graph representations that enable certain

types of fast computation, such as adjacency query or vertex degree query, were also widely
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studied [46]. While most compression schemes are for labeled graphs, there are also works

considering lossless compression of unlabeled graphs [47–49], graphs with marks on its edges

and vertices [50–52], or (correlated) data on the graph [53, 54]. We refer the readers to [55] for

an exhaustive survey on lossless graph compression and space-efficient graph representations.

In this paper, we take an information theoretic approach to study lossless compression of

a graph. We assume the graph is generated by some random graph model and investigate lossless

compression schemes that achieve the theoretical limit, i.e., the entropy of the graph, asymptoti-

cally as the number of vertices goes to infinity. When the underlying distribution/statistics of the

random graph model is known, optimal lossless compression can be achieved by methods like

Huffman coding. However, in most real-world applications, the exact distribution is usually hard

to obtain and the data we are given is a single realization of this distribution. This motivates us

to consider the framework of universal compression, in which we assume the underlying distri-

bution belongs to a known family of distributions and require that the encoder and the decoder

should not be a function of the underlying distribution. The goal of universal compression is

to design a single compression scheme that universally achieves the optimal theoretical limit,

for every distribution in the family, without knowing which distribution generates the data. For

this paper, we focus on the family of stochastic block models, which are widely used random

graph models that capture the clustering effect in social networks. Our goal is to develop a

universal graph compression scheme for a family of stochastic block models with as wide range

of parameters as possible.

How to design computationally efficient universal compression scheme is a fundamental

question in information theory. In the past several decades, a large number of universal com-

pressors were proposed for one-dimensional sequences with fixed alphabet size, whose entropy

is linear in the number of variables. Prominent results include the Laplace and Krichevsky–

Trofimov (KT) compressors for i.i.d. processes [26, 27], Lempel–Ziv compressor [12, 13] and

Burrows–Wheeler transform [56] for stationary ergodic processes, and context tree weighting [57]

for finite memory processes. Many of these have been adopted in standard data compression
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applications such as compress, gzip, GIF, TIFF, and bzip2. Despite these exciting developments,

existing universal compression techniques fall short of establishing optimality results for graph

data due to the following challenges. Firstly, graph data generated from a stochastic block model

has non-stationary two-dimensional correlation, so existing techniques do not immediately apply

here. Secondly, in many practical applications, where the graph is sparse, the entropy of the

graph may be sublinear in the number of entries in the adjacency matrix.

For the first challenge, a natural question arising is: can we convert the two-dimensional

adjacency matrix of the graph into a one-dimensional sequence in some order and apply a

universal compressor for the sequence? For some simple graph model such as Erdős–Rényi

graph, where each edge is generated i.i.d. with probability p, this would indeed work. For

more complex graph models including stochastic block models, it is unclear whether there is an

ordering of the entries that results in a stationary process. We will show in Section 2.7 several

orders including row-by-row, column-by-column, and diagonal-by-diagonal fail to produce a

stationary process. We alleviate this challenge by designing a decomposition of the adjacency

matrix into blocks. We then show in Theorem 3 that with a carefully chosen parameter, the block

decomposition converts two-dimensional correlated entries into a sequence of almost i.i.d. blocks

with slowly growing alphabet size. To address the second challenge, we adjust the standard

definition of universality, which normalizes the compression length by the number of variables.

The new definition of universality accommodates data with unknown leading order in its entropy

expression.

Lossless compression for stochastic block models was first studied by Abbe [53] (albeit

not under the universal compression framework). The focus there is two-fold: 1) compute the

entropy of the stochastic block model; 2) explore the relation between community detection

and compression. Several interesting questions were presented: Knowing the community

assignments will help compression since edges can be grouped into i.i.d. subsets. But is

community detection necessary for compression? In the regime when community detection

is not possible, how do we compress the graph? We answer these questions in this paper by
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presenting a universal compressor that does not require knowledge of the edge probabilities,

the community assignments, or the number of communities. Our compressor remains universal

even in the regime when community detection is information theoretically impossible. As a

consequence, universal compression is a fundamentally easier task than community detection for

stochastic block models.

Recently, universal compression of graphs with marked edges and vertices is studied by

Delgosha and Anantharam [52, 58]. They focus on the sparse graph regime, where the number

of edges is in the same order as the number of vertices n. They employ the framework of local

weak convergence, which provides a technique to view a sequence of graphs as a sequence of dis-

tributions on neighbourhood structures. Built on this framework, they propose an algorithm that

compresses graphs by describing the local neighbourhood structures. Moreover, they introduce

a universality/optimality criterion through a notion of entropy for graph sequences under the

local weak convergence framework, known as the BC entropy [59]. This universality criterion

is stronger than the one used in this paper. It requires the asymptotic length of the compressor

to match the constants in both first and second order terms in Shannon entropy, whereas the

universality criterion we use only requires to match the first order term. As a consequence of

the stronger criterion, the compressor in [58] is universal over a smaller random graph family.

In comparison, we expand the range of edge numbers from Θ(n) in the sparse regime to Θ(nα)

for every 0 < α ≤ 2 and propose a single universal compressor for the whole family under the

weaker universality criterion. In Section 2.6, we evaluate the proposed compressor under the

criterion in [58] for the family of symmetric SBMs. The proposed compressor achieves a similar

performance in terms of BC entropy in the sparse regime.

The rest of the paper is organized as follows. In Section 2.1.1, we define universality

over a family of graph distributions and the stochastic block models. We present our main result

in Section 2.1.2, which is a graph compressor that is universal for a family containing most

non-trivial stochastic block models. We describe the proposed graph compressor in Section 2.2.

We illustrate key steps in establishing universality in Section 2.3 and elaborate the proof of each
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step in Section 2.4. In Section 2.6, we provide the second order analysis of the expected length

of our compressor and compare it to the one in [58] In Section 2.7, we explain why existing

universal compressors developed for stationary processes may not be immediately applicable for

some one-dimensional ordering of entries in the adjacency matrix. In Section 2.8, we implement

our compressor in four benchmark graph datasets and compare its empirical performance to four

competing algorithms.

Notation. For an integer n, let [n] = {1,2, . . . ,n}. Let log(·) = log2(·). We follow the

standard order notation: f (n) = O(g(n)) if limn→∞
| f (n)|
g(n) < ∞; f (n) = Ω(g(n)) if limn→∞

f (n)
g(n) >

0; f (n) = Θ(g(n)) if f (n) = O(g(n)) and f (n) = Ω(g(n)); f (n) = o(g(n)) if limn→∞
f (n)
g(n) = 0;

f (n) = ω(g(n)) if limn→∞
| f (n)|
|g(n)| = ∞; and f (n)∼ g(n) if limn→∞

f (n)
g(n) = 1.

2.1.1 Problem Setup

For simplicity, we focus on simple (undirected, unweighted, no self-loop) graphs with

labeled vertices in this paper. But our compression scheme and the corresponding analysis can be

extended to more general graphs. Let An be the set of all labeled simple graphs on n vertices. Let

{0,1}i be the set of binary sequences of length i, and set {0,1}∗ = ∪∞
i=0{0,1}i. A lossless graph

compressor C : An→{0,1}∗ is a one-to-one function that maps a graph to a binary sequence.

Let ℓ(C(An)) denote the length of the output sequence. When An is generated from a distribution,

it is known that the entropy H(An) is a fundamental lower bound on the expected length of any

lossless compressor [60, Theorem 8.3]

H(An)− log(e(H(An)+1))≤ E[ℓ(C(An))], (2.1)

and therefore

liminf
n→∞

E[ℓ(C(An))]

H(An)
≥ 1.
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Thus, a graph compressor is said to be universal for the family of distributions P if for all

distribution P ∈P and An ∼ P, we have

limsup
n→∞

E[ℓ(C(An))]

H(An)
= 1. (2.2)

A stochastic block model SBM(n,L,p,W) defines a probability distribution over An.

Here n is the number of vertices, L is the number of communities. Each vertex i∈ [n] is associated

with a community assignment Xi ∈ [L]. The length-L column vector p = (p1, p2, . . . , pL)
T is a

probability distribution over [L], where pi indicates the probability that any vertex is assigned

community i. W is an L×L symmetric matrix, where Wi j represents the probability of having an

edge between a vertex with community assignment i and a vertex with community assignment

j. We say An ∼ SBM(n,L,p,W) if the community assignments X1,X2, . . . ,Xn are generated

i.i.d. according to p and for every pair 1 ≤ i < j ≤ n, an edge is generated between vertex i

and vertex j with probability WXi,X j . In other words, in the adjacency matrix An of the graph,

Ai j ∼ Bern(WXi,X j) for i < j; the diagonal entries Aii = 0 for all i ∈ [n]; and Ai j = A ji for i > j.

We assume all the entries in W are in the same regime f (n) and write W = f (n)Q, where Q

is an L×L symmetric matrix with constant entries Qi j = Θ(1) for all i, j ∈ [L]. We assume all

entries in p are Θ(1). We will consider two families of stochastic block models: For 0 < ε < 1,

P1(ε) : SBM with L = Θ(1), f (n) = O(1), f (n) = Ω

(
1

n2−ε

)
, (2.3)

P2(ε) : SBM with L = Θ(1), f (n) = o(1), f (n) = Ω

(
1

n2−ε

)
. (2.4)

Note that the edge probability 1
n2 is the threshold for a random graph to contain an edge with

high probability [61]. Thus, the family P1(ε) covers most non-trivial SBM graphs. Clearly,

P2(ε) is a strict subset of P1(ε), as it does not contain the constant regime f (n) = 1.
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2.1.2 Main Results

The main contribution of this paper is providing two compressors universal over the

classes P1(ε) and P2(ε) respectively for 0 < ε < 1. Note that a compressor universal over the

class P1(ε) is also universal over the class P2(ε), but our compressor designed specifically for

the class P2(ε) has a lower computational complexity. We will formally state the results in the

next two theorems.

Theorem 1 (Universality over P1). For every 0 < ε < 1, the graph compressor Ck defined in

Section 2.2 is universal over the family P1(ε) provided that

0 < δ < ε, k ≤
√

δ logn, and k = ω(1).

Theorem 2 (Universality over P2). For every 0 < ε < 1, the graph compressor C1 defined in

Section 2.2 is universal over the family P2(ε).

For now, one can think of k as a parameter that defines a compression scheme Ck—the

exact definition will become clear in the next section when we precisely define the compressors.

2.2 Algorithm: Universal Graph Compressor

In this section, we describe our universal graph compression scheme. For each k that

divides n, the graph compressor Ck : An→{0,1}∗ is defined as follows.

• Block decomposition. Let n′ = n
k . For 1 ≤ i, j ≤ n′, let Bi j be the submatrix of An

formed by the rows (i− 1)k+ 1,(i− 1)k+ 2, . . . , ik and the columns ( j− 1)k+ 1,( j−
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1)k+2, . . . , jk. For example, we have

B12 =



A1,k+1 A1,k+2 · · · A1,2k

A2,k+1 A2,k+2 · · · A2,2k

...
... . . . ...

Ak,k+1 Ak,k+2 · · · Ak,2k


. (2.5)

We then write An in the block-matrix form as

An =



B11 B12 · · · B1,n′

B21 B22 · · · B2,n′

...
... . . . ...

Bn′,1 Bn′,2 · · · Bn′,n′


. (2.6)

Denote

But
..= B12,B13,B23,B14,B24,B34, . . . ,B1,n′, · · · ,Bn′−1,n′ (2.7)

as the sequence of off-diagonal blocks in the upper triangle and

Bd
..= B11,B22, . . . ,Bn′,n′ (2.8)

as the sequence of diagonal blocks.

• Binary to m-ary conversion. Let m := 2k2
. Each k× k block with binary entries in the

two block sequences But and Bd is converted into a symbol in [m].

• KT probability assignment. Apply KT sequential probability assignment for the two

m-ary sequences But and Bd respectively. Given an m-ary sequence x1,x2, . . . ,xN , KT

sequential probability assignment defines N conditional probability distributions over [m]
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as follows. For j = 0,1,2, . . . ,N−1, assign conditional probability

qKT(i|x j) ..= qKT(X j+1 = i|X j = x j) =
Ni(x j)+1/2

j+m/2
for each i ∈ [m], (2.9)

where X j ..= (X1, . . . ,X j),x j ..= (x1,x2, . . . ,x j), and Ni(x j) ..= ∑
j
k=11{xk = i} counts the

number of symbol i in x j.

• Adaptive arithmetic coding. With the KT sequential probability assignments, compress

the two sequences But and Bd separately using adaptive arithmetic coding [62] (see

description in Algorithm 1). In case k = 1, the diagonal sequence Bd becomes an all-zero

sequence since we assume the graph is simple. So we will only compress the off-diagonal

sequence But.

Algorithm 1: m-ary adaptive arithmetic encoding with KT probability assignment
Input :Data sequence xN , alphabet size m

Initialize lower= 0,upper= 1,logprob= 0,N1 = N2 = · · ·= Nm = 0;
for j = 0,1, . . . ,N−1 do

range← upper−lower;
for i = 1,2, . . . ,x j+1 do

Compute qKT(i|x j) = Ni+1/2
j+m/2 ;

upper← lower+range ·∑x j+1
i=1 qKT(i|x j);

lower← upper−range ·qKT(x j+1|x j);
Nx j+1 ← Nx j+1 +1;
logprob← logprob+ log(qKT(x j+1|x j));

Output : the binary representation of 1
2(lower+upper) with ⌈−logprob⌉+1 bits

Given the compressed graph sequence yL, the number of vertices n and the block size k,

the graph decompressor Dk : {0,1}∗→An is defined as follows.

• Adaptive arithmetic decoding. With the KT sequential probability assignments defined

in (2.9), decompress the two code sequences for But and Bd separately using adaptive

arithmetic decoding (see Algorithm 2). The length of data sequence But and Bd are

n
k (

n
k −1)/2 and n

k respectively.
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Algorithm 2: m-ary adaptive arithmetic decoding with KT probability assignment

Input :Binary sequence yL, alphabet size m = 2k2
, length of data sequence N

Add ‘0.’ before sequence yL and convert it into a decimal real number Y . Initialize
lower= 0,upper= 1,N1 = N2 = · · ·= Nm = 0;

for j = 0,1, . . . ,N−1 do
range← upper−lower;
for i = 1,2, . . . ,m do

Compute qKT(i|x j) = Ni+1/2
j+m/2 ;

Find minimum z ∈ [m] such that lower+range ·∑z
i=1 qKT(i|x j)> Y ;

upper← lower+range ·∑z
i=1 qKT(i|x j);

lower← upper−range ·qKT(z|x j);
Nz← Nz +1;
x j+1← z;

Output : the m-ary data sequence x1,x2, · · · ,xN

• m-ary to binary conversion. Each m-ary symbol in the sequence is converted to a k2-bit

binary number and further converted into a k× k block with binary entries.

• Adjacency matrix recovery. With the blocks in But and Bd, recover the adjacency matrix

of An in the order described in (2.6), (2.7), and (2.8).

One can check that Ck is well-defined. The block decomposition and the binary to m-ary

conversion are clearly one-to-one. It is also known that for any valid probability assignment,

arithmetic coding produces a prefix code, which as also one-to-one.

The computational complexity of the proposed algorithm is O(2k2
n2). For the choice of k

that achieves universality over P1(ε) family in Theorem 1, O(2k2
n2) = O(n2+δ ) for δ < ε . For

the choice of k that achieves universality over P2(ε) family in Theorem 2, O(2k2
n2) = O(n2).

The orders in But and Bd do not matter in terms of establishing universality. The current

orders in (2.7) and (2.8) together with arithmetic coding enable a horizon free implementation.

That is, the encoder does not need to know the horizon n to start processing the data and can

output partial coded bits on the fly before receiving all the data. This leads to short encoding

and decoding delay. For some real-world applications, for example, when the number of users
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increases in a large social network, this compressor has the advantage of not requiring to

re-process existing data and re-compress the whole graph from scratch.

Remark 1 (Laplace probability assignment). As an alternative to the KT sequential probability

assignment, one can also use the Laplace sequential probability assignment. Given an m-

ary sequence x1,x2, . . . ,xN , Laplace sequential probability assignment defines N conditional

probability distributions over [m] as follows. For j = 0,1,2, . . . ,N− 1, we assign conditional

probability

qL(X j+1 = i|X j = x j) =
Ni(x j)+1

j+m
for each i ∈ [m]. (2.10)

Both methods can be shown to be universal, while Laplace probability assignment has a much

cleaner derivation. However, KT probability assignment produces a better empirical performance.

For this reason, we keep both in the paper.

2.3 Main Ideas in Establishing Universality

In this section, we establish the universality of the graph compressor in Section 2.2.

Graph Entropy

We first calculate the entropy of the (random) graph An, which, recall, is the fundamental

lower bound on the expected compression length for any compression scheme. Since to establish

optimality we need to show that limsupn→∞

E[ℓ(C(An))]
H(An)

≤ 1, we will only be concerned with the

first order term in H(An).

Lemma 1 (Graph entropy). Let An ∼ SBM(n,L,p, f (n)Q) with f (n) = O(1), f (n) = Ω

(
1
n2

)
,

and L = Θ(1). For 0 ≤ p ≤ 1, let h(p) ≜ −p log(p)− (1− p) log(1− p) denote the binary

entropy function. For a matrix W with entries in [0,1], let h(W ) be a matrix of the same

dimension whose (i, j) entry is h(Wi j). Then

H(An) =

(
n
2

)
H(A12 |X1,X2)(1+o(1)) (2.11)
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=

(
n
2

)
pT h

(
f (n)Q

)
p+o

(
n2h
(

f (n)
))

. (2.12)

In particular, when f (n) = Ω

(
1
n2

)
and f (n) = o(1), expression (2.12) can be further simplified

as

H(An) =

(
n
2

)
f (n) log

(
1

f (n)

)
(pT Qp+o(1)). (2.13)

Remark 2. In the regime f (n) = Ω
(1

n

)
and f (n) = O(1), the above result has been established

in [53]. We extend the analysis to the regime f (n) = o
(1

n

)
and f (n) = Ω( 1

n2 ).

Remark 3. Lemma 1 can be used to calculate the entropy of the graph for certain important

regimes of f (n), in which the SBM displays characteristic behavior. For f (n) = 1, we have

H(An)=
(n

2

)
h
(
pT Qp

)
(1+o(1)); for f (n)= logn

n (the regime where the phase transition for exact

recovery of the community assignments occurs [63,64]), we have H(An) =
n log2 n

2 (pT Qp+o(1));

when f (n) = 1
n (the regime where the phase transition for detection between SBM and the

Erdős–Rényi model occurs [65]), we have H(An) =
n logn

2 (pT Qp+o(1)); when f (n) = 1
n2 (the

regime where the phase transition for the existence of an edge occurs), we have H(An) =

logn(pT Qp+o(1)).

Asymptotic i.i.d. via Block Decomposition

To compress the matrix An, we wish to decompose it into a large number of components

that have little correlation between them. This leads to the idea of block decomposition described

previously. Since the sequence of blocks are used to compress An, the next theorem claims these

blocks are identically distributed and asymptotically independent in a precise sense described as

follows.

Theorem 3 (Block decomposition). Let An ∼ SBM(n,L,p, f (n)Q) with f (n) = Ω

(
1

n2−ε

)
for

some 0 < ε < 1, f (n) = O(1), and L = Θ(1). Let k be an integer that divides n and n′ = n/k.

Consider the k× k block decomposition in (2.6). We have all the off-diagonal blocks share the

same joint distribution; all the diagonal blocks share the same joint distribution. In other words,
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for any 1≤ i1, i2, j1, j2 ≤ n′ with i1 ̸= j1, i2 ̸= j2 and 1≤ l1, l2 ≤ n′, we have

Bi1, j1
d
= Bi2, j2,

Bl1,l1
d
= Bl2,l2 .

In addition, if k = ω(1) and k = o(n), we have

lim
n→∞

H(But)(n′
2

)
H(B12)

= 1. (2.14)

Length Analysis for Correlated Sequences

Thanks to this property of the block decomposition, we hope to compress these blocks as

if they are independent using a Laplace probability assignment (which, recall, is universal for the

class of all m-ary iid processes). However, since these blocks are still correlated (albeit weakly),

we will need a result on the performance of Laplace probability assignment on correlated

sequences with identical marginals, which we give next.

Theorem 4 (Laplace probability assignment for correlated sequence). Consider arbitrarily

correlated Z1,Z2, . . . ,ZN , where the marginal distribution of each Zi is identically distributed

over an alphabet of size m≥ 2. Let ℓL(zN) = log 1
qL(zN)

where qL(·) is the marginal distribution

induced by Laplace probability assignment in (2.10)

qL(zN) ..=
N1!N2! · · ·Nm!

N!
· 1(N+m−1

m−1

) . (2.15)

We then have

E[ℓL(ZN)]≤ m log(2eN)+NH(Z1). (2.16)

We provide a similar result for the KT probability assignment.

Theorem 5 (KT probability assignment for correlated sequence). Consider arbitrarily correlated

Z1,Z2, . . . , ZN , where the marginal distribution of each Zi is identically distributed over an
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alphabet of size m ≥ 2. Let ℓKT(zN) = log 1
qKT(zN)

where qKT(·) is the marginal distribution

induced by KT probability assignment in (2.9)

qKT(zN) =
(2N1−1)!!(2N2−1)!! · · ·(2Nm−1)!!

m(m+2) · · ·(m+2N−2)
(2.17)

with (−1)!!≜ 1. We then have

E[ℓKT(ZN)]≤ m
2 log

(
e
(
1+ 2N

m

))
+ 1

2 log(πN)+NH(Z1). (2.18)

We are now ready to prove Theorem 1.

Proof of Theorem 1. We will prove the universality of Ck for both KT probability assignment

and Laplace probability assignment. Note that the upper bound on the expected length of KT

in (2.18) is upper bounded by the upper bound on the length of Laplace in (2.16). So it suffices

to show Laplace probability assignment is universal.

We use the bound in Theorem 4 to establish the upper bound on the length of the code.

Recall that here we compress the diagonal blocks Bd (m = 2k2
-sized alphabet, N = n′ blocks)

and the off-diagonal blocks But (m = 2k2
-sized alphabet, N =

(n′
2

)
blocks) separately. We have,

E(ℓ(Ck(An)))

H(An)
=

E(ℓL(But))+E(ℓL(Bd))

H(An)

≤

(n′
2

)
H(B12)+2k2

log
(

2e
(n′

2

))
+n′H(B11)+2k2

log(2en′)

H(An)

(a)
≤
(n′

2

)
H(B12)+2k2

log
(
en2)+nH(B11)+2k2

log(2en)
H(An)

(b)
≤
(n′

2

)
H(B12)+2k2

log
(
2e2n3)+nk2H(A12)

H(An)

=

(n′
2

)
H(B12)

H(An)
+

2k2
log
(
2e2n3)

H(An)
+

nk2H(A12)

H(An)
, (2.19)

where in (a) we bound
(n′

2

)
≤ n2 and n′ ≤ n, and in (b) we note that H(B11)≤ k2H(A12) since
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there are k2− k elements of the matrix (all apart from the diagonal elements) are distributed

identically as A12. We will now analyze each of these three terms separately. Firstly, using

Theorem 3 yields that (
n′
2)H(B12)

H(An)
→ 1. Next, since f (n)=Ω

(
1

n2−ε

)
, we have H(An)=Ω(nε logn)

and subsequently substituting k ≤
√

δ logn, we have

2k2
log(2en3)

H(An)
= O

(
nδ logn
nε logn

)
= O

(
nδ−ε

)
= o(1)

since δ < ε . Moreover, we have

nk2H(A12)

H(An)
≤ nk2H(A12)

H(An|Xn)
=

nk2H(A12)(n
2

)
H(A12|X1,X2)

= O
(

k2

n

)
= o(1),

where the penultimate equality used the fact that H(A12)∼H(A12|X1,X2) (since h( f (n)pT Qp)∼

pT h( f (n)Q)p). We have then established that

E(ℓ(Ck(An)))

H(An)
≤
(n′

2

)
H(B12)

H(An)
+

2k2
log
(
2en3)

H(An)
+

nk2H(A12)

H(An)

= 1+o(1),

which finishes the proof.

The proof of Theorem 2 follows similar arguments as in Theorem 1 and is deferred to

Section 2.4.5.

2.4 Proof of Universality

2.4.1 Graph Entropy

Proof of Lemma 1. Note that

H(An) = H(An |Xn)+ I(Xn;An)
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=

(
n
2

)
H(A12 |X1,X2)+ I(Xn;An) (2.20)

=

(
n
2

)
pT h

(
f (n)Q

)
p+ I(Xn;An), (2.21)

where (2.21) follows since all the
(n

2

)
edges are identically distributed and also independent

given Xn and consequently

H(An |Xn) =

(
n
2

)
H(A12 |X1,X2)

=

(
n
2

)
∑
i, j

H(A12 |X1 = i,X2 = j)pi p j

=

(
n
2

)
pT h( f (n)Q)p.

When f (n) = Θ(1), we see that since

0≤ I(Xn;An)≤ H(Xn) = nH(X1)≤ n logL,

we have that H(An) =
(n

2

)
pT h

(
f (n)Q

)
p+o

(
n2h( f (n))

)
.

Next, consider the case when f (n) = o(1) and f (n) = Ω

(
1
n2

)
. By properties of the

entropy, we have

H(An |Xn)≤ H(An)≤
(

n
2

)
H(A12). (2.22)

Note that

P(A12 = 1) = ∑
i, j

P(A12 = 1|X1 = i,X2 = j)pi p j = pT f (n)Qp,

which yields that H (A12) = h
(

f (n)pT Qp
)
. Substituting this in (2.22) gives

(
n
2

)
pT h( f (n)Q)p≤ H(An)≤

(
n
2

)
h
(

f (n)pT Qp
)
. (2.23)
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Note now for any g(n) = o(1), we have

h(g(n)) =−g(n) logg(n)− (1−g(n)) log(1−g(n))

=−g(n) logg(n)
(

1+
(1−g(n)) log(1−g(n))

g(n) logg(n)

)
.

By noting that log(1−g(n))
g(n) →−1 and 1

log(g(n)) → 0 as g(n)→ 0 we see that

h(g(n)) = g(n) log
1

g(n)
(1+o(1)).

Using this, we note that

pT h( f (n)Q)p = pT Qp f (n) log
1

f (n)
(1+o(1))

and

h( f (n)pT Qp) = pT Qp f (n) log
1

f (n)
(1+o(1)).

Finally, substituting this into (2.23) yields

H(An) =

(
n
2

)
pT Qp f (n) log

1
f (n)

(1+o(1))

as required.

2.4.2 Asymptotic i.i.d. via Block Decomposition

We first invoke a known property of stochastic block models (see, for example, [66]). We

include the proof here for completeness.

