
UC Berkeley
Research Reports

Title
Geographical Routing Using Partial Information for Wireless Ad Hoc Networks

Permalink
https://escholarship.org/uc/item/3ks5m4k5

Authors
Jain, Rahul
Puri, Anuj
Sengupta, Raja

Publication Date
2001-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3ks5m4k5
https://escholarship.org
http://www.cdlib.org/

This paper has been mechanically scanned. Some
errors may have been inadvertently introduced.

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Geographical Routing Using Partial
Information for Wireless Ad Hoc Networks

Rahul Jain, Anuj Puri, Raja Sengupta
University of California, Berkeley

California PATH Research Report
UGB-ITS-PRR-2001-8

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

Report for MOU 329

March 2001

ISSN 1055-1425

CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS

Geographical Routing Using Partial Information
for Wireless Ad Hoc Networks *

Rahul Jain, Anuj Puri and Raja Sengupta
Department of EECS,

University of California, Berkeley
(rjain,anuj,sengupta)@EECS.Berkeley.EDU

May 10,2000

Abstract

In this paper, we present an algorithm for routing in wire-
less ad hoc networks using information about geograph-
ical location of the nodes. We assume each node knows
its geographical position and the position of the node to
which it wants to send a packet. Initially, the nodes only
know their neighbors but over time they discover other
nodes in the network. The routing table at a node S is a
list ((p i , Si)) where pi is a geographical position and Si
is a neighbor of node 5’. When node S receives a packet
for a node D at position pos(D) , it finds the pi in its
routing table which is closest to pos(D) and forwards the
packet to the neighbor Si. We prove the correctness of
the algorithm and show that our algorithm naturally ag-
gregates the nodes so that the routing table sizes are of
size O(L , log(n)), where En is the mean route discovery
path length, and n is the number of nodes. We also present
methods for taking positional errors, node failures and mo-
bility into account. We justify the results through simula-
tion.

1 Introduction

A wireless ad hoc network consists of a collection of mo-
bile nodes sharing a wireless channel without any cen-
tralized control or established communication backbone.
Each node communicates with other nodes within its
transmission range. To send a packet to a destination, a
node forwards the packet to its neighbor which in turn for-
wards it to its neighbor and so on, until the packet reaches
the destination. The topology of the ad hoc network de-
pends on the location of the mobile nodes and maybe
changing with time.

*This work was supported by the ONR grant N0014-99-1-0695 and
by PATH-CALTRANS under MOU 329. It has been published as the
technical Memorandum no. UCBERL M99/69

Some of the typical applications of ad hoc networks are
in scenarios where setting up a communication infrastruc-
ture is difficult (because of mobility) or very expensive
(because of terrain). Wireless ad hoc networks can be used
in battlefield situations where a communication infrastruc-
ture is difficult to build and maintain. Ad-hoc networks
are also required for vehicle to vehicle networking in In-
telligent Transportation Systems [14, ?]. Other commer-
cial applications include building a wireless access infras-
tructure such as the one being built by Metricom [?I. Rc-
searchers are also exploring the use of ad hoc networks in
building networks out of a large number of tiny sensors
spread over a geographic area.

In this paper, we will be interested in the routing prob-
lem in ad hoc networks. Basic routing algorithms such as
link or distance-vector routing require every node to learn
about every other node in the network. We refer to this
as routing based on ful l information. This is in contrast to
routing under partial information. In this kind of routing,
a node routes based on information about a subset of the
nodes in the network. Routing in the Internet provides one
example. Routing in the Internet relies on the address hier-
archy that mimics the network topology to work correctly.
Thus, routing table sizes are manageable and changes in
every link of the network do not have to be propagated
throughout the network. In flat distance-vector or link-
state routing, these savings are not obtained.

Since ad-hoc networks change topology frequently,
routing under partial information is of interest for ad-hoc
networks. The Zone Routing Protocol [3] is one well
known example of an algorithm based on partial infor-
mation. A node is expected to know the topology in its
own zone accurately, and that in other zones only approxi-
mately. It is hoped that this will reduce the inter-node com-
munication required to track a changing network topology.
Of course, the reduction in the information used for rout-
ing may impose other costs. For example, the routes may
not be shortest paths.

1

mailto:rjain,anuj,sengupta)@EECS.Berkeley.EDU

This paper presents a new type of distributed, adaptive
and asynchronous routing algorithm for ad-hoc networks.
It routes based on partial information. It does not rely
on any address hierarchy but instead relies on information
about node positions, and hence, is called the geographi-
cal routing algorithm (GRA). We assume each node knows
its own position, and can acquire the position of the packet
destination by some means.

Initially, each node only knows about its neighbors. The
routing table at a node S is a list ((p i , s i)) where pi is a
position and si is a neighbor of S. When node S receives
a packet for destination D, it finds the pi which is closest
to pos(D) , the position of D, and forwards the packet to
neighbor si. The neighbor then repeats the same proce-
dure. In this way, the packet makes its way to destination
D. But sometimes when routing a packet, node S may dis-
cover that it is closer to the destination than any other posi-
tion p i . In this case we say the packet is “stuck” at S. This
causes a route discovery protocol to be started. The route
discovery protocol finds a path from S to D and updates
the routing table of the node ki on the path by placing the
entry (p o s (D) , k i + l) in its routing table where ki+l is the
node which follows ki on the path. In this way new rout-
ing entries get added to the routing tables. After the route
discovery protocol is completed, the stuck packet can be
routed from S to D.

We show that the routing table sizes of our nodes re-
main fairly small - essentially logarithmic in the number
of nodes in the network. Most network routing algorithms
do not use position information. However, the results in
this paper show that the use of such information in ad-hoc
network routing could yield large reductions in routing ta-
ble size and protocol overhead. We show that the GRA has
the same basic properties as most other routing algorithms
even though it works with partial information. Given an
unknown network, nodes will exchange information and
converge to a set of routing tables. We also show that once
the routing tables have converged, like other routing al-
gorithms, all routes are acyclic. On the negative side, it
should be noted that the GRA does not attempt at shortest
path routing. It just uses some acyclic route.

We have confined our discussion to static networks so
far. In a dynamic network, links will break and form,
nodes will join and leave. The number of protocol pack-
ets triggered by each such change should be of the same
order of magnitude as characterized in Section 6.4. As we
develop mobility models for application environments of
interest to us we hope to find out whether these overheads
are indeed small enough.

In Section 2, we discuss the GRA in relation to other
routing algorithms in the literature. Section 3 presents the
system model and problem statement. Section 4 describes
the geographical routing algorithm. Sections 5 and 6 dis-

cuss issues related to position information inaccuracy and
inconsistency, and mobility. Section 7 presents simulation
results. Section 8 concludes the paper.

