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Abstract 

In this paper, we present an algorithm for routing in wire- 
less ad hoc networks using information about geograph- 
ical location of the nodes. We assume each node knows 
its geographical position and the position of the node to 
which it wants to send a packet. Initially, the nodes only 
know their neighbors but over time they discover other 
nodes in the network. The routing table at a node S is a 
list ( ( p i ,  Si)) where pi  is a geographical position and Si 
is a neighbor of node 5’. When node S receives a packet 
for a node D at position pos(D) ,  it finds the pi in its 
routing table which is closest to pos(D) and forwards the 
packet to the neighbor Si. We prove the correctness of 
the algorithm and show that our algorithm naturally ag- 
gregates the nodes so that the routing table sizes are of 
size O(L ,  log(n)), where En is the mean route discovery 
path length, and n is the number of nodes. We also present 
methods for taking positional errors, node failures and mo- 
bility into account. We justify the results through simula- 
tion. 

1 Introduction 

A wireless ad hoc network consists of a collection of mo- 
bile nodes sharing a wireless channel without any cen- 
tralized control or established communication backbone. 
Each node communicates with other nodes within its 
transmission range. To send a packet to a destination, a 
node forwards the packet to its neighbor which in turn for- 
wards it to its neighbor and so on, until the packet reaches 
the destination. The topology of the ad hoc network de- 
pends on the location of the mobile nodes and maybe 
changing with time. 

*This work was supported by the ONR grant N0014-99-1-0695 and 
by PATH-CALTRANS under MOU 329. It has been published as the 
technical Memorandum no. UCBERL M99/69 

Some of the typical applications of ad hoc networks are 
in scenarios where setting up a communication infrastruc- 
ture is difficult (because of mobility) or very expensive 
(because of terrain). Wireless ad hoc networks can be used 
in battlefield situations where a communication infrastruc- 
ture is difficult to build and maintain. Ad-hoc networks 
are also required for vehicle to vehicle networking in In- 
telligent Transportation Systems [ 14, ?]. Other commer- 
cial applications include building a wireless access infras- 
tructure such as the one being built by Metricom [?I.  Rc- 
searchers are also exploring the use of ad hoc networks in 
building networks out of a large number of tiny sensors 
spread over a geographic area. 

In this paper, we will be interested in the routing prob- 
lem in ad hoc networks. Basic routing algorithms such as 
link or distance-vector routing require every node to learn 
about every other node in the network. We refer to this 
as routing based on ful l  information. This is in contrast to 
routing under partial information. In this kind of routing, 
a node routes based on information about a subset of the 
nodes in the network. Routing in the Internet provides one 
example. Routing in the Internet relies on the address hier- 
archy that mimics the network topology to work correctly. 
Thus, routing table sizes are manageable and changes in 
every link of the network do not have to be propagated 
throughout the network. In flat distance-vector or link- 
state routing, these savings are not obtained. 

Since ad-hoc networks change topology frequently, 
routing under partial information is of interest for ad-hoc 
networks. The Zone Routing Protocol [3] is one well 
known example of an algorithm based on partial infor- 
mation. A node is expected to know the topology in its 
own zone accurately, and that in other zones only approxi- 
mately. It is hoped that this will reduce the inter-node com- 
munication required to track a changing network topology. 
Of course, the reduction in the information used for rout- 
ing may impose other costs. For example, the routes may 
not be shortest paths. 
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This paper presents a new type of distributed, adaptive 
and asynchronous routing algorithm for ad-hoc networks. 
It routes based on partial information. It does not rely 
on any address hierarchy but instead relies on information 
about node positions, and hence, is called the geographi- 
cal routing algorithm (GRA). We assume each node knows 
its own position, and can acquire the position of the packet 
destination by some means. 

Initially, each node only knows about its neighbors. The 
routing table at a node S is a list ( ( p i ,  s i ) )  where pi is a 
position and si is a neighbor of S. When node S receives 
a packet for destination D,  it finds the pi which is closest 
to pos( D ) ,  the position of D,  and forwards the packet to 
neighbor si. The neighbor then repeats the same proce- 
dure. In this way, the packet makes its way to destination 
D. But sometimes when routing a packet, node S may dis- 
cover that it is closer to the destination than any other posi- 
tion p i .  In this case we say the packet is “stuck” at S. This 
causes a route discovery protocol to be started. The route 
discovery protocol finds a path from S to D and updates 
the routing table of the node ki on the path by placing the 
entry ( p o s ( D ) ,  k i + l )  in its routing table where ki+l is the 
node which follows ki on the path. In this way new rout- 
ing entries get added to the routing tables. After the route 
discovery protocol is completed, the stuck packet can be 
routed from S to D. 

We show that the routing table sizes of our nodes re- 
main fairly small - essentially logarithmic in the number 
of nodes in the network. Most network routing algorithms 
do not use position information. However, the results in 
this paper show that the use of such information in ad-hoc 
network routing could yield large reductions in routing ta- 
ble size and protocol overhead. We show that the GRA has 
the same basic properties as most other routing algorithms 
even though it works with partial information. Given an 
unknown network, nodes will exchange information and 
converge to a set of routing tables. We also show that once 
the routing tables have converged, like other routing al- 
gorithms, all routes are acyclic. On the negative side, it 
should be noted that the GRA does not attempt at shortest 
path routing. It just uses some acyclic route. 

We have confined our discussion to static networks so 
far. In a dynamic network, links will break and form, 
nodes will join and leave. The number of protocol pack- 
ets triggered by each such change should be of the same 
order of magnitude as characterized in Section 6.4. As we 
develop mobility models for application environments of 
interest to us we hope to find out whether these overheads 
are indeed small enough. 

In Section 2, we discuss the GRA in relation to other 
routing algorithms in  the literature. Section 3 presents the 
system model and problem statement. Section 4 describes 
the geographical routing algorithm. Sections 5 and 6 dis- 

cuss issues related to position information inaccuracy and 
inconsistency, and mobility. Section 7 presents simulation 
results. Section 8 concludes the paper. 

2 Literature Review 
In the literature, a number of proposals have been made to 
solve the problem of routing in wireless ad hoc networks 
[7,8,9,11,12,5,  131. Most of the approaches are based on 
the source routing and distance-vector routing approaches. 
The destination sequenced distance vector (DSDV) [ 101 
routing protocol is based on the classical distance vector 
algorithm which uses the Distributed Bellman-Ford algo- 
rithm (DBF) [6]. The algorithm has modifications to avoid 
the looping problem present in the basic DBF. Formation 
of cycles are avoided by tagging each routing table entry 
with a sequence number. Dynamic source routing (DSR) 
[4] on the other hand is based on source routing, where 
the source specifies the complete path to the destination 
in the packet header and each node forwards the packet 
to the node specified as the next hop in the packet header. 
Each source maintains a route cache, where it looks for a 
path to the destination. If such a path is not found then the 
source initiates a route discovery protocol to discover the 
route. Most of the approaches in the literature are vari- 
ants of the two above approaches with some attempting 
to combine the best of both. For example, in zone rout- 
ing protocol (ZRP) [3], each node has a “routing zone” 
which includes the nodes within some specified distance. 
Each node knows the topology within its routing zone by 
using DSDV protocol. For out-of-zone destinations, DSR 
is used. Other existing proposals are based on finding a 
backbone for the network (MCDS) [ 11 or attempt to min- 
imize delay (STARA) [2]. 