Lemma 2 (Exchangeability of SBM). Let An∼ SBM(n,L,p,W). For a permutation π : [n]→ [n],

let π(An) be an n×n matrix whose (i, j) entry is given by Aπ(i),π( j). Then, for any permutation
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π : [n]→ [n], the joint distribution of An is the same as the joint distribution of π(An), i.e.,

An
d
= π(An). (2.24)

Proof. Let an be a realization of the random matrix An and π(Xn) be the permuted vector

(Xπ(1), . . . ,Xπ(n)). For any symmetric binary matrix an with zero diagonal entries, we have

P(An = an) = ∑
xn∈[L]n

P(An = an,Xn = xn)

= ∑
xn∈[L]n

P(An = an |Xn = xn)
n

∏
i=1

P(Xi = xi)

(a)
= ∑

xn∈[L]n
∏
i, j

1≤i< j≤n

P(Ai j = ai j |Xi = xi,X j = x j)
n

∏
i=1

P(Xπ(i) = xi)

(b)
= ∑

xn∈[L]n
∏
i, j

1≤i< j≤n

(Wxi,x j)
ai j(1−Wxi,x j)

1−ai j
n

∏
i=1

P(Xπ(i) = xi)

(c)
= ∑

xn∈[L]n
∏
i, j

1≤i< j≤n

P(Aπ(i),π( j) = ai j |Xπ(i) = xi,Xπ( j) = x j)
n

∏
i=1

P(Xπ(i) = xi)

= ∑
xn∈[L]n

P(π(An) = an,π(Xn) = xn)

= P(π(An) = an),

where (a) follows since Xn are i.i.d. and thus P(Xi = xi) = P(Xπ(i) = xi) and (b) follows since

Ai j ∼ Bern(WXi,X j), and thus

P(Ai j = ai j |Xi = xi,X j = x j) =


Wxi,x j if ai j = 1

1−Wxi,x j if ai j = 0
(2.25)

= (Wxi,x j)
ai j(1−Wxi,x j)

1−ai j . (2.26)

The step in (c) follows since Aπ(i),π( j) ∼ Bern(WXπ(i),Xπ( j)) and the conditional probability has
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the same expression as in (2.26).

Now we are ready to establish Theorem 3.

Proof of Theorem 3. For any i1 ̸= j1 and i2 ̸= j2, consider a permutation π1 : [n]→ [n] that has

π1(x) =
{ x+(i2− i1)k for (i1−1)k+1≤ x≤ i1k

x+( j2− j1)k for ( j1−1)k+1≤ x≤ j1k

and the remaining n− 2k arguments are mapped to the n− 2k values in [n] \ {(i2 − 1)k +

1, . . . , i2k,( j2− 1)k, . . . , j2k} in any order. Lemma 2 implies that Bi1, j1 , which is the subma-

trix formed by the rows (i1−1)k+1, . . . , i1k and the columns ( j1−1)k+1, . . . , j1k has the same

distribution as the submatrix formed by the rows π1((i1−1)k+1), . . . ,π1(i1k) and the columns

π1(( j1−1)k+1), . . . ,π1( j1k). From the definition of π1, we see that the latter submatrix is Bi2, j2

and we establish that Bi1, j1
d
= Bi2, j2 . Similarly, defining a permutation π2 : [n]→ [n] which has

π2(x) = x+(l2− l1)k for (l1−1)k+1≤ x≤ l1k

and invoking Lemma 2 establishes Bl1,l1
d
= Bl2,l2 .

Now, clearly H(But)≤
(n′

2

)
H(B12), and therefore we have

limsup
n→∞

H(But)(n′
2

)
H(B12)

≤ 1. (2.27)

Moreover we have H(An) = H(But,Bd) ≤ H(But)+H(Bd) ≤ H(But)+ n′H(B11) ≤ H(But)+

n′k2h(A12) where the last inequality follows by noting that except for the diagonal elements of

Bd (which are zero and thus have zero entropy), all other elements have the same distribution

as A12. We therefore obtain H(But)≥ H(An)−n′k2h(A12) = H(An)−nkh(A12)≥ H(An|Xn
1 )−
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nkh(A12) =
(n

2

)
pT h( f (n)Q)p−nkh( f (n)pT Qp). Consequently,

H(But)(n′
2

)
H(B12)

≥

(n
2

)(
pT h( f (n)Q)p− 2kh( f (n)pT Qp)

n−1

)
(n′

2

)
H(B12)

. (2.28)

We will now analyze the right hand side of (2.28) in two parameter regimes.

• f (n) = 1 : We have

H(B12)
(a)
≤ H(B12 |X2k

1 )+H(X2k
1 )

≤ H(B12 |X2k
1 )+2kH(p)

(b)
= k2H(A1,k |X1,Xk)+2kH(p)

≤ k2
(

pT h(Q)p+2
logL

k

)
, (2.29)

where (a) follows from the chain rule and (b) follows since all elements of the matrix

B12 are independent given X1, · · · ,X2k. Plugging this into the right hand side of (2.28) we

obtain

H(But)(n′
2

)
H(B12)

≥

(n
2

)(
pT h(Q)p− 2kh(pT Qp)

n−1

)
(n′

2

)
k2
(

pT h(Q)p+2 logL
k

) . (2.30)

Since k = o(n),k = ω(1) and
(n′

2

)
k2 ∼

(n
2

)
, we have from (2.30)

liminf
n→∞

H(But)(n′
2

)
H(B12)

≥ 1, (2.31)

which together with (2.27) yields the required result.

• f (n) = Ω

(
1
n2

)
, f (n) = o(1) : Since B12 is a matrix of k2 identically distributed Bernoulli
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random variables, we have

H(B12)≤ k2h(A1,k) = k2h
(

f (n)pT Qp
)
. (2.32)

Plugging this into the RHS of (2.28) then yields

H(But)(n′
2

)
H(B12)

≥

(n
2

)(
pT h( f (n)Q)p− 2kh( f (n)pT Qp)

n−1

)
(n′

2

)
k2h( f (n)pT Qp)

. (2.33)

We first observe that in this parameter range, since f (n) = o(1), we have by Lemma 1

pT h( f (n)Q)p∼ h
(

f (n)pT Qp
)
. (2.34)

Finally using that k = o(n) and
(n′

2

)
k2 ∼

(n
2

)
establishes

liminf
n→∞

H(But)(n′
2

)
H(B12)

≥ 1, (2.35)

which together with (2.27) yields the required result.

2.4.3 Length of the Laplace Probability Assignment

Proof of Theorem 4. Let us first elaborate the relation between probability assignment and

compression length. In Algorithm 1, the terms log(q(x j+1|x j)) are added up, which lead to the

marginal probability implied by the sequential probability assignment

N−1

∑
j=0

log(q(x j+1 |x j)) = log

(
N−1

∏
j=0

q(x j+1 |x j)

)
= log(q(xN)). (2.36)

The compression output length of Algorithm 1 is
⌈

log 1
q(xN)

⌉
+1.
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Now we analyze the compression length of Laplace compressor for the sequence

Z1,Z2, . . . ,ZN . Define θi
..= P(Z1 = i),Ni

..= ∑
N
k=11{Zk = i}, i ∈ [m]. We have

ℓL(zn) = log
1

qL(zN)

= log
θ

N1
1 θ

N2
2 · · ·θ Nm

m

qL(zN)
+ log

1

θ
N1
1 θ

N2
2 · · ·θ

Nm
m

= log
(

N +m−1
m−1

)
+ log

(
N!

N1!N2! · · ·Nm!
θ

N1
1 θ

N2
2 · · ·θ

Nm
m

)
+ log

1

θ
N1
1 θ

N2
2 · · ·θ

Nm
m

(a)
≤ log

(
N +m−1

m−1

)
+ log

1

θ
N1
1 θ

N2
2 · · ·θ

Nm
m

(b)
≤ (m−1) log

(
e
(

N
m−1

+1
))

+ log
1

θ
N1
1 θ

N2
2 · · ·θ

Nm
m

≤ m log(2eN)+
m

∑
i=1

Ni log
1
θi
, (2.37)

where (a) follows since N!
N1!N2!···Nm!θ

N1
1 θ

N2
2 · · ·θ Nm

m is a multinomial probability which is always

upper bounded by 1, and (b) follows since
(n

k

)
≤
(en

k

)k. Taking expectation on both sides

of (2.37), we obtain

E[ℓL(ZN)]≤ m log(2eN)+
m

∑
i=1

E[Ni] log
1
θi

(a)
= m log(2eN)+

m

∑
i=1

Nθi log
1
θi

= m log(2eN)+NH(Z1),

where (a) follows since E[Ni] = ∑
N
k=1E[1{Zk = i}] = NP(Z1 = i) since the Zi are identically

distributed.
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2.4.4 Length of the KT probability assignment

Lemma 3. For any integer m > 0, N1,N2, · · ·Nm ∈ N and probability distribution (θ1, · · ·θm),

( N
N1,N2···Nm

)
θ

N1
1 · · ·θ Nm

m( 2N
2N1,2N2···2Nm

)
θ

2N1
1 · · ·θ 2Nm

m
≥ 1,

where N = ∑
m
i=1 Ni.

Remark 4. Equivalently, consider an urn containing known number of balls with m different

colours. The lemma claims that the probability of getting N1 balls of colour 1, N2 of balls of

colour 2, · · · Nm balls of colour m out of N draws with replacement is always greater than the

probability of getting 2N1 balls of colour 1, 2N2 of balls of colour 2, · · · 2Nm balls of colour m

out of 2N draws with replacement.

Proof. Let p1 = N1/N, p2 = N2/N, · · · , pm = Nm/N. Notice that ∑
m
i=1 pi = 1, so (p1, · · · pm) can

be viewed as a probability distribution. And the entropy of this distribution is H(p1, · · · pm) =

∑
m
i=1−pi log pi. Firstly we consider the case when N1,N2 · · ·Nm are all positive and none

of them equal to N. By Stirling’s approximation for factorial
√

2πn(n
e )

ne1/(12n+1) ≤ n! ≤
√

2πn(n
e )

ne1/12n, we can bound

(
N

N1,N2 · · ·Nm

)
≥

√
2πNNN exp

(
1

12N+1 −
1

12N1
− 1

12N2
−·· ·− 1

12Nm

)
(2π)m/2(N1N2 · · ·Nm)1/2NN1

1 NN2
2 · · ·N

Nm
m

=
exp
(

1
12N+1 −

1
12N1
− 1

12N2
−·· ·− 1

12Nm

)
(2π)

m−1
2 (p1 p2 · · · pm)1/2N

m−1
2 2−NH(p1,p2,··· ,pm)

.

Similarly, we have

(
2N

2N1,2N2 · · ·2Nm

)
≤

exp
(

1
24N −

1
24N1+1 −

1
24N2+1 −·· ·−

1
24Nm+1

)
(2π)

m−1
2 2

m−1
2 (p1 p2 · · · pm)1/2N

m−1
2 2−2NH(p1···pm)

·
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Consider the function

f (N1,N2, · · · ,Nm)

= 1
12N+1 −

1
24N +( 1

24N1+1 −
1

12N1
)+( 1

24N2+1 −
1

12N2
)+ · · ·+( 1

24Nm+1 −
1

12Nm
)

and the function

g(n) =
1

24n+1
− 1

12n
,

where n is a positive integer. Function g(n) is minimized with n = 1 and ming(n) = 1/25−1/12

and we can bound function f (N1,N2, · · · ,Nm)≥ 1
12N+1 −

1
24N +(1/25−1/12)m. Finally we are

ready to prove the lemma.

( N
N1,N2···Nm

)
θ

N1
1 · · ·θ Nm

m( 2N
2N1,2N2···2Nm

)
θ

2N1
1 · · ·θ 2Nm

m
≥ 2

m−1
2 exp( f (N1,N2, · · · ,Nm))

2NH(p1···pm)θ
N1
1 · · ·θ

Nm
m

≥
2

m−1
2 exp

( 1
12N+1 −

1
24N +(1/25−1/12)m

)
2−NDKL(p||θ)

= 2
m−1

2 2NDKL(p||θ)2loge( 1
12N+1−

1
24N +(1/25−1/12)m).

Notice that 1
12N+1−

1
24N goes to zero when N→ ∞, m−1

2 > (1/25−1/12)m and DKL(P||θ)≥ 0.

Therefore in this case, ( N
N1,N2···Nm

)
θ

N1
1 · · ·θ Nm

m( 2N
2N1,2N2···2Nm

)
θ

2N1
1 · · ·θ 2Nm

m
≥ 1.

When one of {Ni}N
i=1 equals to N, without loss of generality, we assume that N1 = N. We have

( N
N1,N2···Nm

)
θ

N1
1 · · ·θ Nm

m( 2N
2N1,2N2···2Nm

)
θ

2N1
1 · · ·θ 2Nm

m
=

1

θ
N1
1 · · ·θ

Nm
m

> 1.

When there are k numbers out of N1,N2, · · · ,Nm that equal to zero, we can simply remove these

values and consider the case with alphabet size m− k. And this will yield the same result.

Proof of Theorem 5. In this proof, we define a generalized form of factorial function. Let x be a
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positive integer, (x+ 1
2)! =

1
2

3
2 · · ·(x+

1
2). Since (2N1−1)!! = (2N1)!

2N1(N1)!
, we have

m(m+2) · · ·(m+2N−2)

= 2N
(m

2

)(m+2
2

)
· · ·
(

m+2N−2
2

)
= 2N

(m
2 +N−1

)
!(m

2 −1
)
!

.

Therefore we can rewrite the KT probability assignment in (2.17) as

qKT(zN) =
(m

2 −1)!
2N(m

2 +N−1)!

(2N
N

)(2N
N

) m

∏
i=1

(2Ni)!
Ni!2Ni

=
(m

2 −1)!
2N(m

2 +N−1)!

(
2N
N

)
N!

N!
(2N)!

m

∏
i=1

(2Ni)!
Ni!2Ni

(a)
≥

(m
2 −1

)
!
(2N

N

)
4N(N + m

2 −
1
2)

m−1
2

N!
(2N)!

m

∏
i=1

(2Ni)!
Ni!

(b)
=

θ
N1
1 · · ·θ Nm

m (m
2 −1)!

(2N
N

)
4N(N + m

2 −
1
2)

m−1
2

( N
N1,N2···Nm

)
θ

N1
1 · · ·θ Nm

m( 2N
2N1,2N2···2Nm

)
θ

2N1
1 · · ·θ 2Nm

m
,

where (a) follows that when m is even, N!
(m

2 +N−1)! =
1

(N+1)···(m
2 +N−1) ≥

1

(N+m
2−

1
2 )

m−1
2

and when m

is odd, N!
(m

2 +N−1)! ≥
N!

(m
2 +N− 1

2 )!
= 1

(N+1)···(m
2 +N− 1

2 )
≥ 1

(N+m
2−

1
2 )

m−1
2

, (b) follows that
( N

N1,N2···Nm

)
=

N!
∏

m
i=1 Ni!

and θi ≜ P(Z1 = i). By lemma 3, we have qKT(zN)≥ θ
N1
1 ···θ

Nm
m (m

2−1)!(2N
N )

4N(N+m
2−

1
2 )

m−1
2

. Thus,

ℓKT(zN)

= log
1

qKT(zN)

≤ log
1

θ
N1
1 · · ·θ

Nm
m

+ log
4N(N + m

2 −
1
2)

m−1
2

(m
2 −1)!

(2N
N

)
= log

1

θ
N1
1 · · ·θ

Nm
m

+
m−1

2
log
(

N +
m−1

2

)
+ log

4N(2N
N

) − log
(m

2
−1
)

!

(a)
≤ log

1

θ
N1
1 · · ·θ

Nm
m

+
m−1

2
log
(

N +
m−1

2

)
+ log

4N(2N
N

) −(m
2
−1
)

log
( m

2 −1
e

)
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(b)∼ log
1

θ
N1
1 · · ·θ

Nm
m

+
m−1

2
log
(

N +
m−1

2

)
+ log

√
πN−

(m
2
−1
)

log
( m

2 −1
e

)
∼ m

2
log

e(m
2 +N)

m/2
+ log

√
πN + log

1

θ
N1
1 · · ·θ

Nm
m

=
m
2

log
(
e
(
1+ 2N

m

))
+

1
2

log(πN)+
m

∑
i=1

Ni log
1
θi
,

where (a) follows Stirling’s approximation k! ≥
√

2πk(k
e)

ke
1

12k+1 and (b) follows Stirling’s

approximation for binomial coefficient, i.e.,
(2N

N

)
∼ 4N
√

πN
. Therefore, we have

E[ℓKT(ZN)]≤ 1
2

m log
(
e
(
1+ 2N

m

))
+

1
2

log(πN)+NH(Z1).

2.4.5 Proof of Theorem 2

Proof. Once again, we establish universality for both KT and Laplace probability assignment.

Following a similar argument as in the proof of Theorem 1, it suffices to show the universality

of Laplace. Since we are compressing N =
(n

2

)
identically distributed bits using a Laplace

probability assignment, Theorem 4 yields

E(ℓ(C1(An)))

H(An)
≤ log(2eN)+NH (A12)

H(An)

≤ log(2eN)+NH (A12)

H(An|Xn
1 )

=

(
log(2eN)+NH (A12)

NH(A12)

)
H(A12)

H(A12|X1,X2)

=

(
1+

log(2eN)

Nh( f (n)pT Qp)

)
h( f (n)pT Qp)
pT h( f (n)Q)p

(a)
= 1+o(1).

Here, (a) is justified by noting that log(2eN)
Nh( f (n)pT Qp) ≤

log(2en2)

(n
2)h(n−(2−ε)pT Qp)

h(n−(2−ε)pT Qp)
h( f (n)pT Qp) , and then not-

ing that log(2en2)

(n
2)h(n−(2−ε)pT Qp)

= o(1) and h(n−(2−ε)pT Qp)
h( f (n)pT Qp) = O(1) when f (n) = Ω

(
1

n2−ε

)
and that
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H(h( f (n)pT Qp)∼ pT h( f (n)Q)p.

Remark 5. When f (n) = 1, the compressor C1 is strictly suboptimal. This is because the length

achieved by C1 is
(n

2

)
h
(

f (n)pT Qp
)
(1+ o(1)), whereas the first order term in the entropy is(n

2

)
pT h( f (n)Q)pT . When f (n) is o(1), these two have the same first order term. However,

when f (n) is constant, pT h( f (n)Q)pT is strictly smaller than h
(

f (n)pT Qp
)

by concavity of

entropy.

2.5 Redundancy analysis

Let An be a random graph generated from certain graph generation model and let C be a

graph compressor. We define the redundancy of compressor C for random graph An as

R(Ck,An)≜ E[ℓ(Ck(An))]−H(An).

Theorem 6 (Redundancy in the vanishing probability regime). Let

An ∼ SBM(n,L,p, f (n)Q)

with f (n)= o(1), f (n)=Ω( 1
n2−ε ) for any 0< ε < 1, and L=Θ(1). If k=ω(1) and k≤

√
δ logn

for some 0< δ < ε , then the redundancy of compressor Ck defined in Section 2.2 is upper bounded

as

R(Ck,An)≜ E[ℓ(Ck(An))]−H(An)

≤
(

n
2

)
f (n)

(
pT Qp log

(
1

pT Qp

)
−pT Q∗p

)
+o(n2 f (n)),

where Q∗ denotes an L×L matrix whose (i, j) entry is Qi j log( 1
Qi j

).
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Proof. First we lower bound H(An) using the conditional entropy H(An|Xn):

H(An)

≥ H(An |Xn)

=

(
n
2

)
pTh( f (n)Q)p

=

(
n
2

)
∑

i, j∈[n]
pi p jh( f (n)Qi j)

(a)
=

(
n
2

)
∑

i, j∈[n]
pi p j

(
f (n)Qi j log

(
1

f (n)Qi j

)
+ f (n)Qi j loge+o( f (n))

)

=

(
n
2

)
∑

i, j∈[n]
pi p j

(
f (n)Qi j log

(
1

f (n)

)

+ f (n)Qi j loge+ f (n)Qi j log
(

1
Qi j

)
+o( f (n))

)

=

(
n
2

)
f (n)

(
log
(

1
f (n)

)
pT Qp+pT Qp loge+pTQ∗p+o(1)

)
, (2.38)

where (a) follows since h(g(n)) = g(n) log 1
g(n) + g(n) loge+ o(g(n)) (see, for example, [67]).

From (2.19) in the proof of Theorem 1, we have

E(ℓ(Ck(An)))≤
(

n′

2

)
H(B12)+2k2

log(2e2n3)+nk2H(A12).

Now, we upper bound the three terms separately. We have

(
n′

2

)
H(B12)

≤
(

n′

2

)
k2H(A12)

=

(
n′

2

)
k2h( f (n)pT Qp)

(b)
=

(
n
2

)
f (n)

(
log

1
f (n)

pT Qp+pT Qp loge+pT Qp log
1

pT Qp
+o(1)

)
, (2.39)
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where (b) follows for the same reason as (a). Moreover, we have

2k2
log(2e2n3)≤ 2δ logn log(2e2n3) = nδ log(2e2n3) = o(n2 f (n)), (2.40)

and

nk2H(A12)≤ (nδ logn)
(

f (n)pT Qp log
e

f (n)pT Qp
+o( f (n))

)
= o(n2 f (n)). (2.41)

Combining bounds (2.38), (2.39), (2.40) and (2.41), we have

R(Ck,An)≤
(

n
2

)
f (n)

(
pT Qp log

1
pT Qp

−pT Q∗p
)
+o(n2 f (n)).

Theorem 7 (Redundancy in constant probability regime). Let

An ∼ SBM(n,L,p, f (n)Q)

with f (n) = Θ(1) and L = Θ(1). If k = ω(1) and k ≤
√

δ logn for some 0 < δ < 1, then the

redundancy of compressor Ck defined in Section 2.2 is upper bounded as

R(Ck,An)≜ E(ℓ(Ck(An)))−H(An)≤ H(p)
n2

k
+o
(

n2

k

)
,

where H(p) = ∑
L
i=1 pi log

(
1
pi

)
.

Proof. Firstly, we lower bound H(An) by the conditional entropy H(An|Xn)

H(An)≥ H(An |Xn) =

(
n
2

)
pTh( f (n)Q)p. (2.42)
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Still we can upper bound the expected length of compressor Ck:

E(ℓ(Ck(An)))≤
(

n′

2

)
H(B12)+2k2

log(2e2n3)+nk2H(A12).

Now, we bound the three terms separately. We have

(
n′

2

)
H(B12) =

(
n′

2

)
(H(B12 |X2k

1 )+ I(X2k
1 ;B12))

=

(
n′

2

)
(k2H(A1,k+1 |X1,Xk+1)+ I(X2k

1 ;B12))

≤
(

n′

2

)
(k2pT h( f (n)Q)p+H(X2k

1 ))

≤
(

n′

2

)
(k2pT h( f (n)Q)p+2kH(p))

=
n(n− k)

2
pT h( f (n)Q)p+n(n′−1)H(p), (2.43)

2k2
log(2e2n3)≤ nδ log(2e2n3) = o

(
n2

k

)
, (2.44)

and

nk2H(A12)≤ nδ lognH(A12) = o
(

n2

k

)
. (2.45)

Combining bounds (2.42), (2.43), (2.44) and (2.45) gives

R(Ck,An)

≤ n(n− k)
2

pT h( f (n)Q)p+n(n′−1)H(p)− n(n−1)
2

pT h( f (n)Q)p+o
(

n2

k

)
= n(n′−1)H(p)+

n(1− k)
2

pT h( f (n)Q)p+o
(

n2

k

)
≤ H(p)

n2

k
+o
(

n2

k

)
.
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2.6 Second order analysis in the sparse regime

So far, we have shown that our algorithm always matches the first order term in the

Shannon entropy. Now, we proceed to analyze the second order term of the expected length

of our proposed compressor. We focus on the family of symmetric SBM with edge probability

f (n) = 1/n and evaluate the performance of our compressor using the framework of local weak

convergence, as introduced in [59]. This would allow us to compare the performance of our com-

pressor to the compressor proposed in [50]. We first introduce some basic definitions on rooted

graphs in Subsection 2.6.1. Then, we define the local weak convergence of graphs and derive

the local weak convergence limit of the symmetric stochastic block model in Subsection 2.6.2.

Finally, we review the definition of BC entropy in Subsection 2.6.3 and state the performance

guarantee of our compression algorithm in Subsection 2.6.4.

2.6.1 Basic definitions on rooted graphs

Let G = (V,E) be a simple graph (undirected, unweighted, no self-loop), with V a

countable set of vertices and E a countable set of edges. Let u G∼ v denote the connectivity

of vertices u and v in G. G is said to be locally finite if, for all v ∈ V , the degree of v in

G is finite. A rooted graph (G,o) is a locally finite and connected graph G = (V,E,o) with

a distinguished vertex o ∈ V , called the root. Two rooted graphs (G1,o1) = (V1,E1,o1) and

(G2,o2) = (V2,E2,o2) are isomorphic, denoted as (G1,o1)≃ (G2,o2), if there exists a bijection

π : V1→V2 such that π(o1) = o2 and u
G1∼ v if and only if π(u)

G2∼ π(v) for all u,v ∈V1. One can

verify that this notion of isomorphism defines an equivalence relation on rooted graphs. Let

[G,o] denote the equivalence class corresponding to (G,o). Let G ∗ denote the set of all locally

finite and connected rooted graphs. For (G,o) ∈ G ∗ and h ∈N, we write (G,o)h for the truncated

graph at depth h of the graph (G,o), in other words, the induced subgraph on the vertices such

that their distance from the root is less than or equal to h. The equivalence classes [G,o]h follows

the similar definition. Let G ∗h denote the set of all [G,o]h. Now, we define the metric d∗ on G ∗.
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For any [G1,o1] and [G2,o2], let ĥ :=

sup{h ∈ Z+ : (G1,o1)h ≃ (G2,o2)h for some (G1,o1) ∈ [G1,o1],(G2,o2) ∈ [G2,o2]}

and define the metric d∗ as

d∗([G1,o1], [G2,o2]) :=
1

1+ ĥ
.

As shown in [50], equipped with the metric defined above, G ∗ is a Polish space, i.e, a complete

separable metric space. For this Polish space, let P(G ∗) denote the Borel probability measures

on it. We say that a sequence of measures µn ∈P(G ∗) converges weakly to µ ∈P(G ∗), written

as µn ⇝ µ , if for any bounded continuous function f on G ∗, we have
∫

f dµn →
∫

f dµ . It

was shown in [68] that µn⇝ µ if for any uniformly continuous and bounded functions f , we

have
∫

f dµn →
∫

f dµ . For µ ∈P(G ∗), h ∈ {0,1,2, . . .}, and [G,o] ∈ G ∗, let µh denote the

h-neighborhood marginal of µ

µh([G,o]) = ∑
[G′,o]∈G ∗:[G′,o]h=[G,o]

µ([G′,o]).

