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Robust estimation of SARS‑CoV‑2 
epidemic in US counties
Hanmo Li1,2 & Mengyang Gu1,2*

The COVID-19 outbreak is asynchronous in US counties. Mitigating the COVID-19 transmission 
requires not only the state and federal level order of protective measures such as social distancing and 
testing, but also public awareness of time-dependent risk and reactions at county and community 
levels. We propose a robust approach to estimate the heterogeneous progression of SARS-CoV-2 at 
all US counties having no less than 2 COVID-19 associated deaths, and we use the daily probability 
of contracting (PoC) SARS-CoV-2 for a susceptible individual to quantify the risk of SARS-CoV-2 
transmission in a community. We found that shortening by 5% of the infectious period of SARS-
CoV-2 can reduce around 39% (or 78 K, 95% CI: [66 K , 89 K ]) of the COVID-19 associated deaths in 
the US as of 20 September 2020. Our findings also indicate that reducing infection and deaths by a 
shortened infectious period is more pronounced for areas with the effective reproduction number 
close to 1, suggesting that testing should be used along with other mitigation measures, such as 
social distancing and facial mask-wearing, to reduce the transmission rate. Our deliverable includes a 
dynamic county-level map for local officials to determine optimal policy responses and for the public 
to better understand the risk of contracting SARS-CoV-2 on each day.

The outbreak of new coronavirus 2019 (COVID-19) has caused nearly 200,000 deaths in the US, and among 
those, there are 2277 counties with no less than 2 associated deaths as of 20 September 20201. The ongoing 
COVID-19 pandemic has led to unprecedented non-pharmaceutical interventions (NPIs), including travel 
restrictions, lockdowns, social distancing, facial masks wearing, and quarantine to reduce the spread of SARS-
CoV-2 in the US. The COVID-19 outbreak is prolonged and asynchronous across regions. Thus it is critical to 
estimate the dynamics of COVID-19 epidemic to determine appropriate protective measures before the avail-
ability of effective vaccines.

A non-negligible proportion of SARS-CoV-2 infectious individuals is asymptomatic or have mild symptoms2. 
We term the individuals the active infectious individuals who can transmit the disease to others but may not be 
diagnosed yet. Identifying the number of active infectious individuals is crucial to monitor the transmission in 
a community. Another important time-dependent quantity is the expected number of secondary cases resulted 
from each active infectious individual, or effective reproduction number. In this article, we estimate these two 
time-dependent quantities for all US counties with no less than 2 COVID-19 associated deaths as of 20 September 
2020; the population of some counties that falls within this category is even less than ten thousand. Further-
more, based on these two time-dependent quantities, a more interpretable measure, called the daily probability 
of contracting (PoC) SARS-CoV-2 for an individual at the county-level was used to quantify the risk. This static 
risk factor with fixed transmission rates was studied before3. Here we studied the dynamic transmission rate 
parameter, which is estimated by the number of deaths, test positive rates and the number of confirmed cases 
in a community. The risk factor can be extended to measure the risk of an event with different sizes4. The fine-
grain estimation of disease progression characteristics allows the public to understand the risk of contracting 
COVID-19 on a daily basis.

Predictive mathematical models are useful for analyzing an epidemic to guide policy responses5. The epi-
demiology compartmental models such as SIR, SEIR, SIRD, and their extensions6–10, stochastic agent based 
models11,12, branching processes13, and network analysis14 have advanced our understanding of transmission 
rates and incubation period of SARS-CoV-2, which are connected to the traffic flow and mobility during the 
COVID-19 outbreaks at different regions15,16. The disease progression characteristics, such as the transmission 
rate, are often estimated based on the daily death toll6,9,11,12. However, it is challenging to estimate the progression 
of the epidemic in US counties with small population, because the number of daily observed confirmed cases 
and COVID-19-related deaths is small.

Meanwhile, using observed laboratory-confirmed COVID-19 cases (henceforth, observed confirmed cases) 
might significantly underestimate the population that have been infected with the SARS-CoV-2. It was found in 
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Ref.17 that around 9.3% of the US individuals (or roughly 30 million) may have contracted the COVID by July 
2020 based on serology tests, whereas less than 4.8 million COVID-19 positive cases have been confirmed in the 
US before August 20201. Thus, it is important to estimate the number of individuals who contracted COVID-19 
but had not tested positive. The focus herein is on integrating COVID-19-related death toll and test data to obtain 
a robust estimation of the disease progression characteristics of COVID-19 at county and community levels.

One critical quantity to evaluate an infectious disease outbreak is the time-dependent transmission rate, based 
on which one can compute the basic reproduction number and the effective reproduction number of the disease. 
Various approaches were proposed to estimate this parameter. The transmission rate was modeled as a decreas-
ing function of the time in Ref.6, a function of NPIs in Ref.11 and a geometric Brownian motion in18. Unlike the 
outbreak in China or other countries in north-east Asia, transmission rates of the COVID-19 progression in 
the US does not monotonically decrease due to the prolonged duration of the outbreak, and it is challenging to 
determine a suitable parametric form of this parameter in terms of time. In Ref.9, the transmission rate parameter 
was related to the initial values of infectious cases, resolving cases, and up to two derivatives of the daily death 
toll. This method provides a flexible way to estimate the time-dependent transmission rate from the death toll 
and its derivatives, yet unstable for counties with moderate or small population sizes, as numerical estimation 
of the daily death toll and its derivatives is often unstable.