3 System Model and Problem State- 
ment 

Suppose there are n nodes in a region that want to com- 
municate with each other. Each node using a wireless link 
can communicate with only a small subset of the nodes 
that are its neighbors. When a node S wants to transmit a 
packet to a destination D ,  i t  transmits to a neighbor, which 
in turn transmits to its neighbor, and so on, until the packet 
reaches destination D. 

In a wireless network, each node has a trans-receiver 
that it uses to communicate. The set of nodes with which a 
node can directly communicate is not fixed but depends on 
the power used by its radio transmitter. When the power 
of the radio transmitter is increased, a node can directly 
communicate with a larger set of nodes (i.e., it has a larger 
number of neighbors). In this paper, we will assume that 
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the nodes have fixed the optimal power for their trans- 
receivers and the neighbors with which a node communi- 
cates is hence fixed. Then, we can think of the wireless 
network as a graph G = ( N ,  E) where the nodes are N = 
{ 1, . . . , n }  and there is an edge ( i ,  j )  E E if i is a neighbor 
of j in the wireless network. We assume that i is a neigh- 
bor of j if and only if j is a neighbor of i in the wireless 
network. Then, we can think of the links as being symmet- 
ric and the resulting graph as undirected. Furthermore, we 
assume that the power levels of the trans-receivers are cho- 
sen so that the resulting graph is connected. We will also 
assume that there exists a medium access schedule such 
that each node can transmit at a certain bit rate without in- 
terference. 

In this paper, we solve the problem of routing us- 
ing position information. When a node receives a 
packet for destination D ,  it must make a routing deci- 
sion: which neighbor should the packet be forwarded 
to? We assume the nodes { 1, . . . , n }  haves names or 
IP addresses {SI, . . . , Sn} and are located at positions 
{pos(S1) ,  . . . , pos (S , ) ) .  Each node knows its neighbors 
and its own position. When a node Si wants to send a 
packet to node D ,  i t  finds out the position using some po- 
sition look-up service and addresses the packet to position 
pos( D) .  The geographical routing algorithm uses only the 
position information in making its routing decisions. How 
the lookup service works, and how a node finds its own po- 
sition and the position of the destination is not the subject 
of this paper though we discuss it briefly below. 

To decide to which neighbor a packet should be for- 
warded to, a node consults its routing table. A routing 
table of node S is a list { ( p i ,  Si)} (containing in gen- 
eral, fewer entries than the total number of nodes in the 
network) where pi is a geographical position and Si is a 
neighbor of S. When node S receives a packet for desti- 
nation position D ,  it finds the position pi which is closest 
to D and forwards the packet to neighbor Si. We assume 
initially the nodes only know their neighbors and have no 
knowledge of the topology. The subject of this paper is 
how the nodes construct their routing tables in an online 
manner, why the routing algorithm works correctly and 
what its performance is. 

3.1 Finding position information 

We assume that each node can find its own position and 
the position of the destination node. Although how this is 
done is not the subject of this paper, we sketch out some 
technologies which make it feasible. Using the global po- 
sitioning system (GPS), it is now possible for any node 
to find its geographical position with a small error. GPS 
receivers are cheaply available and more precise devices 
using differential GPS are also available. In applications 

where the IP address is known but the geographical ad- 
dress is not, a separate translation protocol must be used 
to find the geographical position from the IP address. This 
could for example be done using a two way paging net- 
work where the IP address is broadcast to all nodes and the 
node with that specific IP address replies back with its ge- 
ographical position. Again the details of how this is done 
are beyond the scope of this paper. 

4 The Geographical Routing Algo- 
rithm 

In this section, we describe the geographical routing algo- 
rithm which we refer to as the GRA in short. The basic 
idea behind the algorithm is to use the geographical posi- 
tion of the destination in making routing decisions. Each 
node only knows about a small number of nodes in the net- 
work. It knows more about nodes that are nearer to it than 
it does about nodes which are further away. When a node 
has a packet for a destination, it chooses from the nodes 
it knows about the one which is closest to the destination, 
and sends the packet on its way to that node. Along the 
path, a node may know of an even closer node to the des- 
tination. The packet then gets redirected to that node. On 
its way to that node, it may get redirected again, and so on 
until it reaches the destination. 

For example, suppose a packet is to be sent from from 
New York city to UC Berkeley, CA. Suppose the New 
York city node “knows” the route to a node in San Fran- 
cisco, CA. It then routes the packet according to that node. 
On the way suppose, there is a node that “knows” a bet- 
ter route to Berkeley, CA. It then routes the packet onto 
the better route. Now, suppose the packet reaches near 
Bay Area, and a node “knows” an even better route to UC 
Berkeley. It, then, routes the packet onto this route, and the 
packet thus reaches the node in UC Berkeley. Thus, the al- 
gorithm has an in-built capability of finding better and bet- 
ter routes to the destination as the packet nears the desti- 
nation, even though the source node “knows” the network 
topology around the destination very “coarsely”. 

We now describe the routing algorithm in detail, and 
prove its correctness by showing that routing tables are 
cycle-free and that packets reach their destination. We also 
quantify the performance of the algorithm in terms of the 
average routing table lengths. 

4.1 The Algorithm 

Suppose G = (N, L )  is the graph corresponding to our 
wireless network. The algorithm begins with each node 
initially knowing only about its neighbors. The routing ta- 
ble at a node S is a list { ( p i ,  Si ) }  where pi  is a geographi- 
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cal position of some node and Si is a neighbor of S. When 
destination D is closest to position pi in the routing table, 
node S forwards the packet to neighbor Si. Each node thus 
forwards the packet in the same way till the packet reaches 
the destination. 

But sometimes when routing a packet, node S may dis- 
cover that it is closer to the destination than any other po- 
sition p i .  In this case we say the packet is “stuck” at S. 
This causes the “route discovery protocol” to be started. 
The route discovery protocol finds a path from S to D 
(say Path(S,  D )  = kokl  . . . k l )  and updates the rout- 
ing table of the node Ici on the path by placing the entry 
(pos(D),  k i + l )  in its routing table. So now each node on 
the path knows how to get to D. It is in this way that 
new routing entries get added to the routing tables. After 
the route discovery protocol is completed, the stuck packet 
can be routed from S to D. 

We next present our routing algorithm in more detail. 
We introduce the notion of Voronoi views. This is a geo- 
metric way of viewing the routing operation. Each entry 
( p i ,  Si) in the routing table is associated with a region in 
R2 so that if the destination of a packet falls in the region, 
the packet gets routing according to the entry ( p i ,  Si). 