For a locally finite graph G = (V,E) and a vertex v ∈V , let G(v) denote the graph component in

G that is connected to v. By our previous definitions, (G(v),v) denotes the rooted graph of the

connected component of v and the root is located at v and [G(v),v] denotes the equivalence class

corresponding to (G(v),v). Now, the rooted neighbourhood distribution of G is defined as the

distribution of the rooted graph when the root is chosen uniformly at random over V

U(G) :=
1
|V | ∑v∈V

δ[G(v),v], (2.46)

where δ is the Dirac delta function.
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2.6.2 Local weak convergence

For our study of stochastic block model, which is a sequence of random graphs {An}∞
n=1,

U(An) as defined in (2.46) becomes a random distribution. In the section, we establish the

asymptotic behavior of the average neighbourhood distribution EU(An) averaged over the

randomness of the graph An.

To state the limiting distribution, we define the Galton–Watson tree probability distribu-

tion on rooted trees GWT(Pλ ) as follows. Let Pλ denote the Poisson distribution with mean λ .

We take a vertex as the root and generate Z(1) ∼ Pλ as the number of children of the first genera-

tion. For the first generation, independent of Z(1), we generate ξ
(1)
1 , . . . ,ξ

(1)
Z(1) i.i.d. according to

Pλ as the number of children of each vertex in the first generation. Let Z(2) = ∑
Z(1)

i=1 ξ
(1)
i denote

the total number of vertices in the first generation. In general, for the jth generation, j = 1,2, . . .,

generate the number of children for each vertex in the jth generation ξ
( j)
1 , . . . ,ξ

( j)
Z( j) i.i.d. ac-

cording to Pλ , independent of all previous variables {ξ (i−1)
1 , . . . ,ξ

(i−1)
Z(i−1) ,Z

(i), for all i≤ j}. Let

Z( j+1) = ∑
Z( j)

k=1 ξ
( j)
k denote the total number of vertices in the jth generation. In this way, we

iteratively defined a measure on rooted trees. With the definitions above, we are ready to establish

the local weak convergence of the symmetric stochastic block model.

Lemma 4 (Local weak convergence of sparse symmetric SBMs). Let An denote a graph

generated from a symmetric stochastic block model SBM(n,L,p, 1
nQ) with p =

( 1
L , . . . ,

1
L

)
,

Qii = a,∀i ∈ [n] and Qi j = b,∀i, j ∈ [n], i ̸= j. Let U(An), defined as in (2.46), be the ran-

dom rooted neighbourhood distribution of An. Then, the average neighbourhood distribution

EU(An) converges weakly to a Poisson Galton–Walson tree

EU(An)⇝ GWT(Pλ ),

where λ = a+(L−1)b
L .

Remark 6. When a = b, the symmetric stochastic block model recovers the well-known local
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weak convergence result on Erdős–Rényi model (see, e.g., [69, Theorem 3.12]).

Proof of Lemma 4. We want to show that for any uniformly continuous and bounded function

f , ∣∣∣∣∫ f dEU(An)−
∫

f dGWT(Pλ )

∣∣∣∣→ 0

as n→ ∞. Since f is a uniformly continuous function on G ∗, for every ε > 0 there exists δ > 0

such that, for any pair of rooted graphs [G1,o1] and [G2,o2] ∈ G ∗ with d∗([G1,o1], [G2,o2])< δ

we have | f (G1,o1)− f (G2,o2)|< ε . Recall that d∗([G1,o1], [G2,o2]) := 1
1+ĥ

, where ĥ denotes

the maximum layers of matching between [G1,o1] and [G2,o2]. Therefore, as long as h > 1
δ
−1,

we have | f ((G,o)h)− f (G,o)|< ε . It follows that | f ([i,o])− f ([g,o])|< ε , if [i,o]h = [g,o]. Let

µ ∈P(G ∗) and assume h > 1
δ
−1. We have

∣∣∣∣∫ f dµh−
∫

f dµ

∣∣∣∣=
∣∣∣∣∣∣ ∑
[g,o]∈G ∗h

f ([g,o])µh([g,o])− ∑
[i,o]∈G ∗

f ([i,o])µ([i,o])

∣∣∣∣∣∣ (2.47)

≤ ∑
[g,o]∈G ∗h

∣∣∣∣∣ f ([g,o])µh([g,o])− ∑
[i,o]∈G ∗:[i,o]h=[g,o]

f ([i,o])µ([i,o])

∣∣∣∣∣ (2.48)

= ∑
[g,o]∈G ∗h

∣∣∣∣∣ ∑
[i,o]∈G ∗:[i,o]h=[g,o]

( f ([g,o])− f ([i,o]))µ([i,o])

∣∣∣∣∣ (2.49)

≤ ∑
[g,o]∈G ∗h

∑
[i,o]∈G ∗:[i,o]h=[g,o]

| f ([g,o])− f ([i,o])|µ([i,o]) (2.50)

≤ ∑
[g,o]∈G ∗h

∑
[i,o]∈G ∗:[i,o]h=[g,o]

εµ([i,o]) = ε, (2.51)

where (3) follows since µh([g,o]) = ∑[i,o]∈G ∗:[i,o]h=[g,o] µ([i,o]). Thus, we have |
∫

f dEU(An)h−∫
f dEU(An)| < ε and |

∫
f dGWT(Pλ )h−

∫
f dGWT(Pλ )| < ε . Let B ⊆ G ∗ be a measurable

event in G ∗. By exchangability property of the SBM, we have EU(An)(B) = 1
n ∑

n
i=1P([An(i), i]∈

B) = P([An(1),1] ∈ B). In other words, EU(An) is simply the neighbourhood distribution at

vertex 1. By the analogous argument as in proposition 2 of [65], for any ε > 0, there exists n0 such

that if n≥ n0 and lnn
10ln(2(a+(L−1)b)) ≥ R, we have dTV (GWT(Pλ )R,EU(An)R)< ε , where dTV (·, ·)
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denotes the total variation distance between two measures. Remember here the total variation

distance is dTV (µ1,µ2) := supg:G ∗→[−1,1](
∫

gdµ1−
∫

gdµ2). Since f is a bounded function, we

have |
∫

f dGWT(Pλ )R−
∫

f dEU(An)R|< ε , as long as n is large enough. Therefore, if we take

n large enough such that lnn
10ln(2(a+(L−1)b)) >

1
δ
− 1 and |

∫
f dGWT(Pλ )h−

∫
f dEU(An)h| < ε ,

we have

∣∣∣∣∫ f dEU(An)−
∫

f dGWT(Pλ )

∣∣∣∣≤ ∣∣∣∣∫ f dEU(An)h−
∫

f dEU(An)

∣∣∣∣
+

∣∣∣∣∫ f dGWT(Pλ )h−
∫

f dGWT(Pλ )

∣∣∣∣
+

∣∣∣∣∫ f dGWT(Pλ )h−
∫

f dEU(An)h

∣∣∣∣
< 3ε,

which completes the proof.

2.6.3 BC entropy

In this section, we review the notion of BC entropy introduced in [59], which is shown to

be the fundamental limit of universal lossless compression for certain graph family [50].

For a Polish space Ω, let P(Ω) denote the set of all Borel probability measures on Ω. Let

A be a Borel set in Ω, we define the ε-extension of A, denoted Aε , as the union of the open balls

with radius ε centered around the points in A. For two probability measures µ and ν in P(Ω),

we define the Lévy–Prokhorov distance dLP(µ,ν) := inf{ε > 0 : µ(A)≤ ν(Aε)+ ε and ν(A)≤

µ(Aε)+ ε,∀A ∈B(Ω)}, where B(Ω) denotes the Borel sigma algebra of Ω. Let ρ ∈P(G ∗).

Let d be the expected number of neighbours of root under the law ρ and let a sequence m = m(n)

such that m/n→ d/2, as n→ ∞. Define Gn,m to be the set of graphs with n vertices and m edges.

For ε > 0, define

Gn,m(ρ,ε) = {G ∈ Gn,m : U(G) ∈ B(ρ,ε)},

where B(ρ,ε) denotes the open ball with radius ε around ρ with respect to Lévy–Prokhorov
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metric. Now, we define the ε-upper BC entropy of ρ as

Σ(ρ,ε) = limsup
n→∞

log |Gn,m(ρ,ε)|−m logn
n

and define the upper BC entropy of ρ as

Σ(ρ) = lim
ε→0

Σ(ρ,ε).

Similarly we define the ε-lower BC entropy Σ(ρ,ε) and lower BC entropy Σ(ρ) with limsup

replaced by liminf in above definitions. If ρ is such that Σ(ρ) = Σ(ρ), then this common limit is

called the BC entropy of ρ

Σ(ρ) := Σ(ρ) = Σ(ρ).

The following lemma states the BC entropy of the Galton–Waston tree distribution.

Lemma 5 (Corollary 1.4 of [59]). The BC entropy of the Galton–Watson tree distribution

GWT(Pλ ) is given by

Σ(GWT(Pλ )) =
λ

2
log

e
λ

bits.

2.6.4 Achieving BC entropy in the sparse regime

With the Lemma above, we can give a performance guarantee of our algorithm corre-

sponding to the BC entropy. It is a Theorem analog to Proposition 1 in [50].

Theorem 8. Let An ∼ SBM
(
n,L,p, 1

nQ
)

with p =
( 1

L , . . . ,
1
L

)
, Qii = a,∀i ∈ [n] and Qi j =

b,∀i, j ∈ [n], i ̸= j. Let λ = pT Qp = a+(L−1)b
L and m =

(n
2

)
λ

n be the expected number of edges in

the model. Then, our compression algorithm achieves the BC entropy of the local weak limit of

stochastic block models in the sense that

limsup
n→∞

E[ℓ(Ck(An))]−m logn
n

≤ Σ(GWT(Pλ )) .
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Proof. By our proof of theorem (need to fill in ref), we have

E[ℓ(Ck(An))]≤
(

n′

2

)
H(B12)+2k2

log(2en3)+nk2
nH(A12).

Notice that

(
n′

2

)
H(B12)≤

(
n′

2

)
k2H(A12)

=

(
n′

2

)
k2h(λ/n)

(1)
=

(
n′

2

)
k2
(

1
n

λ log
ne
λ

+o
(

1
n

))
(2)∼
(

n
2

)(
1
n

λ logn+
1
n

λ log
e
λ
+o
(

1
n

))
=

(
n
2

)
1
n

λ logn+
λ loge−λ logλ

2
n+o(n)

(3)
= m logn+nΣ(GWT(Pλ ))+o(n)

where (1) follows since h(p) = p log e
p−

loge
2 p2+o(p2), (2) follows since n′k = n and (3) follows

from Lemma 5. Then it suffices to that the remaining terms in the upper bound of E[ℓ(Ck(An))]

are all o(n). Indeed we have

2k2
log(2en3)≤ 2δ logn log(2en3) = nδ log(2en3) = o(n)

since δ < 1 and

nk2
nH(A12) = nk2

nh(λ/n)

= nk2
n

(
1
n

λ log
ne
λ

+o
(

1
n

))
≤ nδ logn

(
1
n

λ log
ne
λ

+o
(

1
n

))
= δ logn

(
λ log

ne
λ

)
+o(logn)

46



= o(n).

Remark 7. For sparse symmetric SBMs, Theorem 8 shows that our compressor achieves the BC

entropy of the Galton–Watson tree that is the local weak convergence limit of the underlying

sequence of graphs. We note, however, that for the family of sparse symmetric SBMs, it is

unclear if this BC entropy is the fundamental limit of lossless compression. This is because the

family of sparse symmetric SBMs does not belong to the family of random graphs considered

in [58], where a converse statement can be established.

2.7 Stationarity in the stochastic block model

In this section, we take a closer look at the correlation among entries in the adjacency

matrix and explain why existing universal compressors developed for stationary processes may

not be immediately applicable for certain orderings of the entries.

Compressing An entails compressing

A12, . . . ,A1,n,A23, . . . ,An−1,n,

i.e. the bits in the upper triangle of An. Clearly, these are not independent (because of the

dependency through Xn
1 ) so one cannot use any of the compressors universal for the class of

iid processes to compress An. So, one hopes that it is possible to list the
(n

2

)
random variables

A12, . . . ,A1,n,A23, . . . ,An−1,n in an order that makes the resulting sequence stationary, so that the

Lempel–Ziv compressor (which, recall, is universal for the class of stationary processes) may be

used. However, we show now that some of the most natural orders of listing these
(n

2

)
bits result

in a sequence that is nonstationary.

1. Horizontally: Listing the bits in the upper triangle row-wise (i.e. first listing the bits in

the first row, followed by the bits in the second and so on, ending with An−1,n) we get the
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following sequence

A12, . . . ,A1,n,A23, . . . ,A2,n, . . . ,An−1,n,

which can be seen to be nonstationary. Consider the case when n = 4,L = 2,Q11 = Q12 =

1,Q12 = 0. In this case the horizontal ordering is

A12,A13,A14,A23,A24,A34

and this is seen to be nonstationary by observing P(A12 = 1,A13 = 0,A14 = 1) > 0 but

P(A23 = 1,A24 = 0,A34 = 1) = 0.

2. Vertically: Listing the bits in the upper triangle column-wise (i.e. first listing the bits in

the first column, followed by the bits in the second and so on, ending with An−1,n) we get

the following sequence

A12,A13,A23, . . . ,A1,n, . . . ,An−1,n,

which can be seen to be nonstationary. Consider the case when n = 4,L = 2,Q11 = Q12 =

1,Q12 = 0. In this case the vertical ordering is

A12,A13,A23,A14,A24,A34

and this is seen to be nonstationary by observing P(A12 = 1,A13 = 0,A23 = 1) = 0 but

P(A14 = 1,A24 = 0,A34 = 1)> 0.

3. Diagonally: Consider ⌊n
2⌋ sequences defined as

S1 := A12,A23,A34, . . . ,An−1,n,An,1

S2 := A13,A24,A35, . . . ,An−2,n,An−1,1,An,2
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...

S⌊ n
2 ⌋−1 := A1,1+⌊ n

2 ⌋−1,A2,2+⌊ n
2⌋−1, · · · ,An,⌊ n

2 ⌋−1

and

S⌊ n
2⌋ =


A1,1+n/2,A2,2+n/2, . . . ,An/2,n, when n is even,

A1,1+⌊ n
2⌋,A2,2+⌊ n

2⌋, . . . ,An,n+⌊ n
2 ⌋, when n is odd.

Concatenating S1, . . . ,S⌊ n
2 ⌋ yields a sequence of length

(n
2

)
. This corresponds to listing the

bits diagonal-wise. However, even this does not yield a sequence that is stationary which

can be illustrated by considering the case when n = 4,L = 2,Q11 = Q12 = 1,Q12 = 0. In

this case the diagonal ordering is

A12,A23,A34,A41,A13,A24

and this is seen to be nonstationary by observing P(A12 = 0,A23 = 1,A34 = 1) > 0 but

P(A34 = 0,A41 = 1,A13 = 1) = 0.

2.8 Experiments

We implement the proposed universal graph compressor (UGC) in four widely used

benchmark graph datasets: protein-to-protein interaction network (PPI) [70], LiveJournal friend-

ship network (Blogcatalog) [71], Flickr user network (Flickr) [71], and YouTube user network

(YouTube) [72]. The block decomposition size k is chosen to be 1,2,3,4 and we present in

Table 2.1 the compression ratios (the ratio between output length and input length of the encoder)

of UGC for different choices of k. We present in Table 2.2 the compression ratios of four

competing algorithms.

• CSR: Compressed sparse row is a widely used sparse matrix representation format. In the

experiment, we further optimize its default compressor exploiting the fact that the graph is

simple and its adjacency matrix is symmetric with binary entries.
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• Ligra+: This is another powerful sparse matrix representation format [73, 74], which

improves upon CSR using byte codes with run-length coding.

• LZ: This is an implementation of the algorithm proposed in [75], which first transforms

the two-dimensional adjacency matrix into a one-dimensional sequence using the Peano–

Hilbert space filling curve and then compresses the sequence using Lempel–Ziv 78 algo-

rithm [13].

• PNG: The adjacency matrix of the graph is treated as a gray-scaled image and the PNG

lossless image compressor is applied.

The compression ratios of the five algorithms implemented on four datasets are given as follows.

The proposed UGC outperforms all competing algorithms in all datasets. The compression ratios

from competing algorithms are 2.4 to 27 times that of the universal graph compressor.

Table 2.1. Compression ratio of UGC under different k values.

k = 1 k = 2 k = 3 k = 4
PPI 0.0228 0.0226 0.0227 0.034

Blogcatalog 0.0275 0.0270 0.0267 0.0288
Flickr 0.00960 0.00935 0.00915 0.00907

YouTube 4.51×10−5 4.11×10−5 3.98×10−5 4.00×10−5

Table 2.2. Compression ratios of competing algorithms.

CSR Ligra+ LZ PNG
PPI 0.166 0.0605 0.06 0.089

Blogcatalog 0.203 0.0682 0.080 0.096
Flickr 0.0584 0.0217 0.0307 0.0262

YouTube 3.23×10−4 9.90×10−5 1.09×10−4 1.10×10−3

Note, however, that CSR and Ligra+ are designed to enable fast computation, such as

adjacency query or vertex degree query, in addition to compressing the matrix. Our proposed

compressor does not possess such a functionality and is designed solely for the purpose of

compression.
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Chapter 3

Sequential Prediction With Log-loss and
Side Information

3.1 Introduction

We consider a variant of the problem of sequential prediction under log-loss with side

information. The particular variant under consideration was first studied in [76]. Let X ∈X

and Y ∈ {0,1} denote two jointly distributed random variables. Let the marginal distribution of

X be denoted by PX(x). A hypothesis f in the hypothesis class F determines the conditional

distribution Pf (y|x), or equivalently, the conditional probability mass function (pmf) p f (y|x), for

y ∈ {0,1} and x ∈X . Each hypothesis is characterized by a tuple f = (g,θ0,θ1) where

1. θ0,θ1 ∈ [0,1]

2. g ∈ G ⊂ {X →{0,1}}.

In other words, g belongs to a class G of binary functions. We assume that G has finite VC

dimension, denoted by VCdim(G ).

Given a chosen hypothesis f = (g,θ0,θ1) we then have

Y |{X = x} ∼ Bernoulli(θg(x)).

Thus, given the side information X , the random variable Y is distributed as either Bernoulli(θ0)
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or Bernoulli(θ1). Picking a hypothesis f ∈ F , let (Xi,Yi)
n
i=1 be drawn i.i.d. from the joint

distribution of X and Y characterized by the hypothesis f , so

P(xn,yn) =
n

∏
i=1

PX(xi)Pf (yi |xi). (3.1)

The problem of sequential prediction under log-loss, also known as the sequential probability

assignment problem, can be thought of as a game between the player and nature. First, nature

picks a hypothesis f ∈F unbeknownst to the player, and Xn,Y n are then generated according

to the law (3.1). At each time step i ∈ [n], Xi is revealed to the player, who then assigns a

probability mass function (pmf) q(·|X i,Y i−1) to Yi. Next, Yi is revealed and the player incurs

loss − logq(·|X i,Y i−1). Nature assigns the pmf p f (·|Xi) at each time step i and incurs loss

− log p f (Yi|Xi). The goal of the game is to minimize the expected value of cumulative loss

relative to nature (known as the regret), without knowledge of f . Importantly, we also wish to do

this without knowing PX either.

To make this notion precise, define the regret incurred by the probability assignment q

when nature picked f and the distribution of X is PX as

Rn,PX (q, f ) := E

[
n

∑
i=1

log
1

q(Yi|X i,Y i−1)
−

n

∑
i=1

log
1

p f (Yi|Xi)

]
. (3.2)

Then, the worst-case regret for the probability assignment q is

Rn(q) := max
PX , f

Rn,PX (q, f ). (3.3)

In this paper, we aim to calculate the min-max regret

Rn := min
q

Rn(q). (3.4)

and discover a probability assignment q that is optimal or near-optimal in the sense of achieving
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Rn(q) close to the optimal value (3.4).

The log-loss is of central importance in information theory as it connects two canonical

problems in data science—compression and prediction; see the survey [77]. To motivate the use

of the log-loss in the current problem, we view it as an extension of the problem of universal

compression. Indeed, if there is no side information X present, then the problem is equivalent

to universal compression of an i.i.d. Bernoulli source which has been well studied [25, 78–81].

The minimax regret Rn then is significant operationally, representing the number of extra bits

above the entropy one must pay as the price for compressing the source without knowing its

distribution. Remarkably, one can show that Rn =
1
2 logn+o(logn) in this setting. In a similar

vein, [82] studies a closely related problem where a compressed version of the sequence Y n is

available as side information noncausally (i.e. not sequentially) and demonstrate its equivalence

to lossy compression.

In the current setting, if the function g is known, then simple extensions of the techniques

developed to tackle the problem of universal compression of an i.i.d. Bernoulli source can be

used to show that Rn ≤ logn+o(logn), and we will elaborate on this important special case in

detail in Section 3.2.1. The problem becomes nontrivial when the function g is not known, and

new techniques need to be developed to characterize Rn in this case.

In the standard study of classification in statistical learning theory, the loss function

employed is the 0-1 loss or the indicator loss, and the notion of VC dimension plays a crucial role

in characterizing the fundamental limits of binary classification [83]. In particular, VCdim(G )<

∞ implies the PAC-learnability of the hypothesis class G . Viewing the current setting as a

log-loss variant of the standard classification problem studied in statistical learning (which uses

the indicator loss) motivates the choice of constraint VCdim(G )< ∞. A variant of the current

problem with indicator loss instead of log-loss was studied in [84]. We have considered a specific

class of conditional distributions to compete against ( recall that under hypothesis f we have

p f (Y = 0|X = x) = Bern(θg(x))). As mentioned in the preceding paragraphs, our motivation

stems from universal compression with side information, and to consider a log-loss variant of
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the standard binary classification problem. In both these cases, the choice of the considered

class seems natural. However, in general, one could view this problem as an online conditional

density estimation problem and correspondingly consider an arbitrary class F where any f ∈F

may characterize the conditional distribution p f (y|x) in a far more complex manner. It then

makes sense to expect Rn in this case to depend on a measure of complexity of F akin to the VC

dimension. Indeed, in [85] the authors develop a remarkable theory parallel to statistical learning

theory when the data is non-i.i.d. They develop analogues of several combinatorial dimensions

and the Rademacher complexity in the non-i.i.d. case. They then leverage this theory in [86]

to study the minmax regret in several online learning problems (with adversarial data). This

approach is employed to study sequential prediction with the log-loss in [87] and [88]. However,

it is important to note that the proofs in these works are nonconstructive—they proceed via

using minmax duality and analyzing the dual game, which does not provide a strategy (i.e. a

probability assignment) achieving the regret upper bound that is proven. Our method on the other

hand involves construction of a sequential probability assignment. In the next subsection, we

will mention and compare our results with the aforementioned two papers studying the log-loss.

3.1.1 Main Results

Our first main result is a probability assignment that yields an upper bound on Rn.

Theorem 1. If G is such that VCdim(G ) = d < ∞, we have for an absolute constant C ≤ 250,

for a probability assignment q∗ (which is specified in detail further on)

Rn(q∗)≤ 125C
√

dn log(2n)+d(logn)2 +2. (3.5)

Moreover, for any PX , f ,δ ∈ (0,1), with probability greater than 1−δ ,

n

∑
i=1

log
1

q∗(Yi|X i,Y i−1)
−

n

∑
i=1

log
1

p f (Yi|Xi)
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≤ 25C
√

dn log(2n)

(
C
√

d +

√
2log

2logn
δ

)
+d(logn)2 +2 (3.6)

The proof is deferred to Section 3.4, where we construct and analyze the probability as-

signment q∗. In [76], the authors showed Rn =O(d
√

n logn), and Rn≤
(
2d +1+ log 1

δ

)√
n logn

with probability ≥ 1−δ . Our proof (and probability assignment) is different and achieves the

same dependence on n, and a better dependence on δ in the high-probability version of the result.

We also establish a lower bound on Rn.

Theorem 2. We have

Rn ≥ d + log(n+1)−2
√

ed2e−3n/100d− log(πe).

The proof is deferred to Section 3.5.

The non-constructive approaches of the papers [87] and [88] mentioned earlier establish

an O(d logn) upper bound for the F under consideration. In conjunction with Theorem 2 we

see that the dependence of Rn on n is indeed Θ(logn). This implies that the q∗ employed to

prove Theorem 1 is suboptimal and a better probability assignment could be constructed. As a

starting step, we considered a few special cases of the function class G in the hypothesis class

and provide a sequential probability assignment achieving O(d logn) upper bound. These upper

bounds constitute our third main result.

3.1.2 Organization and Notation

In Section 3.2 we provide basic notation and results that will be used in the proofs of

our main results. In Section 3.3, we provide logarithmic upper bounds on Rn for a few special

cases. Section 3.4 is devoted to the proof of Theorem 1, and Section 3.5 is devoted to the proof

of Theorem 2. Finally, Section 3.6 concludes. All the proofs throughout the paper are relegated

to the Appendix.

Notation: Throughout the paper, log(·) refers to the logarithm to base 2, and ln(·) refers
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to logarithm to base e. The Hamming distance between two binary vectors x and y is denoted by

dH(x,y). The fact that two random variables Z1 and Z2 have the same distribution is denoted by

Z1
(d)
= Z2.

3.2 Mathematical Preliminaries

This section introduces some basic notation and results that form the building blocks of

the proofs of our main results.

To prove an upper bound on Rn, it suffices to show a probability assignment q(Yi|X i,Y i−1)

that achieves regret Rn(q) that is less than the given upper bound. To this end, we will use a

mixture probability assignment

qmix(yi |xi,yi−1) :=
EF [pF

(
yi|xi)]

EF [pF (yi−1|xi−1)]
(3.7)

where F = (Θ0,Θ1,G) ∈F is a random variable with some distribution over the hypothesis

class F . The usage of such a mixture probability assignment is inspired by previous work in

universal prediction and universal compression, and we discuss this choice in further detail in

Section 3.2.1. It can be verified that qmix(yi|xi,yi−1) is indeed a probability assignment.

Proposition 1. For any xi,yi−1, we have ∑yi∈Y qmix(yi|xi,yi−1) = 1.

For the probability assignment qmix in (3.7) we can establish the following.

Proposition 2. We have

n

∑
i=1

log
1

qmix(Yi|X i,Y i−1)
−

n

∑
i=1

log
1

p f (Yi|Xi)
= log

p f (Y n|Xn)

E[pF(Y n|Xn)]
. (3.8)

The choice of the distribution of F is important and greatly affects Rn(qmix). Almost

all throughout this paper, for F = (Θ0,Θ1,G), we will choose Θ0, Θ1 and G to be mutually

independent, with Θ0,Θ1 ∼ Beta
(1

2 ,
1
2

)
each. The choice of the distribution of G (which, recall,
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is over the class of functions G ) will be varied across different problems. The Beta
(1

2 ,
1
2

)
density

is denoted by w(θ) = 1
π
√

θ(1−θ)
. The choice w(θ) is elaborated upon in the next subsection.