In this work, we propose a robust approach of integrating test data and death toll to estimate COVID-19 
transmission characteristics by a Susceptible, Infectious, Resolving (but not infectious), Deceased, and reCov-
ered (SIRDC) model initially studied in9. We illustrate that the transition between different stages of disease 
progression in the SIRDC model in part a of Fig. 1. First, a part of the population is infected by active infectious 
individuals each day, depending on the transmission rate parameter ( βt ). After γ−1 days, an active infectious 
individual is expected to be no longer infectious, denoted by the resolving compartment, meaning that this 
individual will not transmit COVID-19 to others as a result of hospitalization or self-quarantine. We term the 
average length of an active infectious individual the infectious period. A resolving case is expected to be resolved 
(either recovered or deceased) after θ−1 days. The proportion of deaths from the number of resolved cases is 
controlled by the fatality rate parameter δ.

Our approach has three innovations. First, we solve the compartmental models using a midpoint rule with 
a step size of 1 day, as the confirmed cases and death toll are updated daily in most US counties, and this is dis-
cussed in the method section. Second, we combine test positive rates, confirmed cases and death toll to estimate 
the daily transmission rate parameter. Our estimate of transmission rates and reproduction numbers is robust 
and accurate to reproduce the number of the death toll and other compartments for counties with medium to 
small population sizes (Figs. 4 and 5). The simulated studies also suggest that our approach is more robust than 
the solution in Ref.9 (Fig. 6), as our solution does not require estimating derivatives of the daily death toll. Only 
two parameters, the initial values of the number of active infectious individuals and the number of resolving 
cases, need to be estimated numerically for each county. Then we can solve the time-dependent transmission 
rates and all other compartments subsequently. Since only two parameters are estimated for each county, our 
estimation rarely depends on initial values we choose for the optimization. Finally, we use a Gaussian process to 
model the residual between the observed death toll and that from the SIRDC model, leading to more accurate 
predictions and proper uncertainty quantification. A summary of the main findings, limitations, and policy 
implication are given in Table 1.

Results
We first verify our model performance by forecasting at the county level. The 7-day and 21-day death projections 
for 2277 US counties using data by 20 September 2020, for instance, are close to the held-out test death toll in 
these counties, shown in part b and part c of Fig. 1. The Pearson correlation coefficient ( ρ ) is larger than 0.999 
7-day and 21-day forecast. We also calculate the weighted average of Pearson correlation coefficient for counties 
( ρcounty ), which treats each county as a different population and population size is used to computed the weighted 
average of Pearson correlation coefficient for counties. The 21-day forecast of each considered county in Florida 
and California using observations by 20 September 2020 is provided in Figs. 2 and 3 , respectively. The death 
toll forecast based on our model is accurate for most US counties, and around 95% of the held-out test data is 
covered by nominal 95% predictive interval (Supplementary Table S1 in supplementary information), indicat-
ing that the uncertainty assessment is accurate. To further test the predictive performance of our model, we use 
data by 1 December, 2020 to make 21-day and 90-day predictions of deaths in the 10 largest counties in Florida 
and California. The forecast results are shown in Figs. 7 and 8 , respectively. While this is a challenging scenario, 
as confirmed cases and deaths increase dramatically across the US during the winter, we found that our 21-day 
predictions are reasonably accurate for all 20 counties. Thus, our models can be used reliably for the short-term 
projection of COVID-19 related deaths at the county level during different periods of the epidemic. Furthermore, 
a 90-day accurate forecast of US counties before the winter may be an almost impossible task, and indeed we 
underestimate death counts for a few counties due to a rapid increase in death counts during the winter. On the 
other hand, our model that fuses test data and death toll correctly projects the rapid increase in death counts for 
most counties during the winter, even if death counts do not increase dramatically during the training period.

Based on the robust estimation of transmission rates, we derived the county-level estimation of daily PoC 
SARS-CoV-2. We classify the daily PoC SARS-CoV-2 in a community into five levels listed in Table 2. On 20 
September 2020, out of 2277 US counties, only 60 counties were at the controllable level and 311 counties were at 
the moderate level, whereas 1906 counties were at the either alarming, strongly alarming, or hazardous level. The 
daily PoC SARS-CoV-2 measures the average probability to contract SARS-CoV-2 for a susceptible individual 
in a community, and the risk varies from individuals to individuals. Nonetheless, the PoC SARS-CoV-2 is an 
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Figure 1.   (a) The SIRDC model and the data used for analysis. (b) 7-day death toll forecast and 21-day death 
toll forecast against the held-out truth in 2277 US counties with no less than 2 deaths as of 20 September 2020. 
Each dot is a cumulative death toll for one county at one held-out day. Counties from the same state are graphed 
using the same color. The Pearson correlation coefficient ( ρ ) of the nation and the weighted average of Pearson 
correlation coefficient for counties ( ρcounty ) are recorded. (c) 21-day death toll forecasts in 10 counties with 
largest population in Florida, where the red line represents the observed death toll and blue line means the 
forecast. The forecast starts from 21 September 2020, marked by the vertical black dash line. The grey shadow 
area is the 95% confidence interval of the forecast. Numbers in the parentheses right after the county name are 
population in million. The Figs. 2 and 3 show 21-day death toll forecast for all counties in Florida and California.