4.1.1 Voronoi Cells 

Let G‘i = { SI, Sa, . . , S I ; }  be the set of nodes whose ge- 
ographic locations are known to node S at time t (we as- 
sume S E (3;). We refer to these nodes as centers at node 
S. We use the positions of the centers to partition l R 2  into 
cells so that all packets for positions which fall within a 
cell are routed similarly. A cell around the center Si con- 
sists of all points that are closer to Si then any other Sj . We 
call this the Voronoi cell with center Si. We then define the 
Voronoi view of node S as consisting of the Voronoi cells 
with centers C:. Formally, 

Definition 1 (Voronoi cell) Let { S1,Sz, . . , Sk} be any 
set of points in R2. A Voronoi cell with center Si is de- 
jined as 

VS(S2) = ( z  E R2 : ) z  -pos(Si ) l  = 

rrljll Iz - p o s ( S j ) ) ,  S, E C i }  
l < g < k  

Definition 2 (Voronoi view) The Voronoi view at node S 
at time t is 

vi = {Vi($) : Si E C;} 

Example 1 (Voronoi view) The example below explains 
the concept of the Voronoi view. In$gure I ,  node S has 
nodes A, B, c‘, D in its routing table as centers but not 
E. Thus, the Voronoi view of S is the tessellation of the 

network region based on these nodes. Node E does not 
affect the Voronoi view of S. But if E is destination for  
some packet a,’ S, then S forwards the packet to the neigh- 
bor node D, which happens to be the closest center to E 
in S’s Voronoi view. 

Figure 1 : Example of a Voronoi view 

Thus, in making a routing decision for a packet go- 
ing to destination D ,  node S looks at its routing entries 
{ ( p i ,  Si)} and finds the position p j  which is closest to D. 
It then routes the packet to the neighbor of node S form- 
ing a Voronoi view based on the centers whose positions 
are { P I ,  . . . , p k } .  It then finds the cell in its Voronoi view 
in which the destination D lies (say p j ) ,  and i t  then routes 
the packet to neighbor Sj , as if the packet were meant for 
the node at position p j  . 

4.1.2 Routing Table Structure 

The routing table at a node S is structured as shown in fig- 
ure 2. The first column is the names of nodes that S knows 
about. We refer to the set of nodes in the first column as 
the centers at node S. The second column is the positions 
of the nodes in the first column. We denote this bypos(S). 
The third column is a column of neighboring node names. 
Thus if S’ is a node in the first column (see 4-th row of fig- 
ure 2) and N’ the node in the neighbor column for s’, then 
packets directed to V,(S’) should be forwarded to N’. 
Sometimes, we will use the notation Nezts(S’) for N‘, 
where Nezts(S’)  is the neighbor of S to which packets 
for a node in Vs (5’’) should be forwarded by S. The time- 
stamp is the time at which the destination node replied to 
the route discovery message. If the network is mobile, the 
time-stamp could be used to decide when to obsolete the 
routing table entry as well. 

Some special features of the routing tables are as fol- 
lows: Since each node is assumed to know its own posi- 
tion, each node has an entry for itself in its own routing ta- 
ble. The first row of figure 2 reflects this. The correspond- 
ing neighbor is trivially set to itself. Also, the first column 
of the routing table should contain all the neighbors of S .  
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I The corresponding entry in the neighbor column would be 
the neighbor itself. 

I node I node nosition I neighbor node 1 time stamp I 

Figure 2: Routing table structure 

Each routing table entry at S is a 4-tuple 
( S , , p o s ( S i ) ,  N e z i s ( S i ) ,  Ts,). When some of the fields 
of a routing entry are not of interest, we indicate them 
with a “-”, for example ( - , p o s ( S i ) ,  Nez t s (S i ) ,  -). 
Sometimes, when there is no confusion, we also write this 
as (pos (S i ) ,  Nez t s (S i ) ) .  

4.1.3 Packet Format 

The packet header has the information shown in figure 3 
to aid routing. The source and destination unique names 
are specified in the packet. The destination position is also 
specified in the packet. The destination name and position 
are used for packet forwarding and route discovery. The 
source time-stamp, source name and source position are 
included in figure 3 because these may be required in an 
implementation of the GRA. 

destination-name 
source-time-stamp 

destination-position 

DATA source-Dosition 
source-name 

Figure 3: Packet format 

4.2 Packet Forwarding 
Figure 4 describes the packet forwarding algorithm at each 
node. Suppose a node S receives a packet for destina- 
tion D. Let Cs  denote the set of names of all the nodes 
that S knows about, i.e., C.’ is the set of names in the 
first column of figure 2. We use dis t (S ,  D )  to denote the 
distance between the nodes S and D ,  i.e., dist(S,  D )  = 
IIpos(S) - pos(o) l l ,  and 3 i d  to denote the complete or- 
der on node names. 

The packet forwarding decision is quite simple: At 
any time, a node knows about only a small subset of the 
nodes in the network. Initially, this set consists of only 
the node itself and its immediate neighbors. Later, the 
nodes that are discovered through the route discovery pro- 
cess are added to its routing table. When a node S re- 
ceives a packet for destination position D ,  it finds the entry 

Node S receives packet for destination D at time t :  
Let p o s ( D )  E V i ( $ )  for some S, E C& 

if (S == D )  

else if (Si # S) 

else 

// packet reached its destination 

next-node = Nezts(Si ) ;  

//packet is stuck 
Initiate route-discovery(S,D); 
next-node = N e z t s ( D ) ;  

Figure 4: Packet forwarding algorithm 

(S i ,pos (S i ) ,  Nez t s (S i ) )  such that Si is closer to D then 
any other Sj . It then routes the packet to Nez t s (S i ) .  

It may turn out that node S is itself closest to D then any 
other Sj E Cs .  In that case, we say that packet is stuck 
and it cannot be forwarded to any of the neighbors accord- 
ing to its current routing table. If the packet is stuck, then 
node S initiates a route discovery to the destination node 
D. The route discovery procedure route-discover~fS, D )  
finds an acyclic path Path(S,  D )  = ( k o ,  IC1, . . . , IC,) from 
S to D ,  and it updates the routing table of node ki with an 
entry ( D , P D ,  h + ~ ) .  

It is however possible that a packet destination D is 
equally close to two nodes Si and Sj (i.e., Ilpos(D) - 
pos(Si)ll = Ilpos(D) - pos(Sj ) l l ) ,  and the node lies on 
the cell boundary. In that case, we assume there is a total 
order among names, and use that to resolve the tie (i.e., if 
Si +d S’, the packet is routed to N e z t s ( S ; ) ,  otherwise 
it is routed to Nez t s (S j ) ) .  

Example 2 illustrates the GRA routing. Example ?? 
shows that the use of an order on node-names is important 
for acyclic routing. 

Figure 5: An example network 

Example 2 We illustrate our algorithm on un example 
network. Consider the network of Figure 5. I t  con- 

5 



sists of nodes {,4, B, C,  D ,  E} which are located at po- 
sitions ( l .5, l .5), (2 ,2 ) ,  ( 3 ,  l),  (2.5,O) and (4,O) respec- 
tively. The links between the nodes are symmetric and 

Initially, each node only “knows” about itself and its 
neighbors. The initial routing tables at the nodes are 
shown in Figure 6. 

given by {(A, B ) ,  (B, C ) ,  (C, D ) ,  (C ,  E ) ) .  