3.2.1 When |G |= 1

In this subsection, we consider the rather simple case when the class of functions |G |

contains only one function g∗ (or, equivalently, the function g∗ picked by nature is known). Thus,

in this case, the hypothesis f picked is of the form (θ0,θ1,g∗). Considering g∗ to be the function

for which g∗(x) = 0 ∀ x ∈X , as mentioned previously in the introduction, we recover the setting

of universal compression over the class of binary i.i.d processes. In this case, the minmax regret

Rn in (3.4) reduces to

Rn = min
q

max
θ∈[0,1]

E

[
log

pθ (Y n)

q(Y n)

]
= min

q
max

θ∈[0,1]
DKL(pθ (Y n)| |q(Y n)) (3.9)

where Yi ∼ Bernoulli(θ) i.i.d. and pθ (·) is the probability law for this process. As mentioned in

the introduction, it is well known that in this case

Rn =
1
2

logn+o(logn), (3.10)

and that this is asymptotically achieved by an instance of the mixture probability assignment (3.7)

given by

qKT(yi |yi−1) =

∫ 1
0 pθ (yi)w(θ)dθ∫ 1

0 pθ (yi−1)w(θ)dθ
=

EΘ[pΘ(yi)]

EΘ[pΘ(yi−1)]

with Θ ∼ Beta(1/2,1/2). This probability assignment is known as the Krichevsky–Trofimov

(KT) probability assignment [89] and thus motivates the utilization of the Beta(1/2,1/2) prior for

Θ0 and Θ1. For a sequence yn, the sequential probability assignment qKT(yi+1|yi) turns out to be

the so-called “add-1/2" estimator which sets qKT(0|yi) = ∑
i
t=11{yt=0}+1/2

i+1 . Moreover, it can be
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shown that if k = ∑
n
i=1 yi,

qKT(yn) =
∫ 1

0
pθ (yn)w(θ)dθ =

1
4n

(n
k

)(2n
n

)(2n
2k

) (3.11)

When the range of g∗ includes both 0 and 1, a modification of the KT probability

assignment can achieve regret logn+o(logn).

Consider the sequential probability assignment

qKT(0|xi,yi−1) =
∑

i−1
t=11{yt = 0,g∗(xt) = g∗(xi)}+1/2

∑
i−1
t=11{g∗(xt) = g∗(xi)}+1

Without the xi, this can be seen to be the standard Krichevsky–Trofimov (KT) probability

assignment for binary i.i.d. processes. With the side information xi, qKT is seen to be a

“block-wise" or “symbol-wise" KT probability assignment. This can be seen to be a probability

assignment of the form in (3.7) with

qKT(yi |xi,yi−1) =

∫ 1
0
∫ 1

0 pg∗,θ0,θ1(y
i|xi)w(θ0)w(θ1)dθ0dθ1∫ 1

0
∫ 1

0 pg∗,θ0,θ1(yi−1|xi−1)w(θ0)w(θ1)dθ0dθ1

We can then bound the regret achieved by the probability assignment qKT.

Lemma 1. When the function class G is such that |G |= 1, we have

Rn(qKT)≤ log
(n

2
+1
)
+ log

π2

8
. (3.12)

Remark 3 (Laplace probability assignment). Instead of using the Beta(1/2,1/2) prior, one can

use the Uniform[0,1] prior and choose the sequential probability assignment

qL(yi+1 |yi) =

∫ 1
0 pθ (yi+1)dθ∫ 1

0 pθ (yi)dθ
,

which yields the so-called Laplace or the add-1 probability assignment. It can be shown that for
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the problem (3.9), qL(·) can achieve Rn(qL) ≤ logn+o(logn). Thus, the Laplace probability

assignment achieves the optimal regret in order but with a slightly larger constant, a result

that even holds for very rich expert classes [90]. It can be shown that if k = ∑
n
i=1 yi, we have

qL(yn) =
∫ 1

0 pθ (yn)dθ = 1
(n+1)(n

k)
. For mathematical convenience, we will use the Laplace

probability assignment later in the paper, specifically in Sections 3.2.4 and 3.4.

3.2.2 When |G |< ∞

When |G |< ∞, we can use a probability assignment (3.7) with G∼ Uniform(G ). Then,

for this choice of mixture, we have

EF
[
pF
(
yi |xi)]= 1

|G | ∑
g∈G

∫ 1

0

∫ 1

0
pg,θ0,θ1(y

i |xi)w(θ0)w(θ1)dθ0dθ1 (3.13)

where w(x) = 1√
x(1−x)

is the Beta(1/2,1/2) prior as before.

We can then establish the following upper bound on the regret for the probability assign-

ment qmix characterized by the mixture (3.13).

Lemma 2. For the probability assignment qmix with characterized by the mixture (3.13), we

have

Rn(qmix)≤ log |G |+ log
(n

2
+1
)
+ log

π2

8
. (3.14)

3.2.3 Side Information Xn Available Noncausally

In this subsection we consider the special case when the side information Xn is available

noncausally instead of sequentially. The results and intuition developed in this section will be

used in proofs further ahead.

When the side information Xn is available noncausally, the probability assignment for Yi
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is of the form q(Yi|Xn,Y i−1) and the regret for a probability assignment q can be seen to be

Rn,nc(q) = max
PX , f

EXn,Y n

[
n

∑
i=1

log
1

q(Yi|Xn,Y i−1)
−

n

∑
i=1

log
1

p f (Yi|Xi)

]
. (3.15)

Since the side information Xn is available in advance, we can choose our mixture over the

hypothesis class F to be dependent on Xn. As done so far, for H = (Θ0,Θ1,G) we will choose

Θ0,Θ1 and G to be mutually independent with Θ0,Θ1 ∼ Beta(1/2,1/2). We will now define a

distribution over G that is dependent on the side information Xn.

Given Xn, define the set Pn(Xn) = {(g(X1), . . . ,g(Xn)),g ∈ G } ⊆ {0,1}n. For the

remainder of this subsection, for brevity we will refer to Pn(Xn) by just Pn. Enumerating the

elements of Pn by 1,2, . . . , |Pn|, we now define the set

I j = {g ∈ G ,(g(X1), . . . ,g(Xn)) = Pn( j)} (3.16)

where Pn( j) represents the j-th element in Pn. Clearly, the sets I1, . . . , I|Pn| are nonempty and

partition G . So, Xn can be thought of as partitioning G into sets where any two functions g1,g2

in the same partition have g1(X j) = g2(X j)∀ j ∈ [n].

Pick an arbitrary gi ∈ Ii for i ∈ [|Pn|]. Choosing G∼ Uniform
{

g1, . . . ,g|Pn|
}

, we have

EF
[
pF
(
yi |xi)]= 1

|Pn|

|Pn|

∑
i=1

∫ 1

0

∫ 1

0
pgi,θ0,θ1(y

i |xi)w(θ0)w(θ1)dθ0dθ1. (3.17)

Lemma 3. For the probability assignment qmix characterized by the mixture (3.17), we have

Rn,nc(qmix)≤ d log(en/d)+ log
(n

2
+1
)
+ log

π2

8
. (3.18)
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3.2.4 When PX is Known

Consider the case when the distribution PX is known. In this case, the main idea is

to choose the distribution of G to be uniform over a finite set of functions in G that form a

fine-enough covering of G . We make this idea precise next. First we will need the following

Lemma.

Lemma 4 (Lemma 13.6 of [91]). For f ,g ∈ G , define the metric L2(PX) as

∥ f −g∥L2(PX )
=
(
E[ f (X)−g(X)]2

)1/2
.

Let N (G ,L2(PX),ε) denote the covering number of G in the metric L2(PX). Then, we have

N (G ,L2(PX),ε)≤
(

e2

ε

)2d

. (3.19)

Consider the metric d( f ,g) = P(g(X) ̸= f (X)) for f ,g ∈ G . Since

∥ f −g∥L2(PX )
=
√

P(g(X) ̸= f (X)),

any
√

ε covering of G in the L2(PX) metric is a ε covering of G in the metric d. Therefore,

N (G ,d,ε)≤
(

e4

ε

)d

. (3.20)

We will now construct a mixture probability assignment of the form in (3.7). To do this,

we must specify a distribution over the hypothesis class F . Consider g1,g2, . . . ,g⌊(e4n)d⌋ that

form a 1/n covering of G in the metric d. By (3.20), ⌊(e4n)d⌋ such functions exist. Take G,Θ0

and Θ1 to be independent, with Θ0,Θ1 ∼ Uniform[0,1] 1 and G ∼ Uniform{g1, . . . ,g⌊(e4n)d⌋}.

1As mentioned in Remark 3, this corresponds to the Laplace probability assignment and we do this because it
considerably simplifies the proof at just the cost of a slightly larger constant.
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We then have

EF [pF(yi |xi)] =
1

⌊(e4n)d⌋

⌊(e4n)d⌋

∑
i=1

∫ 1

0

∫ 1

0
pgi,θ0,θ1dθ0dθ1 (3.21)

which we substitute into (3.7) to construct qmix. We can then prove the following.

Lemma 5. For qmix characterized by the mixture (3.21), we have

max
f ∗

Rn,PX (qmix, f ∗)≤ (d +8) log
(
e4n
)
+6. (3.22)

3.3 Logarithmic upper bounds

In this section, we consider some special instances of the function class G and distri-

butions PX for which we can establish that the probability assignment qmix in (3.7) achieves

O(d logn) regret for an appropriate choice of the mixture distribution (i.e. the distribution over

the class F ).

3.3.1 Finite Function Class

When |G | < ∞, we have already shown in Lemma 2 in Section 3.2.2 that the regret is

logarithmic for any distribution PX .

3.3.2 Function Class of Halfspaces

In this subsection, we will consider the case when G is the class of halfspaces, defined

precisely as follows. Let X ∈X = Sd−1. Recall that Sd−1 = {x ∈ Rd : ∥x∥2 = 1}. Define the

function ga(x) : X → {−1,1} as ga(x) = sign
(
aT x
)
. The class of functions HSd := {ga,a ∈

Sd−1} is known as the class of d−dimensional (homogenous) halfspaces, and is known to have

VCdim(G ) = d [83]. Consider Xn
1 ∼ Uniform(Sd−1) i.i.d. We will now evaluate the regret of

qmix in (3.7).
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As in the previous section, characterizing qmix requires specifying a distribution over the

hypothesis class F , which in turn requires specifying a distribution over the function class HSd

(recall that Θ0 and Θ1 are chosen to be Beta(1/2,1/2) independently of each other and of G).

We will choose A∼ Uniform[Sd−1]. We then have

EF [pF(yi |xi)] = EA[EΘ0,Θ1 [pA,Θ0,Θ1(y
i |xi)]] (3.23)

Now, using the notation

qa,mix(yi |xi) := EΘ0,Θ1[pa,Θ0,Θ1(y
i |xi)] =

∫ 1

0

∫ 1

0
pa,θ0,θ1(y

i |xi)w(θ0)w(θ1)dθ0dθ1 (3.24)

for an a ∈ Sd−1, we see that

EF [pF(yi |xi)] = EA[qA,mix(yi |xi)]. (3.25)

where A∼ Uniform[Sd−1] as mentioned previously. We can make the following assertion.

Proposition 3. If PX = Uniform[Sd−1], then for the mixture probability assignment qmix as

defined in (3.7), with choice of mixture as in (3.25), we have

max
f

Rn,PX (qmix, f )≤ (2d +1) logn+d log(48d)+ log
π2

8
. (3.26)

3.3.3 Hypothesis Class of Axis-Aligned Rectangles

In this subsection, we will consider the case when G is the class of axis-aligned rectangles,

defined precisely as follows. For2 a := {ai}d
i=1 and b := {bi}d

i=1 that are such that 0 ≤ ai ≤

bi ≤ 1, i ∈ [d] define the function ga,b : Rd→{0,1} as ga,b(x) = ∏
d
i=11{ai ≤ xi ≤ bi}. Then the

hypothesis class RECTd := {ga,b,a,b ∈ [0,1]d,ai ≤ bi} is known as the class of axis aligned

2In this subsection, for clarity we will use boldface to denote vectors.
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rectangles. It is well-known that VCdim(RECTd) = 2d [83]. Consider Xn
1 ∼ Uniform[0,1]d iid.

We will then evaluate the regret of the probability assignment qmix in (3.7).

As before, characterizing qmix requires specifying a distribution over the hypothesis class

F , which in turn requires specifying a distribution over the function class RECTd (recall that Θ0

and Θ1 are chosen to be Beta(1/2,1/2) independently of each other and of G). We will chose

(Ai,Bi) ∼ Uniform{(a,b) ∈ [0,1]× [0,1],b ≥ a}, and (Ai,Bi) ⊥⊥ (A j,B j) for i ̸= j. Denoting

A := (A1, . . . ,Ad) and B := (B1, . . . ,Bd), for the aforementioned choice of distribution over F ,

we have

EF [pF(yi |xi)] = EA,B[EΘ0,Θ1 [pA,B,Θ0,Θ1(y
i |xi)]] (3.27)

Now, using the notation

qa,b,mix(yi |xi)

:= EΘ0,Θ1[pa,b,Θ0,Θ1(y
i |xi)] =

∫ 1

0

∫ 1

0
pa,b,θ0,θ1(y

i |xi)w(θ0)w(θ1)dθ0dθ1 (3.28)

we see that

EF [pF(yi |xi)] = EA,B[qA,B,mix(yi |xi)]. (3.29)

We can then make the following assertion.

Proposition 4. If PX = Uniform[0,1]d , then for the probability assignment qmix as defined

in (3.7), with choice of mixture as in (3.29), we have

max
f∈F

Rn,PX (qmix, f )≤ (2d +1) log(n+1)+ log
π2

8
. (3.30)

Remark 4. In Sections 3.3.2 and 3.3.3, we have fixed PX to be the uniform distribution. Consid-

ering the proofs, it appears to be a reasonable guess that the mixture probability assignment
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qmix employed to prove the regret guarantees would work for other distributions PX that are suf-

ficiently “smooth". Thus, finding non-uniform PX for which the given qmix achieves logarithmic

regret is an intriguing question.

3.4 Proof of Theorem 1

In this section, we prove Theorem 1. To motivate the main proof idea, recall the case

discussed in Section 3.2.3 when noncausal side information is available. In that case, using the

Sauer–Shelah lemma we argued that given Xn, the (possibly infinite) class of functions G could

be effectively reduced to a class of at most
(en

d

)d functions, and using the mixture probability

assignment that took a uniform mixture over these functions yielded an O(d logn) regret. This

leads to us considering the following alternative to noncausal side information being available:

what if another sequence X̃n (d)
= Xn is available noncausally? The sequence X̃n also reduces

the class G to at most
(en

d

)d functions (albeit not the same reduction as that of G by Xn). We

establish in Section 3.4.1 that a uniform mixture over the finite reduction of G induced by X̃n

achieves an O(
√

dn logn) regret. We then use this result in Section 3.4.2 to establish a general

O(
√

nd logn) regret when the side information Xn is available sequentially.

For clarity, throughout this section we use g(Zn) to denote (g(Z1), . . . ,g(Zn)) ∈ {0,1}n.

3.4.1 Sequence X̃n available noncausally

Consider a sequence X̃n (d)
= Xn, X̃n ⊥⊥ Xn, with Xi having distribution PX iid. In this

subsection we consider the regret

R̃n,PX (q, f ) := EXn,Y n,X̃n

[
n

∑
i=1

log
1

q(Yi|X i,Y i−1, X̃n)
−

n

∑
i=1

log
1

p f (Yi|Xi)

]
(3.31)

and in particular the worst-case regret attained by a probability assignment q

R̃n(q) := max
f∈F ,PX

R̃n,PX (q, f ). (3.32)
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Now, using the same notation as in Section 3.2.3, let Pn(X̃n) = {g(X̃n),g ∈ G } ⊆ {0,1}n with

|Pn(X̃n)| ≤
(en

d

)d by the Sauer–Shelah lemma. Pick g̃1, . . . , g̃|Pn(X̃n)| ∈ G such that g̃ j(X̃n) ∈

Pn(X̃n), and g̃i(X̃n) ̸= g̃ j(X̃n) if i ̸= j. Thus, for every g ∈ G , there exists a j ∈
[
|Pn(X̃n)|

]
such that g(X̃n) = g̃ j(X̃n). Therefore, the class G has been effectively reduced to |Pn(X̃n)|

functions by X̃n. Consider now a mixture probability assignment, akin to (3.7), as

q̃mix(yi |xi,yi−1, x̃n) :=
1

|P(x̃n)|∑
|P(x̃n)|
j=1

∫ 1
0
∫ 1

0 pg̃ j,θ0,θ1(y
i|xi)dθ0dθ1

1
|P(x̃n)|∑

|P(x̃n)|
j=1

∫ 1
0
∫ 1

0 pg̃ j,θ0,θ1(y
i−1|xi−1)dθ0dθ1

. (3.33)

Note that this is indeed a mixture probability assignment in the sense of (3.7)—F = (G,Θ0,Θ1)

has the distribution where G∼ Uniform{g̃1, . . . , g̃|Pn(X̃n)|}, Θ0,Θ1 ∼ Uniform[0,1]3 and G,Θ0,

and Θ1 are mutually independent. We can now state the following.

Lemma 6. For q̃mix defined in (3.33), we have for an absolute constant C ≤ 250,

R̃n(q̃mix)≤ d log(en/d)+16C
√

nd log(6n+2) (3.34)

and moreover, for any PX and h we have

n

∑
i=1

log
1

q̃mix(Yi|X i,Y i−1, X̃n)
−

n

∑
i=1

log
1

p f (Yi|Xi)

≤ d log(en/d)+16
√

n log(6n+2)

(
C
√

d +

√
2log

2
δ

)
. (3.35)

Remark 5 (Empirical covering). The probability assignment q̃mix can also be motivated by

considering the scenario in Section 3.2.4 where PX is known. Recall that there, we took a uniform

mixture over a 1/n-covering of G in the metric d with d(g1,g2) = P(g1(X) ̸= g2(X)). If we have

X̃n, as an alternative to a mixture over a covering in the metric d, we can take an empirical

1/n covering of G , i.e. a covering in the metric ∆̃n(g1,g2) =
1
ndH(g1(X̃n),g2(X̃n)). Indeed, the

3The choice of taking a uniform prior for Θ0 and Θ1 instead of the Jeffreys prior is simply because using
the uniform prior (which, recalling Remark 3, corresponds to the Laplace probability assignment) makes some
calculations far simpler in the proof at just the cost of a worse constant factor in the regret.
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functions g̃1, g̃2, . . . , g̃|Pn(X̃n)| form not just a 1/n covering but a 0-covering of G in the metric

∆̃n.

3.4.2 Epoch-based mixture probability

In this subsection, we use Lemma 6 to construct a general probability assignment when

side information is available sequentially. In this scenario, we do not have access to another

sequence X̃n. However, at time step i+1, we have access to the past sequence X i which could

be used, as done in [84], in lieu of X̃ i. We now precisely define and analyze this probability

assignment.

For simplicity, assume that n = 2k for some integer k. The analysis is easily extended to

any arbitrary n. We will split the n time steps into logn “epochs". Starting from j = 1, define

the j−the epoch to consist of the time steps 2 j−1 +1 ≤ i ≤ 2 j. So, the first epoch consists of

X2, the second epoch consists of X4
3 , the third epoch consists of X8

5 and so on. Consider the the

following probability assignment q∗.

1. q∗(Y1|X1) = 1/2

2. For i≥ 2, if 2 j−1 +1≤ i≤ 2 j, i.e. if the time step i falls within the j−th epoch, then

q∗(Yi |X i,Y i−1) =
qmix, j(Y i

2 j−1+1|X
i
2 j−1+1)

qmix, j(Y i−1
2 j−1+1|X

i−1
2 j−1+1)

(3.36)

where

qmix, j((Y i
2 j−1+1 |X

i
2 j−1+1))

:=
1

|P(X2 j−1
)|

|P(X2 j−1
)|

∑
k=1

∫ 1

0

∫ 1

0
pθ0,θ1,gk(Y

i
2 j−1+1 |X

i
2 j−1+1)dθ0dθ1 (3.37)

is the finite mixture over the |P(X2 j−1
)| partition of G induced by X2 j−1

. This is the same

probability assignment as in (3.33).

Using Lemma 6 and an epoch-wise analysis of q∗ we can establish Theorem 1.
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3.5 Proof of Theorem 2

In this section we prove Theorem 2. A key component of the proof is the redundancy-

capacity theorem [92].

First, note that the class of probability assignments that utilize the side information Xn

causally is a subset of the set of probability assignments that utilize the side information Xn

noncausally. This implies

Rn = min
q

max
PX , f

EXn,Y n

[
n

∑
i=1

log
1

q(Yi|X i,Y i−1)
−

n

∑
i=1

log
1

p f (Yi|Xi)

]

≥min
q

max
PX , f

EXn,Y n

[
n

∑
i=1

log
1

q(Yi|Xn,Y i−1)
−

n

∑
i=1

log
1

p f (Yi|Xi)

]
(3.38)

and therefore

Rn ≥min
q

max
PX , f

EXn,Y n

[
log

p f (Y n|Xn)

q(Y n|Xn)

]
= min

q
max
PX ,PF

EF,Xn,Y n

[
log

pF(Y n|Xn)

q(Y n|Xn)

]
(3.39)

≥ max
PX ,PF

min
q

EF,Xn,Y n

[
log

pF(Y n|Xn)

q(Y n|Xn)

]
(3.40)

where PF denotes a distribution over F in (3.39), and (3.40) follows since

minmax(·)≥maxmin(·).

By a conditional variant of the redundancy-capacity theorem we have for a fixed PX and PF

(recall that F = (Θ0,Θ1,G))

min
q

EF,Xn,Y n

[
log

pF(Y n|Xn)

q(Y n|Xn)

]
= I(F ;Y n |Xn) (3.41)
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and so

Rn ≥ max
PX ,PF

I(F ;Y n |Xn) (3.42)

where recall F = (Θ0,Θ1,G).

Remark 6. The result in (3.42) holds for any class of conditional distributions F , not just the

VC class under consideration.

We will first provide a lower bound on Rn when |X | < ∞ which we will then use to

achieve a general lower bound on Rn.

Lemma 7. If |X |= m < ∞ and G = 2[m] so that |G |= 2m, we have

Rn ≥ m+ log(n+1)− log(πe)−2
√

em2e−3n/100m. (3.43)

Lemma 7 is proved by choosing a particular PX and PF and analyzing the right hand side

of (3.42).

Remark 7 (Tightness for finite X ). Combining Lemma 7 and Lemma 2 with |G |= 2m, we see

that for X = m,G = 2[m], we can obtain a tight characterization of the regret Rn on n and m.

Consider now the case when X is possibly infinite. Since VCdim(G ) = d, there exist

x1, . . . ,xd ∈ X such that |{(g(x1), . . . ,g(xd)),g ∈ G }| = 2d . Theorem 2 then follows as a

corollary to Lemma 7 by substituting m = d and choosing the distributions of PX ,PF as in the

proof of Lemma 7.

3.6 Discussion

We considered the problem of sequential prediction under log-loss with side information.

This can be considered as an extension of the well-studied information-theoretic problem of
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universal compression of an i.i.d. binary source, and the regret incurred can be characterized

via the value of a minmax game. We provided upper bounds on the regret via construction of a

probability assignment, and lower bounds by the redundancy-capacity theorem. There are several

open directions. Previous results established an O(d logn) upper bound via minmax duality.

Even though our upper and lower bounds are off by a
√

n factor, we suspect that a variant of

the mixture probability assignment from information theory can achieve the optimal O(d logn)

upper bound. We provided some special cases and a probability assignment where O(d logn)

redundancy is achieved to provide evidence for this. Recently, [93] provided a mixture based

probability assignment, and used a similar epoch-based covering method to achieve O(d log2 n)

regret for this problem. It would also be interesting to answer the weaker question of whether

the current upper bound on Rn can be improved upon (constructively) under certain further

restrictions on the class of functions G . Moreover, even though the lower bound cannot be

improved in order, it may be possible to get a better dependence on d. Finally, we have not

considered complexity concerns for actual algorithmic implementation. Computing the coverings

may be probihitively expensive in several cases, so finding efficient algorithms for sequential

probability assignment is yet another avenue to be explored. All these directions are promising

for further study.

3.7 Skipped proofs

3.7.1 Skipped Proofs from Section 3.2

Proof of Proposition 1

∑
yi∈Y

qmix(yi |xi,yi−1) =
∑yi∈Y E[pF(yi|xi)]

E[pF(yi−1|xi−1))

=
E[∑yi∈Y pF(yi|xi)]

E[pF(yi−1|xi−1))
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=
E[pF(yi−1|xi−1)∑yi∈Y pF(yi|xi)]

E[pF(yi−1|xi−1))

=
E[pF(yi−1|xi−1)]

E[pF(yi−1|xi−1))
= 1

and so qmix(yi|xi,yi−1) is a valid probability assignment.

Proof of Lemma 1

Since the function g∗ is known and the range of g∗ is only 0 and 1, we can assume without

loss of generality that the side information is binary, i.e. X = {0,1}. Now define

nl :=
n

∑
i=1

1{xi = l}, l ∈ {0,1} (3.44)

kl :=
n

∑
i=1

1{yi = 1,xi = l}, l ∈ {0,1}. (3.45)

Note that

log
pθ0,θ1,g∗(Y

n|Xn)∫ 1
0
∫ 1

0 pθ0,θ1,g∗(yn|xn)w(θ0)w(θ1)dθ0

=
n

∑
i=1

log
1

qKT(Yi|X i,Y i−1)
−

n

∑
i=1

log
1

p f (Yi|Xi)
(3.46)

and

n

∑
i=1

log
1

qKT(Yi|X i,Y i−1)
−

n

∑
i=1

log
1

p f (Yi|Xi)

=
1

∑
l=0

∑
i:Xi=l

[
log

1
qKT(Yi|X i,Y i−1)

− log
1

p f (Yi|Xi)

]

=
1

∑
l=0

[
log

∏i:Xi=l p f (Yi|Xi)

∏i:Xi=l qKT(Yi|X i,Y i−1)

]
. (3.47)
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Now, if nl = 0, we have

log
∏i:Xi=l p f (Yi|Xi)

∏i:Xi=l qKT(Yi|X i,Y i−1)
= 0 (3.48)

And if nl ≥ 1, we have

log
∏i:Xi=l p f (Yi|Xi)

∏i:Xi=l qKT(Yi|X i,Y i−1)
= log

θ
kl
l (1−θl)

nl−kl

1
4nl

(nl
kl
)(2nl

nl
)

(2nl
2kl
)

(3.49)

where (3.49) follows from properties of the KT sequential probability assignment. Moreover, we

have

θ
kl
l (1−θl)

nl−kl ≤
(

kl

nl

)kl
(

1− kl

nl

)nl−kl

= 2−nlh
(

kl
nl

)
(3.50)

which can be established by noting that the binary KL divergence

d
(

kl

nl
| |θl

)
=

1
nl

log

(
kl
nl

)kl
(

1− kl
nl

)nl−kl

θ
kl
g(l)(1−θg(l))

nl−kl
≥ 0,

and furthermore, using a Sterling approximation we can establish

1
4nl

(nl
kl

)(2nl
nl

)(2nl
2kl

) ≤
√

8
π2

2−nlh
(

kl
nl

)
√

nl
. (3.51)

Plugging (3.50) and (3.51) into (3.49) yields

log
∏i:Xi=l p f (Yi|Xi)

∏i:Xi=l qKT(Yi|X i,Y i−1)
≤ log

√
π2

8
2−nlh

(
kl
nl

)
√

nl

2−nlh
(

kl
nl

) =
1
2

lognl +
1
2

log
π2

8
(3.52)
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when nl ≥ 1. Combining (3.48) and (3.52) we can establish

log
∏i:Xi=l p f (Yi|Xi)

∏i:Xi=l qKT(Yi|X i,Y i−1)
≤ 1

2
log(nl +1)+

1
2

log
π2

8
(3.53)

for all nl ≥ 0. Plugging the upper bound (3.53) into (3.47) yields

1

∑
l=0

[
log

∏i:Xi=l p f (Yi|Xi)

∏i:Xi=l qKT(Yi|X i,Y i−1)

]
≤

1

∑
l=0

1
2

log(nl +1)+
1
2

log
π2

8

=
1
2

log
1

∏
l=0

(nl +1)+ log
π2

8

≤ 1
2

log
(n

2
+1
)2

+ log
π2

8
(3.54)

= log
(n

2
+1
)
+ log

π2

8
(3.55)

where the inequality (3.54) follows by noting that ∑
m−1
l=0 (nl + 1) = n+m and the using the

AM-GM inequality. We have now established

n

∑
i=1

log
1

qKT(Yi|X i,Y i−1)
−

n

∑
i=1

log
1

p f (Yi|Xi)
≤ log

(n
2
+1
)
+ log

π2

8

and monotonicity of expectation followed by taking supremum over θ0,θ1 then yields the result.