2 Literature Review
In the literature, a number of proposals have been made to
solve the problem of routing in wireless ad hoc networks
[7,8,9,11,12,5, 131. Most of the approaches are based on
the source routing and distance-vector routing approaches.
The destination sequenced distance vector (DSDV) [101
routing protocol is based on the classical distance vector
algorithm which uses the Distributed Bellman-Ford algo-
rithm (DBF) [6]. The algorithm has modifications to avoid
the looping problem present in the basic DBF. Formation
of cycles are avoided by tagging each routing table entry
with a sequence number. Dynamic source routing (DSR)
[4] on the other hand is based on source routing, where
the source specifies the complete path to the destination
in the packet header and each node forwards the packet
to the node specified as the next hop in the packet header.
Each source maintains a route cache, where it looks for a
path to the destination. If such a path is not found then the
source initiates a route discovery protocol to discover the
route. Most of the approaches in the literature are vari-
ants of the two above approaches with some attempting
to combine the best of both. For example, in zone rout-
ing protocol (ZRP) [3], each node has a “routing zone”
which includes the nodes within some specified distance.
Each node knows the topology within its routing zone by
using DSDV protocol. For out-of-zone destinations, DSR
is used. Other existing proposals are based on finding a
backbone for the network (MCDS) [11 or attempt to min-
imize delay (STARA) [2].

3 System Model and Problem State-
ment

Suppose there are n nodes in a region that want to com-
municate with each other. Each node using a wireless link
can communicate with only a small subset of the nodes
that are its neighbors. When a node S wants to transmit a
packet to a destination D , i t transmits to a neighbor, which
in turn transmits to its neighbor, and so on, until the packet
reaches destination D.

In a wireless network, each node has a trans-receiver
that it uses to communicate. The set of nodes with which a
node can directly communicate is not fixed but depends on
the power used by its radio transmitter. When the power
of the radio transmitter is increased, a node can directly
communicate with a larger set of nodes (i.e., it has a larger
number of neighbors). In this paper, we will assume that

2

the nodes have fixed the optimal power for their trans-
receivers and the neighbors with which a node communi-
cates is hence fixed. Then, we can think of the wireless
network as a graph G = (N , E) where the nodes are N =
{ 1, . . . , n } and there is an edge (i , j) E E if i is a neighbor
of j in the wireless network. We assume that i is a neigh-
bor of j if and only if j is a neighbor of i in the wireless
network. Then, we can think of the links as being symmet-
ric and the resulting graph as undirected. Furthermore, we
assume that the power levels of the trans-receivers are cho-
sen so that the resulting graph is connected. We will also
assume that there exists a medium access schedule such
that each node can transmit at a certain bit rate without in-
terference.

In this paper, we solve the problem of routing us-
ing position information. When a node receives a
packet for destination D , it must make a routing deci-
sion: which neighbor should the packet be forwarded
to? We assume the nodes { 1, . . . , n } haves names or
IP addresses {SI, . . . , Sn} and are located at positions
{pos(S1) , . . . , pos (S ,)) . Each node knows its neighbors
and its own position. When a node Si wants to send a
packet to node D , i t finds out the position using some po-
sition look-up service and addresses the packet to position
pos(D) . The geographical routing algorithm uses only the
position information in making its routing decisions. How
the lookup service works, and how a node finds its own po-
sition and the position of the destination is not the subject
of this paper though we discuss it briefly below.

To decide to which neighbor a packet should be for-
warded to, a node consults its routing table. A routing
table of node S is a list { (p i , Si)} (containing in gen-
eral, fewer entries than the total number of nodes in the
network) where pi is a geographical position and Si is a
neighbor of S. When node S receives a packet for desti-
nation position D , it finds the position pi which is closest
to D and forwards the packet to neighbor Si. We assume
initially the nodes only know their neighbors and have no
knowledge of the topology. The subject of this paper is
how the nodes construct their routing tables in an online
manner, why the routing algorithm works correctly and
what its performance is.

3.1 Finding position information

We assume that each node can find its own position and
the position of the destination node. Although how this is
done is not the subject of this paper, we sketch out some
technologies which make it feasible. Using the global po-
sitioning system (GPS), it is now possible for any node
to find its geographical position with a small error. GPS
receivers are cheaply available and more precise devices
using differential GPS are also available. In applications

where the IP address is known but the geographical ad-
dress is not, a separate translation protocol must be used
to find the geographical position from the IP address. This
could for example be done using a two way paging net-
work where the IP address is broadcast to all nodes and the
node with that specific IP address replies back with its ge-
ographical position. Again the details of how this is done
are beyond the scope of this paper.

4 The Geographical Routing Algo-
rithm

In this section, we describe the geographical routing algo-
rithm which we refer to as the GRA in short. The basic
idea behind the algorithm is to use the geographical posi-
tion of the destination in making routing decisions. Each
node only knows about a small number of nodes in the net-
work. It knows more about nodes that are nearer to it than
it does about nodes which are further away. When a node
has a packet for a destination, it chooses from the nodes
it knows about the one which is closest to the destination,
and sends the packet on its way to that node. Along the
path, a node may know of an even closer node to the des-
tination. The packet then gets redirected to that node. On
its way to that node, it may get redirected again, and so on
until it reaches the destination.

For example, suppose a packet is to be sent from from
New York city to UC Berkeley, CA. Suppose the New
York city node “knows” the route to a node in San Fran-
cisco, CA. It then routes the packet according to that node.
On the way suppose, there is a node that “knows” a bet-
ter route to Berkeley, CA. It then routes the packet onto
the better route. Now, suppose the packet reaches near
Bay Area, and a node “knows” an even better route to UC
Berkeley. It, then, routes the packet onto this route, and the
packet thus reaches the node in UC Berkeley. Thus, the al-
gorithm has an in-built capability of finding better and bet-
ter routes to the destination as the packet nears the desti-
nation, even though the source node “knows” the network
topology around the destination very “coarsely”.

We now describe the routing algorithm in detail, and
prove its correctness by showing that routing tables are
cycle-free and that packets reach their destination. We also
quantify the performance of the algorithm in terms of the
average routing table lengths.

4.1 The Algorithm

Suppose G = (N, L) is the graph corresponding to our
wireless network. The algorithm begins with each node
initially knowing only about its neighbors. The routing ta-
ble at a node S is a list { (p i , Si) } where pi is a geographi-

3

cal position of some node and Si is a neighbor of S. When
destination D is closest to position pi in the routing table,
node S forwards the packet to neighbor Si. Each node thus
forwards the packet in the same way till the packet reaches
the destination.

But sometimes when routing a packet, node S may dis-
cover that it is closer to the destination than any other po-
sition p i . In this case we say the packet is “stuck” at S.
This causes the “route discovery protocol” to be started.
The route discovery protocol finds a path from S to D
(say Path(S, D) = kokl . . . k l) and updates the rout-
ing table of the node Ici on the path by placing the entry
(pos(D), k i + l) in its routing table. So now each node on
the path knows how to get to D. It is in this way that
new routing entries get added to the routing tables. After
the route discovery protocol is completed, the stuck packet
can be routed from S to D.

We next present our routing algorithm in more detail.
We introduce the notion of Voronoi views. This is a geo-
metric way of viewing the routing operation. Each entry
(p i , Si) in the routing table is associated with a region in
R2 so that if the destination of a packet falls in the region,
the packet gets routing according to the entry (p i , Si).