1 Node I Routing Table 

Figure 6: Initial Routing Tables 

Suppose node A gets a packet fo r  destination C located 
at pos (C)  = ( 3 ,  1). Node A then looks into its routing ta- 
ble andfinds thatpos( B )  is closer to pos( C )  then pos( A). 
So it forwards the packet to node B. Similarly, node B 
looks at its routing table and finds that pos (C)  is closer 
to pos (C)  than either pos (A)  or pos( B) .  So it forwards 
the packet to node C which is the destination. 

Next, suppose A gets a packet fo r  destination D located 
at pos (D)  = (2.5, 0). Node A looks into its routing table 
and finds that pos(A)  is closer to pos (D)  then pos( B) .  
So the packet becomes stuck at node A. This triggers a 
route discovery The route discovery process finds the path 
(A, B ,  C,  Dj to the destination D. In the process it also 
updates the routing tables of nodes A,  B and C. The new 
updated routing tables are shown in Figure 7. A forwards 
the packet fo r  D to B which forwards it to C and C for- 
wards it to D. 

Figure 7: Updated Routing Tables 

Next suppose A gets a packet fo r  destination E located 
a t p o s ( E )  = (4,O). A looking into its routing tablefinds 
that pos (D)  is closer to p o s ( E )  then either pos (A)  or 
pos( B). So itforwards the packet to node B based on the 
e n t n  (0, (2.5, 0 ) ,  B ,  -) in its routing table. Sinzilarly B 

finds that p o s ( E )  is closer to pos( D )  then either yos( B), 
p o s ( A )  o r p o s ( C ) .  So itforwards the packet to C based 
on the entry (0, (2.5,0),  C,  -) in its routing table. Node 
C j n d s  that p o s ( E )  is closer to pos( E )  than pos( D )  or 
pos( C ) ,  so it forwards the packet to E based on the entr)’ 

Thus, A was able to route a packet to E even though it 
did not have E in its routing table. Our simulutions indi- 
cate that in large networks this is frequently the case. 

(El (4101, E, -1. 

4.3 Route Discovery 
Suppose node S gets a packet for destination D .  The 
packet gets stuck at node S if the destination lies closer 
to S than any other cell center at S. This triggers the 
route discovery mechanism. which finds an acyclic path 
Path(S,  D )  from S to D. 

The only requirement for the route discovery mecha- 
nism is that it return an acyclic path to the destination, 
and that it update the routing tables on that path in an 
appropriate manner. Suppose the acyclic path found is 
Path(S ,  D )  = ( k o ,  k l ,  . . . , k l ) .  We then require that an 
entry ( D , p o s ( D ) ,  k i + l )  be added to the routing table of 
node k i .  This is the only requirement to ensure the correct- 
ness of the routing algorithm. The mechanism by which 
this path is found has no consequence on the correctness 
of the routing algorithm. We next state this required prop- 
erty more formally. 

Property 1 (Route Discovery Protocol) r f  a packer is 
stuck at node S, then S starts a route discovery pro- 
tocol. The route discovery protocol finds an acyclic 
path Path(S,  D )  = ( k o k l  . .  . k l )  and adds an en- 
try ( D , p o s ( D ) , k i + l )  to T a b l e ( k i )  f o r  0 < i < 1. 
We also require that the route discovep protocol update 
Table(k i+l)  before Table(ki) .  

Several different algorithms can be used to find a path to 
the destination. Examples of such algorithms are breadth- 
first search (e.g. flooding) or a depth-first search, the 
A* algorithm or even the Bellman-Ford algorithm. We 
next briefly describe the distributed implementation of the 
breadth-first-search and depth-first-search algorithms that 
satisfy Property 1. 

4.3.1 Path-Finding Phase 

We next describe the distributed implementation of the 
breadth first and depth first algorithms that find an acyclic 
path to the destination D. 

Breadth first search 

In the breadth-first-search algorithm, node S starts the 
route discovery protocol broadcasting a route discovery 
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packet (RD packet). Each node that receives the RD 
packet also broadcasts the packet if it has not forwarded 
the packet before. This ensures that the paths being found 
by the route-discovery are cycle-free. Each node that 
broadcasts the packet, puts its name and address in the 
packet so that the path being traversed by a route discovery 
packet is retained. If a packet comes back to a node, it is 
discarded. Eventually, the route discovery process com- 
pletes. Each packet that reaches D contains an acyclic 
path from S to D. Multiple such packets may reach D, 
and hence, D would know of multiple acyclic paths from 
S to D. 

Depth first search 

The depth-first-search algorithm on the other hand yields 
only a single acyclic path from node S to destination node 
D. Each node puts its name and address on the RD packet. 
It then forwards it to a neighbor who has not seen it before. 
The neighbor to which a node forwards the packet is one 
which minimizes a chosen distance metric. One possible 
choice for the distance metric is the Euclidean distance (as 
an estimate of the path length). In that case, node X for- 
wards the packet to neighbor node E' for destination node 
D if 

Y = arg lnin d ( X ,  y) + d ( y ,  D )  
Y ENx 

where Nx is thc set of neighbors of node X to which it can 
forward the packet, and d ( X ,  2) is the Euclidean distance 
between node X and node Z .  

In case a node has no neighbors left to forward the 
packet to, it removes its name and address from the packet 
and returns the packet to the node from which i t  originally 
received it. Each node also for some time keeps track of 
RD packets it has seen before. If a RD packet is forwarded 
to a node which it has seen before, it refuses it. 

I source S I destination D 
position of D ,  p~ 

time current path P(S ,  D )  
visited nodes v ( S ,  D )  

Figure 8: Route discovery packet structure 

Note that the initial Voronoi view of a node includes the 
node itself and its neighbors only. It is the route discovery 
mechanism that puts more cell centers in the routing table 
and makes the Voronoi view more detailed. With sufficient 
detail, the route discovery process may not be initiated any 
more at a node. We call such a Voronoi view, a complete 
Voronoi view. 

4.3.2 Updating Routing Tables 

When the RD packet reaches destination D ,  it contains 
an acyclic path Path(S,  D )  = ( k ~ ,  k l ,  . . . , k l )  from 
S to D. Node D then initiates a route update pro- 
cess by sending an ACK packet back along the path 
Path(D,  S) = ( k l ,  , k P l , .  . . , ko). On the way back, an 
entry ( D , p o s ( D ) ,  k i+l )  is added to ?'ahle(ki) .  Notice 
that the routing tables are updated in the order required by 
Property I .  

4.4 Proof of Correctness 
In this section, we will prove the correctness of our algo- 
rithm. More specifically, we will show that the routing ta- 
bles do not contain any cycles (i.e., it is not possible for 
a packet to get into a loop by following the routing algo- 
rithm). 

Definition 3 (A cycle in routing tables) We say the rout- 
ing tables {Table(si)} contain a cycle provided there is a 
destination position D and initial node So such that start- 
ing from So, the packet follows the path (SO, SI, . . . , Sk) 
without getting stuck and Sk = SO. 

