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Abstract 

Background: While large genome‑wide association studies have identified nearly one thousand loci associated with 
variation in blood pressure, rare variant identification is still a challenge. In family‑based cohorts, genome‑wide link‑
age scans have been successful in identifying rare genetic variants for blood pressure. This study aims to identify low 
frequency and rare genetic variants within previously reported linkage regions on chromosomes 1 and 19 in African 
American families from the Trans‑Omics for Precision Medicine (TOPMed) program. Genetic association analyses 
weighted by linkage evidence were completed with whole genome sequencing data within and across TOPMed 
ancestral groups consisting of 60,388 individuals of European, African, East Asian, Hispanic, and Samoan ancestries.

Results: Associations of low frequency and rare variants in RCN3 and multiple other genes were observed for blood pres‑
sure traits in TOPMed samples. The association of low frequency and rare coding variants in RCN3 was further replicated in 
UK Biobank samples (N = 403,522), and reached genome‑wide significance for diastolic blood pressure (p = 2.01 ×  10− 7).

Conclusions: Low frequency and rare variants in RCN3 contributes blood pressure variation. This study demonstrates 
that focusing association analyses in linkage regions greatly reduces multiple‑testing burden and improves power to 
identify novel rare variants associated with blood pressure traits.
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Background
Compared to European Americans (EA), African Ameri-
cans (AA) consistently have higher blood pressure (BP) 
levels with earlier onset of hypertension [1]. The excess 
risks from elevated blood pressure directly affect the 
life expectancy of AA, which is considerably lower than 
that of EA. Compared to their EA counterparts, AA men 
are twice as likely to have a stroke, with earlier onset, 
or develop stroke-related disabilities [2]. Despite these 
alarming statistics, there are few genetic studies focus-
ing on BP traits in AA with relatively smaller sample sizes 
than in European-ancestry studies [3–5]. We propose 
that leveraging linkage evidence from family-based stud-
ies can expedite the discovery of rare variants using WGS 
data.

Previous studies have shown that linkage evidence 
could facilitate the discovery of low frequency and rare 
variants associated with BP or other traits [6–10]. The 
same approach could be applied to family-based stud-
ies with AA. A linkage analysis using 4394 AA in 1802 
families from the Family Blood Pressure Program (FBPP) 
identified several linkage peaks on chromosomes 1, 
17, and 19 (maximum logarithm of the odds [LOD] > 3) 
for BP traits [11]. Wang et  al. have examined the 1q31 
region using exome array data and have detected multi-
ple genes and rare variants contributing to pulse pressure 
(PP) variation [11]. Because exome array data is limited 
to exonic regions with mostly coding variants, regula-
tory non-coding variants as well as very rare variants 
(minor allele frequency [MAF] < 0.001) cannot be stud-
ied with high confidence. These two challenges could be 
overcome with the Trans-Omics for Precision Medicine 
(TOPMed) whole genome sequencing (WGS) project, 
which surveys the whole genome and provides a target 
coverage of 30x on average [12]. A large number of AA 
families from FBPP have been whole-genome sequenced 
as part of TOPMed. To date, most of the large BP genetic 
studies have focused on samples with European ancestry, 
and the discovery in African ancestry falls far behind [3, 
5]. TOPMed contains one of the largest samples of WGS 
data in AA, which makes it a suitable dataset to study 
rare variants found in individuals of African ancestry. 
In this study, we use the linkage evidence observed from 
AAs to guide association analysis in multiple ancestral 
population samples.

Results
Linkage analysis of AA families with TOPMed WGS data
The overall analysis workflow is illustrated in Fig.  1. 
After conducting linkage analysis on chromosomes 1, 
17, and 19 using TOPMed Freeze 6a WGS data, the link-
age peaks on chromosomes 1 and 19 from Wang et  al. 

[11] remained but the peak on chromosome 17 was no 
longer significant (Fig.  2). There were 2 significant link-
age peaks for PP on chromosome 1q31 (maximum 
LOD = 3.28) and chromosome 19q13.33 (MLOD = 3.06). 
Two additional regions with maximum LOD > 1.87 were 
followed up on chromosomes 1 and 19: 1q42 for DBP 
(maximum LOD = 2.41) and 19q13.11 for PP (maximum 
LOD = 1.87). These four genomic regions on chromo-
somes 1 and 19 were followed-up for association analysis.