4.1.1 Voronoi Cells

Let G‘i = { SI, Sa, . . , S I ; } be the set of nodes whose ge-
ographic locations are known to node S at time t (we as-
sume S E (3;). We refer to these nodes as centers at node
S. We use the positions of the centers to partition l R 2 into
cells so that all packets for positions which fall within a
cell are routed similarly. A cell around the center Si con-
sists of all points that are closer to Si then any other Sj . We
call this the Voronoi cell with center Si. We then define the
Voronoi view of node S as consisting of the Voronoi cells
with centers C:. Formally,

Definition 1 (Voronoi cell) Let { S1,Sz, . . , Sk} be any
set of points in R2. A Voronoi cell with center Si is de-
jined as

VS(S2) = (z E R2 :) z -pos(Si) l =

rrljll Iz - p o s (S j)) , S, E C i }
l < g < k

Definition 2 (Voronoi view) The Voronoi view at node S
at time t is

vi = {Vi($) : Si E C;}

Example 1 (Voronoi view) The example below explains
the concept of the Voronoi view. In$gure I , node S has
nodes A, B, c‘, D in its routing table as centers but not
E. Thus, the Voronoi view of S is the tessellation of the

network region based on these nodes. Node E does not
affect the Voronoi view of S. But if E is destination for
some packet a,’ S, then S forwards the packet to the neigh-
bor node D, which happens to be the closest center to E
in S’s Voronoi view.

Figure 1 : Example of a Voronoi view

Thus, in making a routing decision for a packet go-
ing to destination D , node S looks at its routing entries
{ (p i , Si)} and finds the position p j which is closest to D.
It then routes the packet to the neighbor of node S form-
ing a Voronoi view based on the centers whose positions
are { P I , . . . , p k } . It then finds the cell in its Voronoi view
in which the destination D lies (say p j) , and i t then routes
the packet to neighbor Sj , as if the packet were meant for
the node at position p j .

4.1.2 Routing Table Structure

The routing table at a node S is structured as shown in fig-
ure 2. The first column is the names of nodes that S knows
about. We refer to the set of nodes in the first column as
the centers at node S. The second column is the positions
of the nodes in the first column. We denote this bypos(S).
The third column is a column of neighboring node names.
Thus if S’ is a node in the first column (see 4-th row of fig-
ure 2) and N’ the node in the neighbor column for s’, then
packets directed to V,(S’) should be forwarded to N’.
Sometimes, we will use the notation Nezts(S’) for N‘,
where Nezts(S’) is the neighbor of S to which packets
for a node in Vs (5’’) should be forwarded by S. The time-
stamp is the time at which the destination node replied to
the route discovery message. If the network is mobile, the
time-stamp could be used to decide when to obsolete the
routing table entry as well.

Some special features of the routing tables are as fol-
lows: Since each node is assumed to know its own posi-
tion, each node has an entry for itself in its own routing ta-
ble. The first row of figure 2 reflects this. The correspond-
ing neighbor is trivially set to itself. Also, the first column
of the routing table should contain all the neighbors of S .

4

I The corresponding entry in the neighbor column would be
the neighbor itself.

I node I node nosition I neighbor node 1 time stamp I

Figure 2: Routing table structure

Each routing table entry at S is a 4-tuple
(S , , p o s (S i) , N e z i s (S i) , Ts,). When some of the fields
of a routing entry are not of interest, we indicate them
with a “-”, for example (- , p o s (S i) , Nez t s (S i) , -).
Sometimes, when there is no confusion, we also write this
as (pos (S i) , Nez t s (S i)) .

4.1.3 Packet Format

The packet header has the information shown in figure 3
to aid routing. The source and destination unique names
are specified in the packet. The destination position is also
specified in the packet. The destination name and position
are used for packet forwarding and route discovery. The
source time-stamp, source name and source position are
included in figure 3 because these may be required in an
implementation of the GRA.

destination-name
source-time-stamp

destination-position

DATA source-Dosition
source-name

Figure 3: Packet format

4.2 Packet Forwarding
Figure 4 describes the packet forwarding algorithm at each
node. Suppose a node S receives a packet for destina-
tion D. Let Cs denote the set of names of all the nodes
that S knows about, i.e., C.’ is the set of names in the
first column of figure 2. We use dis t (S , D) to denote the
distance between the nodes S and D , i.e., dist(S, D) =
IIpos(S) - pos(o) l l , and 3 i d to denote the complete or-
der on node names.

The packet forwarding decision is quite simple: At
any time, a node knows about only a small subset of the
nodes in the network. Initially, this set consists of only
the node itself and its immediate neighbors. Later, the
nodes that are discovered through the route discovery pro-
cess are added to its routing table. When a node S re-
ceives a packet for destination position D , it finds the entry

Node S receives packet for destination D at time t :
Let p o s (D) E V i ($) for some S, E C&

if (S == D)

else if (Si # S)

else

// packet reached its destination

next-node = Nezts(Si) ;

//packet is stuck
Initiate route-discovery(S,D);
next-node = N e z t s (D) ;

Figure 4: Packet forwarding algorithm

(S i ,pos (S i) , Nez t s (S i)) such that Si is closer to D then
any other Sj . It then routes the packet to Nez t s (S i) .

It may turn out that node S is itself closest to D then any
other Sj E Cs . In that case, we say that packet is stuck
and it cannot be forwarded to any of the neighbors accord-
ing to its current routing table. If the packet is stuck, then
node S initiates a route discovery to the destination node
D. The route discovery procedure route-discover~fS, D)
finds an acyclic path Path(S, D) = (k o , IC1, . . . , IC,) from
S to D , and it updates the routing table of node ki with an
entry (D , P D , h + ~) .

It is however possible that a packet destination D is
equally close to two nodes Si and Sj (i.e., Ilpos(D) -
pos(Si)ll = Ilpos(D) - pos(Sj) l l) , and the node lies on
the cell boundary. In that case, we assume there is a total
order among names, and use that to resolve the tie (i.e., if
Si +d S’, the packet is routed to N e z t s (S ;) , otherwise
it is routed to Nez t s (S j)) .

Example 2 illustrates the GRA routing. Example ??
shows that the use of an order on node-names is important
for acyclic routing.

Figure 5: An example network

Example 2 We illustrate our algorithm on un example
network. Consider the network of Figure 5. I t con-

5

sists of nodes {,4, B, C, D , E} which are located at po-
sitions (l .5, l .5), (2 ,2) , (3 , l), (2.5,O) and (4,O) respec-
tively. The links between the nodes are symmetric and

Initially, each node only “knows” about itself and its
neighbors. The initial routing tables at the nodes are
shown in Figure 6.

given by {(A, B) , (B, C) , (C, D) , (C , E)) .