Table 1.   Policy summary.

Background

The transmission of SARS-CoV-2 is heterogeneous and asynchronous in US counties. It is thus important 
to assess the risk before lifting or replacing any mitigation measure in the community. We have developed 
a novel approach to integrate test data and death toll to estimate the probability of contracting COVID-19, 
as well as the time-dependent transmission rate and number of active infectious individuals at the county 
level in the US

Main findings and limitations

National level order of protective measures reduces the transmission rate and active number of infectious 
individuals for most US counties in April, whereas the risk of contracting SARS-CoV-2 rebounded between 
late June and early July, as the protective measures were relaxed. We found that when the infectious period 
of SARS-CoV-2 is shortened by 5% and 10% , the number of deaths can be reduced from 199 K to 120 K 
( 95% CI [109 K, 132 K ]) and 80 K ( 95% CI [72 K, 89 K]) as of 20 September 2020, respectively, when other 
protective measures were kept the same. The reduction of the infectious period can be achieved by extra 
testing in addition to ongoing protective measures. Our model relies on the existing knowledge of the 
COVID-19 and model assumptions. Other information, such as demographic profiles, mobility, and serol-
ogy test data, can be used to calibrate the model parameters and assumptions at the community level.

Policy implications
Our model indicates that extra testings, along with the current NPIs, can significantly reduce the number 
of deaths associated with COVID-19. The estimated probability of contracting COVID-19 can be used as 
an interpretable risk factor to guide community policy responses.
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Figure 2.   The 21-day forecast in 67 Florida counties with death toll no less than 2 as of 20 September 2020. The 
training period is from 21 March 2020 to 20 September 2020, whereas the forecast starts from 21 September 
2020. The red curves are the cumulative observed death toll from 21 September 2020 to 11 October 2020 and 
the blue line indicates the forecast for the same period. The shaded area represents the 95% predictive intervals 
of the forecast for each analyzed county in Florida.
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interpretable measure for public understanding of the average risk of contracting SARS-CoV-2 in a community 
on a given day.

We graph the estimated PoC SARS-CoV-2 of an individual at US counties on 20 April 2020 and 20 September 
2020 in Fig. 9. On 20 April 2020, the PoC SARS-CoV-2 is large in northeastern regions and some southern states 
such as Arizona, New Mexico, and New Orleans. On 20 September 2020, the PoC SARS-CoV-2 is large in many 
inland states, for instance, Montana, North Dakota, Mississippi, and Alabama. Although the PoC SARS-CoV-2 
on 20 September in northeastern regions is substantially lower than that on 20 April, the PoC SARS-CoV-2 for 
an individual is large in most other states on 20 September, suggesting that the relaxation of protective measures 
can lead to more population contracting COVID-19, and consequently more deaths at a rate no slower than 
that in late April.

Officials can use the daily PoC SARS-CoV-2 to determine whether the mitigation policies can be lifted or 
replaced by other measures for different regions. The probability of contracting COVID-19 in many counties in 
Texas on 20 September 2020, for example, is larger than those in Washington [(part (a) and (d) in Fig. 4], indicat-
ing that Texas should undertake more protective measures to reduce the risk. The nationwide lockdown order 
and social distancing in spring effectively reduced the PoC SARS-CoV-2 in 4 out of 5 counties in Washington, 
while the PoC SARS-CoV-2 of all counties increases in late June and early July, as some of the nonpharmaceutical 
interventions (NPIs) were lifted (part b in Fig. 4). Part (c) shows that the model fits the death toll. With only two 
parameters estimated numerically for each county, the fit is reasonably good for these counties at a wide range of 
dates. In comparison, though the outbreak of 5 counties in Texas started in early summer, the PoC SARS-CoV-2 
in these Texas counties is much higher than that in Washington counties on 20 September [part (e) in Fig. 4]. Our 
model also fits the death toll of the counties in Texas relatively well [part (f) in Fig. 4]. The county-level estima-
tion and forecast are updated regularly on the COVID-19 US Dashboard:https://​covid​19-​study.​pstat.​ucsb.​edu/.

The effectiveness of protective measures were studied to reduce the transmission rate7,8,11,12,14,19, whereas the 
efficacy of these measures depends on the reactions from the public, which is likely to vary from region to region. 
Another simultaneous effort to mitigate the spread of the COVID-19 outbreak is through testing and contact 
tracing, which reduces the infectious period, and consequently, the number of active infectious individuals. For 
Washington and Texas, we simulate the model output with infectious period reduced by 5% (or equivalently 
4.75 days in total), while the transmission rate ( βt in SIRDC model) is held the same. We found that the PoC 
SARS-CoV-2 is reduced by 5 times for 12 counties out of 28 considered counties in Washington and 6 counties 
out of 209 considered counties in Texas, as shown in the Fig. 10. Furthermore, when we reduce the infectious 
period by 10% (or equivalently 4.5 days in total), while the transmission rate ( βt in SIRDC model) is held the 
same, the PoC SARS-CoV-2 is reduced by 5 times for 26 out of 28 counties in Washington and 146 out of 209 
counties in Texas, shown in Fig. 11.