Proof of Lemma 2

By Proposition 2, we see that for a fixed f ∗ = (g∗,θ ∗0 ,θ
∗
1 ) and PX , the regret achieved by

the probability assignment qmix characterized by (3.13) is

Rn,PX (qmix, f ∗) = EXn,Y n

[
log

p f ∗(Y n|Xn)

EF [pF(Y n|Xn)]

]

and we have

EXn,Y n

[
log

p f ∗(Y n|Xn)

EF [pF(Y n|Xn)]

]
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= E

[
log

p f ∗(Y n|Xn)
1
|G |∑g∈G

∫ 1
0
∫ 1

0 pg,θ0,θ1(Y n|Xn)w(θ0)w(θ1)dθ0dθ1

]

= log |G |+E

[
log

p f ∗(Y n|Xn)

∑g∈G
∫ 1

0
∫ 1

0 pg,θ0,θ1(Y n|Xn)w(θ0)w(θ1)dθ0dθ1

]

≤ log |G |+E

[
log

p f ∗(Y n|Xn)∫ 1
0
∫ 1

0 pg∗,θ0,θ1(Y n|Xn)w(θ0)w(θ1)dθ0dθ1

]
(3.56)

≤ log |G |+ log
(n

2
+1
)
+ log

π2

8
(3.57)

where (3.56) follows since each of the summands in the denominator of the second term are

nonnegative, and (3.57) is a consequence of Lemma 1.

Proof of Lemma 3

Following the proof of Lemma 2 up to (3.56), for any fixed f ∗ = (g∗,θ ∗0 ,θ
∗
1 ) the proba-

bility assignment qmix characterized by the mixture (3.17) has

EXn,Y n

[
n

∑
i=1

log
1

qmix(Yi|Xn,Y i−1)
−

n

∑
i=1

log
1

p f ∗(Yi|Xi)

]

≤ E [|Pn |]+E

[
log

p f ∗(Y n|Xn)∫ 1
0
∫ 1

0 pg j,θ0,θ1(Y n|Xn)w(θ0)w(θ1)dθ0dθ1

]
(3.58)

Where j ∈ [|Pn|] is such that

(g∗(X1), . . . ,g∗(Xn)) = (g j(X1), . . . ,g j(Xn)).

If VCdim(G ) = d < ∞, we can control |Pn| using the following standard result [94, Chapter 8].

Lemma 8 (Sauer–Shelah). If VCdim(G ) = d < ∞, then |Pn| ≤
(en

d

)d .

Finally, using Lemma 1 and Lemma 8 in (3.58) yields

Rn,nc(qmix)≤ d log(en/d)+ log
(n

2
+1
)
+ log

π2

8
. (3.59)
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Proof of Lemma 5

By Proposition 2, we have for a fixed f ∗ = (g∗,θ ∗0 ,θ
∗
1 )

Rn,PX (qmix, f ∗) = E

[
p f ∗(Y n|Xn)

EH [pF(Y n|Xn)]

]

= E

log
p f ∗(Y n|Xn)

1
⌊(e4n)d⌋∑

⌊(e4n)d⌋
i=1

∫ 1
0
∫ 1

0 pgi,θ0,θ1(Y n|Xn)dθ0dθ1


≤ d log(e4n)+E

[
log

p f ∗(Y n|Xn)

∑
⌊(e4n)d⌋
i=1

∫ 1
0
∫ 1

0 pgi,θ0,θ1(Y n|Xn)dθ0dθ1

]
(3.60)

Let g̃ ∈ {g1,g2, . . . ,g⌊(e4n)d⌋} be such that P(g̃(X) ̸= g∗(X)) = d(g̃,g∗)≤ 1/n. Such a g̃ exists

since g1, . . . ,g⌊(e4n)d⌋ form a 1/n covering of G in the metric d. We then have from (3.60)

Rn,PX (qmix, f ∗)≤ d log(e4n)+E

[
log

p f ∗(Y n|Xn)∫ 1
0
∫ 1

0 pg̃,θ0,θ1(Y
n|Xn)dθ0dθ1

]
. (3.61)

Now, defining

N j :=
n

∑
i=1

1{g∗(Xi) = j}, j ∈ {0,1}

K j :=
n

∑
i=1

1{g∗(Xi) = j,Yi = 1}, j ∈ {0,1}

Ñ j :=
n

∑
i=1

1{g̃(Xi) = j}, j ∈ {0,1}

K̃ j :=
n

∑
i=1

1{g̃(Xi) = j,Yi = 1}, j ∈ {0,1}

we have

p f ∗(Y n |Xn) = pg∗,θ∗0 ,θ
∗
1
(Y n |Xn) = θ

∗K0
0 (1−θ

∗
0 )

N0−K0θ
∗K1
1 (1−θ

∗
1 )

N1−K1 (3.62)
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and

∫ 1

0

∫ 1

0
pg̃,θ0,θ1(Y

n |Xn)dθ0dθ1 =
∫ 1

0

∫ 1

0
θ

K̃0
0 (1−θ0)

Ñ0−K̃0θ
K̃1
1 (1−θ1)

Ñ1−K̃1dθ0dθ1

=
∫ 1

0
θ

K̃0
0 (1−θ0)

Ñ0−K̃0dθ0

∫ 1

0
θ

K̃1
1 (1−θ1)

Ñ1−K̃1dθ1

=
1

(Ñ0 +1)
(Ñ0

K̃0

)
(Ñ1 +1)

(Ñ1
K̃1

) (3.63)

where (3.63) follows from properties of the Laplace probability assignment. Now, from (3.62)

and (3.63), we have

p f ∗(Y n|Xn)∫ 1
0
∫ 1

0 pg̃,θ0,θ1(Y
n|Xn)dθ0dθ1

= (Ñ0 +1)(Ñ1 +1)
(

Ñ0

K̃0

)
θ
∗K0
0 (1−θ

∗
0 )

N0−K0

(
Ñ1

K̃1

)
θ
∗K1
1 (1−θ

∗
1 )

N1−K1

≤ (n+1)2
(

Ñ0

K̃0

)
θ
∗K0
0 (1−θ

∗
0 )

N0−K0

(
Ñ1

K̃1

)
θ
∗K1
1 (1−θ

∗
1 )

N1−K1 (3.64)

≤ (n+1)2

(Ñ0
K̃0

)(N0
K0

) (Ñ1
K̃1

)(N1
K1

) (3.65)

where (3.64) follows because Ñ0, Ñ1 ≤ n, and (3.65) follows since
(n

k

)
xk(1− x)n−k ≤ 1 for any

x ∈ [0,1]. Substituting (3.65) into (3.61) yields

Rn,PX (qmix, f ∗)≤ d log(e4n)+EXn,Y n

log

(Ñ0
K̃0

)(N0
K0

)
+EXn,Y n

log

(Ñ1
K̃1

)(N1
K1

)
 (3.66)

Recall that dH(·, ·) denotes the Hamming distance. We can then easily verify the following

proposition.

Proposition 5. We have

|Ñ j−N j | ≤ dH(g∗(Xn), g̃(Xn)), j ∈ {0,1}
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and

|K̃ j−K j | ≤ dH(g∗(Xn), g̃(Xn)), j ∈ {0,1}.

We now wish to use Proposition 5, to obtain a bound on log
(

Ñ0
K̃0
)

(N0
K0
)
. For this, we will need

an additional proposition.

Proposition 6. For any two nonnegative integers a,b, we have

log
(a+b)!

a!
≤ b log(a+b+1)+b+1 (3.67)

Proof. By the Stirling approximation, for any positive integer m, we have

√
2πmm+1/2e−m ≤ m!≤ emm+1/2e−m. (3.68)

We now use this to claim that when a,b≥ 1

ln(a+b)!− lna!≤ ln
(

e(a+b)a+b+1/2e−(a+b)
)
− ln

(√
2πaa+1/2e−a

)
= ln

e√
2π

+(a+b+1/2) ln(a+b)− (a+1/2) lna+a− (a+b)

= ln
e√
2π

+b ln(a+b)+(a+1/2) ln(1+b/a)−b

≤ ln
e√
2π

+b ln(a+b)+(a+1/2) ln(1+b/a)−b

≤ ln
e√
2π

+b ln(a+b)+b/2a (3.69)

≤ ln
e√
2π

+b ln(a+b)+b/2 (3.70)

where (3.69) follows since for x ≥ 0, ln(1+ x) ≤ x and (3.70) follows since a ≥ 1. When

a = b = 0 and when b = 0,a≥ 1, the proposition is immediate. Finally, when a = 0 and b≥ 1,
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we have by the upper bound on b! in (3.68) that

lnb!≤
(

b+
1
2

)
lnb+1−b (3.71)

and after some algebraic manipulations we can see that the proposition holds in this case as

well.

For convenience, define δn := dH(g∗(Xn), g̃(Xn)). Note that

log

(Ñ0
K̃0

)(N0
K0

) = log
Ñ0!K0!(N0−K0)!

N0!K̃0!(Ñ0− K̃0)!

= log
Ñ0!
N0!

+ log
K0!

K̃0!
+ log

(N0−K0)!

(Ñ0− K̃0)!
. (3.72)

We will now bound each of the three terms in the RHS of (3.72). We have

log
Ñ0!
N0!
≤ log

(N0 +δn)!
N0!

(3.73)

≤ δn log(N0 +δn +1)+δn +1 (3.74)

≤ δn log(2n+1)+δn +1 (3.75)

where (3.73) follows from Proposition 5, (3.74) from Proposition 6 and (3.75) since N0,δn ≤ n.

Using the same reasoning, we conclude

log
K0!

K̃0!
≤ δn log(2n+1)+δn +1. (3.76)

and

log
(N0−K0)!

(Ñ0− K̃0)!
≤ 2δn log(3n+1)+2δn +1 (3.77)

where in (3.77) we additionally use the fact that |(N0−K0)−(Ñ0−K̃0)| ≤ |N0−Ñ0|+ |K0−K̃0| ≤
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2δn. Substituting (3.75)— (3.77) into (3.72) yields

log

(Ñ0
K̃0

)(N0
K0

) ≤ 4δn log(3n+1)+4δn +3. (3.78)

Similarly, we have

log

(Ñ1
K̃1

)(N1
K1

) ≤ 4δn log(3n+1)+4δn +3 (3.79)

and substituting (3.78) and (3.79) into (3.66) yields

Rn,PX (qmix, f ∗)≤ d log
(
e4n
)
+EXn,Y n [8δn log(3n+1)+8δn +6]

= d log
(
e4n
)
+8log(6n+2)EXn,Y n [δn]+6 (3.80)

Now, we have

EXn,Y n[δn] = EXn

[
n

∑
i=1

1{g∗(Xi) ̸= g̃(Xi)}

]
= nP(g∗(X1) ̸= g̃(X1))≤ 1

Since by design d(g̃,g∗) = P(g̃(X) ̸= g∗(X))≤ 1/n where X is distributed as PX . Substituting

this into (3.80) yields

Rn,PX (qmix, f ∗)≤ (d +8) log
(
e4n
)
+6. (3.81)

3.7.2 Skipped proofs from Section 3.3

Proof of Proposition 3

By Proposition 2, we have for a fixed f ∗ = (a∗,θ ∗0 ,θ
∗
1 )

Rn,PX (qmix, f ∗) = E

[
p f ∗(Y n|Xn)

EF [pF(Y n|Xn)]

]
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= E

[
log

p f ∗(Y n|Xn)

EA[qA,mix(Y n|Xn)]

]
(3.82)

We will need the following claim.

Claim 1. Let a∗ ∈ Sd−1 denote the function picked by the adversary, and δ := mini |a∗T Xi|. Then,

for all a ∈ Sd−1 such that ∥a−a∗∥< δ , we have qa,mix(Y i|X i) = qa∗,mix(Y i|X i).

Proof. Note that by definition of qa,mix(Y i|X i), showing that

(ga(X1), . . . ,ga(Xn)) = (ga∗(X1), . . . ,ga∗(Xn))

or equivalently that

(sign(aT X1), . . . ,sign(aT Xn)) = (sign(a∗T X1), . . . ,sign(a∗T Xn)) (3.83)

for all {a : ∥a− a∗∥ < δ} suffices to prove the claim. Observe now that for all a ∈ Sd−1 we

have sign(aT Xi) = sign(a∗T Xi +(a− a∗)T Xi), and if ∥a∗− a∥ < δ , we have |(a− a∗)T Xi| ≤

∥a−a∗∥ < δ , and therefore sign(wT Xi) = sign(w∗T Xi) for all i = 1, . . . ,n (since |w∗T Xi| ≥ δ ).

This proves (3.83) and consequently the claim.

We now have

qA,mix(Y n |Xn)≥ qA,mix(Y n |Xn)1{|a∗−A| < δ}

= qa∗,mix(Y n |Xn)1{|a∗−A| < δ} (3.84)

where (3.84) follows from Claim 1. Then,

EA[qA,mix(Y n |Xn)]≥ EA[qa∗,mix(Y n |Xn)1{|a∗−A| < δ}]

= qa∗,mix(Y n |Xn)EA[1{|a∗−A| < δ}]
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= qa∗,mix(Y n |Xn)
Area({∥a−a∗∥ ≤ δ}∩Sd−1)

Area(Sd−1)
(3.85)

where (3.85) follows since A∼ Uniform[Sd−1].

We now bound Area({∥a−a∗∥≤δ}∩Sd−1)
Area(Sd−1)

by a simple covering number argument explained

next. Consider N (d,δ ) to be a δ−covering of Sd−1, consisting of the points z1, . . . ,z|N (d,δ )|.

Then by definition of a covering,

Sd−1 = ∪|N (d,δ )|
i=1

(
{∥z− zi∥ ≤ δ}∩Sd−1

)

and subsequently,

Area(Sd−1) = Area
(
∪|N (d,δ )|

i=1

(
{∥z− zi∥ ≤ δ}∩Sd−1

))
≤∑

i
Area

(
{∥z− zi∥ ≤ δ}∩Sd−1

)
= |N (d,δ )|Area({∥z−a∗∥ ≤ δ}∩Sd−1) (3.86)

where (3.86) follows by symmetry of Sd−1, which implies that any for each point z ∈ Sd−1 the

δ−neighbourhood is isomorphic. This establishes that

Area({∥a−a∗∥ ≤ δ}∩Sd−1)

Area(Sd−1)
≥ 1
|N (d,δ )|

. (3.87)

Finally, we can show that when δ ≤ 1,

|N (d,δ )| ≤
(

3
δ

)d

since N (d,δ )≤N (Bd,δ ), the covering number of the unit ball, and N (Bd,δ )≤
( 3

δ

)d
[94,

Chapter 4]. This implies that Area({∥a−a∗∥≤δ}∩Sd−1)
Area(Sd−1)

≥
(

δ

3

)d
. Now, substituting this back in (3.85)
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yields

EA[qA,mix(Y n |Xn)]≥ qa∗,mix(Y n |Xn)

(
δ

3

)d

(3.88)

and by substituting (3.88) into (3.82), we have

Rn( f ∗,qmix)≤ E

[
log

p f ∗(Y n|Xn)

qa∗,mix(Y n|Xn)

]
+dE

[
log

3
δ

]
. (3.89)

We now consider E
[
log 1

δ

]
. Recall that we have δ = mini |a∗T Xi|, where Xi ∼ Uniform(Sd−1)

i.i.d. By symmetry, for any a1,a2 ∈ Sd−1 we have

(|aT
1 X1 |, . . . , |aT

1 Xn |)
(d)
= (|aT

1 X1 |, . . . , |aT
2 Xn |).

In particular, choosing a1 = a∗ and a2 =

[
1 0 · · ·0

]
we have

(|a∗T X1 |, . . . , |a∗T Xn |)
(d)
= (|X1,1 |, . . . , |Xn,1 |)

where Xi,1 denotes the first co-ordinate of Xi. Now, for Xi ∼ Uniform(Sd−1), Xi,1 = 2Z− 1

where Z ∼ Beta(d/2,d/2) (this follows directly from the formula for the surface area of the

hyperspherical cap, see for example [95]). So, X1,1, . . . ,Xn,1 are i.i.d. samples from a shifted

and rescaled beta distribution. Thus, we can explicitly calculate EXn[− logδ ], which is simply

EZn[− log(min |2Zi−1|)] = EZn [maxi− log |2Zi−1|] where Zi ∼ Beta(d/2,d/2). We will next

show that E[− logδ ]≤ 2ln(n)+o(1).

Let Z ∼ Beta(d/2,d/2), and W := − ln |2Z − 1|. Since Z ∈ [0,1], we have W ≥ 0.

Recalling that the density of Z is fZ(z) =
(z(1−z))d/2−1

B(d/2,d/2) ,0 ≤ z ≤ 1, we can then calculate the

density fW (w) as follows. We have, for any w≥ 0,

1−FW (w) = P(W > w)
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= P(− ln |2Z−1| > w)

= P

(
1− e−w

2
< Z <

1+ e−w

2

)
= FZ

(
1+ e−w

2

)
−FZ

(
1− e−w

2

)
.

Since fW (w) = dFW (w)
dw , taking derivative with respect to w on both sides of (3.90) yields

fW (w) =
dFZ

(
1−e−w

2

)
dw

−
dFZ

(
1+e−w

2

)
dw

=
1

B(d/2,d/2)
e−w

(
1− e−2w

4

)d/2−1

(3.90)

Since W is sub-exponential, we expect the scaling of E[max{W1, . . . ,Wn}] with n to be O(logn)

(i.e. similar to the dependence on n of expected maximum for an exponential distribution). We

next formalize this using a standard technique for bounding maximum of independent random

variables. First, we provide a useful claim.

Claim 2. For all w ≥ 0, we have 1
B(d/2,d/2)

(
1−e−2w

4

)d/2−1
≤ cd where cd := 2

√
d, and subse-

quently fW (w)≤ cde−w.

Proof. Uses simple properties of the beta function and a Stirling approximation.

For n i.i.d. samples from W , denoted W n, we show that E[max{W1, . . . ,Wn}]≤ 2ln(2cdn).

Note that

E[max{W1, . . . ,Wn}] = 2E
[
lnmax{eW1/2, . . . ,eWn/2}

]
≤ 2ln

(
E
[
max{eW1/2, . . . ,eWn/2}

])
(3.91)

≤ 2ln

(
E

[
n

∑
i=1

eWi/2

])

= 2ln
(

nE
[
eW1/2

])
= 2ln

(
n
∫

∞

0
ew/2 fW (w)dw

)
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≤ 2ln
(

n
∫

∞

0
ew/2cde−wdw

)
(3.92)

≤ 2ln
(

cdn
∫

∞

0
e−w/2dw

)
= 2ln(2cdn) . (3.93)

where (3.91) follows from the Jensen inequality and (3.92) follows from Claim 2. Therefore,

E[− logδ ]≤ 2lnn+2ln(4
√

d). (3.94)

Going back to (3.89), and using Lemma 1 and (3.94) yields

max
f∈F

Rn,PX (qmix, f )≤ (2ln2d +1) logn+d log(48d)+ log
π2

8
. (3.95)

Proof of Proposition 4

The flow of this proof is almost the same as that of Proposition 3. By Proposition 2, we

have for a fixed f ∗ = (a∗,b∗,θ ∗0 ,θ
∗
1 )

Rn,PX (qmix, f ∗) = E

[
p f ∗(Y n|Xn)

EF [pF(Y n|Xn)]

]
(3.96)

Fix some f ∗ = (a∗,b∗,θ ∗0 ,θ
∗
1 ). Now, recall that X j ∈ Rd, j ∈ [n]. Denote the i−th coordinate

of X j by X j,i. Now, given the n real numbers X1,i, . . . ,Xn,i (i.e. the i−th coordinates of

X1, . . . ,Xn) we can arrange these in order as Xi
(1) ≤ Xi

(2) ≤ . . . ≤ Xi
(n). Thus, Xi

(1), . . . ,X
i
(n)

denote the order statistics of the i−th component of X1, . . . ,Xn. Now, clearly, there exist unique

ki, li ∈ 0, . . . ,n, li ≥ ki such that Xi
(ki)
≤ a∗i ≤ Xi

(ki+1) and Xi
(li)
≤ b∗i ≤ Xi

(li+1). This holds for all

i ∈ [d]. We then make the following claim.

Claim 3. For any a,b that are such that for all i ∈ [d],

Xi
(ki)
≤ ai ≤ Xi

(ki+1),X
i
(li) ≤ bi ≤ Xi

(li+1)
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and ai ≤ bi, we have qa,b,mix(Y i|Xi) = qa∗,b∗,mix(Y i|Xi).

Proof. To prove this claim, note first that from the definition of qa,b,mix in (3.28), we have that if

(ga∗,b∗(X1), . . . ,ga∗,b∗(Xn)) = (ga,b(X1), . . . ,ga,b(Xn)) (3.97)

the claim holds. Then, for X1, we have ga∗,b∗(X1)=∏
d
i=11{a∗i ≤X1,i≤ b∗i }. Now, for any i∈ [d],

since Xi
(ki)
≤ a∗i ≤Xi

(ki+1), this implies that if Xi
(ki)
≤ ai ≤Xi

(ki+1) we have that { j : X j,i ≥ a∗i }=

{ j : X j,i ≥ ai} and therefore 1{a∗i ≤X1,i}= 1{ai ≤X1,i}. Similarly { j : X j,i ≤ b∗i }= { j : X j,i ≤

bi} if Xi
(li)
≤ bi ≤ Xi

(li+1), and consequently 1{X1,i ≤ b∗i }= 1{X1,i ≤ bi}. This implies that for

any a,b satisfying the conditions of the claim, we have 1{a∗i ≤ X1,i ≤ b∗i }= 1{ai ≤ X1,i ≤ bi}

for all i ∈ [d], thereby implying that ga∗,b∗(X1) = ga,b(X1). The same argument applied to

X2, . . . ,Xn implies (3.97) and therefore the claim.

Now, we have

qA,B,mix(Y n |Xn)

≥ qA,B,mix(Y n |Xn)
d

∏
i=1

1{Xi
(ki)
≤ Ai ≤ Xi

(ki+1)}1{X
i
(li) ≤ Bi ≤ Xi

(li+1)}

= qa∗,b∗,mix(Y n |Xn)
d

∏
i=1

1{Xi
(ki)
≤ Ai ≤ Xi

(ki+1)}1{X
i
(li) ≤ Bi ≤ Xi

(li+1)} (3.98)

where (3.98) follows from Claim 3. Now, we have

EF [pF(Y n |Xn)]

= EA,B
[
qA,B,mix(Y n |Xn)

]
≥ EA,B

[
qa∗,b∗,mix(Y n |Xn)

d

∏
i=1

1{Xi
(ki)
≤ Ai ≤ Xi

(ki+1)}1{X
i
(li) ≤ Bi ≤ Xi

(li+1)}

]
(3.99)

= qa∗,b∗,mix(Y n |Xn)EA,B

[
d

∏
i=1

1{Xi
(ki)
≤ Ai ≤ Xi

(ki+1)}1{X
i
(li) ≤ Bi ≤ Xi

(li+1)}

]

86



= qa∗,b∗,mix(Y n |Xn)
d

∏
i=1

EAi,Bi

[
1{Xi

(ki)
≤ Ai ≤ Xi

(ki+1)}1{X
i
(li) ≤ Bi ≤ Xi

(li+1)}
]

(3.100)

≥ qa∗,b∗,mix(Y n |Xn)
d

∏
i=1

(Xi
(ki+1)−Xi

(ki)
)(Xi

(li+1)−Xi
(li))/2 (3.101)

where (3.99) follows from (3.98), (3.100) follows since the (Ai,Bi) are all mutually independent,

and (3.101) follows since

EAi,Bi

[
1{Xi

(ki)
≤ Ai ≤ Xi

(ki+1)}1{X
i
(li) ≤ Bi ≤ Xi

(li+1)}
]

=

{
(Xi

(ki+1)−Xi
(ki)

)(Xi
(li+1)−Xi

(li)
)/2 for li = ki

(Xi
(ki+1)−Xi

(ki)
)(Xi

(li+1)−Xi
(li)

) for li > ki.
(3.102)

By substituting (3.101) into (3.96), we get

Rn(qmix)≤ E

[
log

pa∗,b∗,θ0,θ1(Y
n|Xn)

qa∗,b∗,mix(Y n|Xn)

]
+

d

∑
i=1

EXn

[
log

2
Xi
(ki+1)−Xi

(ki)

]

+
d

∑
i=1

EXn

[
log

2
Xi
(li+1)−Xi

(li)

]
(3.103)

Now, consider EXn

[
log 2

Xi
(ki+1)−Xi

(ki)

]
. Clearly, this quantity depends only on the i−th coordi-

nates of Xn, X1,i, . . . ,Xn,i. Since Xn ∼ Uniform[0,1]d i.i.d, we can see that X1,i, . . . ,Xn,i ∼

Uniform[0,1] i.i.d. Now, it is known that for Zn ∼Uniform[0,1] i.i.d., Z(k+1)−Z(k) ∼ Beta(1,n)

for all k ∈ {0, . . . ,n}. Moreover, for Z′ ∼ Beta(α,β ), it can be shown that E[− logZ′] ≤

log(α +β ). Using these two results, we can conclude that

EXn

[
log

1
Xi
(ki+1)−Xi

(ki)

]
,EXn

[
log

1
Xi
(li+1)−Xi

(li)

]
≤ log(n+1), i ∈ [d]. (3.104)

Finally, using Lemma 1 and (3.104) in (3.103) yields

max
f∈F

Rn,PX (qmix, f )≤ (2d +1) log(n+1)+ log
π2

8
(3.105)
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as required.