1 Node I Routing Table

Figure 6: Initial Routing Tables

Suppose node A gets a packet fo r destination C located
at pos (C) = (3 , 1). Node A then looks into its routing ta-
ble andfinds thatpos(B) is closer to pos(C) then pos(A).
So it forwards the packet to node B. Similarly, node B
looks at its routing table and finds that pos (C) is closer
to pos (C) than either pos (A) or pos(B) . So it forwards
the packet to node C which is the destination.

Next, suppose A gets a packet fo r destination D located
at pos (D) = (2.5, 0). Node A looks into its routing table
and finds that pos(A) is closer to pos (D) then pos(B) .
So the packet becomes stuck at node A. This triggers a
route discovery The route discovery process finds the path
(A, B , C, Dj to the destination D. In the process it also
updates the routing tables of nodes A, B and C. The new
updated routing tables are shown in Figure 7. A forwards
the packet fo r D to B which forwards it to C and C for-
wards it to D.

Figure 7: Updated Routing Tables

Next suppose A gets a packet fo r destination E located
a t p o s (E) = (4,O). A looking into its routing tablefinds
that pos (D) is closer to p o s (E) then either pos (A) or
pos(B). So itforwards the packet to node B based on the
e n t n (0, (2.5, 0) , B , -) in its routing table. Sinzilarly B

finds that p o s (E) is closer to pos(D) then either yos(B),
p o s (A) o r p o s (C) . So itforwards the packet to C based
on the entry (0, (2.5,0), C, -) in its routing table. Node
C j n d s that p o s (E) is closer to pos(E) than pos(D) or
pos(C) , so it forwards the packet to E based on the entr)’

Thus, A was able to route a packet to E even though it
did not have E in its routing table. Our simulutions indi-
cate that in large networks this is frequently the case.

(El (4101, E, -1.

4.3 Route Discovery
Suppose node S gets a packet for destination D . The
packet gets stuck at node S if the destination lies closer
to S than any other cell center at S. This triggers the
route discovery mechanism. which finds an acyclic path
Path(S, D) from S to D.

The only requirement for the route discovery mecha-
nism is that it return an acyclic path to the destination,
and that it update the routing tables on that path in an
appropriate manner. Suppose the acyclic path found is
Path(S , D) = (k o , k l , . . . , k l) . We then require that an
entry (D , p o s (D) , k i + l) be added to the routing table of
node k i . This is the only requirement to ensure the correct-
ness of the routing algorithm. The mechanism by which
this path is found has no consequence on the correctness
of the routing algorithm. We next state this required prop-
erty more formally.

Property 1 (Route Discovery Protocol) r f a packer is
stuck at node S, then S starts a route discovery pro-
tocol. The route discovery protocol finds an acyclic
path Path(S, D) = (k o k l . . . k l) and adds an en-
try (D , p o s (D) , k i + l) to T a b l e (k i) f o r 0 < i < 1.
We also require that the route discovep protocol update
Table(k i+l) before Table(ki) .

Several different algorithms can be used to find a path to
the destination. Examples of such algorithms are breadth-
first search (e.g. flooding) or a depth-first search, the
A* algorithm or even the Bellman-Ford algorithm. We
next briefly describe the distributed implementation of the
breadth-first-search and depth-first-search algorithms that
satisfy Property 1.

4.3.1 Path-Finding Phase

We next describe the distributed implementation of the
breadth first and depth first algorithms that find an acyclic
path to the destination D.

Breadth first search

In the breadth-first-search algorithm, node S starts the
route discovery protocol broadcasting a route discovery

6

packet (RD packet). Each node that receives the RD
packet also broadcasts the packet if it has not forwarded
the packet before. This ensures that the paths being found
by the route-discovery are cycle-free. Each node that
broadcasts the packet, puts its name and address in the
packet so that the path being traversed by a route discovery
packet is retained. If a packet comes back to a node, it is
discarded. Eventually, the route discovery process com-
pletes. Each packet that reaches D contains an acyclic
path from S to D. Multiple such packets may reach D,
and hence, D would know of multiple acyclic paths from
S to D.

Depth first search

The depth-first-search algorithm on the other hand yields
only a single acyclic path from node S to destination node
D. Each node puts its name and address on the RD packet.
It then forwards it to a neighbor who has not seen it before.
The neighbor to which a node forwards the packet is one
which minimizes a chosen distance metric. One possible
choice for the distance metric is the Euclidean distance (as
an estimate of the path length). In that case, node X for-
wards the packet to neighbor node E' for destination node
D if

Y = arg lnin d (X , y) + d (y , D)
Y ENx

where Nx is thc set of neighbors of node X to which it can
forward the packet, and d (X , 2) is the Euclidean distance
between node X and node Z .

In case a node has no neighbors left to forward the
packet to, it removes its name and address from the packet
and returns the packet to the node from which i t originally
received it. Each node also for some time keeps track of
RD packets it has seen before. If a RD packet is forwarded
to a node which it has seen before, it refuses it.

I source S I destination D
position of D , p~

time current path P(S , D)
visited nodes v (S , D)

Figure 8: Route discovery packet structure

Note that the initial Voronoi view of a node includes the
node itself and its neighbors only. It is the route discovery
mechanism that puts more cell centers in the routing table
and makes the Voronoi view more detailed. With sufficient
detail, the route discovery process may not be initiated any
more at a node. We call such a Voronoi view, a complete
Voronoi view.

4.3.2 Updating Routing Tables

When the RD packet reaches destination D , it contains
an acyclic path Path(S, D) = (k ~ , k l , . . . , k l) from
S to D. Node D then initiates a route update pro-
cess by sending an ACK packet back along the path
Path(D, S) = (k l , , k P l , . . . , ko). On the way back, an
entry (D , p o s (D) , k i+l) is added to ?'ahle(ki) . Notice
that the routing tables are updated in the order required by
Property I .

4.4 Proof of Correctness
In this section, we will prove the correctness of our algo-
rithm. More specifically, we will show that the routing ta-
bles do not contain any cycles (i.e., it is not possible for
a packet to get into a loop by following the routing algo-
rithm).

Definition 3 (A cycle in routing tables) We say the rout-
ing tables {Table(si)} contain a cycle provided there is a
destination position D and initial node So such that start-
ing from So, the packet follows the path (SO, SI, . . . , Sk)
without getting stuck and Sk = SO.

Definition 4 (Centers property) Suppose for every en-
try (S , p o s (S) , B) in Twble(A), there is also an ent?
(S ,pos(S) , -) in T a b l e (B) . We then sa)' that Tuble(A)
satisfies the centers property.

When the routing tables at all nodes satisfy the centers
property, we say the network satisfies the centers property.
Intuitively, the centers property is saying that each entry
(S ,pos (S) , B) in T a b l e (A) corresponds to a path. The
path goes through nodes A, B , . . . on its way to node S.
We next show that the routing tables in GRA always sat-
isfy the centers property.

Lemma 1 (Centers property) Consider a wireless net-
work G = (N , L) in which the route discove9 process
satisfies Properg 1. Then the centers proper9 is satisfied
by the routing tables.

Proof Initially each node has itself and its neighbors in its
routing table. So for each neighbor n, of node A , there is
anentry(n ,pos(n) ,n) inTable(A). Because thereisalso
an entry (n , pos (n) , -) in Tab le (n) , the centers property
is satisfied.