Definition 4 (Centers property) Suppose for every en- 
try ( S , p o s ( S ) ,  B)  in Twble(A), there is also an ent? 
(S ,pos(S) ,  -) in T a b l e ( B ) .  We then sa)' that Tuble(A) 
satisfies the centers property. 

When the routing tables at all nodes satisfy the centers 
property, we say the network satisfies the centers property. 
Intuitively, the centers property is saying that each entry 
(S ,pos (S ) ,  B)  in T a b l e ( A )  corresponds to a path. The 
path goes through nodes A,  B ,  . . . on its way to node S. 
We next show that the routing tables in GRA always sat- 
isfy the centers property. 

Lemma 1 (Centers property) Consider a wireless net- 
work G = ( N ,  L )  in which the route discove9 process 
satisfies Properg 1. Then the centers proper9 is satisfied 
by the routing tables. 

Proof Initially each node has itself and its neighbors in its 
routing table. So for each neighbor n, of node A ,  there is 
anentry(n ,pos(n) ,n)  inTable(A). Because thereisalso 
an entry ( n ,  pos (n ) ,  -) in Tab le (n ) ,  the centers property 
is satisfied. 

Now assume that the centers property holds at time 
t ,  and an entry ( D , p o s ( D ) , B )  is added to T a b l e ( A ) .  
New routing entries can only be added by the route dis- 
covery process. So assume that the route discovery 
was initiated by node S for destination D ,  and a path 
Path( S, D )  = (PO, p l ~  . . . ~ p k )  was found where pi  = A 
and pi+l = B. Then because of Property I ,  there is an 
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entry ( D , p o s ( D ) ,  -) in T a b l e ( B ) .  Therefore the cen- 
ters property is satisfied even after a new entry is added 
to T a b l e ( A ) .  

Theorem 1 (Cycle-free property) Consider a static 
wireless network G = ( N ,  L )  in which the route discov- 
ery process satisfies Property 1. Then there are no cycles 
in the routing tables. 

Proof Because the route discovery process satisfies Prop- 
erty 1, the centers property holds in the routing tables. 
Now suppose a packet for node D at position d is placed 
at node SO. And suppose the packet follows the path 
(SO, S I , $ ,  . . . ) where at node Si, it is routed according 
to the entry ( D i ,  pos (Di ) ,  S i+l) .  From the centers prop- 
erty, ( D i ,  -, -) is in Table(S i+l ) .  

Now either Di+l = Di ,  or Di+l # Di. If Di+l # 
Di, then either IIpos(Di+l) - dl1 < Ilpos(Di) - dll ,  or 
IIpos(Di+l) - till = Ilpos(Di) - dl1 and Di+l <id Di. 
Now suppose there is a cycle (Si, Si+1, . . . S i + k )  where 
Si = $+a.  It cannot be that Di = Di+l = . . . = Di+k 
because that would imply that the route discovery process 
found a cyclic path violating Property 1. Therefore, either 

dl1 = Ilpos(Di) - dl1 and Di+k <id Di. But then si+k # 
Si, a contradiction. Therefore a packet cannot get into a 
cycle by following the routing tables. m 

From the above results it follows that once routing ta- 
bles have converged packets do not loop. Therefore, either 
the packet reaches its destination or it gets stuck at a node. 
If the packet gets stuck, then through the route discovery 
process, a route is found to the destination, and the packet 
then gets routed to its destination. Hence, the algorithm 
ensures that the packet reaches the destination. 

4.5 Performance of the Algorithm 
4.5.1 Convergence of Routing Tables 

One of the advantages of our geographical routing algo- 
rithm is that a node does not need to have a routing entry 
for every other node in the network. In fact, as we will 
show, after some time, no new route discoveries are ini- 
tiated, and routing is done with each node having only a 
small number of entries in  its routing table. When the rout- 
ing tables contain enough detail so that packets can not be- 
come stuck, we say that the routing tables have converged 
or the Voronoi views have become complete. 

Example 3 Corlsider the network of Example 2 The 
reader should check that the updated routing table in Fig- 
ure 7 is complete. Note that nodes do not contain routing 
entries fo r  e v e v  other node. For example, node E doesn’t 
know about nodes D,A, or B but can still route packets to 
them. 

Ilpos(Di+k) - dl1 < Ilpos(Di) - 4 1 ,  or Ilpos(Di+k) - 

It is best to see this idea geometrically. Corresponding 
to the routing table at a node is its Voronoi view. Consider 
the Voronoi view of a node S. Suppose that Voronoi cell 
Vs(S)  contains only node S. Then i t  is not possible for 
a packet to get stuck at S because a packet for any other 
node D falls in a cell other than Vs(S) .  When this is the 
case for the Voronoi view at every node, packets can not 
get stuck in the network. 

Definition 5 (Complete Voronoi View) We say the 
Voronoi view of node S is complete if I!s(S) contains 
only node S. 

Now suppose Vs (S) contains a node other than S, say 
node D. Then when a packet arrives for destination D at 
node S, it will get stuck. This starts a route discovery and 
node D is added as a center at node 5’. The new Voronoi 
cell with center S is smaller and does not contain D. It is 
by this process that the Voronoi cell with center S becomes 
smaller and smaller until it eventually contains only node 
S. At that point the Voronoi view for node S becomes 
complete. 

Example 4 Figure 9 ( a )  shows the Voronoi view at node 
S with centers { S ,  T } ,  and Figure 9 (b )  shows the Voronoi 
view at S after D is added as a cell center 

The next lemma states that eventually the Voronoi views 
at all nodes will become complete. 

Lemma 2 (Completion property) Consider a wireless 
network G = ( N ,  L )  with V t  = {Vi : S E ni} being the 
set of Voronoi views at all nodes of g. Let there be a posi- 
tive probability of a packet being generated at any source 
node S for  any destination node D in a time interval T .  

Then, given any 0 < E < 1, there exists a T such that fo r  
Vt > T,  Vj is complete for  all S E N with probability 
1 - E .  

Proof For any 0 < S < 1, there is a T such that node S 
will generate packets for every other node with probability 
1-6 by time T .  If a packet for a destination D gets stuck, it 
is added as a cell center at node S. It follows that by time 
T ,  node S will have a complete Voronoi view. Because 
traffic is generated independently at different nodes, with 
probability (1 - 6)”, all the Voronoi views at all the nodes 
will be complete by time T .  Now choose 6 s.t. (1 - 6)’’ = 
1 - E .  Then for any 0 < E < 1, there exists a T such that 
fo r t  > T ,  V j  is complete for all S E N with probability 
1 - E .  

4.5.2 Size of routing tables of random networks in ar- 
bitrarily shaped regions 

Claim 1 (Routing table size) The average routing table 
size in a n-node network G when all the nodes have com- 
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I 
(a) Voronoi view with centers S and T (b) Voronoi view with centers S, D and T 

Figure 9: Change in Voronoi view on addition of an entry in routing table 

plete Voronoi views is O ( L  log(n)) where is the mean 
route discovery path length. 