3.7.3 Skipped Proofs from Section 3.4

Proof of Lemma 6

We have

log
1

q̃mix(Yi|X i,Y i−1, X̃n)
−

n

∑
i=1

log
1

p f (Yi|Xi)

= log
p f ∗(Y n|Xn)

1
|P(X̃n)|∑

|P(X̃n)|
j=1

∫ 1
0
∫ 1

0 pg̃ j,θ0,θ1(Y
n|Xn)dθ0dθ1

≤ d log(en/d)+ log
p f ∗(Y n|Xn)

∑
|P(X̃n)|
j=1

∫ 1
0
∫ 1

0 pg̃ j,θ0,θ1(Y
n|Xn)dθ0dθ1

. (3.106)

So far, the construction and analysis of q̃mix has paralleled the analysis of the mixture qmix in

Section 3.2.3. There, the next step was to claim that since ∃ j ∈ [|Pn(Xn)|] such that g j(Xn) =

g∗(Xn), invoking Lemma 1 yielded an O(logn) upper bound for the second term in (3.106).

Unfortunately we cannot claim the same in the current case. However, we can claim that there

exists j̃ ∈
[
|Pn(X̃n)|

]
such that

g̃ j̃(X̃
n) = g∗(X̃n).

Since dH(g̃ j̃(X̃
n),g∗(X̃n)) = 0 and X̃n (d)

= Xn, we would expect dH(g̃ j̃(X
n),g∗(Xn)) to not be too

large. We now quantify this intuition more precisely. For brevity, denote

g̃ := g̃ j̃.

We have from (3.106)

log
1

q̃mix(Yi|X i,Y i−1, X̃n)
−

n

∑
i=1

log
1

p f (Yi|Xi)

≤ d log(en/d)+ log
p f ∗(Y n|Xn)∫ 1

0
∫ 1

0 pg̃,θ0,θ1(Y
n|Xn)dθ0dθ1

(3.107)
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≤ d log(en/d)+8log(6n+2)dH(g∗(Xn), g̃(Xn))+6 (3.108)

Where to get from (3.107) to (3.108) we follow the exact same steps employed in the proof of

Lemma 5 from (3.61) to (3.80).

We now focus on dH(g∗(Xn), g̃(Xn)) and establish that

EXn,X̃n [dH(g∗(Xn), g̃(Xn))]≤ 2C
√

dn (3.109)

dH(g∗(Xn), g̃(Xn))≤ 2C
√

dn+2

√
2n log

2
δ

, with probability ≥ 1−δ (3.110)

for an absolute constant C ≤ 250.

For any g1,g2 ∈ G define

∆n(g1,g2) :=
1
n

dH(g1(Xn),g2(Xn))

∆̃n(g1,g2) :=
1
n

dH(g1(X̃n),g2(X̃n))

∆(g1,g2) := P(g1(X) ̸= g2(X))

for X
(d)
= X1

(d)
= X̃1. Recall that ∆̃n(g̃,g∗) = 0 by design, and ∆(g1,g2) = EXn[∆n(g1,g2)] =

EX̃n[∆̃n(g1,g2)]. We then have

∆n(g∗, g̃) = ∆n(g∗, g̃)− ∆̃n(g∗, g̃)

≤ sup
g1,g2∈G

∣∣∆n(g1,g2)− ∆̃n(g1,g2)
∣∣

≤ sup
g1,g2∈G

|∆n(g1,g2)−∆(g1,g2)|+ sup
g1,g2∈G

∣∣∆̃n(g1,g2)−∆(g1,g2)
∣∣ . (3.111)

We first establish (3.109). Taking expectations on both sides of (3.111).

EXn,X̃n[∆n(g∗, g̃)]
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≤ EXn,X̃n

[
sup

g1,g2∈G
|∆n(g1,g2)−∆(g1,g2)|+ sup

g1,g2∈G

∣∣∆̃n(g1,g2)−∆(g1,g2)
∣∣]

= 2EXn

[
sup

g1,g2∈G
|∆n(g1,g2)−∆(g1,g2)|

]
(3.112)

where (3.112) follows by linearity of expectation and since Xn (d)
= X̃n. Finally, we note that

∆n(g1,g2) =
dH(g1(Xn),g2(Xn))

n
=

1
n

n

∑
i=1

1{g1(Xi) ̸= g2(Xi)}

∆(g1,g2) = E[1{g1(X) ̸= g2(X)}]

and the class of boolean functions {x 7→ 1{g1(x) ̸= g2(x)},(g1,g2) ∈ G ×G } has VC dimension

≤ 2d. Thus, we can now invoke [94, Theorem 8.3.23], [91, Theorem 13.7] to claim that

EXn

[
sup

g1,g2∈G
|∆n(g1,g2)−∆(g1,g2)|

]
≤C

√
d
n

(3.113)

for a universal constant C ≤ 250. Consequently, taking expectations on both sides of (3.108) and

substituting (3.113), followed by a supremum over f ∗ and PX yields

R̃n(q̃mix)≤ d log(en/d)+16C
√

nd log(6n+2) (3.114)

as required.

To establish (3.110), we invoke Theorem 12.1 of [91] to assert

sup
g1,g2∈G

|∆n(g1,g2)−∆(g1,g2)| ≤ E

[
sup

g1,g2∈G
|∆n(g1,g2)−∆(g1,g2)|

]
+

√
2
n

log
2
δ

(3.115)

with probability 1−δ/2. The same high-probability bound for

sup
g1,g2∈G

∣∣∆̃n(g1,g2)−∆(g1,g2)
∣∣
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along with a union bound and (3.113) yields (3.110). Using (3.110) in (3.108) yields the second

part of the lemma.

Proof of Theorem 1

We have

n

∑
i=1

log
1

q∗(Yi|X i,Y i−1)
−

n

∑
i=1

log
1

p f (Yi|Xi)

≤
n

∑
i=2

log
1

q∗(Yi|X i,Y i−1)
−

n

∑
i=2

log
1

p f (Yi|Xi)
+1

=
logn

∑
j=1

[
2 j

∑
i=2 j−1+1

log
1

q∗(Yi|X i,Y i−1)
−

2 j

∑
i=2 j−1+1

log
1

p f (Yi|Xi)

]
(3.116)

Taking expectation on both sides of (3.116), we have

Rn,PX (q
∗, f )≤

logn

∑
j=1

E

[
2 j

∑
i=2 j−1+1

log
1

q∗(Yi|X i,Y i−1)
−

2 j

∑
i=2 j−1+1

log
1

p f (Yi|Xi)

]
+1

≤
logn

∑
j=1

R̃2 j−1(q̃mix) (3.117)

where recall E in the first inequality are w.r.t. X2 j

2 j−1+1,Y
2 j

2 j−1+1,X
2 j−1

1 , and (3.117) follows since

q∗ is exactly q̃mix. Using Lemma 6, we have for any n′ ≥ 2

R̃n′(q̃mix)≤ d log(en′/d)+16C
√

dn′ log(6n′+2)≤ d logn′+64C
√

dn′ log(n′)

and therefore, from (3.117)

Rn,PX (q
∗, f )≤

logn

∑
j=2

(
d( j−1)+64C

√
d2( j−1)/2( j−1)

)
+2

≤ d(logn)2 +64C
√

d
∫ logn+1

1
x2x/2dx+2 (3.118)

≤ d(logn)2 +125C
√

dn log(2n)+2 (3.119)
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and finally taking supremum over f and PX concludes the first part of the proof.

For the second part, we have from Lemma 6 for any j ≥ 2,

2 j

∑
i=2 j−1+1

log
1

q∗(Yi|X i,Y i−1)
−

2 j

∑
i=2 j−1+1

log
1

p f (Yi|Xi)

≤ d( j−1)+642( j−1)/2( j−1)

(
C
√

d +

√
2log

2logn
δ

)
(3.120)

with probability 1−δ/ logn. Then from (3.116), a union bound and the calculations in (3.118)

and (3.119) we have

n

∑
i=1

log
1

q∗(Yi|X i,Y i−1)
−

n

∑
i=1

log
1

p f (Yi|Xi)

≤ d(logn)2 +125C
√

dn log(2n)

(
C
√

d +

√
2log

2logn
δ

)
+2 (3.121)

with probability ≥ 1−δ as required.

3.7.4 Skipped Proofs from Section 3.5

Proof of Lemma 7

We have from (3.41)

Rn ≥ max
PX ,PF

I(Θ0,Θ1,G;Y n |Xn) (3.122)

and therefore a lower bound on I(Θ0,Θ1,G;Y n|Xn) for any choice of PX and PF provides a lower

bound on Rn. We will choose PX to be the uniform distribution on {1, . . . ,m} so that

X ∼ Uniform([m]) .
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Consider now the following distribution PF over hypothesis class F = (Θ0,Θ1,G) that has

(Θ0,Θ1)∼ Uniform(θ0,θ1 ∈ [0,1]× [0,1]∩{θ1−θ0 ≥ 1/2}) (3.123)

G⊥⊥ (Θ0,Θ1) and G∼ Uniform
{

2[m]
}

(3.124)

We then have

I(Θ0,Θ1,G;Y n |Xn)

= H(Θ0,Θ1,G|Xn)−H(Θ0,Θ1,G|Xn,Y n)

= h(Θ0,Θ1)+H(G)−H(Θ0,Θ1,G|Xn,Y n) (3.125)

≥ h(Θ0,Θ1)+H(G)−H(G|Xn,Y n)−H(Θ0 |G,Xn,Y n)−H(Θ1 |G,Xn,Y n) (3.126)

= 3+m−H(G|Xn,Y n)−h(Θ0 |G,Xn,Y n)−h(Θ1 |G,Xn,Y n) (3.127)

where (3.125) follows since the G ⊥⊥ (Θ0,Θ1) and both (Θ0,Θ1),G ⊥⊥ Xn, (3.126) follows

from the chain rule of entropy and because conditioning reduces entropy, and (3.127) follows

since by the distribution of (Θ0,Θ1) and G in (3.123), (3.124), we have (Θ0,Θ1) is uniform over

a set with area 1
8 , and G∼ Uniform(G ) with |G |= 2m.

We also have

h(Θ0 |Xn,Y n,G) = ∑
g∈G

h(Θ0 |Xn,Y n,G = g)P(G = g)

=
1

2m ∑
g∈G

h(Θ0 |Xn,Y n,G = g) (3.128)

Now, define the estimator

Θ̂0(Xn,Y n,g) =
∑

n
i=11{g(Xi) = 0,Yi = 1}+1/2

∑
n
i=11{g(Xi) = 0}+1

. (3.129)
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Defining N0 := ∑
n
i=11{g(Xi) = 0} and K0 = ∑

n
i=11{g(Xi) = 0,Yi = 1}, we have

Θ̂0 =
K0 +1/2
N0 +1

.

Now, going back to (3.128), we have

1
2m ∑

g∈G
h(Θ0 |Xn,Y n,G = g)≤ 1

2m ∑
g∈G

h(Θ0 |Θ̂0,g) (3.130)

=
1

2m ∑
g∈G

h(Θ0− Θ̂0 |Θ̂0,g)

≤ 1
2m ∑

g∈G
h(Θ0− Θ̂0 |g)

≤ 1
2m ∑

g∈G

1
2

log(2πeVar(Θ0− Θ̂0 |g)) (3.131)

≤ 1
2m ∑

g∈G

1
2

log(2πeE[(Θ0− Θ̂0)
2 |g]) (3.132)

where (3.130) follows from the data processing inequality, (3.131) follows since the Gaussian

random variable of a given variance maximizes entropy, and (3.132) follows since for any random

variable Z,Var[Z]≤ E[Z2].

We now have

E[(Θ0− Θ̂0)
2 |g] = EΘ0,Xn,Y n|g(Θ0− Θ̂0)

2

= EΘ0,Xn,Y n|g

(
Θ0−

K0 +1/2
N0 +1

)2

= EΘ0,N0,K0|g

(
Θ0−

K0 +1/2
N0 +1

)2

= EΘ0|gEN0|Θ0,gEK0|N0,Θ0,g

[(
Θ0−

K0 +1/2
N0 +1

)2 ∣∣∣N0,Θ0

]
(3.133)

Since

K0 |N0,Θ0,g∼ Binomial(N0,Θ0)
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we can calculate

EK0|N0,Θ0,g

[(
Θ0−

K0 +1/2
N0 +1

)2 ∣∣∣N0,Θ0

]
=

(Θ0−1/2)2 +N0Θ0(1−Θ0)

(N0 +1)2

≤ 1
4(N0 +1)

(3.134)

where (3.134) follows since x(1−x)≤ 1
4 ,(x−1/2)2 ≤ 1

4 for x ∈ [0,1]. Substituting (3.134) back

into (3.133) we obtain

E(Θ0− Θ̂0)
2 ≤ EΘ0|gEN0|Θ0,g

[
1

4(N0 +1)

]
= EN0|g

[
1

4(N0 +1)

]
(3.135)

where (3.135) follows since N0|g⊥⊥Θ0 with distribution

N0 ∼ Binomial

(
n, ∑

i:g(i)=1
P(X = i)

)
.

Defining

pg := ∑
i:g(i)=1

P(X = i),

we can the see that when pg ̸= 0 by a simple binomial calculation

EN0|g

[
1

4(N0 +1)

]
=

1− (1− pg)
n+1

4(n+1)pg
(3.136)

and EN0|g

[
1

4(N0+1)

]
= 1

4 when pg = 0. Now, we have

h(Θ0 |Xn,Y n,G) =
1

2m ∑
g∈G

h(Θ0 |Xn,Y n,G = g)

≤ 1
2m ∑

g∈G

1
2

log
(

2πeEN0|g

[
1

4(N0 +1)

])
(3.137)
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=
1
2

log(πe/2)+ ∑
g∈G

1
2

log
(

EN0|g

[
1

N0 +1

])
(3.138)

where (3.137) follows from (3.132).

In the exact same way, we can upper-bound h(Θ1|Xn,Y n,G) as

h(Θ1 |Xn,Y n,G)≤ 1
2

log(πe/2)+ ∑
g∈G

1
2

log
(

EN1|g

[
1

N1 +1

])
. (3.139)

From (3.138) and (3.139) we get

h(Θ0 |Xn,Y n,G)+h(Θ1 |Xn,Y n,G)

≤ log(πe/2)+ ∑
g∈G

1
2

log
(

EN0|g

[
1

N0 +1

]
EN1|g

[
1

N1 +1

])
(3.140)

Now, from (3.136) we have, when pg ̸= 0,1

EN0|g

[
1

N0 +1

]
EN1|g

[
1

N1 +1

]
=

1− (1− pg)
n+1

(n+1)pg
·

1− pn+1
g

(n+1)(1− pg)

≤ 1
n+1

(3.141)

where (3.141) follows from noting that the function 1−(1−x)n+1

x · 1−xn+1

1−x ≤ n+1 for all 0 < x < 1.

Moreover, when pg is either 0 or 1 we have EN0|g

[
1

N0+1

]
EN1|g

[
1

N1+1

]
= 1

n+1 , and putting the

aforementioned two cases together we have

h(Θ0 |Xn,Y n,G)+h(Θ1 |Xn,Y n,G)≤ log(πe/2)+ ∑
g∈G

1
2

log
(

1
n+1

)
≤ log(πe/2)− 1

2
log(n+1) (3.142)

Substituting the bound (3.142) into (3.127) yields

I(Θ0,Θ1,G;Y n |Xn)≥ m+ log(n+1)−H(G|Xn,Y n)− log(4πe). (3.143)
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Now, we have for any estimator Ĝ(Xn,Y n) of G,

H(G|Xn,Y n)≤ H(G|Ĝ(Xn,Y n)) (3.144)

≤ P(G ̸= Ĝ(Xn,Y n))m+1 (3.145)

where (3.144) follows by the data processing inequality, and (3.145) follows from the Fano

inequality [96]. We now provide an estimator Ĝ(Xn,Y n) for which the error probability P(G ̸=

Ĝ(Xn,Y n)) = o(1). Given Xn,Y n, we define

p̂l :=
∑

n
i=11{Xi = l,Yi = 1}+1/2

∑
n
i=11{Xi = l}+1

, l ∈ {1, . . . ,m}. (3.146)

Let p̂min := minl p̂l and p̂max := maxl p̂l . The estimator Ĝ(Xn,Y n) ∈ G is then defined as

Ĝ(l) =

{
0 if p̂l ≤ p̂max+p̂min

2

1 otherwise.

The probability of error of this estimator can now be bounded as follows.

Lemma 9. We have

P(Ĝ(Xn,Y n) ̸= G)≤ 2
2m +

(
1− 2

2m

)
2
√

eme−3n/100m. (3.147)

The proof of Lemma 9 is provided in the next subsection of Appendix D.

Using Lemma 9 in (3.145) and substituting this into (3.143), since 2m
2m ≤ 1, we have

I(Θ0,Θ1,G;Y n |Xn)≥ m+ log(n+1)−2
√

em2e−3n/100m− log(πe) (3.148)

as required.
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Proof of Lemma 9

We will denote Ĝ(Xn,Y n) simply by Ĝ for convenience.

Let g = 0 and g = 1 denote the all-0 and all-1 functions respectively (i.e. g(x) = 0/1 for

all x ∈ [m]). We have

P(Ĝ ̸= G) =
1

2m ∑
g∈G

P(Ĝ ̸= g|G = g)

=
1

2m

(
P(Ĝ ̸= 0|G = 0)+P(Ĝ ̸= 1|G = 1)

)
+

1
2m ∑

g∈G
P(Ĝ ̸= g|G = g)

≤ 2
2m +

1
2m ∑

g∈G \{g=0,g=1}
P(Ĝ ̸= g|G = g) (3.149)

Now, consider P(Ĝ ̸= g|G = g) for g ̸= 0,1 identically. Since

P(Ĝ ̸= g|G = g) = EΘ0,Θ1[P(Ĝ ̸= g|G = g,Θ0,Θ1)],

showing that for a fixed (g,θ0,θ1) with g ̸= 0,1 identically and θ1−θ0 ≥ 1
2 , with Xi ∼Unif{[m]}

i.i.d. and Yi|(Xi = l)∼Bernoulli(θg(l)), i∈ [n], P(Ĝ ̸= g)≤ 2
√

eme−3n/100m suffices to prove the

lemma (recall that the θ1−θ0 ≥ 1
2 condition arises due to the choice of PH and more specifically

the distribution of (Θ0,Θ1) in (3.123), which has zero density over the region θ1−θ0 <
1
2 ). We

now prove this statement.

We claim that

{
∩m

l=1(| p̂l−θg(l) | ≤ 1/8)
}
⊆
{

Ĝ = g
}
. (3.150)

To see this, note that if the event
{
∩m

l=1(|p̂l−θg(l)| ≤ 1/8)
}

occurs, we have θ1−1/8≤ p̂max ≤

θ1 +1/8 and θ0−1/8 ≤ p̂min ≤ θ0 +1/8 (recall that there is at least one l such that g(l) = 0,
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and similarly at least one l such that g(l) = 1) and subsequently, adding these two inequalities,

θ0 +θ1

2
−1/8≤ p̂max + p̂min

2
≤ θ0 +θ1

2
+1/8 (3.151)

But, since θ1−θ0 ≥ 1/2, we have θ0+1/8≤ θ0+θ1
2 −1/8 and similarly θ1−1/8≥ θ0+θ1

2 +1/8.

This, together with (3.151) implies that

θ0 +1/8≤ p̂max + p̂min

2
≤ θ1−1/8

Since the event
{
∩m

l=1(|p̂l−θg(l)| ≤ 1/8)
}

occurring implies that if g(l) = 0, p̂l ≤ θ0 + 1/8,

which implies that in this case p̂l ≤ p̂max+p̂min
2 and so Ĝ(l) = g(l) = 0. Similarly, when g(l) = 1,

Ĝ(l) = g(l) = 1.

Going back to (3.150), we have

P
(
∩m

l=1 | p̂l−θg(l) | ≤ 1/8
)
≤ P(Ĝ = g)

=⇒ P(Ĝ ̸= g)≤ P
(
∪m

l=1 | p̂l−θg(l) | > 1/8
)

=⇒ P(Ĝ ̸= g)≤
m

∑
l=1

P
(
| p̂l−θg(l) | > 1/8

)
(3.152)

where (3.152) follows from the union bound. Consider now P
(
|p̂m−θg(m)|> 1/8

)
. Without

loss of generality, we may assume that g(m) = 1. Introducing the notation4

Nl :=
n

∑
i=1

1{Xi = l}, l ∈ {1, . . . ,m} (3.153)

Kl :=
n

∑
i=1

1{Yi = 1,Xi = l}, l ∈ {1, . . . ,m}. (3.154)

4This notation is independent of and not to be confused with the definitions of N0,K0,N1 and K1 in the proof of
Lemma 7.
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we have

P(| p̂m−θ1 | > 1/8) = P

(∣∣∣∣Km +1/2
Nm +1

−θ1

∣∣∣∣> 1/8
)

= ENm

[
P

(∣∣∣∣Km +1/2
Nm +1

−θ1

∣∣∣∣> 1/8
∣∣∣Nm

)]
.

Recalling that Km|Nm ∼ Binomial(Nm,θ1), a slight variation on the Hoeffding inequality yields

P

(∣∣∣∣Km +1/2
Nm +1

−θ1

∣∣∣∣> 1/8
∣∣∣Nm

)
≤ 2
√

ee−Nm/32. (3.155)

Next, since Nm ∼ Binomial(n,P(X = m)) and P(X = m) = 1
m by our choice of PX , recalling the

moment-generating function of the binomial random variable E[etNm ] =
(
1− 1

m + 1
met)n

, we have

ENm

[
P

(∣∣∣∣Km +1/2
Nm +1

−θ1

∣∣∣∣> 1/8
∣∣∣Nm

)]
≤ ENm[2

√
ee−Nm/32]

≤ 2
√

e
(

1− 1
m
+

1
m

e−1/32
)n

. (3.156)

We can use the exact same procedure to establish

P
(
| p̂l−θg(l) | > 1/8

)
≤ 2
√

e
(

1− 1
m
+

1
m

e−1/32
)n

(3.157)

for l = 1, . . . ,m−1. Substituting this bound into (3.152) yields

P(Ĝ ̸= g)≤ 2m
√

e
(

1− 1
m
+

1
m

e−1/32
)n

= 2m
√

e

(
1− (1− e−1/32)

m

)n

≤ 2
√

eme−n(1−e−1/32)/m

≤ 2
√

eme−3n/100m. (3.158)
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Chapter 4

On Universal Portfolios With Continuous
Side Information

4.1 Introduction

We study the classical problem of portfolio selection, formally defined as follows. Sup-

pose that there exist m ≥ 2 stocks in a stock market and let xt = (xt1, . . . ,xtm) ∈ R≥0 denote a

market vector at time t, which encodes the price relatives of stocks on that day. That is, for

each stock i ∈ [m] ..= {1, . . . ,m}, xti ≥ 0 is the ratio of the end price to the start price on day

t. Concretely, an investment strategy a, at each day t, outputs a nonnegative weight vector

a(·|xt−1) ∈ ∆m−1 over the stocks [m], upon which the investor distributes her wealth accord-

ingly; hereafter, we use B ..= ∆m−1 ..= {(θ̂1, . . . , θ̂m) ∈ Rm
≥0 : ∑

m
i=1 θ̂i = 1} to denote the standard

m-simplex. That is, the multiplicative wealth gain on day t (i.e., the ratio of wealth on day t to

the wealth on day t−1) is ∑ j∈[m] a( j|xt−1)xt j. Thus, her cumulative wealth gain after n days

becomes

Sn(a,xn) ..=
n

∏
t=1

∑
j∈[m]

a( j|xt−1)xt j = ∑
yn∈[m]n

( n

∏
t=1

a(yt |xt−1)
)

x(yn), (4.1)

where x(yn) ..= x1y1 · · ·xnyn denotes the wealth gain of an extreme investment strategy that puts

all money to the stock yt on day t, and the second equality follows from the distributive law.

An investor’s goal is to design an investment strategy that maximizes her cumulative
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wealth Sn(a,xn). For a stock market where xn are i.i.d., it is known that the log-optimal portfolio

θθθ
⋆ that maximizes E[logθθθ

T X] is asymptotically and competitively optimal. A similar result

is well-established for stationary ergodic markets, see, e.g. [17, Chapter 16]. The log-optimal

portfolio theory with stochastic market assumptions, however, is unrealistic, as modeling a stock

market could be harder than predicting the market.

As a more realistic alternative, [18] presented universal portfolios that asymptotically

achieve the best wealth, to first order in the exponent, attained by a certain class of reference

portfolios, with no statistical assumptions on the stock market. For the reference class, Cover

considered a class of constant rebalanced portfolios (CRPs), where a CRP parameterized by a

weight vector θθθ ∈B is defined to redistribute its wealth according to θθθ on every day. Note that

CRPs are optimal in an i.i.d. stock market when the distribution is known.

Later, [19] extended the theory to a setup where a discrete side information sequence is

causally available to an investor; in practice, the side information sequence can be thought to

encode an external information that may help predict the stock market. They proposed a variation

of [18]’s universal portfolios that asymptotically achieves the best wealth attained by a class of

state-wise CRPs that may play different weight vectors according to the side information.

Taking one step further, in this paper, we consider a more challenging scenario in which

a side information sequence zn ∈Z n is continuous-valued, which could even be the (truncated)

market history itself. A reference portfolio we aim to compete with is parameterized by a

state-wise CRP and a state function g : Z → [S] for some S≥ 2 and plays the state-wise CRP

according to the state sequence g(zn) ..= g(z1) . . .g(zn), where we assume a class of state functions

G from which g is drawn; note that larger the G , the richer the reference class. This flexibility

in the class G and the choice of continuous side information sequence may hugely enlarge the

capacity of the competitor class since it can capture a variety of investment strategies. As a

simple example, consider a portfolio strategy that selects the state based on whether the price

relative of the first stock yesterday xt,1 ≥ β or not for a (variable) threshold β . This falls into

this enlarged class with zt = xt−1.
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As the main result, we propose a new investment strategy that asymptotically achieves

the same wealth attained by the best state-constant rebalanced portfolios with a state function

drawn from a class of functions of finite Natarajan dimension, under a mild regularity condition

on the stochasticity of the side information sequence Zn. The proposed strategy is based on a

generalization of a universal probability assignment scheme recently proposed by [97]. Note that

we assume no transaction costs and that the investor’s actions do not affect the market.

The rest of the paper is organized as follows. In Section 4.2, we review universal

portfolios without and with discrete side information, highlighting the connection between

universal compression (or probability assignment) and universal portfolios. Section 4.3 described

the proposed algorithm and a crude approximation algorithm for its simulation, together with

some concrete examples of side information sequence. We present the proof of the main theorem

in Section 4.4. We conclude with discussing related work in Section 4.5. All deferred proofs and

technical discussions can be found in Appendices.