Now assume that the centers property holds at time
t , and an entry (D , p o s (D) , B) is added to T a b l e (A) .
New routing entries can only be added by the route dis-
covery process. So assume that the route discovery
was initiated by node S for destination D , and a path
Path(S, D) = (PO, p l ~ . . . ~ p k) was found where pi = A
and pi+l = B. Then because of Property I , there is an

7

entry (D , p o s (D) , -) in T a b l e (B) . Therefore the cen-
ters property is satisfied even after a new entry is added
to T a b l e (A) .

Theorem 1 (Cycle-free property) Consider a static
wireless network G = (N , L) in which the route discov-
ery process satisfies Property 1. Then there are no cycles
in the routing tables.

Proof Because the route discovery process satisfies Prop-
erty 1, the centers property holds in the routing tables.
Now suppose a packet for node D at position d is placed
at node SO. And suppose the packet follows the path
(SO, S I , $, . . .) where at node Si, it is routed according
to the entry (D i , pos (Di) , S i+l) . From the centers prop-
erty, (D i , -, -) is in Table(S i+l) .

Now either Di+l = Di , or Di+l # Di. If Di+l #
Di, then either IIpos(Di+l) - dl1 < Ilpos(Di) - dll , or
IIpos(Di+l) - till = Ilpos(Di) - dl1 and Di+l <id Di.
Now suppose there is a cycle (Si, Si+1, . . . S i + k) where
Si = $+a. It cannot be that Di = Di+l = . . . = Di+k
because that would imply that the route discovery process
found a cyclic path violating Property 1. Therefore, either

dl1 = Ilpos(Di) - dl1 and Di+k <id Di. But then si+k #
Si, a contradiction. Therefore a packet cannot get into a
cycle by following the routing tables. m

From the above results it follows that once routing ta-
bles have converged packets do not loop. Therefore, either
the packet reaches its destination or it gets stuck at a node.
If the packet gets stuck, then through the route discovery
process, a route is found to the destination, and the packet
then gets routed to its destination. Hence, the algorithm
ensures that the packet reaches the destination.

4.5 Performance of the Algorithm
4.5.1 Convergence of Routing Tables

One of the advantages of our geographical routing algo-
rithm is that a node does not need to have a routing entry
for every other node in the network. In fact, as we will
show, after some time, no new route discoveries are ini-
tiated, and routing is done with each node having only a
small number of entries in its routing table. When the rout-
ing tables contain enough detail so that packets can not be-
come stuck, we say that the routing tables have converged
or the Voronoi views have become complete.

Example 3 Corlsider the network of Example 2 The
reader should check that the updated routing table in Fig-
ure 7 is complete. Note that nodes do not contain routing
entries fo r e v e v other node. For example, node E doesn’t
know about nodes D,A, or B but can still route packets to
them.

Ilpos(Di+k) - dl1 < Ilpos(Di) - 4 1 , or Ilpos(Di+k) -

It is best to see this idea geometrically. Corresponding
to the routing table at a node is its Voronoi view. Consider
the Voronoi view of a node S. Suppose that Voronoi cell
Vs(S) contains only node S. Then i t is not possible for
a packet to get stuck at S because a packet for any other
node D falls in a cell other than Vs(S) . When this is the
case for the Voronoi view at every node, packets can not
get stuck in the network.

Definition 5 (Complete Voronoi View) We say the
Voronoi view of node S is complete if I!s(S) contains
only node S.

Now suppose Vs (S) contains a node other than S, say
node D. Then when a packet arrives for destination D at
node S, it will get stuck. This starts a route discovery and
node D is added as a center at node 5’. The new Voronoi
cell with center S is smaller and does not contain D. It is
by this process that the Voronoi cell with center S becomes
smaller and smaller until it eventually contains only node
S. At that point the Voronoi view for node S becomes
complete.

Example 4 Figure 9 (a) shows the Voronoi view at node
S with centers { S , T } , and Figure 9 (b) shows the Voronoi
view at S after D is added as a cell center

The next lemma states that eventually the Voronoi views
at all nodes will become complete.

Lemma 2 (Completion property) Consider a wireless
network G = (N , L) with V t = {Vi : S E ni} being the
set of Voronoi views at all nodes of g. Let there be a posi-
tive probability of a packet being generated at any source
node S for any destination node D in a time interval T .

Then, given any 0 < E < 1, there exists a T such that fo r
Vt > T, Vj is complete for all S E N with probability
1 - E .

Proof For any 0 < S < 1, there is a T such that node S
will generate packets for every other node with probability
1-6 by time T . If a packet for a destination D gets stuck, it
is added as a cell center at node S. It follows that by time
T , node S will have a complete Voronoi view. Because
traffic is generated independently at different nodes, with
probability (1 - 6)”, all the Voronoi views at all the nodes
will be complete by time T . Now choose 6 s.t. (1 - 6)’’ =
1 - E . Then for any 0 < E < 1, there exists a T such that
fo r t > T , V j is complete for all S E N with probability
1 - E .

4.5.2 Size of routing tables of random networks in ar-
bitrarily shaped regions

Claim 1 (Routing table size) The average routing table
size in a n-node network G when all the nodes have com-

8

7

I
(a) Voronoi view with centers S and T (b) Voronoi view with centers S, D and T

Figure 9: Change in Voronoi view on addition of an entry in routing table

plete Voronoi views is O (L log(n)) where is the mean
route discovery path length.

Let us provide an intuitive justification for this result.
Say at node S, the Voronoi cell with center S, contains
other nodes, for example, a node D. When a packet arrives
for node D , the packet gets stuck, and route discovery pro-
cess is initiated which causes D to be added as a center at
S. This causes the old Voronoi cell Vs(S) to be split (as
shown in Figures 9(a) and 9(b)). The new Voronoi cell
with center S, V;(S), is of smaller size than Vs(S). We
are interested in how much smaller is V i (S) compared to

Suppose S and D are randomly placed in Vs (S). Then
on the average, half of the points in Vs (S) will be closer to
5' than to D. These points will form Vi(S). Therefore, on
the average Area(V i (S)) % aAreu(Vs(S)) where N =

So every time a packet for destination D gets stuck at
node S, the node D which was in Vs (S) gets added to S as
a cell center, and the area of Vs (S) gets reduced by a factor
of a. But this can only be done a certain number of times
before S is the only node left in Vs(S) , and the Voronoi
view of S becomes complete. We are interested in finding
the number of times a new cell center can be added at S
before the Voronoi view at S becomes complete.

Suppose the nodes are distributed in a region with a unit
area. If we form the Voronoi partition based on the nodes
in the region, the average area of each cell is $. So if the
number of times Vs(S) gets split is b , then on the average
we expect b to satisfy ak = $ before Vs(S) contains only
node S and the Voronoi view at S becomes complete. This
implies that

VS(S).

1
2 '
-

k. % ~

l o p
log?.

So on the average, packets get stuck times at a node
S before the Voronoi view at S becomes complete.