We graph the estimated effective reproduction number, the number of active infectious individuals, and the 
cumulative death toll in the US, along with the simulated values when the average infectious period is reduced 
from 5 to 4.75 days and 4.5 days in Fig. 12. First, we found that mitigation measures in March effectively reduce 
the effective reproduction number to below 1, whereas the value rebounded in summer after some of these meas-
ures were relaxed in different regions. Consequently, the US has experienced two waves of the outbreak in terms 
of the number of active infectious individuals [part (b) in Fig. 12]. The high test positive rate at the beginning of 
the epidemic (Fig. 13) indicates that a substantial number of active infectious individuals were not diagnosed in 
April due to the lack of diagnostic tests. According to our estimates, the peak of the first wave in April is larger 
than that of the second wave in July in terms of the number of active infectious individuals, whereas the peak of 
the daily observed confirmed cases in April is smaller than that of the second wave in July (Fig. 13).

Second, the simulated results suggest that shortening infectious period of SARS-CoV-2 by 5% and 10% can 
reduce the total deaths from 199 K to 120 K ( 95% CI [109 K, 132 K]) and 80 K ( 95% CI [72 K, 89 K]), respec-
tively, as of 20 September 2020, when other protective measures were held as the same (part c in Fig. 12). Note 
that since we held the transmission rate parameter ( βt ) to be the same (a scenario where the public adheres to 
the protective measure same as the reality), the effective reproduction number barely changes (part a in Fig. 12). 
However, the slightly shortened infectious periods of SARS-CoV-2 can reduce the death toll substantially (part 
c in Fig. 12), as the number of active infectious individuals decreases (part b in Fig. 12).

We found that a shortened infectious period substantially reduces the number of active infectious individuals 
and fatalities in the second wave. However, the changes are smaller in the first wave, since the effective reproduc-
tion number in the second wave is smaller than that in the first wave (Fig. 12). The county level estimation also 
validates this point (Figs. 10 and 11). This finding indicates that the efforts of shortening the infectious period 
of SARS-CoV-2 should not replace the other protective measures, such as social distancing and facial mask-
wearing to reduce the transmission rate.

Diagnostic tests can be used to shorten the length of the infectious period of an active infectious individual. 
Drastically reducing the infectious period may not be possible without contact tracing, which is challenging when 
there is a large number of active infective cases. Reducing the infectious period by around 5% , in comparison, may 
be achieved by periodically diagnostic tests every 20 days for each susceptible individual. More frequent testing or 
contact tracing may be needed to achieve this goal, as the infection is most likely to happen between days 2 and 6 
after exposure due to the high viral load of SARS-CoV-220. Another efficient way is to test susceptible individu-
als with a high risk of contracting or spreading SARS-CoV-2, such as individuals with more daily contacts or 
have contacts with vulnerable populations, e.g., workers from senior living facilities. Our estimation of the PoC 
SARS-CoV-2 can be used as a response to develop regression models using covariates including demographic 
information and mobility to elicit personalized risk of contracting SARS-CoV-2 for susceptible individuals.

Finally, efforts on reducing the length of the infectious period should not replace other protective measures 
for reducing transmission rates of SARS-CoV-2, as the number of active infectious individuals and death toll can 
be effectively reduced only if the effective reproduction number is not substantially larger than 1.

https://covid19-study.pstat.ucsb.edu/
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Discussion
Our study has several limitations. First, our findings are based on the available knowledge and model assump-
tions, as with all other studies. One critical parameter is the death rate, assumed to be 0.66% on average21, whereas 
this parameter can vary across regions due to the demographic profile of the population and available medical 
resources. The studies of the prevalence of SARS-CoV-2 antibodies based on serology tests17 can be used to deter-
mine the size of the population who have contracted SARS-CoV-2, and thus provides estimates on the death rate, 
as the death toll is observed. Besides, we assume the infected population can develop immunity since recovery 
for a few months, which is commonly used in other models. The exact duration of immunity post-infection, 
however, remains unverified scientifically. Third, we assume that the number of susceptible individuals and, 
consequently, the number of individuals who have contracted SARS-CoV-2 can be written as a function of the 
number of observed confirmed cases and test positive rates, calibrated based on the death toll. More information 
such as the proportion of population adhere to the mitigation measures, mobility, and demographic profile can 
be used to improve the estimation of susceptible individuals in a region.

Our results can be used to mitigate the ongoing pandemic of SARS-COV-2 and other infectious disease out-
breaks in the future. The estimated daily PoC SARS-CoV-2 at the county level, for example, is an interpretable 
measure to understand the risk of contracting COVID-19 on a daily basis and a surveillance marker to deter-
mine appropriate policy responses. Besides, Our method can be extended when an effective vaccine becomes 
available10. Finally, further studies of this measure relative to different mobility, demographic information, and 
social-economic status can provide more precise guidance for local officials to protect vulnerable populations 
from contracting SARS-CoV-2, when an effective vaccine is not available.

Methods
We introduce our methods in this section. The main symbols used in this section and their definitions are 
provided in Table 3.