4.2 A Review of Universal Portfolio Theory

4.2.1 Universal Portfolios

In his seminal work, [18] set an ambitious goal that aims to design an investment strategy

b to compete with the best strategy in a class A of investment strategies for any stock market xn,

in the sense that it minimizes the worst-case regret

Regportn (b,A ) ..= sup
xn

sup
a∈A

log
Sn(a,xn)

Sn(b,xn)
.

We call a portfolio b universal with respect to A if Regportn (b,A ) = o(n), i.e., in words, b

achieves the same exponential wealth growth rate attained by the best strategy in A chosen

in hindsight with observed market. Remarkably, Cover constructed a universal portfolio with

respect to the class of CRPs and established its universality. Cover’s theory is based on the key

observation that competing against CRPs in portfolio optimization is equivalent to competing
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against i.i.d. Bernoulli models in log-loss prediction problem. In what follows, we describe this

relationship in a general form beyond between i.i.d. probabilities and CRPs.

For any sequential probability assignment scheme q(·|yt−1) ∈B (where yi ∈ [m]) the

probability induced portfolio a = φ(p) is defined as

a( j|xt−1) ..=
∑yt−1∈[m]t−1 p(yt−1 j)x(yt−1)

∑yt−1∈[m]t−1 p(yt−1)x(yt−1)
. (4.2)

Note that if p is an i.i.d. probability, i.e., p(·|yt−1) = θθθ ∈ B, it is easy to check from the

expression (4.2) that the corresponding portfolio φ(p) is the CRP parameterized by θθθ ; thus the

class of CRPs A CRP is φ(P⊗), where we use P⊗ to denote the class of i.i.d. probabilities.

A peculiar property of a probability induced portfolio a = φ(p) is that the daily gain can

be written as

∑
yt∈[m]

a(yt |xt−1)xt(yt) =
∑yt p(yt)x(yt)

∑yt−1 p(yt−1)x(yt−1)
,

and thus by telescoping, the cumulative wealth gain (4.1) becomes

Sn(φ(p),xn) = ∑
yn∈[m]n

p(yn)x(yn). (4.3)

In view of this expression, a probability induced portfolio can be interpreted as a fund-of-funds,

i.e., a mixture of the extremal portfolios with weights p(yn).

As alluded to earlier, there is an intimate connection between the portfolio optimization

with respect to a class of probability induced portfolios and the corresponding log-loss prediction

problem. In the log-loss prediction problem, given a class of probabilities P , we define the

worst-case regret of a probability q with respect to P as

Regprobn (q,P) = sup
yn

sup
p∈P

log
p(yn)

q(yn)
(4.4)

and call a probability q universal with respect to P if Regprobn (q,P) = o(n). The following
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proposition shows that the portfolio optimization with respect to φ(P) is no more difficult than

the corresponding log-loss prediction problem with respect to P .

Proposition 7. For any probability q and any class of probability assignments P , we have

Regportn (φ(q),φ(P))≤ Regprobn (q,P).

Proof. We first recall (4.3) that the cumulative wealth of the probability induced portfolio φ(p)

is written as Sn(φ(p),xn) = ∑yn p(yn)x(yn). Hence, for any probability q, we can write

Regportn (φ(q),φ(P)) = sup
xn

sup
p∈P

Sn(φ(p),xn)

Sn(φ(q),xn)
= sup

xn
sup
p∈P

∑yn p(yn)x(yn)

∑yn q(yn)x(yn)

(a)
≤ sup

p∈P
max

yn

p(yn)

q(yn)
= Regprobn (q,P),

where (a) follows by Lemma 10 below.

Lemma 10 ( [17], Lemma 16.7.1). Let a1, . . . ,an,b1, . . . ,bn be nonnegative real numbers. Then,

defining 0/0 = 0, we have ∑
n
i=1 ai

∑
n
i=1 bi
≤max j∈[n]

a j
b j
.

A direct implication of this statement is that if a probability assignment q is universal

with respect to P for the log-loss prediction problem, then the induced portfolio φ(q) is

universal with respect to φ(P). If we consider the class of all i.i.d. probabilities P⊗, it is well

known that the Laplace probability assignment qL(yn) ..=
∫
B µ(θθθ)pθθθ (yn)dθθθ is universal for P⊗,

where µ(θθθ) is the uniform density over B and pθθθ (yn) is the i.i.d. probability with parameter

θθθ = (θ̂1, . . . , θ̂m) ∈B, i.e., pθθθ (yn) ..= ∏
n
i=1 θ̂yn = ∏

m
j=1 θ̂

k j
j with ki = |{t : yt = i}|.1 Indeed, we

have:

1We remark that while the Krichevsky–Trofimov (KT) probability assignment qKT is universal with an optimal
constant in the regret, we consider qL for simplicity throughout this paper.
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Lemma 11 ( [98], Chapter 9).

sup
θθθ∈B

sup
yn∈[m]n

log
pθθθ (yn)

qL(yn)
≤ m logn.

Hence, φ(qL) is a universal portfolio for A CRP = φ(P⊗)—this is [18]’s universal

portfolio. We remark that the universal portfolio φ(qL) can be expressed as

φ(qL)(·|xt−1) =

∫
B θθθSt−1(θθθ ,xt−1)µ(θθθ)dθθθ∫
B St−1(θθθ ,xt−1)µ(θθθ)dθθθ

,

and is thus also known as the µ-weighted portfolio.

4.2.2 Universal Portfolios with Discrete Side Information

Let us now consider a scenario at each time t, the investor is additionally given a discrete

side information wt ∈ [S] for some S≥ 1 and chooses a portfolio a(·|xt−1;wt)∈B, as considered

by [19]. Since the investor’s multiplicative wealth gain is ∑y∈[m] a(y|xt−1;wt)xt(y), similar to the

no-side-information setting, the cumulative wealth factor is

Sn(a,xn;wn) ..=
n

∏
t=1

∑
j∈[m]

a( j|xt−1;wt)xt j (4.5)

and we define the worst-case regret as

Regportn (b,A ;wn) ..= sup
a∈A

sup
xn

log
Sn(a,xn;wn)

Sn(b,xn;wn)

for a class A of portfolios that also adapt to wn. Concretely, as a natural extension of CRPs, we

consider a class of state-constant rebalanced portfolios (state-CRPs), denoted as A CRP
S , where a

state-CRP parameterized by a S-tuple (θθθ 1, . . . ,θθθ S) ∈BS plays a portfolio θθθ wt at each time t.

Paralleling the connection between probability and portfolio in the no-side-information

case, we can also define a probability induced portfolio in this setting. In the log-loss prediction
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with a causal side information sequence, a learner is asked to assign a probability p(·|yt−1;wt)

over [m] based on the causal information, i.e., past sequence yt−1 and the side information

sequence wt . Here, we use p(yn∥wn) ..= ∏
n
t=1 p(yt |yt−1;wt) to denote the joint probability over

yn given wn. The probability induced portfolio a = φ(p) is then defined as

a( j|xt−1;wt) ..=
∑yt−1 p(yt−1 j∥wt)x(yt−1)

∑yt−1 p(yt−1∥wt−1)x(yt−1)
, (4.6)

and as in the no-side information setting, we can write

Sn(φ(p),xn;wn) = ∑
yn

p(yn∥wn)x(yn).

For example, the class of S-state-CRPs BCRP
S is induced by the class of all S-state i.i.d. prob-

abilities P⊗
S , i.e., BCRP

S = φ(P⊗
S ). To see this, note that every S-state-CRP parameterized

by θθθ 1:S = (θθθ 1, . . . ,θθθ S) is the portfolio induced by the state-wise i.i.d. probability assignment

pθθθ 1:S(y
n∥wn) ..= ∏

n
t=1 pθθθ wt

(yt). Moreover, as stated in Proposition 7, solving the log-loss predic-

tion problem suffices for the probability optimization with side information with respect to a

class of probability induced portfolios. The proof can be found in Appendix 4.6.2.

Proposition 8. For any probability assignment q and any class of probability assignment schemes

P with side information sequence wn, we have

Regportn (φ(q),φ(P);wn)≤ Regprobn (q,P;wn),

where we define

Regprobn (q,P;wn) ..= sup
p∈P

max
yn

log
p(yn∥wn)

q(yn∥wn)
.

Note that for the class of S-state-wise i.i.d. distributions P⊗
S , the state-wise extension of
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the Laplace probability assignment qL;S that assigns

qL;S(yn∥wn) ..=
S

∏
s=1

qL(yn(s;wn)), (4.7)

where yn(s;wn) = (yi : wi = s, i ∈ [n]), is universal, and so φ(qL;S) is universal for A CRP
S =

φ(P⊗
S )—this is [19]’s universal portfolio.

4.3 Main Results

4.3.1 Universal Portfolios with Continuous Side Information

We now consider our main setting where a side information sequence zn ∈ Z n is

continuous-valued. For example, in this setup, one may take zt as a suffix of the market

history xt−1
t−k for some k≥ 1. As described earlier in the introduction, we aim to design a universal

portfolio that competes against a class of state-CRPs that adapts to the sequence g(wn), where

g is a state function g : Z → [S] assumed to belong to a class of functions G . Note that a

singleton G = {g} recovers the setting of [19]. Our goal is to design a portfolio that is universal

for a largest possible G with a minimal assumption on the side information sequence. In this

paper, we will assume that the Natarajan dimension [99] of G , denoted as Ndim(G ), is finite.

The Natarajan dimension can be seen as a generalization of the classic VC dimension, when

the function class under consideration is not binary—for completeness a formal definition is

provided in Appendix 4.6.1.

Leveraging the established connection between probability and portfolio, we continue to

view the class of state-wise CRPs BCRP
S = φ(P⊗

S ) as the class of portfolios induced by P⊗
S

and describe the problem in an abstract setting. For a class of probability induced portfolios with

(discrete) side information A = φ(P) and a class of state functions G , our goal is to design a
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strategy b that achieves a sublinear worst-case regret

Regportn (b;A ,G ;xn,zn) ..= sup
g∈G

sup
a∈A

log
S(a,xn;g(zn))

S(b,xn;zn)
.

Similar to the universal portfolios with discrete side information, a universal portfolio can be

readily induced by a universal probability with respect to a continuous side information sequence

with an unknown state function, based on the following statement, whose proof is deferred to

Appendix 4.6.2.

Proposition 9. For any xn and zn, we have

Regportn (φ(q);φ(P),G ;xn,zn)≤ Regprobn (q;P,G ;zn),

where

Regprobn (q;P,G ;zn) ..= sup
g∈G

sup
p∈P

max
yn

log
p(yn∥g(zn))

q(yn∥zn)
.

In this work, we specifically plug-in an extended version of the universal probability

assignment q∗G proposed by [97], which was designed for m = 2,S = 2 with regret guarantee

established when yn is random and the side information sequence Zn is i.i.d.. We will extend

their scheme for arbitrary m and S with a guarantee for adversarial yn and non-i.i.d. Zn.

Below, we further assume that a side information sequence Zn is stochastic with dis-

tribution PZn which may be arbitrarily correlated with the stock market Xn; the universality is

established with respect to the expected worst-case regret

Reg
port
n (b;A ,G ) ..= E

[
Regportn (b;A ,G ;Xn,Zn)

]
,

where the expectation is over a joint distribution PXn,Zn . We remark that it is unclear whether the

required stochastic assumptions on Zn in Theorem 3 are an artifact of our analysis or whether

they can be completely removed and universality can be established for individual sequences zn.
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We leave this question for future work; see also Section 4.5.

Proposed Strategy.

Firstly, for any ñ ∈ N and any z̃ñ ∈ Z ñ, let {g̃1, . . . , g̃ℓ} ⊂ G be a minimal empirical

covering of G with respect to z̃ñ, i.e., a set of functions such that {g̃i(z̃ñ) : i ∈ [ℓ]}= {g(z̃ñ) : g ∈

G } with the minimum possible size ℓ= ℓ(z̃ñ). Then, we define a mixture probability assignment

qG ;z̃ñ(yi∥zi) ..=
1
ℓ

ℓ

∑
j=1

qL;S(yi∥g̃ j(zi)) (4.8)

with respect to the empirical covering, and define the induced sequential probability assignment

qG ;z̃ñ(yi |yi−1;zi) ..=
qG ;z̃ñ(yi∥zi)

qG ;z̃ñ(yi−1∥zi−1)
.

The proposed probability assignment q∗G is then defined as follows. First, we split the n time

steps into ⌈log2 n⌉ epochs: starting from j = 1, define the j-the epoch to consist of the time steps

2 j−1 +1≤ i≤ 2 j. So, the first epoch consists of z2, the second epoch consists of z4
3, the third

epoch consists of z8
5 and so on. Then,

• For i = 1, q∗G (·|z1) ..= 1/m;

• For i≥ 2, if 2 j−1 +1≤ i≤ 2 j, i.e., if the time step i falls within the j-th epoch, then

q∗G (yi |yi−1;zi) ..=
q

G ;z2 j−1 (yi
2 j−1+1∥z

i
2 j−1+1)

q
G ;z2 j−1 (yi−1

2 j−1+1∥z
i−1
2 j−1+1)

,

where we define q
G ;z2 j−1 ( /0∥ /0) = 1 by convention.

Concretely, the probability assigned over yn given zn for some n ∈ (2J−1,2J] is

q∗G (y
n∥zn) =

n

∏
i=1

q∗G (yi |yi−1;zi)

= qG ; /0(y1∥z1)qG ;z1(y2∥z2)qG ;z2(y4
3∥z4

3) · · ·qG ;z2J−1 (yn
2J−1+1∥z

n
2J−1+1). (4.9)
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Finally, we obtain a sequential portfolio a = φ(q∗G ) via the expression (4.6).

A note on implementation.

While the main focus of this paper is to construct a provably universal portfolio with

continuous side information, we also include a discussion on its Monte Carlo based simulation

and an example with real stock data in Appendix 4.6.6.

4.3.2 Performance Guarantee and Examples

Given a class of S-state functions G , we need to impose a structural condition on the

sequence Zn ∼ PZn as a stochastic process. For any binary function class H ⊂ {Z →{0,1}},

define

ρH (Zn) = sup
h∈H

∣∣∣ n

∑
i=1

(
h(Zi)−E[h(Zi)]

)∣∣∣, (4.10)

which is a well-studied quantity in the empirical process theory. Specifically, we are interested in

the binary function class

1G ×G ..= {h : Z →{0,1} : h(z) = 1(g(z) ̸= g′(z)) for g,g′ ∈ G }.

With a slight abuse of notation, we use ρG×G (Zn) to denote ρ1G×G (Zn). We now state our main

result.

Theorem 3 (Asymptotic universality). For any collection of functions G of finite Natarajan

dimension and any stationary stochastic process Zn such that

E[ρG×G (Zn)] = o
( n

log2 n

)
, (4.11)
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the induced portfolio φ(q∗G ) satisfies

lim
n→∞

1
n
Reg

port
(φ(q∗G ),A

CRP
S ,G ) = 0.

In Theorem 3, the condition E[ρG×G (Zn)]≪ n
log2 n

on the marginal distribution PZn is

crucial in ensuring consistency of the portfolio φ(q∗G ). We now provide a few example cases

of side information sequences Zn where this requirement is satisfied. In fact, by controlling

E[ρG×G (Zn)] we can also bound the nonasymptotic regret for these particularly interesting cases.

Example 1 (i.i.d. processes). When the joint distribution PXn,Zn is such that Zn is i.i.d., it is well

known that E[ρH (Zn)]≤C
√

VCdim(H )n (for absolute constant C) for any binary class H

and distribution PZn; see [3, Theorem 8.3.23]. Following the same logic2, it can be shown that

E[ρG×G (Zn)]≤C
√

(d logS)n and consequently Reg
port

= Õ(
√

n).

Example 2 (β -mixing processes). The quantity E[ρH (Zn)] has also been studied for classes

beyond i.i.d. sequences—in particular, [100] studied the case when Zn is β -mixing, which we

now define. For the sigma-fields σl
..= σ(Z1, . . . ,Zℓ) and σ ′l+k

..= σ(Zℓ+k,Zℓ+k+1, . . . ,), we define

βk
..= 1

2 sup{E|P(B|σl)−P(B)| : B ∈ σ ′ℓ+k, ℓ ≥ 1} and if βk = O(k−rβ ) as k→ ∞, rβ is called

the β -mixing exponent; a larger rβ guarantees faster mixing. We can restate the main result

of [100] for the case when H has a finite VC dimension.

Theorem 4 ( [100, Corollary 3.2 and Remark (i)]). Assume that a class of binary functions H

is of finite VC dimension. Let Zn be a stationary β -mixing sequence with β -mixing exponent

rβ ∈ (0,1]. Let
p−→ denote convergence in probability. Then, for any given s ∈ (0,rβ ), we have

ns/(1+s)ρH (Zn)

n
p−→ 0 as n→ ∞. (4.12)

2The only change to be made in the proof is in the growth function—rather than
( en

d

)d , the growth function in
this case is ≤ (S2n)2d by Natarajan’s Lemma; see Section 4.4.1.
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This theorem immediately implies that 1
nReg

port p−→ 0, i.e., φ(q∗G ) is universal in proba-

bility. We can also establish its universality in expectation via Theorem 3, by showing (4.11)

under the same assumption. The proof requires an additional technical argument and thus

deferred to Appendix 4.6.3.

Example 3 (Market history zt = xt−1
t−k). A canonical example of side information is the market

history zt = xt−1 or a truncated version of it with memory size k, i.e., zt = xt−1
t−k . In this case,

if the stock market (xt) itself is k-th order Markov, then under an additional mild regularity

condition, we can show a faster rate Reg
port ≤ Õ(

√
n) than implied by the previous example;

see Appendix 4.6.5.

4.4 Proofs

In this section, we prove Theorem 3. We first note that the probability assignment q∗G

used to derive the proposed portfolio guarantees the following regret bound.

Theorem 5. For probability assignment q∗G if the Natarajan dimension (denoted by Ndim(G ) =

d) of G is finite and Zn ∼ PZn is stationary, we have3

E
[

sup
g∈G

sup
p∈P⊗

S

sup
yn∈[m]n

log
p(yn∥g(Zn))

q∗G (y
n∥Zn)

]
(4.13)

≤ S(d +m)(log2 n)+2.5Sm
logn−1

∑
j=0

jE[ρG×G (Z2 j
)].

We will first prove Theorem 5; Theorem 3 then follows as a corollary of Theorem 5 via

the established connection between a probability and the induced portfolio in Proposition 9.

4.4.1 Proof of Theorem 5

Note that the key building block of the proposed probability assignment scheme q∗G is

qz̃n(yi∥zi) defined in (4.8), the uniform mixture based on a minimal empirical covering of G with
3Here, logn is assumed to be an integer for simplicity, which can be easily rectified at the cost of an absolute

constant factor in the regret; see Section 4.4.1.
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respect to z̃n. The proof consists of three steps. In Step 1, we first consider the simplest case

where the whole side information sequence zn is provided noncausally by an oracle, where we

can use zn as z̃n to build the empirical covering. We then analyze the performance of qz̃n(yi∥zi)

for an arbitrary auxiliary sequence z̃n in Step 2. Finally, in Step 3, we analyze q∗G based on the

analysis of qz̃n(yi∥zi).

Step 1. Side Information Given Noncausally

Suppose that zn is available noncausally so that it can be used to construct a minimal

empirical covering in qzn(yi∥zi) for i ∈ [n]. First, note that since |{(g(zn) : g ∈ G }| ≤ Sn, we

can construct an empirical covering {g1, . . . ,gℓ} of G with respect to zn with ℓ≤ Sn. Assuming

Ndim(G ) = d < ∞, however, we can even do so with ℓ ≤ (S2n)d by Natarajan’s Lemma [99,

Lemma 29.4]. Hence, for the mixture probability assignment qz̃n(yi∥zi) defined in (4.8) with

z̃n← zn, i.e.,

qzn(yi∥zi) =
1
ℓ

ℓ

∑
j=1

qL;S(yi∥g j(zi)),

it readily follows that for any g ∈ G ,

sup
p∈P⊗S

sup
yn∈[m]n

log
p(yn∥g(zn))

qzn(yn∥zn)
≤ d log(S2n)+Sm logn (4.14)

by invoking that ℓ ≤ (S2n)d and applying the regret bound for the m-ary Laplace probability

assignment in Lemma 11 for each state.

Step 2. Auxiliary Side Information Given Noncausally

We now analyze the mixture probability qz̃n(yn∥zn) for an arbitrary auxiliary sequence z̃n,

possibly being different from zn. Intuitively, the sequence z̃n will also reduce the class G to at

most (S2n)d functions, and if zn and z̃n are “not too far apart”, the two reductions each obtained

by zn and z̃n may be also close. The following lemma provides the performance of the mixture

probability qz̃n(yn∥zn) with respect to the auxiliary sequence z̃n, capturing the expected gap from
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the intuition by the Hamming distance (denoted by dH) between g(zn) and g̃(zn).

Lemma 12. For any z̃n, zn, and g ∈ G with Ndim(G ) = d < ∞, we have

sup
p∈P⊗

S

sup
yn∈[m]

log
p(yn∥g(zn))

qz̃n(yn∥zn)
≤ d log(S2n)+Sm(logn)(1+2.5dH(g(zn), g̃(zn)))

≤ S(logn)(d +m+2.5mdH(g(zn), g̃(zn))). (4.15)

Note that setting dH(g(zn), g̃(zn)) = 0 recovers (4.14) as expected.

Proof. Let pθθθ 1:S be a state-wise i.i.d. probability assignment characterized by θθθ 1:S = (θθθ 1, . . . ,θθθ S)

∈BS, where θθθ i = (θ̂i1, θ̂i2, . . . , θ̂im) ∈B for each i ∈ [S]. For any state function g ∈ G , by

definition of the empirical covering, there exists a function g̃ ∈ {g̃1, . . . , g̃ℓ} such that g̃(z̃n) =

g(z̃n). Hence, we first have

log
pθθθ 1:S(y

n∥g(zn))

qz̃n(yn∥zn)
≤ d log(S2n)+ log

pθθθ 1:S(y
n∥g(zn))

qL;S(yn∥g̃(zn))
. (4.16)

It only remains to analyze qL;S(yn∥g̃(zn)). For each i∈ [S] and j ∈ [m], we define ni
..= |t : g(Zt) =

i| and ki j
..= |t : g(Zt) = i,yt = j|. Moreover let ñi, k̃i j be defined in a similar way as ñi

..=

|t : g̃(Zt) = i| and k̃i j
..= |t : g̃(Zt) = i,yt = j|). We can then write

pθθθ 1:S(y
n∥g(zn)) =

S

∏
s=1

θ̂
ks1
s1 . . . θ̂ ksm

sm .

Further, we can explicitly write the expression for the Laplace probability assignment as

qL(yn) = (
(n+m−1

m−1

)( n
k1,...,km

)
)−1, where ki = |{t : yt = i}|, and thus its state-wise extension as

qL;S(yn∥g̃(zn)) =
( S

∏
s=1

(
ñs +m−1

m−1

)(
ñs

k̃s1, . . . , k̃s,m−1

))−1
.
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Now, consider

log
pθθθ 1:S(y

n∥g(zn))

qL;S(yn∥g̃(z̃n))
=

S

∑
i=1

log
(

ñi +m−1
m−1

)(
ñi

k̃i1, . . . , k̃i,m−1

)
θ̂

ki1
i1 . . . θ̂ kim

im

≤ Sm logn+
S

∑
i=1

log

( ñi
k̃i1,...,k̃i,m−1

)( ni
ki1,...,ki,m−1

) (4.17)

= Sm logn+
S

∑
i=1

log
ñi!
ni!

+
S

∑
i=1

m

∑
j=1

log
ki j!
k̃i j

, (4.18)

where (4.17) follows since
( ni

ki1,...,ki,m−1

)
θ̂

ki1
i1 . . . θ̂ kim

im ≤ 1.

Now, since for all i∈ [S] and j ∈ [m], we have |ni− ñi| ≤ dH(g(zn), g̃(zn)) and |ki j− k̃i j| ≤

dH(g(zn), g̃(zn)), we have ñi ≤ ni + dH(g(zn), g̃(zn)) and consequently ñi!
ni!
≤ (ni+dH(g(zn),g̃(zn)))!

ni!
.

Thus, we can invoke the exact same calculations as in [97, Propositions 5 and 6] to bound the

second and third terms in (4.18) as

log
pθθθ 1:S(y

n∥g(zn))

qL;S(yn∥g̃(z̃n))
≤ Sm logn+S(m+3)dH(g(zn), g̃(zn)) logn

≤ Sm(logn)(1+2.5dH(g(zn), g̃(zn))), (4.19)

since m≥ 2. Plugging this into (4.16) establishes the first bound. The second bound follows by

observing log(S2n)≤ S logn.

When Zn is stationary as a stochastic process and if Z̃n is a statistical copy of Zn, the

following lemma shows that the Hamming distance can be bounded by ρG×G (Zn), which can

be controlled in expectation as o(n/ log2 n) under mild regularity conditions on PZn and G . The

proof is deferred to Appendix 4.6.4.

Lemma 13. If Zn is stationary, Z̃n (d)
= Zn, and g̃(Z̃n) = g̃(Z̃n), then

dH(g(Zn), g̃(Zn))≤ ρG×G (Zn)+ρG×G (Z̃n).
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Step 3. Side Information Given Causally

In view of Lemma 13, provided that Zn is stationary, we can bootstrap the history

sequence to construct such an auxiliary sequence, which motivates the epoch-based construction

of q∗G . That is, we split the n time steps into logn epochs4, and define the j-the epoch to consist

of the time steps 2 j−1 +1≤ i≤ 2 j starting from j = 1, while we define q∗G (·|Z1) = 1/m for the

0-th epoch. For i≥ 2, if the time step i falls within the j-th epoch, i.e., 2 j−1 +1≤ i≤ 2 j, then

q∗G (yi |yi−1;Zi) =
qZ2 j−1 (yi

2 j−1+1∥Z
i
2 j−1+1)

qZ2 j−1 (yi−1
2 j−1+1∥Z

i−1
2 j−1+1)

(4.20)

where we can recall the definition of qZ2 j−1 from (4.8). For any p ∈P⊗
S , we then have

n

∑
i=1

log
p(yi|g(Zi))

q∗G (yi|yi−1;Zi)
≤

n

∑
i=2

log
p(yi|g(Zi))

q∗G (yi|yi−1;Zi)
+ logm

=
logn

∑
j=1

2 j

∑
i=2 j−1+1

log
p(yi|g(Zi))

q∗G (yi|yi−1;Zi)

=
logn

∑
j=1

log
p(y2 j

2 j−1+1∥g(Z
2 j

2 j−1+1))

qZ2 j−1 (y2 j

2 j−1+1∥Z
2 j

2 j−1+1)
(4.21)

≤ S(d +m)(log2 n)+2.5Sm
logn−1

∑
j=0

jdH(g(Z2 j

1 ),g(Z2 j+1

2 j+1)), (4.22)

where (4.21) follows by (4.20) and (4.22) follows from Lemma 12. Finally, taking supremum

over yn, p and g and expectation over Zn leads to the desired inequality by Lemma 13.