Now each time a packet for destination D gets stuck at
node S, a route discovery process is started. The route dis-

l o g ;

covery returns a path Path(S, D) . Let us say the average
length of this path is L (note that 1, is in fact a function of
71, and hence should be more appropriately written as En).
From Property 1, D gets added as a center at every node
along the path. So each time a packet gets stuck, 1 new
routing entries get added. At each node, packets get stuck

times, and each of these times, I, new routing en-
l og (d,
tries are added to the routing tables. Therefore the average
route table size is O(Llogn).

We have provided an intuitive justification for this re-
sult. A more formal argument will be provided in the full
paper.

5 Related Issues

5.1 Positional Inaccuracy

Consider a node i which thinks i t is located at position pi
but which is actually located at p i . This could for example
happen if node i gets its position from GPS and there is an
error in the position measurement that it receives from the
GPS. Node i then advertises its position as pi and all pack-
ets to node i are addressed to position p i even though it is
actually located at p i . We refer to pi as the network po-
sition of the node since this is what the routing algorithm
uses, and to pi as the actual position of node i . Each packet
for node i addressed to position pi either gets to node i or
gets stuck. If it gets stuck, then route discovery finds a path
to node i . Although the algorithm works correctly, it can
lead to somewhat unmeaningful routing tables as the fol-
lowing example shows.

Example 5 Consider the network consisting ojnodes ,4,
B, C, D and E. Figure 10 shows their network position,
and Figure I 1 shows their actual position. The network
positions of A, B and C match their actual position. But
nodes D and E are actually located at positions Dl and
E'. The links between the nodes are obtained from Fig-
ure I 1 and are { (E , B) , (B, A) , (A , C) , (C , D) }. NOW
suppose A receives a packet fo r D. So A .fonvards the

9

Figure 10: Network Position

0 0 0 0 0
E ' B ' p: C ' D '

Figure 11 : Actual Position

packet to B. But D is actually located at D' and B does
not have a link to D. So the packet gets stuck at B and a
route discovery is initiated. The route discovery finds the
path (B , A , C , D) to the actual position Dl. A complete
routing table for il is { (E , B) , (B, B), (A , A) , (C , C) ,
(D , C) 1.

Suppose the error between actual position and network
position is 5 (i.e., llpi - pill < 5). Then if node i is at
network position pi and node j is at network position p j ,
then the actual distance between i and j is IIp: - p; 1 1 <
I Ipi - p j 1 1 + 25 . When a node j receives a packet for posi-
tion p i , it can use the bound on lip: - p; 1 1 to decide on its
course of action. If the packet gets stuck at j , then j may
initiate a route discovery, or it may increase its transmitter
power to reach node i .

5.2 Full vs. Partial Route Discovery
When a packet gets stuck at a node X , it initiates a route
discovery. Now, the route can be discovered right upto
destination node D , or it can be discovered upto a node
Y which has node D as a cell center. The first method is
called the full route discovery and the second method is
called the partial route discovery. The full route discov-
ery finds a highly reliable and recently updated route to
node D. The partial route discovery finds a path to node Y
which has D as a cell center. The path from Y to D may
have been discovered some time ago and hence may not
be as reliable.

5.3 Multiple Route Discoveries

It is possible that at any given time, there are multiple route
discoveries going on for the same destination node D , ini-
tiated by different nodes. This can result in cycles as the
following example shows.

Example 6 Consider the network of Figure 12. Suppose
that a route discovery for destination node D, RD1, is
started by node SI at time t 1 . Also, suppose that a route
discovery for destination node D, RD2 is started by node
Sz at time t 2. Suppose RD1 reaches node X I , which for-
wards it to node X ? . which then fowards it to node D.

S' t t S2

Figure 12: Aynchronous Route Discovery

Similarly, RD2 reaches node X2. which directs it to node
X I , which then directs it to node D. Noq suppose that the
ACI<1 for RD1 reaches node X2, and the routing tables
are updated including D as a cell centel; and correspond-
ing forwarding neighbor Y2. Similarly, .4CKz reaches
node XI, and routing tables are updated at X1 includ-
ing D as the cell center; with corresponding neighbor Yl.
Now, suppose that while ACI<l is traveling from 5 2 to
X I , ACK2 is traveling from X1 to Xa. The two ACKs
then overwrite the entries f o r D. At node X I , we then have
N x , (D) = X2, and at node X2, we have N x , (D) = X I .
Thus, there is a cycle.

This problem can be overcome however, if the destina-
tion node time-stamps each route discovery request that
it gets. Then, each node that is participating in multiple
route discoveries for another node, then updates its routing
tables using the RD ACK (update) packet with the most re-
cent time-stamp. This does not result in cycles. The proof
of this follows exactly the same lines as for Theorem 1.

6 Dynamicity and Mobility in Ad
Hoc Networks

In the previous sections, we have assumed that our net-
work is static, and that links and nodes do not fail. We first
show with an example that when these assumptions do not
hold, the routing tables can become inconsistent and cy-
cles can arise. We then present a simple extension to our
algorithm that tries to keep the routing tables consistent in

10

(0 0,
m T m c 0

I4 0 , (5 ,,, 3. If T a b l e (S) contains the entry (d i , p i , T I <) and
S receives T a b l e (n i) which contains the entry
(di,pj,-),thenSupdatesitsentryto(di,pj,ni,-).

4. If T a b l e (S) contains the entry (d i , p z , n i) and S re- E l fLl H I Tlntc I

Figure 13: Routing Tables with Cycles in case of incon-
sistent information

ceives T a b l e (n i) which does not contain an entry
(d i , -, -), then S removes the entry (d i , p i , n i) from
its table.

presence of node and link failures.
5. After any change to its routing table, S broadcasts the

new T a b l e (S) .

We refer to the above protocol as the tear down protocol.
Importance Of Consistency Of The reason for this is as follows: suppose there is an entry
Information (si , p i , ni) in the routing table of S, but node ni has gone

Example 7 Consider the example in Figure 13. Nodes A 6.3 Correctness of the Tear Down Protocol
and R are reachable directly from each other Node C can
be reached by A or B, but only via node H . At time 0, B When nodes or links are going down, it may very well be

is located at position (4,O) and A’s routing table has an the case that the “centers” property is violated. Nodes may

entry (B, (4,O)). Node B then moves so that at time 1 it is also have inconsistent views of the network if they are mo-

at position (6,O). Node A does not know that B has moved bile. But once the topology of the network becomes fixed

so it still has the old position for B in its routing table. again, the tear down protocol ensures that the “centers”

Now a packet arrives at node A for node C. Node A for- property holds and there are no cycles in the routing tables.

wards this packet to node B because it thinks B is closer L~~~~ 3 s~~~~~~ G is a in which route discov.

wards the packet back to A because it thinks A is closer to ogy was changing but has now become $xed, Then after
C. Hence the packet gets into a cycle. the above protocol runs to completion:

to C. B of course is located at Position (610) So it for- cries are done using full route discovery, and +vhose topol-

6.2 Tear Down Protocol
I . “Centers” proper0 will hold.

We present a simple extension to our protocol which
tries to maintain the centers property and keep the rout-
ing tables at nodes consistent. As part of our protocol,
nodes need to exchange “hello” messages to discover their
neighboring topology. We require that each node also
transmit its routing table as part of the “hello” message.