Discovery association analyses with TOPMed WGS data
Discovery gene-based association analyses were com-
pleted for variant set 1, 2, and 3 in each of the four 
linkage regions and a Bonferroni correction adjust-
ing for the number of genes tested was applied in each 
region to establish four discovery significance thresh-
olds. Any genes with at least one p-value in any trait or 
any variant group passing the corresponding region’s 
discovery significance threshold were followed up with 
additional analyses (Table  1). There were four genes 
from 1q31, seven genes from 1q42, four genes from 
19q13.11, and 12 genes from 19q13.33 that passed the 
corresponding thresholds. Of these 18 genes, variant 
set 1 (low frequency coding variants) of RCN3, reticu-
localbin 3, showed the strongest association evidence 
for DBP in TOPMed trans-ancestry samples (burden 
p = 1.36 ×  10− 5; beta = − 0.051, Tables  2 and 3). One 
variant (rs146159696) overlapped between coding and 
non-coding variant sets as it is both a missense and 
intronic variant for different transcripts. This variant 
also has the most significant p-value in the single vari-
ant association analysis (DBP p = 1 ×  10− 4). The asso-
ciation direction of these coding variants in EA, AA 
and HA ancestries were consistent and neither EAS 
nor Samoan cohorts carried these variants. These 18 
genes were carried forward for replication analysis in 
UKB and gene expression association analysis with 
GTEx.

Replication association analyses of unrelated samples 
in TOPMed‑imputed UK Biobank
Independent replication analysis was performed using 
the UKB TOPMed-imputed genotype data and baseline 
phenotype data. The two variant sets described in the 
Methods section were analyzed using GENESIS [13]. 
The top gene from the UKB replication analysis was also 
RCN3. Coding variants of RCN3 were nominally asso-
ciated with all three BP traits in the two gene-based 
association tests for Europeans and Africans, with the 
lowest p-value being burden p = 5.90 ×  10− 5 for SBP, 
which also significant after Bonferroni correction for 
multiple comparisons (18 genes × 2 independent traits 
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× 3 variant sets × 3 ethnic populations × 2 statistical 
tests).

Meta‑analyses of TOPMed and UK Biobank
Finally, trans-ancestry meta-analysis and ancestry-
specific meta-analyses for European and African 

ancestries were conducted for RCN3 in all variant sets 
(Tables 4) using TOPMed and UKB data. In the trans-
ancestry meta-analysis, gene-based association test of 
variant set 1 (low frequency coding variants) in RCN3 
reached genome-wide significance for DBP (burden 
p = 2.01 ×  10− 7), which was also significant after adjust-
ing for multiple testing (547 genes from Table  1 × 2 

Fig. 1 Overview of analysis workflow. Abbreviations: MLOD (maximum LOD score),  LODj (family‑specific LOD score for family j), QC (quality control), 
PCs (principal components), R‑INT (rescaled inverse normal transformation), AA (African American), EA (European American), EAS (Eastern Asian/
Asian American), HA (Hispanic American)
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independent traits × 3 variant sets × 2 statistical tests). 
Among all individuals of European ancestry, RCN3 var-
iant set 1 was also significant (burden p = 3.88 ×  10− 6) 
with DBP after adjusting for multiple tests (547 genes 
× 2 independent traits × 3 variant sets × 2 statistical 
tests). Among all individuals of African ancestry, we 
also observed suggestive evidence for DBP (burden 
p = 3.16 ×  10− 5). Finally, when coding and noncod-
ing variants are combined (set 3), the association evi-
dence of RCN3 gene remained, although the p-values 
were slightly inflated (Table  4). The variants in this 
set were further examined in single SNP association 
analysis (Table  5). Ancestry-specific single SNP asso-
ciation results are shown for SNPs that were observed 
in both TOPMed and UKB. For RCN3, there were 
seven low frequency and rare coding variants selected 
using linkage evidence in African-American families 

in HyperGEN and GENOA. Of those seven variants, 
three can be found in TOPMed EA (rs142564622, 
rs34218348, and rs146159696), all of which were also 
observed in the UKB European data plus an additional 
variant (rs770319784).

Gene expression association analysis
Tissue-specific gene expression association analyses 
were completed for 18 genes of interest using GTEx v7 
WGS data (N = 635) and cis-eQTL gene expression data 
in 48 tissues (including 2 cell lines). The availability of 
gene expression data varies by tissue along with varying 
sample size on a tissue-by-tissue basis. For RCN3, gene 
expression gene-based tests were completed for coding 
variants only, noncoding variants only, and the aggre-
gated set. P-values from SKAT and burden tests are 
illustrated on a heat map (Fig. 3). Although none of the 

Fig. 2 Linkage analysis with HyperGEN and GENOA subjects in TOPMed Freeze 6a release. Abbreviations: SBP (systolic blood pressure); DBP 
(diastolic blood pressure); PP (pulse pressure); cM (centimorgan); LOD (logarithm of the odds); MLOD (maximum LOD score)

Table 1 Genes passing discovery significance threshold in each linkage region

Abbreviations: AA African Americans, EA European Americans, EAS East Asians/Asian Americans, HA Hispanic Americans

1q31
(52 genes; p < 9.62 ×  10− 4)

1q42
(29 genes; p < 1.72 ×  10− 3)

19q13.11
(112 genes; p < 4.46 ×  10− 4)

19q13.33
(354 genes; 
p < 1.41 ×  10− 4)

AA RGS18
RGS13
LAD1

CCNE1 PLEKHA4
CD37

EA CACNA1S SLC35F3
COA6

SNRNP70
SIGLECL1

EAS WDR88

HA ARHGAP33 ZNF665

Samoan VSIG10L

Trans‑ancestry RYR2 RCN3
GFY
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associations passed the Bonferroni correction (p = 0.05/
(48×2) = 5.2 ×  10− 4), the heat map shows that RCN3 var-
iants were nominally associated with gene expression in 
multiple tissues of the artery, brain, and thyroid, which 
have shown to be relevant to BP regulation [14, 15].