Let us provide an intuitive justification for this result. 
Say at node S, the Voronoi cell with center S, contains 
other nodes, for example, a node D. When a packet arrives 
for node D ,  the packet gets stuck, and route discovery pro- 
cess is initiated which causes D to be added as a center at 
S. This causes the old Voronoi cell Vs(S) to be split (as 
shown in Figures 9(a) and 9(b)). The new Voronoi cell 
with center S, V;(S), is of smaller size than Vs(S). We 
are interested in how much smaller is V i  (S) compared to 

Suppose S and D are randomly placed in Vs (S). Then 
on the average, half of the points in Vs (S) will be closer to 
5' than to D. These points will form Vi(S). Therefore, on 
the average Area(V i (S ) )  % aAreu(Vs(S))  where N = 

So every time a packet for destination D gets stuck at 
node S, the node D which was in Vs (S) gets added to S as 
a cell center, and the area of Vs (S) gets reduced by a factor 
of a. But this can only be done a certain number of times 
before S is the only node left in Vs(S) ,  and the Voronoi 
view of S becomes complete. We are interested in finding 
the number of times a new cell center can be added at S 
before the Voronoi view at S becomes complete. 

Suppose the nodes are distributed in a region with a unit 
area. If we form the Voronoi partition based on the nodes 
in the region, the average area of each cell is $. So if the 
number of times Vs(S) gets split is b ,  then on the average 
we expect b to satisfy ak = $ before Vs(S) contains only 
node S and the Voronoi view at S becomes complete. This 
implies that 

VS(S).  

1 
2 '  
- 

k. % ~ 

l o p  
log?.  

So on the average, packets get stuck times at a node 
S before the Voronoi view at S becomes complete. 

Now each time a packet for destination D gets stuck at 
node S, a route discovery process is started. The route dis- 

l o g ;  

covery returns a path Path(S,  D ) .  Let us say the average 
length of this path is L (note that 1, is in fact a function of 
71, and hence should be more appropriately written as En). 
From Property 1, D gets added as a center at every node 
along the path. So each time a packet gets stuck, 1 new 
routing entries get added. At each node, packets get stuck 

times, and each of these times, I, new routing en- 
l og (  d, 
tries are added to the routing tables. Therefore the average 
route table size is O(Llogn). 

We have provided an intuitive justification for this re- 
sult. A more formal argument will be provided in the full 
paper. 

5 Related Issues 

5.1 Positional Inaccuracy 

Consider a node i which thinks i t  is located at position pi 
but which is actually located at p i .  This could for example 
happen if node i gets its position from GPS and there is an 
error in the position measurement that it receives from the 
GPS. Node i then advertises its position as pi and all pack- 
ets to node i are addressed to position p i  even though it is 
actually located at p i .  We refer to pi  as the network po- 
sition of the node since this is what the routing algorithm 
uses, and to pi as the actual position of node i .  Each packet 
for node i addressed to position pi either gets to node i or 
gets stuck. If it gets stuck, then route discovery finds a path 
to node i .  Although the algorithm works correctly, it can 
lead to somewhat unmeaningful routing tables as the fol- 
lowing example shows. 

Example 5 Consider the network consisting ojnodes ,4, 
B, C, D and E. Figure 10 shows their network position, 
and Figure I 1  shows their actual position. The network 
positions of A, B and C match their actual position. But 
nodes D and E are actually located at positions Dl and 
E'. The links between the nodes are obtained from Fig- 
ure I 1  and are { ( E ,  B ) ,  (B, A) ,  ( A ,  C ) ,  (C ,  D )  }. NOW 
suppose A receives a packet fo r  D. So A .fonvards the 
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Figure 10: Network Position 

0 0 0 0 0  
E '  B '  p: C '  D '  

Figure 11 : Actual Position 

packet to B. But D is actually located at D' and B does 
not have a link to D. So the packet gets stuck at B and a 
route discovery is initiated. The route discovery finds the 
path ( B ,  A ,  C ,  D )  to the actual position Dl. A complete 
routing table for  il is { ( E ,  B) ,  (B, B), ( A ,  A) ,  (C ,  C) ,  
( D ,  C )  1. 

Suppose the error between actual position and network 
position is 5 (i.e., llpi - pill < 5). Then if node i is at 
network position pi  and node j is at network position p j ,  
then the actual distance between i and j is IIp: - p; 1 1  < 
I Ipi - p j  1 1  + 25 .  When a node j receives a packet for posi- 
tion p i ,  it can use the bound on lip: - p; 1 1  to decide on its 
course of action. If the packet gets stuck at j ,  then j may 
initiate a route discovery, or it may increase its transmitter 
power to reach node i .  

5.2 Full vs. Partial Route Discovery 
When a packet gets stuck at a node X ,  it initiates a route 
discovery. Now, the route can be discovered right upto 
destination node D ,  or it can be discovered upto a node 
Y which has node D as a cell center. The first method is 
called the full route discovery and the second method is 
called the partial route discovery. The full route discov- 
ery finds a highly reliable and recently updated route to 
node D. The partial route discovery finds a path to node Y 
which has D as a cell center. The path from Y to D may 
have been discovered some time ago and hence may not 
be as reliable. 

5.3 Multiple Route Discoveries 

It is possible that at any given time, there are multiple route 
discoveries going on for the same destination node D ,  ini- 
tiated by different nodes. This can result in cycles as the 
following example shows. 

Example 6 Consider the network of Figure 12. Suppose 
that a route discovery for  destination node D, RD1, is 
started by node SI at time t 1 .  Also, suppose that a route 
discovery for  destination node D, RD2 is started by node 
Sz at time t 2. Suppose RD1 reaches node X I ,  which for- 
wards it to node X ? .  which then fowards it to node D. 

S' t t S2 

Figure 12: Aynchronous Route Discovery 

Similarly, RD2 reaches node X2. which directs it to node 
X I ,  which then directs it to node D.  Noq suppose that the 
ACI<1 for  RD1 reaches node X2, and the routing tables 
are updated including D as a cell centel; and correspond- 
ing forwarding neighbor Y2. Similarly, .4CKz reaches 
node XI, and routing tables are updated at X1 includ- 
ing D as the cell center; with corresponding neighbor Yl. 
Now, suppose that while ACI<l is traveling from 5 2  to 
X I ,  ACK2 is traveling from X1 to Xa. The two ACKs 
then overwrite the entries f o r  D. At node X I ,  we then have 
N x ,  ( D )  = X2,  and at node X2,  we have N x ,  ( D )  = X I .  
Thus, there is a cycle. 

This problem can be overcome however, if the destina- 
tion node time-stamps each route discovery request that 
it gets. Then, each node that is participating in multiple 
route discoveries for another node, then updates its routing 
tables using the RD ACK (update) packet with the most re- 
cent time-stamp. This does not result in  cycles. The proof 
of this follows exactly the same lines as for Theorem 1. 