Each node then uses its neighbors’ routing tables to
check the validity of its own routing table. A node S up-
dates its routing table in one of the following ways:

1. If S receives a “hello” message from node ni, it puts
an entry (n i , pos(ni) , ni) in its routing table if it was
not already there.

2. If S does not hear from a neighbor ni for some
amount of time, i t removes all entries of the form
(& , p i , n i) from its routing table.

2. There will be no inconsistent views in the network.

3. There will be no cycles in the routing tables.

Proof: It can not be the case that there are a sequence
of nodes 121,. . . , n k where n k = n1 and (s ,p ,n i+l) E
T a b l e (n i) for i = 1, . . . , k - 1 because this would vio-
late Property l . So when the tear down protocol runs, all
entries (s , p , ni) which do not correspond to a path lead-
ing to node s get deleted. Similarly, the correct position
of each node gets propagated through the network so that
there are no inconsistent views in the network. Because
the “centers” property holds after the tear down protocol
runs to completion and there are no inconsistent views and
no cycles in the routing tables. rn

Hence, tear down protocol tries to maintain the “cen-
ters” property and keep the positional information at nodes
consistent.

11

6.4 Overhead due to mobility

In this section, we try to quantify the amount of overhead
due to mobility. When a node A has a link to node B and
node B moves, the link between A and B may be broken.
When this happens, the protocol of Section 6.2 commu-
nicates this to all nodes which were using this link. This
causes all routing entries which were using the link from
A to B to get deleted. Therefore, the amount of overhead
is proportional to the number of links that are being bro-
ken per unit time. The number of links going down per
unit time is directly related to the speed of the nodes. We
next try to obtain a formula which quantifies the amount of
overhead in terms of the various parameters of the wireless
network.

We assume the network has 71 nodes in a unit area and
each node has a transmission radius r .

6.4.1 Overhead from a single link going down

On the average, each node has n5rr2 neighbors and
cLlog(n) entries in its routing table. So on the average

a link from node A to a neighbor B. So when the link be-
tween A and B goes down, cy entries in A and cy entries in
B become obsolete. This cause (-) messages to
be broadcast to delete all entries in all nodes which were
using the link between A to B.

Since paths get deleted by each link going
down. In steady state, the same number of route discov-
eries must also be made for each link going down. Each
route discovery generates (for example, using breadth first
search) n packets. So a total of packets get gen-
erated from route discoveries for each link going down.

c L l o g (n) cy=- n x T 2 entries in the routing table of A are using

% c L l o g (n) L

’ c L l o g (n)

So each link going down causes

cL21og(n) ZcLloy(nj +
n5rr2 5rr2

overhead packets to be generated. That is O(wj
packets get generated for each link going down.

6.4.2 Number of links going down due to mobility

Figure 14: Computing overhead due to mobility

Let us now compute the number of links that go down
per unit time. We assume that each node is moving in a
random direction at speed v. We will look at a shell of
width vA at radius r from a node N . We will be interested
in how many of the nodes in the shell move out of node
N’s range in time A. This is the number of links that will
be broken between node N and its neighbor in time A.

Figure 14 shows the shell. There are 27rrvAn nodes in
the shell. We are interested in computing the probability
that a node in the shell moves out of the circle. This prob-
ability is given by

1 1
= ’ A co”-l(y)dy = -

5r 5r

So for a node N , 25rprvn links get broken per unit time.
Or O(rvn) links get broken per unit time from a single
node. Since there are n nodes, a total of O(rv?~’) links
get broken per unit time in the network.

6.4.3 Total Overhead

Since O(j packets get generated for each link go-
ing down, and O(rvn2) links get broken per unit time in
the network. A total of O(Lun’:g‘n)) overhead packets
get generated in the network per unit time.

7 Simulation Results

In this Section, we describe the simulation framework and
results on the performance of the GRA routing algorithm.
The performance of a routing algorithm can be measured
in terms of the memory requirement at the nodes, and the
bandwidth used due to the communication overhead. We
quantify the performance of the algorithm be simulating
the GRA running over random graphs of varying size. In
each case, we sample enough random graphs to put our re-
sults in a 95% confidence interval.

Our performance measures are the mean routing table
size, and the average number of GRA protocol packets
generated per node before the routing tables complete.
We assume that each protocol packet generated is deliv-
ered. Thus the number does not account for retransmis-
sions due to channel variations, medium access control,
etc. Note that both measures are independent of underly-
ing link layer or physical layer characteristics. The first
measure is related to the memory requirement of the nodes
and the second the network bandwidth consumed by the

12

protocol overhead. We have focussed on them to empha-
size that the GRA is not tied to a particular link layer pro-
tocol or channel type. Its benefits could potentially be re-
alized over many kinds of underlying networks.

7.1 Simulator Description
We generate the random network in two steps. First, the
simulator has a graphical user interface that accepts the
number of nodes n and the shape of a two dimensional re-
gion as input. It then locates n points randomly, with a
uniform distribution, in the region. Thus the first step pro-
vides a set of node locations. The second step determines
the neighbors of each node. We assume that all nodes have
the same transmission range and that if the distance be-
tween two nodes is less than the transmission range then
the two nodes are neighbors, Le., connected by an edge
in the network graph. We find the minimum transmission
range such that the nodes form a connected graph. This
minimum is found by successive approximation. This pro-
cess of generating the network graph results in an increase
in the average number of neighbors of a node as the node
density is increased. This is shown in figure 15.

?
0:
10) 1 0‘

Number 01 Nodes
1 o3

Figure 15: Average number of Neighbors

are forwarded according to the routing table. If a packet
is “stuck’, it initiates a depth-first-search route discovery,
which updates the routing tables upto the destination so
that the stuck packet can be routed. The route discov-
ery process is assumed to be instantaneous. We do this
to simplify the implementation but nevertheless account
for the exact number of path finding and update packets.
We assume that all the packets are of same size, and there
exists a schedule such that each node can exactly trans-
mit C packets per unit time. Note, however, the perfor-
mance measures we present are independent of these as-
sumptions, as long as each node is equally likely to orig-
inate its next packet for any other node in the network.
Nodes may represent agent teams that are located close
to each other. For such applications, we think the perfor-
mance of GRA would be better than under the assumption
we make here.