4.4.2 Proof of Theorem 3

By Proposition 9 and Theorem 5, we have

Reg
port

(φ(q∗G ),A
CRP

S ,G ) = E[Regportn (φ(q∗G ),A
CRP

S ,G ;Xn,Zn)]

≤ E[Regprobn (q;P,G ;Zn)]

4For simplicity, we assume that logn is an integer; if not, we may “extend” the horizon of the game from n to
2⌈logn⌉ < 2n, and follow the same analysis incurring at most a constant factor extra in the regret bound.
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= E
[

sup
g∈G

sup
p∈P

max
yn

log
p(yn∥g(Zn))

q(yn∥Zn)

]
≤ S(d +m)(log2 n)+2.5Sm

logn−1

∑
j=0

jE[ρ(Z2 j
)],

where we omit the subscript in ρG×G (·) for brevity. Since the first term in the bound is sublinear

in n when d and S are fixed, it then suffices to show that ∑
logn−1
j=0 jE[ρ(Z2 j

)] = o(n). Using the

change of variables n′ = logn, observe

logn−1

∑
j=0

jE[ρ(Z2 j
)] =

1
n′

n′−1

∑
j=0

jE[ρ(Z2 j
)]

n′

2n′ ≤
1
n′

n′−1

∑
j=0

j2

2 jE[ρ(Z
2 j
)],

where the inequality follows since n′

2n′ ≤
j

2 j for all j ≤ n′. Now, since

(logn)2

n
E[ρ(Zn)] =

n′2

2n′ E[ρ(Z
2n′
)]→ 0

as n→ ∞ is assumed, we also have 1
n′ ∑

n′−1
j=0

j2

2 jE[ρ(Z2 j
)]→ 0 as n′→ ∞, by the Cesàro mean

Theorem. A final change of variables concludes the proof.

4.5 Related Work and Discussion

Portfolio selection has been a closely studied topic in information theory since the seminal

work of [18] and [19], both of which established close connections between portfolio selection

and the classically studied information theoretic problem of universal compression [6, 24, 101,

102]. A number of variations have been considered since, for example incorporating transaction

costs [103, 104] using other probability assignments than i.i.d. [105, 106], and considering space

complexity issues [107]. [108] and [109] proposed portfolio selection techniques incorporating

continuous side information; however, the competitor classes considered in both are disparate

from ours making the problems different.

As demonstrated, portfolio selection with side information is closely related to sequential
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prediction with side information and log-loss. This problem has attracted recent interest [97,110–

112], with the first two focused on obtaining fundamental limits via the sequential complexities

approach of [113]. More recently, the preprint of [93] proposed a mixture-based conditional

density estimator, which specifically achieves E[Regprob] = O(log2 n) for the binary probability

assignment problem with i.i.d. side information with a VC class, which tightens the regret Õ(
√

n)

established in [97]. Therefore, it is natural to consider applying the probability assignment

of [93] in hoping to relax the technical condition (4.11) and establish Theorem 3 for all stationary

ergodic Zn—it is known that E[ρG×G (Zn)] = o(n) for any stationary ergodic process (see for

example [114]).

We note, however, that analyzing their method in our setting of non-i.i.d. side information

sequences seems to involve a significant amount of additional work. More precisely, their analysis

needs to be extended to (1) individual-sequence yn and (2) stationary ergodic side information

with a dependence of the regret on ρH (Zn) similar to that of the method of [97]. In their words,

we would need to relax the assumption of the data being well-specified. At a high level, they

use a similar covering approach (with respect to the Hellinger metric over distributions) as well

as a smoothing of probabilities in order to avoid unbounded likelihood ratios (we, in contrast,

have used the Laplace/KT probability assignment). Using a similar epoch-based analysis they

establish regret bounds in [93, Appendix D] by first upper bounding the KL divergence in terms

of the Hellinger divergence and then leveraging local Rademacher complexities in conjunction

with an inequality of [115]. In order to extend their method to individual-sequence yn and

stationary ergodic Zn, one would need to either extend the aforementioned inequality to these

cases, or to bypass the step of upper-bounding the KL divergence in terms of the Hellinger

divergence altogether. We leave these directions of extension for future work.
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4.6 Appendix

4.6.1 Definition of Natarajan Dimension

We use the definitions from [99, Definitions 29.1, 29.2].

Definition 2 (Shattering). Let G ⊂ {Z → [S]}. Then, a set C ⊂Z is said to be shattered by the

function class G if there exist two functions g0,g1 ∈ G such that

• For each z ∈C,g0(z) ̸= g1(z), and

• For each B⊂C there exists a function g ∈ G such that

∀z ∈ B,g(x) = g0(x) and ∀z ∈C \B,g(x) = g1(x).

We can now define the Natarajan dimension.

Definition 3 (Natarajan dimension). For any function class G ⊂ {Z → [S]} the Natarajan

dimension of G is the maximal size of a shattered set C ⊂Z .

4.6.2 Proofs of Propositions 8 and 9

It suffices to prove Proposition 9, since Proposition 8 follows from it by taking zn = wn

and taking |G |= 1 with the function g ∈ G being simply g(z) = z.

Recall that for a probability assignment q(yi|yi−1;zi), we have the probability induced

portfolio a = φ(q) defined as

a( j|xt−1;zt) ..=
∑yt−1 q(yt−1 j∥zt)x(yt−1)

∑yt−1 q(yt−1∥zt−1)x(yt−1)
,

where recall for t ∈ [n],q(yt∥zt) = ∏
t
i=1 q(yi|yi−1;zi). We then have

∑
yt∈[m]

a(yt |xt−1;zt)xt(yt) =
∑yt−1 q(yt∥zt)x(yt)

∑yt−1 q(yt−1∥zt−1)x(yt−1)
,
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and consequently using a telescoping argument,

Sn(φ(q),xn;zn) = ∑
yn∈[m]n

q(yn∥zn)x(yn).

From this we can see that

Regportn (φ(q);φ(P),G ;xn,zn) = sup
g∈G

sup
p∈P

log
Sn(φ(p),xn;g(zn))

Sn(φ(q),xn;zn)

= sup
g∈G

sup
p∈P

log
∑yn∈[m]n p(yn∥g(zn))x(yn)

∑yn∈[m]n q(yn∥zn)x(yn)

≤ sup
g∈G

sup
p∈P

max
yn∈[m]n

p(yn∥g(zn))

q(yn∥zn)
(4.23)

= Regprobn (q;P,G ;zn),

where (4.23) follows from Lemma 10.

4.6.3 Proof of Universality in Expectation in Example 2

Recall that by Theorem 3, it suffices to show that

E[ρG×G (Zn)] = o
( n

log2 n

)
(4.11)

to establish that the induced portfolio φ(q∗G ) is universal in expectation. Indeed, for a β -mixing

process Zn with β -mixing coefficient βk and β -mixing exponent r > 0, i.e., βk = O(k−r) as

k→ ∞, we can prove a stronger statement:

E[ρG×G (Zn)] = O(n(3+r)/(3+2r)). (4.24)

The argument below to show (4.24) is based on the techniques of [116] and [117].

Pick k≥ 1 which divides n for simplicity; the divisibility can be easily lifted by elongating

the game from n steps to the next number divisible by k. We will choose k as a function of n at
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the end of proof. We define the nonoverlapping k subsequences Z(1), . . . ,Z(k) of length n/k as

Z(1)n/k
1 = Z1,Zk+1,Z2k+1 . . . ,Z(n/k−1)+1,

Z(2)n/k
1 = Z2,Zk+2,Z2k+2 . . . ,Z(n/k−1)k+2,

...

Z(k)n/k
1 = Zk,Z2k,Z3k . . . ,Z(n/k)k.

We will invoke the classical result on β -mixing processes that states that

dTV

(
P

Z( j)n/k
1
,

n/k

∏
i=1

P
Z( j)

i

)
≤
(n

k
−1
)

βk (4.25)

for each j ∈ [k], where dTV(·, ·) denotes the total variation distance; see, for example, [117,

Lemma 1] and the references therein.

Now, we consider

E[ρH (Zn)] = E
[

sup
h∈H

∣∣∣ n

∑
i=1

(h(Zi)−E[h(Zi)])
∣∣∣]

≤ E

[ k

∑
j=1

sup
h∈H

∣∣∣n/k

∑
i=1

(h(Z( j)
i )−E[h(Z( j)

i )])
∣∣∣]

=
k

∑
j=1

E

[
sup

h∈H

∣∣∣n/k

∑
i=1

(h(Z( j)
i )−E[h(Z( j)

i )])
∣∣∣]. (4.26)

Let Z′1, . . . ,Z
′
n/k be an i.i.d. process with the same marginal distribution of the stationary process

Zn, i.e., PZ′1
= PZ1 . Continuing from the summand in (4.26), we then have

E

[
sup

h∈H

∣∣∣n/k

∑
i=1

(h(Z(1)
i )−E[h(Z(1)

i )])
∣∣∣] (4.27)

= E

[
sup

h∈H

∣∣∣n/k

∑
i=1

(h(Z(1)
i )−h(Z′i)+h(Z′i)−E[h(Z(1)

i )])
∣∣∣]
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= E

[
sup

h∈H

∣∣∣n/k

∑
i=1

(h(Z(1)
i )−h(Z′i)+h(Z′i)−E[h(Z′i)])

∣∣∣] (4.28)

≤ E

[
sup

h∈H

∣∣∣n/k

∑
i=1

(h(Z(1)
i )−h(Z′i))

∣∣∣]+E

[
sup

h∈H

∣∣∣n/k

∑
i=1

(h(Z′i)−E[h(Z′i)])
∣∣∣] (4.29)

≤ E

[
sup

h∈H

∣∣∣n/k

∑
i=1

(h(Z(1)
i )−h(Z′i))

∣∣∣]+C

√
dn
k

(4.30)

≤ n
k

sup
h∈H

E

∣∣∣∣∣kn n/k

∑
i=1

h(Z(1)
i )− k

n

n/k

∑
i=1

h(Z′i)

∣∣∣∣∣+C

√
dn
k

≤ n
k

dTV

(
P

Z( j)n/k
1
,

n/k

∏
i=1

P
Z( j)

i

)
+C

√
dn
k

(4.31)

≤ n2βk

k2 +C

√
dn
k
. (4.32)

Here, (4.28) follows since the marginal distribution Z′i
(d)
= Z(1)

i , (4.30) follows since the distribution

Z′n is i.i.d. and from [3, Theorem 8.3.23], (4.31) follows from the following variational form

of the total variation distance dTV(P,P′) between two measures P and P′ defined over the same

measure space, i.e.,

dTV(P,P′) = sup
f :| f |≤1

|EX∼P[ f (X)]−EX∼P′[ f (X)]|,

and lastly (4.32) follows from (4.25). Substituting (4.32) into (4.26) yields that

E[ρH (Zn)]≤ n2βk

k
+C
√

dnk ≤ C′n2k−r

k
+C
√

dnk

for k sufficiently large with some C′ > 0, where we use the definition of the β -mixing exponent

r in the second inequality. Finally, choosing k = O(n
3

3+2r ) yields the claimed rate E[ρH (Zn)] =

O(n
3+r
3+2r ).
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4.6.4 Proof of Lemma 13

Note that for any Zn and Z̃n, we can write

dH(g(Zn), g̃(Zn)) = dH(g(Zn), g̃(Zn))−dH(g(Z̃n), g̃(Z̃n)) (4.33)

≤ sup
g1,g2

∣∣dH(g1(Zn),g2(Zn))−dH(g1(Z̃n),g2(Z̃n))
∣∣

≤ sup
g1,g2

|dH(g1(Zn),g2(Zn))−nP(g1(Z1) ̸= g2(Z2))|

+ sup
g1,g2

∣∣dH(g1(Z̃n),g2(Z̃n))−nP(g1(Z̃1) ̸= g2(Z̃1))
∣∣

= ρG×G (zn)+ρG×G (z̃n) (4.34)

where (4.33) follows since dH(g(Z̃n), g̃(Z̃n)) = 0 by design and (4.34) follows since by sta-

tionarity of Zn (d)
= Z̃n, we have nP(g1(Z1) ̸= g2(Z1)) = nP(g1(Z̃1) ̸= g2(Z̃1)) = ∑

n
i=1P(g1(Z̃i) ̸=

g2(Z̃i)) = ∑
n
i=1E[1g1(Z̃i) ̸= g2(Z̃i)]. Finally, substituting (4.34) into (4.19) yields the lemma.

4.6.5 A Detailed Discussion on Example 3

For the side information zt = xt−1
t−k in Example 3, if the market (Xt) itself is k-th order

Markov, then we can establish the following guarantee.

Lemma 14. Let Xn be a stationary k-th order Markov process and let Zt = Xt−1
t−k ∈ (Rm

+)
k.

Suppose that (1) the density of Z0 = X−1
−k exists and is bounded and supported over a bounded,

convex set E ⊂ (Rm
+)

k with nonempty interior and (2) there exist b > 0 and ε > 0 such that the

time-invariant conditional density satisfies

pXt
t−k+1|X

t−1
t−k

(z′ |z)≥ b1B(z,ε)(z
′)

for any z ∈ (Rm
+)

k, where B(z,ε) denotes the open ball of radius ε centered at z ∈ (Rm
+)

k with

respect to Euclidean distance. Then, we have E[ρH (Zn)] = Õ(
√

n).
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Proof. This is a direct consequence of [118, Proposition 11], which establishes an upper bound

on E[ρH (Z′n)] for a Metropolis–Hastings (MH) walk Z′n. First, note that Zn forms a Markov

chain due to the k-th order Markovity of Xn. To apply the proposition over the Markov chain Zn,

we set the proposal distribution q in the MH algorithm to be the actual transition kernel of the

Markov chain Zn, so that the MH walk becomes the process Zn of our interest. Then, under the

assumptions above, we can apply the result of [118] and conclude that E[ρH (Zn)] = Õ(
√

n) for

a VC-class H .

4.6.6 Simulation Based on Monte Carlo Approximation

The (maybe the only) downside of the universal portfolio algorithms is their computa-

tional complexity. It is not hard to see that the exact computation of Cover’s universal portfolio

requires, on the T -th day of investment over m stocks, O(T m) time complexity, and the computa-

tion quickly become infeasible for a long investment period; see [19] for a detailed argument.

An efficient implementation of universal portfolios is a decades-old open problem and still

remains as an active area of research [119,120]. Hence, in this paper, we consider a Monte Carlo

simulation of the universal portfolio algorithms based on the cumulative wealth expression of

a probability induced portfolio (4.3). While it is a very crude approximation for large m, S, or

Ndim(G ), this at least provides a way to demonstrate the performance of the ideas.

First, note that from (4.3), the cumulative wealth achieved by Cover’s universal portfolio

φ(qL) can be written as

Sn(φ(qL),xn) = ∑
yn∈[m]n

qL(yn)x(yn) =
∫
B

Sn(θθθ ,xn)µ(θθθ)dθθθ ,

since the Laplace probability assignment qL(yn) =
∫
B µ(θθθ)pθθθ (yn)dθθθ is a mixture with respect

to a uniform density µ(θθθ) over the simplex B. Hence, if we draw N CRPs θθθ 1, . . . ,θθθ N from µ

and buy-and-hold uniformly over the CRPs, we will attain approximately similar wealth and the

approximation will get better as N becomes larger. Note, however, that this naive approximation
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requires N = Ω( 1
εm ) to achieve an approximation error ε and thus may not be feasible when the

number of stocks m is large.

A similar crude approximation can be performed for the universal portfolio φ(qL;S) with

discrete side information wn, since

Sn(φ(qL;S),xn;wn) = ∑
yn∈[m]n

qL;S(yn∥wn)x(yn)

=
S

∏
s=1

S|xn(s;wn)|(φ(qL),xn(s;wn)),

where xn(s;wn) = (xi : wi = s, i ∈ [n]), since qL;S(yn∥wn) = ∏
S
s=1 qL(yn(s;wn)). That is, we can

crudely approximate the performance of φ(qL;S) by simply drawing many state-wise CRPs θθθ 1:S

according to µ(θθθ 1:S) ..= µ(θθθ 1) · · ·µ(θθθ S) and running the buy-and-hold strategy.

We can now consider an approximation of the proposed strategy φ(q∗G ). By the epoch-

wise construction of q∗G as explicitly shown in (4.9), the cumulative wealth can be also factorized

as

Sn(φ(q∗G ),x
n;zn) =

J

∏
j=1

∑
y2 j

2 j−1+1
∈[m]2

j−1

q
G ;z2 j−1 (y2 j

2 j−1+1∥z
2 j

2 j−1+1)x
2 j

2 j−1+1(y
2 j

2 j−1+1)

=
J

∏
j=1

S2 j−1(φ(q
G ;z2 j−1 ),x2 j

2 j−1+1;z2 j

2 j−1+1).

where we assume n = 2J for simplicity. Here, for each j ∈ [J], if {g̃1, . . . , g̃ℓ j} is a minimal

empirical covering of G with respect to z2 j−1
, we can write

S2 j−1(q
G ;z2 j−1 ,x2 j

2 j−1+1;z2 j

2 j−1+1) =
1
ℓ j

ℓ j

∑
k=1

S2 j−1(φ(qL;S),x2 j

2 j−1+1; g̃k(z2 j

2 j−1+1)).

For each state function g̃k, the summand is the cumulative wealth of the UP with the side

information g̃k(z2 j

2 j−1+1) and thus can be approximated by the same argument from the previous

paragraph.
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This leads to the following Monte Carlo simulation of the proposed algorithm. Let N be

the number of Monte Carlo samples used in the approximation.

For each epoch j = 1,2, . . .:

1. Find an empirical covering {g̃1, . . . , g̃ℓ j} ⊆ G with respect to z2 j−1
.

2. For each k ∈ [ℓ j], draw N state-wise CRPs (θθθ (k)
1:S,i)

N
i=1 from µ(θθθ 1:S) at random.

3. During the j-th investment epoch, i.e., t ∈ (2 j−1,2 j], run the buy-and-hold strategy

uniformly over all sampled CRPs (θθθ (k)
1:S,i)

N
i=1 for each k ∈ [ℓ j].

4. At the end of the epoch, sell all stocks.

We stress that this only simulates the cumulative wealth of the universal portfolio al-

gorithm by directly estimating the cumulative wealth expression, rather than approximating

actions of the algorithm for each round. Note that a more sophisticated Monte Carlo Markov

Chain based approximation for Cover’s universal portfolio was proposed and analyzed by [121].

It is left as a future direction to extend their method for our algorithm with continuous side

information.

In the following, we study a simple example for concreteness, which admits an easy

construction of minimal empirical coverings. Note that, for a richer class of state functions,

finding a minimal empirical covering may be another computational bottleneck.

Example 4. As a simple case of the canonical side information considered in Example 3, we

choose the price relative of the stock 1 on the previous day as the continuous side information,

i.e., zt = xt−1,1, and a class of 1D threshold functions G = {x 7→ ga(x) = 1{x≥ a} : a > 0} of

Ndim(G ) = 1. Note that we consider a binary state space (S = 2). In this case, it is easy to show

that {gx0,1, . . . ,gxt−1,1} is a minimal empirical covering given zt = (xi,1)
t−1
i=0.

In general, we can consider zt = xt−1 with a class of product of 1D threshold functions

G = {x 7→ ga(x) = (1{x1 ≥ a1}, . . . ,1{xm ≥ am}) : a = (a1, . . . ,am) ∈ Rm
++} of Ndim(G ) ≤

m logm [99, Lemma 29.6] and S = 2m. Given zt = xt−1, {gx0, . . . ,gxt−1} is a minimal empirical
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covering.

A Toy Example.

We briefly demonstrate how the proposed portfolio performs on two real stocks. We

collected the 6-year period from Jan-01-2012 to Dec-31-2017 (total 1508 trading days) of two

stocks Ford (F) and Macy’s (M). Over the period, Ford went up by a factor of 1.11, while Macy’s

went down by a factor of 0.77. The best CRP in hindsight, which turns out to be the buy-and-hold

of Ford, achieves a growth factor of 1.11. The uniform CRP achieves a growth factor of 0.99.

While the universal portfolio without side information achieves a growth factor of only, the

proposed algorithm with the yesterday’s prices and the class of thresholding functions achieves a

growth factor of 1.15.

We note that there can exist more sophisticated, carefully chosen side information and

state-function classes that may exhibit better performance in practice than the simple example

above. We leave the problem of constructing good continuous side information and extensive

experiments as future work.
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Appendix A

Omitted Proofs From Chapter 1

A.1 Proofs of Universality of qL and qKT

As mentioned in Chapter 1, both qL and qKT are point-wise (and therefore mean) universal

for the class of binary i.i.d. processes, i.e. they satisfy

max
θ ,yn

log
pθ (yn)

q(yn)
= o(n)

where pθ (yn) = θ ∑
n
i=1−∑

n
i=1 yi . We use k = ∑

n
i=1 yi for ease of notation.

Proof for qL: In this case, we have

log
pθ (yn)

qL(yn)
= log(n+1)

(
n
k

)
tk(1− t)n−k ≤ log(n+1)

where the inequality follows since
(n

k

)
tk(1− t)n−k ≤ 1.

Proof for qKT: In this case, we use the Stirling inequality to simplify the binomial terms.

Firstly, recall that ( n
∑

n
i=1 yi

)(2n
n

)
4n
( 2n

2∑
n
i=1 yi

) ∼ 1√
2n

2−nh(k/n)

where h(·) denotes, as usual, the binary entropy function. Moreover, we have

max
θ

pθ (yn) = 2−nh(k/n)
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achieved at θ = k/n. Therefore, we see that maxθ ,yn log pθ (yn)
qL(yn) =

1
2 logn+o(logn).

A.2 Universality in Sequential Prediction

In this section, we consider the problem of sequential prediction, which encompasses

the weather prediction problem motivated in Chapter 1.

Assuming that the (discrete) data Y n is generated by a distribution pθ , with θ ∈Θ being

unknown, we look at the difference in losses (with loss function ℓ) suffered by the Bayes predictor

a∗t (Y
t−1) = arg infEpθ

[ℓ(a(Y t−1),Yt)|Y t−1]. (A.1)

and the universal predictor that pretends that the true data distribution is q (instead of the

unknown pθ ) and plays

ât(Y t−1) = arg infEq[ℓ(a(Y t−1),Yt)|Y t−1] (A.2)

where q is assumed to be a distribution universal for the class Θ. More precisely, we look at the

expected regret (with Y t−1 in the estimators ât ,a∗t suppressed for brevity)

Regn = E

[
n

∑
t=1

ℓ(ât ,Yt)−
n

∑
t=1

ℓ(a∗t ,Yt)

]
. (A.3)

We will also assume that the loss function ℓ≤ 1.

We now show the following, as seen in [77].

Theorem 6. For ât ,a∗t as defined in (A.2) and (A.1) respectively, if q is such that 1
nD(pθ∥q)≤Cn

for all θ ∈Θ, then Regn ≤
√

2ln2Cn.

Clearly, Theorem 6 established that if q is universal (i.e. Cn = o(1)), then Regn = o(1)

as well. We now prove this statement, following the arguments of [77].
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Proof. We have

1
n
E

[
n

∑
t=1

ℓ(ât ,Yt)−
n

∑
t=1

ℓ(a∗t ,Yt)

]

=
1
n

n

∑
t=1

E
[
E
[
ℓ(ât ,Yt)− ℓ(a∗t ,Yt)|Y t−1]]

=
1
n

n

∑
t=1

∑
yt−1

pθ (yt−1)∑
yt

(ℓ(ât ,yt)− ℓ(a∗t ,yt))pθ (yt |yt−1)

≤ 1
n

n

∑
t=1

∑
yt−1

pθ (yt−1)∑
yt

(ℓ(ât ,yt)− ℓ(a∗t ,yt))
(

q(yt |yt−1)

+ |pθ (yt |yt−1)−q(yt |yt−1)|
)

(A.4)

≤ 1
n

n

∑
t=1

∑
yt−1

pθ (yt−1)∑
yt

(ℓ(ât ,yt)− ℓ(a∗t ,yt))
∣∣pθ (yt |yt−1)−q(yt |yt−1)

∣∣ (A.5)

≤ 1
n

n

∑
t=1

∑
yt−1

pθ (yt−1)∑
yt

∣∣pθ (yt |yt−1)−q(yt |yt−1)
∣∣ (A.6)

≤

√√√√1
n

n

∑
t=1

∑
yt−1

pθ (yt−1)

[
∑
yt

|pθ (yt |yt−1)−q(yt |yt−1)|
]2

(A.7)

≤

√√√√2ln2
n

n

∑
t=1

∑
yt−1

pθ (yt−1)∑
yt

pθ (yt |yt−1) log
pθ (yt |yt−1)

q(yt |yt−1)
(A.8)

=

√
2ln2

n

n

∑
t=1

D(pθ (yt |yt−1)∥q(yt |yt−1))

=

√
2ln2

n
D(pθ (yn)∥q(yn)) (A.9)

where (A.4) follows since a ≤ b+ |a−b|; (A.5) follows since by definition of ât in (A.2), we

have

Eq(yt |yt−1)[ℓ(ât ,Yt ])]≤ Eq(yt |yt−1)[ℓ(a
∗
t ,Yt ])];

(A.6) follows since ℓ≤ 1; (A.7) follows by the Jensen inequality (since E|Z| ≤
√

E[Z2]); (A.8)

follows by the Pinsker inequality; and finally (A.9) follows from the chain rule of KL divergence.

132



A.2.1 The Weather Prediction Problem

We can see by substituting ℓ(a,y) = 1{a ̸= y}, that the setting of sequential prediction

above encompasses the weather prediction problem from Chapter 1. We can clearly see that

the Bayes responses for a distribution pθ (or a universal distribution q) turn out to be a∗t = y∗t =

1{pθ (yt) ≥ 1/2} and ât = ŷt = 1{q(yt |yt−1) ≥ 1/2} respectively. By substituting q = qKT or

qL, and by virtue of their universality for binary i.i.d. processes, we see that Cn = O(logn) and

therefore the weatherperson equipped with a universal predictor does not make too many more

mistakes than she would have made with prior knowledge of θ .

Remark 8 (Why not use the MLE?). A natural alternative choice for ŷt is to make a decision

based on the maximum likelihood estimate (MLE), i.e. (in the weather prediction problem) choose

ŷt = 1

{
∑

t−1
i=1 yt
t−1 ≥ 1/2

}
. Indeed, for the particular case of weather prediction with indicator loss,

this strategy does work. However, for several other loss functions such as the log-loss, used

in applications like compression and gambling, this would be a catastrophic strategy—if one

assigns probability q(yt |yt−1) =
∑

t−1
i=1 yt
t−1 and yt−1 = 0t−1 (this might happen, for instance, if θ is

quite small) and yt = 1, then the loss suffered log pθ (yt)
q(yt |yt−1)

= ∞.
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