SIRDC compartmental models.  The SIRDC model for the jth county in the ith state in the US is described 
below:

where Si,j(t) , Ii,j(t) , Ri,j(t) , Di,j(t) and Ci,j(t) denote the number of individuals at these 5 compartmental groups 
on day t, respectively, and Ni,j denotes the number of individuals in county j from state i for i = 1, 2, . . . , k , 
j = 1, 2, . . . , ni with ni being the number of counties of the ith state considered in the analysis and t = 1, 2, . . . ,Ti,j . 
The time-dependent transmission rate parameter is denoted by βi,j(t) and the inverse of average number of days 
an infectious individual can transmit the COVID-19 is denoted by γ . The inverse of the average number of 
dates for a case to get resolved (i.e. deceased or recovered) is denoted by θ and the proportion of deceased cases 
(i.e. death rate) is denoted by δ . The parameters (γ , θ , δ) were invariant over time and held fixed in this study. 
Following19, we assume the infectious period to be 5 days on average, and a case is expected to resolve after 10 
days. The average death rate is assumed to be 0.66%21. Additional verification of these assumptions and sensitivity 
analysis of these parameters are provided in the supplementary information.

To determine the characteristics of the SARS-CoV-2 epidemic in US counties, we define the time-
dependent effective reproduction number, i.e. the average number of secondary cases per primary cases as 
R

i,j
eff (t) = R

i,j
0 (t)Si,j(t)/Ni,j , where the R i,j

0 (t) = βi,j(t)/γ  denotes the basic reproduction number on day t. 
When R i,j

eff (t) < 1 , it means that the number of the active infectious individuals will decrease (and vice versa, 
if R i,j

eff (t) > 1 ). The effective reproduction number was often used to quantify whether or not the disease is 
under control22. However, the effective reproduction number does not directly quantify risk of contracting 
SARS-COV-2 for a susceptible individual, as the number of active infectious individuals in a region was not 
taken into consideration. We compute the average probability of contracting (PoC) SARS-CoV-2, denoted as 
Pi,j(t) = R

i,j
eff (t)Ii,j(t)γ /(Si,j(t)) = βi,j(t)Ii,j(t)/Ni,j , which quantifies the risk of a susceptible individual in county 

j from state i to catch SARS-CoV-2 on day t. Here the risk is on an average sense among all susceptible individu-
als in a region.

The most critical parameter of the SIRDC model is the transmission rate parameter, βi,j(t) , as a function of 
time, based on which we obtain the reproduction number on day t. To estimate the time-dependent transmission 
rates for communities with small population sizes, we derive a more robust estimation of the transmission rate 
of each county based on the death toll and testing data, discussed below.

Closed‑form expressions of the time‑dependent transmission rates.  Since the observations 
such as death toll and confirmed cases are generally updated daily, we solve the ordinary differential equations 
(ODEs) in the SIRDC model (Eq. 1) approximately by the midpoint rule of the integral with a step size of 1 day. 
For day t ∈ N

+ , the approximation is described below:

(1)

Ṡi,j(t) =
−βi,j(t)Si,j(t)Ii,j(t)

Ni,j
,

İi,j(t) =
βi,j(t)Si,j(t)Ii,j(t)

Ni,j
− γ Ii,j(t),

Ṙi,j(t) = γ Ii,j(t)− θRi,j(t),

Ḋi,j(t) = δθRi,j(t),

Ċi,j(t) = (1− δ)θRi,j(t),
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(2)
Si,j(t + 1)

Si,j(t)

.
= exp

{

−
βi,j(t + 0.5)

2Ni,j

(

Ii,j(t)+ Ii,j(t + 1)
)

}

,

(3)
Ii,j(t + 1)

Ii,j(t)

.
= exp

{

βi,j(t + 0.5)

2Ni,j
(Si,j(t)+ Si,j(t + 1))− γ

}

,

(4)Ri,j(t + 1)− Ri,j(t)
.
= γ

Ii,j(t)+ Ii,j(t + 1)

2
− θ

Ri,j(t)+ Ri,j(t + 1)

2
,

Figure 3.   The 21-day forecast in 50 California counties with death toll no less than 2 as of 20 September 2020. 
The training period is from 21 March 2020 to 20 September 2020, whereas the forecast starts from 21 September 
2020. The red curves are the cumulative observed death toll from 21 September 2020 to 11 October 2020 and 
the blue line indicates the forecast for the same period. The shaded area represents the 95% predictive intervals 
of the forecast for each analyzed county in California.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11841  | https://doi.org/10.1038/s41598-021-90195-6

www.nature.com/scientificreports/

Further by assuming the transmission rate parameter βi,j(t) is day-to-day invariant (i.e. a step function with step 
size 1), based on Eqs. (2) and (3), we obtain βi,j(t + 0.5) from t = 1 to Ti,j − 1 , iteratively, based on the sequence 
of susceptible individuals {Si,j(t)}

Ti,j
t=1 and the initial number of active infectious individuals Ii,j(1) described in 

algorithm 1.

(5)Di,j(t + 1)− Di,j(t)
.
= δθ

Ri,j(t)+ Ri,j(t + 1)

2
,

(6)Ci,j(t + 1)− Ci,j(t)
.
= (1− δ)θ

Ri,j(t)+ Ri,j(t + 1)

2
.

Figure 4.   (a) The estimated probability of contracting SARS-CoV-2 in Washington state on 20 September 2020. 
(b) the probability of contracting SARS-CoV-2 from 5 counties in Washington state with the largest PoC SARS-
CoV-2 values on 20 September 2020 . (c) the observed (dots) and fitted (solid line) cumulative death toll in the 5 
counties in figure (b) from the same time period. (d–f) The results in Texas that have the same interpretation as 
(a–c). Part (e) and (f) have different scales than part (b) and (c), respectively.