7.2 Results

Figure 16 shows that the mean routing table size is small.
In fact, for a 1024 node network, the mean routing table
length is only 12.1, The plots show the 95% confidence
interval for the mean with 50 simulation experiments. As
expected, it grows with the size of the network. Some of
this growth is simply the growth in the number of neigh-
bors. Figure 16 plots the two together. We see that most
of the growth is accounted for by the increase in neigh-
bors. The increase in the number of non-neighbor remote
nodes in the routing table is quite small. This is also as
expected because as the number of neighbors of a node in-
crease, it becomes less likely that packets will get stuck at
the node. The logarithmic growth in routing table size is
in sharp contrast to the linear growth of most ad-hoc net-
work routing algorithms. Figure 16 (b) compares the mean
routing table length of the GRA routing algorithm with
the destination sequenced distance vector (DSDV) rout-
ing algorithm. Other algorithms based on distance vector,

At each node, there is a routing table to route packets
generated or relayed, and a buffer to queue packets. The

ne buffer size B at the nodes is large enough so that pack- are, in fact, achieved at very little communication over-
ets are not dropped. head. The overhead in communication is because of the

packets are generated unifomly randomly bandwidth used due to the route discovery packets and the
U[A(n)/2,3X(n)/2], where updates. However, the update packets are very small i n

size as compared to the route discovery packets and can

link-state and source routing also have similar routing ta-
ble lengths.

queue leaks at Some constant rate C packets per time unit. Figure (a) shows that the routing sizes

X(n) = k f i C also be piggy-backed on other packets, and hence are ig-
nored in our results. We count the number of packets a

is the mean rate at which packets are generated, k is a con- route discovery transmitted as the communication over-
stant (0.01 in our simulation to prevent buffer overflow). head due to a single route discovery. Figure 17 (a) shows
The source-destination pair are chosen randomly. On be- that geographical routing algorithm in a non-mobile net-
ing generated, a packet gets queued at the node. In each work, achieves complete routing tables with communica-
time instant, C (which is 20 in our simulation) packets tion overhead of less than two route discovery packets per

. -

13

30

I
Y O , 102 IO’

(a) Mean routing table size for GRA
Numberof Nodes

Figure 16: Mean routing table size

(a) GRA protocol packets per node (b) Time to converge (in seconds)

Figure 17: Communication overhead and convergence time are also performance measures

node. The average number of protocol packets per node is
approximately constant. Therefore the growth in the num-
ber of protocol packets is linear in the size of the network.

Moreover, as Figure 17 (b) shows, with the traffic load
as specified above and traffic spread uniformly, the routing
tables converge in less than 1000 seconds. This means that
it takes less than 1OC packets per node on average for the
routing tables of a node to converge. In our simulation C
was 20. So, for a 1024 node network, each node gener-
ated only 80 packets on average, before it’s routing table
became complete.

We assumed a random walk model for mobility. The
tear down protocol described in Section 6 was imple-
mented in the simulation to take care of mobility. As Fig-
ures 18(a) and Figure 18(b) show the routing table sizes do
not seem to be affected by mobility. In our future work we
intend to carry out a comprehensive set of simulations to
determine the affect of mobility on communication over-
head and throughput.

8 Conclusions

In this paper, we have proposed a novel algorithm for rout-
ing in wireless ad-hoc networks using geographical infor-
mation of the nodes. The algorithm is asynchronous, real-
time, distributed and scalable. It does not require an ar-
chitecture or hierarchy to be imposed on the network but
provides each node with a distance-dependent aggregated
view of the network topology. The basic intuition be-
hind the algorithm is that to route a packet far away from
the destination, only a “coarse” knowledge of the network
topology is required. As the packet reaches near the dcsti-
nation, nodes in that area are expected to know the topol-
ogy around the destination in greater detail and will be able
to route the packet to the destination.

We showed that if the route discovery process updates
routing tables in a particular way, then the routing tables
are cycle-free. We also showed that even in mobile net-
works where the topology changes, the packets may get
“stuck” but do not get caught in loops. Further, we quan-
tified the performance of the algorithm in terms of the size
of the routing table and communication overhead due to
the route discovery process. We presented proposed proto-

14

I I
N"rn*el Of node.

(a) Route table size as a function of number of nodes

i
I I

(b) Route table size as a function of speed
Ysioi#n IrnlSl

Figure 18: Mobile Networks

cols for handling discovering new nodes, and coping with
node failures. These protocols enable the algorithm to
handle mobility and dynamicity in network topology.

We showed theoretically and verified through simula-
tion that the algorithm obtains very small routing table
sizes and very low communication overhead. Thus, one
of the major features of the algorithm is that it is scalable
without imposition of any hierarchy (hence ad hoc in true
sense). Thus, the algorithm has implications for Internet
routing as well. One of the weaknesses of the algorithm is
that i t assumes an overlaid paging network to provide in-
formation about geographical location of the nodes. But
with proliferation of GPS receivers, this may not remain
an impractical assumption.

[SI Y. KO and N.H. Vaidya. Location-aided routing
(LAR) in mobile ad hoc networks. In Proc. MOBI-
COM'98, pages 66-75, August 1998.

[6] M.Steenstrup. Routing in Communications Net-
works. Prentice-Hall Inc., 1995.

[7] J.C. Navas and T.Imelinski. Geocast-geographic ad-
dressing and routing. In Proc. ACMAEEE MOBI-
COM'97, volume 3, pages 66-76, 1997.

[8] V. Park and S. Corson. Temporally-ordered rout-
ing algorithm (TORA) version I functional speci-
fication. Internet draft, draft-ietf-manet-tora-spec-
0O.txt.

We have presented protocols to handle node mobility. [9] C. Perkins. Ad hoc on demand distance vector
Detailed analysis of the algorithm under high mobility and (AODV) routing. Internet draft, draft-ietf-manet-
its load balancing properties are subjects of current re- aodv-OO.txt, 1997.
search. We intend to present those results in future work.

[IO] C. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector (DSDV)

References

B. Das and V. Bharghavan. Routing in ad hoc net-
works using minimum connected dominating. In
Proc. IEEE International Conference on Communi-
cations '97, 1997.

P. Gupta and P.R. Kumar. A system and traffic de-
pendent adaptive routing algorithm (STARA) for ad
hoc networks. In Proceedings of the CDC, Decem-
ber 1997.

Z.J. Haas and M.R. Pearlman. The zone routing
protocol (ZRP) for ad hoc networks. Internet draft,
draft-zone-routing-protocol-OO.txt, 1997.

D.B. Johnson and D.A. Maltz. Dynamic source rout-
ing (DSR) in ad hoc wireless networks. Internet
Draft, 1997.

routing for mobile computers. In Proc. SIG-
COMM'94, pages 234-244, August 1994.

[111 V. Rodoplu and T. Meng. Minimum energy mobile
wireless networks. IEEE Journal on Selected Ar-
eas in Communications, 17(8): 1333-1344, August
1999.

[12] K. Scott and N. Bambos. Routing and channel as-
signment for low power transmission in PCS. In
Proc. ICUPC, Fifth Intl. Con$ Universal Personal
Communications, volume 2, pages 498-502, Octo-
ber 1996.

[131 S. Singh and M. Woo. Power-aware routing in mo-
bile ad hoc networks. pages 18 1-190, August 1998.

[14] P. Varaiya. Smart cars on smart roads: Problems of
control. IEEE Transactions on Automatic Control,
38(2):195-207, 1993.

15