6 Dynamicity and Mobility in Ad 
Hoc Networks 

In the previous sections, we have assumed that our net- 
work is static, and that links and nodes do not fail. We first 
show with an example that when these assumptions do not 
hold, the routing tables can become inconsistent and cy- 
cles can arise. We then present a simple extension to our 
algorithm that tries to keep the routing tables consistent in 
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I4 0 ,  ( 5  ,,, 3. If T a b l e ( S )  contains the entry ( d i , p i ,  T I < )  and 
S receives T a b l e ( n i )  which contains the entry 
(di,pj,-),thenSupdatesitsentryto(di,pj,ni,-). 

4. If T a b l e ( S )  contains the entry ( d i , p z ,  n i )  and S re- E l  fLl H I  Tlntc I 

Figure 13: Routing Tables with Cycles in case of incon- 
sistent information 

ceives T a b l e ( n i )  which does not contain an entry 
( d i  , -, -), then S removes the entry (d i  , p i ,  n i )  from 
its table. 

presence of node and link failures. 
5. After any change to its routing table, S broadcasts the 

new T a b l e ( S ) .  

We refer to the above protocol as the tear down protocol. 
Importance Of Consistency Of The reason for this is as follows: suppose there is an entry 
Information (si  , p i ,  ni)  in the routing table of S, but node ni has gone 

Example 7 Consider the example in Figure 13. Nodes A 6.3 Correctness of the Tear Down Protocol 
and R are reachable directly from each other Node C can 
be reached by A or B, but only via node H .  At time 0, B When nodes or links are going down, it may very well be 

is located at position (4,O) and A’s routing table has an the case that the “centers” property is violated. Nodes may 

entry (B, (4,O)). Node B then moves so that at time 1 it is also have inconsistent views of the network if they are mo- 

at position (6,O). Node A does not know that B has moved bile. But once the topology of the network becomes fixed 

so it still has the old position for  B in its routing table. again, the tear down protocol ensures that the “centers” 

Now a packet arrives at node A for  node C. Node A for- property holds and there are no cycles in the routing tables. 

wards this packet to node B because it thinks B is closer L~~~~ 3 s~~~~~~ G is a in which route discov. 

wards the packet back to A because it thinks A is closer to ogy was changing but has now become $xed, Then after 
C. Hence the packet gets into a cycle. the above protocol runs to completion: 

to C. B of course is located at Position (610)  So it for- cries are done using full route discovery, and +vhose topol- 

6.2 Tear Down Protocol 
I .  “Centers” proper0 will hold. 

We present a simple extension to our protocol which 
tries to maintain the centers property and keep the rout- 
ing tables at nodes consistent. As part of our protocol, 
nodes need to exchange “hello” messages to discover their 
neighboring topology. We require that each node also 
transmit its routing table as part of the “hello” message. 

Each node then uses its neighbors’ routing tables to 
check the validity of its own routing table. A node S up- 
dates its routing table in one of the following ways: 

1. If S receives a “hello” message from node ni, it puts 
an entry ( n i ,  pos(ni ) ,  ni) in its routing table if it was 
not already there. 

2. If S does not hear from a neighbor ni for some 
amount of time, i t  removes all entries of the form 
( & , p i ,  n i )  from its routing table. 

2. There will be no inconsistent views in the network. 

3. There will be no cycles in the routing tables. 

Proof: It can not be the case that there are a sequence 
of nodes 121,. . . , n k  where n k  = n1 and ( s ,p ,n i+l)  E 
T a b l e ( n i )  for i = 1, . . . , k - 1 because this would vio- 
late Property l .  So when the tear down protocol runs, all 
entries ( s ,  p ,  ni) which do not correspond to a path lead- 
ing to node s get deleted. Similarly, the correct position 
of each node gets propagated through the network so that 
there are no inconsistent views in the network. Because 
the “centers” property holds after the tear down protocol 
runs to completion and there are no inconsistent views and 
no cycles in the routing tables. rn 

Hence, tear down protocol tries to maintain the “cen- 
ters” property and keep the positional information at nodes 
consistent. 

11 



6.4 Overhead due to mobility 

In this section, we try to quantify the amount of overhead 
due to mobility. When a node A has a link to node B and 
node B moves, the link between A and B may be broken. 
When this happens, the protocol of Section 6.2 commu- 
nicates this to all nodes which were using this link. This 
causes all routing entries which were using the link from 
A to B to get deleted. Therefore, the amount of overhead 
is proportional to the number of links that are being bro- 
ken per unit time. The number of links going down per 
unit time is directly related to the speed of the nodes. We 
next try to obtain a formula which quantifies the amount of 
overhead in terms of the various parameters of the wireless 
network. 

We assume the network has 71 nodes in  a unit area and 
each node has a transmission radius r .  

6.4.1 Overhead from a single link going down 

On the average, each node has n5rr2 neighbors and 
cLlog(n) entries in its routing table. So on the average 

a link from node A to a neighbor B. So when the link be- 
tween A and B goes down, cy entries in A and cy entries in 
B become obsolete. This cause (-) messages to 
be broadcast to delete all entries in all nodes which were 
using the link between A to B. 

Since paths get deleted by each link going 
down. In steady state, the same number of route discov- 
eries must also be made for each link going down. Each 
route discovery generates (for example, using breadth first 
search) n packets. So a total of packets get gen- 
erated from route discoveries for each link going down. 

c L l o g ( n )  cy=- n x T 2  entries in the routing table of A are using 

% c L l o g ( n )  L 

’ c L l o g ( n )  

So each link going down causes 

cL21og(n) ZcLloy(nj + 
n5rr2 5rr2 

overhead packets to be generated. That is O( wj 
packets get generated for each link going down. 

6.4.2 Number of links going down due to mobility 

Figure 14: Computing overhead due to mobility 

Let us now compute the number of links that go down 
per unit time. We assume that each node is moving in  a 
random direction at speed v. We will look at a shell of 
width vA at radius r from a node N .  We will be interested 
in how many of the nodes in the shell move out of node 
N’s  range in time A. This is the number of links that will 
be broken between node N and its neighbor in time A.  

Figure 14 shows the shell. There are 27rrvAn nodes in 
the shell. We are interested in computing the probability 
that a node in the shell moves out of the circle. This prob- 
ability is given by 

1 1 
= ’ A  co”-l(y)dy = - 

5r 5r 

So for a node N ,  25rprvn links get broken per unit time. 
Or O(rvn) links get broken per unit time from a single 
node. Since there are n nodes, a total of O(rv?~’ )  links 
get broken per unit time in the network. 

6.4.3 Total Overhead 

Since O( j packets get generated for each link go- 
ing down, and O(rvn2)  links get broken per unit  time in  
the network. A total of O( Lun’:g‘n) ) overhead packets 
get generated in the network per unit time. 

7 Simulation Results 

In this Section, we describe the simulation framework and 
results on the performance of the GRA routing algorithm. 
The performance of a routing algorithm can be measured 
in terms of the memory requirement at the nodes, and the 
bandwidth used due to the communication overhead. We 
quantify the performance of the algorithm be simulating 
the GRA running over random graphs of varying size. In 
each case, we sample enough random graphs to put our re- 
sults in a 95% confidence interval. 