Figure 5.   (a–c) Comparisons between the estimation COVID-19 progression characteristics for Santa Barbara, 
CA as of 20 September 2020 by our algorithm 1 (blue solid curves) and the method F&J9 (red dash curves). 
The shaded area represents 95% confidence intervals. The black solid curve in part c is the observed cumulative 
death toll in Santa Barbara. (d–f) Results for Imperial, CA as of 20 September 2020, which have the same 
interpretation as (a–c). The transmission rate estimated from the method F&J is truncated to be within [0,10].
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After we get the number of active infective individuals ( Ii,j(t) ) on each day, sequences of the resolving, 
deceased and recovered compartments can be solved subsequently following the same manner using Eqs. (4)–(6), 
after specifying their initial values. Expressing the time-dependent transmission rate by the number of susceptive 
and infective cases is the key to integrating death toll and testing data for estimation.

In Figs. 5 and 6, we demonstrate that in order to solve the ODEs in the SIRDC model, our approach is more 
accurate and robust than the method F&J in Ref.9 under both simulated and real scenarios. Other more accurate 
methods (such as the Runge–Kutta method) can also solve the ODEs of SIRDC model, but the time-dependent 

Figure 6.   (a–c) Simulated comparison with noise-free observations. The black circles are the solution of the 
ODEs of the SIRDC model via the default numerical solver Isoda in the function ode in deSolve R package. 
The green solid and dash curves are the numerical solutions from Runge–Kutta method with the 4th order 
integration and step size being 1 and 0.1, respectively. The Blue solid curves are the robust estimation from 
algorithm 1 and red dash curves are the estimation in9. In the simulation with noise-free observations, we let 
time duration be T = 100 days, the population size N = 107 , the initial values of 5 compartments chosen as 
(S(1), I(1),R(1),D(1),C(1)) = (N − 2000, 1000, 1000, 0, 0) and the transmission rate 
β(t) = exp

(

−0.7( 9
T−1 (t − 1)+ 1)

)

 , for 1 ≤ t ≤ T . (d–f) results of the simulation with noisy observations, 
which have the same interpretation as (a–c). In this simulation, we set the transmission rate 
β(t) = exp

(

−0.7( 9
T−1 (t − 1)+ 1)

)

+ ǫ , for 1 ≤ t ≤ T and ǫ ∼ N(0, 0.04) , and the other parameters are held 
the same as in the noise-free simulation. The transmission rates estimated from the method F&J are truncated 
to be within [0,10]. The solution from our robust estimation approach, the Isoda and the Runge–Kutta method 
with the 4th order and step size being 0.1 overlap for both scenarios.

Table 2.   Interpretation of the daily PoC SARS-CoV-2 in a community.

Daily PoC SARS-CoV-2 < 0.001% 0.001% to 0.01% 0.01% to 0.1% 0.1% to 1% > 1%

Risk Controllable Moderate Alarming Strongly alarming Hazardous
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Figure 7.   (a) The 21-day forecast in 10 counties with the largest population in Florida. The training period 
is from 21 March 2020 to 30 November 2020, whereas the forecast starts from 1 December 2020. The red 
curves are the cumulative observed death toll and the blue line indicates the forecast from 1 December 2020 
to 21 December 2020. The shaded area represents the 95% predictive intervals of the forecast for each analyzed 
county in Florida. The numbers in the parentheses are the populations in million for each county. (b) the 21-day 
forecast in 10 counties with the largest population in California. The interpretations are the same as (a).

Figure 8.   (a) The 90-day forecast in 10 counties with the largest population in Florida. The training period is 
from 21 March 2020 to 30 November 2020, whereas the forecast starts from 1 December 2020. The red curves 
are the cumulative observed death toll and the blue line indicates the forecast from 1 December 2020 to 28 
February 2021. The shaded area represents the 95% predictive intervals of the forecast for each analyzed county 
in Florida. The numbers in the parentheses are the populations in million for each county. (b) the 90-day 
forecast in 10 counties with the largest population in California. The interpretations are the same as (a).
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transmission rates can not easily be expressed as a function of the death toll and the number of active infectious 
individuals as the way they are in our solution.

Estimation of the number of susceptible individuals.  Note that we have Si,j(t)+ coi,j(t)+ cui,j(t) = Ni,j 
for any t, where coi,j(t) and cui,j(t) are the number of cumulative observed confirmed cases and unobserved con-
firmed cases, respectively. Estimating the number of susceptible individuals is equivalent to estimating the 
number of unobserved confirmed cases cui,j(t) , because the number of observed confirmed cases coi,j(t) and the 
population Ni,j are known. Here we combine them with the positive test rates to estimate cui,j(t) , as large positive 
test rates typically indicate a large number of unobserved confirmed cases. We assume that the total number of 
confirmed cases is equal to the observed confirmed cases, adjusted by the state-level test positive rate pi(t) , a 
power parameter αi and a weight parameter ωi,j , leading to the following formula of the susceptible population:

where �coi,j(t) is the observed daily confirmed cases on day t, for t = 1, 2, . . . ,Ti,j , i = 1, 2, . . . , k and 
j = 1, 2, . . . , ni . Since the positive test rates are only available at the state level, the power parameter αi ∈ [0, 2] 

(7)Si,j(t) = Ni,j − coi,j(t)− cui,j(t) = Ni,j −
1

ωi,j

{

�{t≥2}

t
∑

s=2

(pi(s))
αi�coi,j(s)+ (pi(1))

αi coi,j(1)

}

,

Figure 9.   (a) The estimated probability of contracting SARS-CoV-2 at 1856 counties on 2020-04-20, and (b) at 
2277 counties on 20 September 2020. The probability of contracting SARS-CoV-2 is truncated at 10−6 , whereas 
only 78 counties on 20 April and 45 counties on 20 September are below this level, respectively.