Our performance measures are the mean routing table 
size, and the average number of GRA protocol packets 
generated per node before the routing tables complete. 
We assume that each protocol packet generated is deliv- 
ered. Thus the number does not account for retransmis- 
sions due to channel variations, medium access control, 
etc. Note that both measures are independent of underly- 
ing link layer or physical layer characteristics. The first 
measure is related to the memory requirement of the nodes 
and the second the network bandwidth consumed by the 
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protocol overhead. We have focussed on them to empha- 
size that the GRA is not tied to a particular link layer pro- 
tocol or channel type. Its benefits could potentially be re- 
alized over many kinds of underlying networks. 

7.1 Simulator Description 
We generate the random network in two steps. First, the 
simulator has a graphical user interface that accepts the 
number of nodes n and the shape of a two dimensional re- 
gion as input. It then locates n points randomly, with a 
uniform distribution, in the region. Thus the first step pro- 
vides a set of node locations. The second step determines 
the neighbors of each node. We assume that all nodes have 
the same transmission range and that if the distance be- 
tween two nodes is less than the transmission range then 
the two nodes are neighbors, Le., connected by an edge 
in the network graph. We find the minimum transmission 
range such that the nodes form a connected graph. This 
minimum is found by successive approximation. This pro- 
cess of generating the network graph results in  an increase 
in the average number of neighbors of a node as the node 
density is increased. This is shown in figure 15. 
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Figure 15: Average number of Neighbors 

are forwarded according to the routing table. If a packet 
is “stuck’, it initiates a depth-first-search route discovery, 
which updates the routing tables upto the destination so 
that the stuck packet can be routed. The route discov- 
ery process is assumed to be instantaneous. We do this 
to simplify the implementation but nevertheless account 
for the exact number of path finding and update packets. 
We assume that all the packets are of same size, and there 
exists a schedule such that each node can exactly trans- 
mit C packets per unit time. Note, however, the perfor- 
mance measures we present are independent of these as- 
sumptions, as long as each node is equally likely to orig- 
inate its next packet for any other node in the network. 
Nodes may represent agent teams that are located close 
to each other. For such applications, we think the perfor- 
mance of GRA would be better than under the assumption 
we make here. 

7.2 Results 

Figure 16 shows that the mean routing table size is small. 
In fact, for a 1024 node network, the mean routing table 
length is only 12.1, The plots show the 95% confidence 
interval for the mean with 50 simulation experiments. As 
expected, it grows with the size of the network. Some of 
this growth is simply the growth in the number of neigh- 
bors. Figure 16 plots the two together. We see that most 
of the growth is accounted for by the increase in neigh- 
bors. The increase in the number of non-neighbor remote 
nodes in the routing table is quite small. This is also as 
expected because as the number of neighbors of a node in- 
crease, it becomes less likely that packets will get stuck at 
the node. The logarithmic growth in routing table size is 
in sharp contrast to the linear growth of most ad-hoc net- 
work routing algorithms. Figure 16 (b) compares the mean 
routing table length of the GRA routing algorithm with 
the destination sequenced distance vector (DSDV) rout- 
ing algorithm. Other algorithms based on distance vector, 

At each node, there is a routing table to route packets 
generated or relayed, and a buffer to queue packets. The 

ne buffer size B at the nodes is large enough so that pack- are, in fact, achieved at very little communication over- 
ets are not dropped. head. The overhead in communication is because of the 

packets are generated unifomly randomly bandwidth used due to the route discovery packets and the 
U[A(n)/2,3X(n)/2], where updates. However, the update packets are very small i n  

size as compared to the route discovery packets and can 

link-state and source routing also have similar routing ta- 
ble lengths. 

queue leaks at Some constant rate C packets per time unit. Figure (a) shows that the routing sizes 

X(n) = k f i C  also be piggy-backed on other packets, and hence are ig- 
nored in our results. We count the number of packets a 

is the mean rate at which packets are generated, k is a con- route discovery transmitted as the communication over- 
stant (0.01 in our simulation to prevent buffer overflow). head due to a single route discovery. Figure 17 (a) shows 
The source-destination pair are chosen randomly. On be- that geographical routing algorithm in a non-mobile net- 
ing generated, a packet gets queued at the node. In each work, achieves complete routing tables with communica- 
time instant, C (which is 20 in our simulation) packets tion overhead of less than two route discovery packets per 

. -  
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Figure 17: Communication overhead and convergence time are also performance measures 

node. The average number of protocol packets per node is 
approximately constant. Therefore the growth in the num- 
ber of protocol packets is linear in the size of the network. 

Moreover, as Figure 17 (b) shows, with the traffic load 
as specified above and traffic spread uniformly, the routing 
tables converge in less than 1000 seconds. This means that 
it takes less than 1OC packets per node on average for the 
routing tables of a node to converge. In our simulation C 
was 20. So, for a 1024 node network, each node gener- 
ated only 80 packets on average, before it’s routing table 
became complete. 

We assumed a random walk model for mobility. The 
tear down protocol described in  Section 6 was imple- 
mented in the simulation to take care of mobility. As Fig- 
ures 18(a) and Figure 18(b) show the routing table sizes do 
not seem to be affected by mobility. In our future work we 
intend to carry out a comprehensive set of simulations to 
determine the affect of mobility on communication over- 
head and throughput. 

8 Conclusions 

In this paper, we have proposed a novel algorithm for rout- 
ing in wireless ad-hoc networks using geographical infor- 
mation of the nodes. The algorithm is asynchronous, real- 
time, distributed and scalable. It does not require an ar- 
chitecture or hierarchy to be imposed on the network but 
provides each node with a distance-dependent aggregated 
view of the network topology. The basic intuition be- 
hind the algorithm is that to route a packet far away from 
the destination, only a “coarse” knowledge of the network 
topology is required. As the packet reaches near the dcsti- 
nation, nodes in that area are expected to know the topol- 
ogy around the destination in greater detail and will be able 
to route the packet to the destination. 

We showed that if the route discovery process updates 
routing tables in a particular way, then the routing tables 
are cycle-free. We also showed that even in mobile net- 
works where the topology changes, the packets may get 
“stuck” but do not get caught in loops. Further, we quan- 
tified the performance of the algorithm in terms of the size 
of the routing table and communication overhead due to 
the route discovery process. We presented proposed proto- 

14 



I I 
N"rn*el Of node. 

(a) Route table size as a function of number of nodes 

i 
I I 

(b) Route table size as a function of speed 
Ysioi#n IrnlSl 

Figure 18: Mobile Networks 

cols for handling discovering new nodes, and coping with 
node failures. These protocols enable the algorithm to 
handle mobility and dynamicity in network topology. 

We showed theoretically and verified through simula- 
tion that the algorithm obtains very small routing table 
sizes and very low communication overhead. Thus, one 
of the major features of the algorithm is that it is scalable 
without imposition of any hierarchy (hence ad hoc in true 
sense). Thus, the algorithm has implications for Internet 
routing as well. One of the weaknesses of the algorithm is 
that i t  assumes an overlaid paging network to provide in- 
formation about geographical location of the nodes. But 
with proliferation of GPS receivers, this may not remain 
an impractical assumption. 
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