Figure 10.   (a–f) The simulated results of COVID-19 progression in Washington (the first row) and in Texas 
(the second row) that have the same interpretation as (a–f) in Fig. 4 with the infection period changed from 5 
days, to 4.75 days, whereas other parameters are held the same.
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is estimated by the state-level observations. According to Eq. (7), the time-invariant weight ωi,j can be expressed 
below:

where Ii,j(1) , Ri,j(1) , Di,j(1) and Ci,j(1) are the number of active infectious, resolving, deceased and recovered 
cases on day 1, respectively.

Estimation of initial values of infectious and resolving cases.  We define day 1 of a county as the more 
recent date between 21 March 2020 and the date that the county has 5 observed confirmed cases for the first time. 
Since all counties were at an early stage of the epidemic on the starting day, we let the initial value of the death toll 
Di,j(1) be the observed death toll on the day 1, and the initial value of the recovered cases be 0. This assumption is 
not likely going to strongly influence our analysis, as the number of recovered cases is only a negligible proportion 
of the susceptible individual on the starting day if not zero. The only parameters to estimate are the number of 
infectious individuals Ii,j(1) and the number of resolving cases Ri,j(1) on the day 1 for county j from state i, after 
the power parameter αi is estimated using the state-level observations to minimize the same loss function below:

(8)ωi,j =
(pi(1))

αi coi,j(1)

Ii,j(1)+ Ri,j(1)+ Di,j(1)+ Ci,j(1)
,

Figure 11.   (a–f) The simulated results of COVID-19 progression characteristics in Washington (the first row) 
and in Texas (the second row) that have the same interpretation as (a–f) in Fig. 4 with the infection period 
changed from 5 to 4.5 days, whereas other parameters are held the same.

Figure 12.   (a,b) The estimate reproduction number and overall number of active infective individuals in the 
US, including 50 states and Washington D.C., from 21 March 2020 to 20 September 2020 with infectious period 
assumed to be 5 days (blue), 4.75 days (green) and 4.5 days (red). (c) The estimate overall death toll in the US. 
The time period and interpretation of (c) are aligned with a and (b), except that the black dots in (c) stand for 
the observed death toll in the US.
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where the upper bound Ui,j is chosen to guarantee the estimated number of the susceptible cases Si,j(t) to be 
larger than 0:

(9)
(Îi,j(1), R̂i,j(1)) = argmin

Ti,j
∑

t=1

(

Di,j(t)− D̂i,j(t | Ii,j(1),Ri,j(1))

Ti,j − t + 1

)2

, s.t.

0 ≤ Ii,j(1)+ Ri,j(1) ≤ Ui,j , Ii,j(1) ≥ 0, and Ri,j(1) ≥ 0,

Figure 13.   (a) The 7-day averaged daily confirmed cases in the US from 21 March 2020 to 20 September 2020. 
(b) the 7-day averaged test positive rate in the US from 21 March 2020 to 20 September 2020.

Table 3.   Main symbols and definitions in the “Methods” section.

Symbol Definition

S(t) Number of susceptible cases on day t

I(t) Number of infectious cases which can transmit COVID-19 on day t

R(t) Number of resolved cases which get infected but cannot transmit COVID-19 on day t

D(t) Number of deceased cases on day t

C(t) Number of recovered cases on day t

N Number of population in a given area

β(t) Transmission rate on day t

γ−1 Average number of days an individual can transmit COVID-19

θ−1 Average number of days for a case to get resolved

δ Proportion of deceased cases, a.k.a. fatality rate

R0(t) Basic reproduction number on day t

Reff (t) Effective reproduction number on day t

P(t) Average probability of contracting (PoC) SARS-CoV-2 on day t

p(t) State-level test positive rate on day t

co(t) Cumulative number of observed confirmed cases on day t

�co(t) Daily number of observed confirmed cases on day t

cu(t) Cumulative number of unobserved confirmed cases on day t

α Power parameter for estimating the number of susceptible cases

ω Weight parameter for estimating the number of susceptible cases

z Zero-mean Gaussian process
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for t = 1, 2, . . . ,Ti,j.
After the initial values of infectious and resolving cases are estimated, we obtain the estimation of the sus-

ceptible cases from Eq. (7), and the infectious cases and transmission rates on each date for each county from 
Algorithm 1. The resolving cases, deaths, and recovered cases can be derived subsequently from Eqs. (4)–(6), 
respectively. The estimated basic and effective reproduction rates can be derived by the fitted time-dependent 
transmission rate, and the estimated probability of contracting SARS-CoV-2 for an individual can be computed 
based on transmission rate and number of infectious individuals for each county on each day.

Forecast and uncertainty assessment.  Our method can also be used as a tool for forecasting compart-
ments (e.g., death toll), reproduction numbers, and the probability of contracting SARS-CoV-2 at each county 
for a short period. We extrapolate the transmission rate based on Gaussian processes implemented in Robust-
GaSP R package23 with robust parameter estimation24,25. Based on the extrapolated transmission rates, the com-
partments can be solved iteratively based on Eqs. (2)–(6).

We also found that the forecast will generally be improved by modeling residuals between observed deaths 
and modeled deaths by a zero-mean Gaussian process (GP). One advantage of a GP model is the internal 
assessment of the uncertainty of the forecast from the predictive distribution, which is of crucial importance. 
The aggregated model that combines the SIRDC model and the GP model for county j from state i in the US is 
described as follows.

where Di,j(t) and Fi,j(t) denote the observed death toll and estimated death toll via the SIRDC model, respectively; 
The noise follows independently as a Gaussian distribution εi,j,t ∼ N(0, σ 2

i,j,0) with variance parameter σ 2
i,j,0 . 

The latent temporal process zi,j(t) is modeled by a zero-mean GP, meaning that for time points {1, 2, . . . ,Ti,j} , 
zi,j =

(

zi,j(1), . . . , zi,j(Ti,j)
)T follows a multivariate normal distribution:

where the (l, m) entry of �i,j is parameterized by a covariance function σ 2
i,jKi,j(l,m) for 1 ≤ l,m ≤ Ti,j . Here σ 2

i,j 
is the variance parameter and Ki,j(·, ·) is a one-dimensional correlation function. We use the power exponential 
correlation function:

where a is the roughness parameter fixed to be 1.9 as in other studies26,27, to avoid possible singularity in inversion 
of the covariance matrix using the Gaussian correlation ( a = 2 ), and bi,j is a range parameter for each county 
estimated from the data. We define the nugget parameter ηi,j = σ 2

i,j,0/σ
2
i,j . The range parameter bi,j , and the nug-

get parameter ηi,j in Eq. (10) are estimated based on the marginal posterior mode estimation using the rgasp 
function in the package RobustGaSP available on CRAN24.

Denote Di,j = (Di,j(1), . . . ,Di,j(Ti,j))
Tand Fi,j = (Fi,j(1), . . . , Fi,j(Ti,j))

T . After marginalizing out the variance 
parameter by the reference prior p(σ 2

i,j) ∝ 1/σ 2
i,j , for any t∗ , the predictive distribution of zi,j(t∗) , conditional on 

the observations, range parameter bi,j and nugget parameter ηi,j , follows a non-central Student’s t-distribution 
with degrees of freedom Ti,j

24

where

with R̃i,j = Ri,j + ηi,jITi,j  ,  the ( l ,   m)th term of Ri,j  being Ki,j(l,m) for 1 ≤ l,m ≤ Ti,j  ,  and 
ri,j(t

∗) = (Ki,j(t
∗, 1), . . . ,Ki,j(t

∗,Ti,j))
T , by plugging in the estimated range parameter bi,j and nugget ηi,j . The 

predictive mean ẑi,j(t∗) for forecasting the death toll of the jth county in the ith state at a future day t∗ and the 
predictive interval can be computed based on the Student’s t distribution. An overview of the forecast algorithm 
and the numerical comparison of different approaches in forecast is given in the Supplementary Information.

Data availability
The datasets analysed in the current study are available in the CSSEGISandData repository, https://​github.​com/​
CSSEG​ISand​Data/​COVID-​19 and COVID-19 data tracking project, https://​covid​track​ing.​com/. The US maps are 

Ui,j = Ni,j

(pi(1))
αi coi,j(1)

�{Ti,j≥2}
∑Ti,j

s=2(pi(s))
αi�coi,j(s)+ (pi(1))αi c

o
i,j(1)

− (Di,j(1)+ Ci,j(1)),

(10)Di,j(t) = Fi,j(t)+ zi,j(t)+ εi,j,t ,

zi,j ∼ MN (0,�i,j),

Ki,j(l,m) = exp

{

−

(

| l −m |

bi,j

)a}

,

(11)zi,j
(

t∗
)

| Di,j , Fi,j , bi,j , ηi,j ∼ T

(

ẑi,j
(

t∗
)

, σ̂ 2
i,jK̃

∗
i,j ,Ti,j

)

,

ẑi,j
(

t∗
)

=Fi,j(t
∗)+ r

T
i,j

(

t∗
)

R̃
−1
i,j (Di,j − Fi,j),

σ̂ 2
i,j =

(Di,j − Fi,j)
T
R̃
−1
i,j (Di,j − Fi,j)

Ti,j
,

K̃∗
i,j =Ki,j

(

t∗, t∗
)

+ ηi,j − r
T
i,j

(

t∗
)

R̃
−1
i,j ri,j

(

t∗
)

,

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://covidtracking.com/
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graphed based on publicly available R package urbnmapr. The code used in this paper is publicly available: https://​
github.​com/​Hanmo​Li/​Robust-​estim​ation-​of-​SARS-​CoV-2-​epide​mic-​in-​US-​count​ies/.
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