Discussion
This study showed that leveraging linkage evidence from 
family-based studies could effectively and efficiently 
detect rare variants associated with complex BP traits. 
This approach successfully identified rare variants asso-
ciated with BP traits without conducting computation-
ally intensive sliding window-based association analysis 
across the whole genome and running a large number 
of tests. Therefore, our approach can be considered as 
complementary to genome-wide based approaches, 
which may miss the rare variants or genes identified in 
this study. Though the variants included for analysis 
were initially selected from AA families, association evi-
dence for the genes can be observed and replicated well 
in independent multi-ancestry samples, including Afri-
can ancestry samples (Tables 1 and 4), demonstrating the 
robustness of using linkage evidence to guide associa-
tion analysis of low frequency and rare variants. Across 
multiple ancestries, we observed evidence of allelic het-
erogeneity as the top genes in ancestry-specific analyses 
included low frequency and rare variants that are more 
common or specific to their corresponding ancestries.

Meanwhile, it is also challenging to study rare vari-
ants in trans-ancestry samples as many rare variants are 
ancestry-specific due to their rarity. Because the sample 
sizes for non-European cohorts are often much smaller, 

the statistical power is reduced and replication may be 
challenging. For example, low frequency coding vari-
ants of VSIG10L demonstrated suggestive association 
evidence for DBP in the Samoan Adiposity Study (bur-
den p = 9.24 ×  10− 6; beta = 0.521), but not in any other 
ancestry. The significant gene-based test was mostly 
driven by a single variant rs141732375 (p = 9.82 ×  10− 5; 
beta = 7.01). Due to data availability, replication in other 
Samoan cohorts was not feasible at the time of the 
analysis.

The significant gene after correcting for multiple test-
ing identified from this study was RCN3. The association 
of the RCN3 coding variants in samples of African ances-
try has p-values of 0.01, 4.89 ×  10− 4 and 3.16 ×  10− 5 for 
PP, SBP and DBP, respectively (Table 4), despite the rela-
tively small sample size. This association evidence is con-
sistent with the linkage evidence. Similar association is 
also present in samples of European ancestry with larger 
sample size. It is encouraging to observe that rare coding 
variants in RCN3 are associated with both AA and EA in 
UKB replication analysis (Table  2), suggesting the asso-
ciation evidence is not a false positive.

However, the association evidence for non-coding vari-
ants (variant set 2) was less consistent because TOPMed 
cohorts did not show any association evidence for BP 
traits, but RCN3 non-coding variants in UKB European 
samples showed significant association evidence in SKAT 
for PP (p = 2.97 ×  10− 4) and SBP (p = 4.67 × 10–5) after 
adjusting for multiple comparisons (Table 3). In the sin-
gle SNP association analysis (Table 5), there were seven 
low frequency or rare coding variants identified from 
HyperGEN and GENOA using the approach described in 
the Methods section. Among European ancestry samples, 

Table 2 Gene‑based analysis summary statistics of RCN3 in TOPMed Freeze 8 and UK Biobank: coding variants with MAF < 5%

Abbreviations: NVAR Number of linkage-based selected variants passing all filters for analysis), SBP Systolic blood pressure, DBP Diastolic blood pressure,  PP Pulse 
pressure,  AA African Americans,  EA European Americans,  EAS East Asians/Asian Americans,  HA Hispanic Americans,  SKAT Sequence Kernel Association Test

Bolded p-values in UKB indicate significance after Bonferroni correction for 18 genes

PP SBP DBP

NVAR Beta Burden P SKAT P Beta Burden P SKAT P Beta Burden P SKAT P

TOPMed (discovery)
 AA (N = 26,590) 7 0.027 0.351 0.543 −0.010 0.752 0.885 −0.057 5.75 ×  10−3 0.092

 EA (N = 15,284) 3 0.008 0.694 0.833 −0.033 0.228 0.411 −0.082 6.85 ×  10−4 4.34 ×  10−3

 EAS (N = 3826) 0 NA NA NA NA NA NA NA NA NA

 HA (N = 13,419) 5 −0.018 0.571 0.580 −0.051 0.240 0.135 −0.043 0.099 0.035

 Samoan (N = 1269) 0 NA NA NA NA NA NA NA NA NA

 Trans‑ancestry 
(N = 60,388)

7 0.011 0.411 0.805 −0.022 0.178 0.218 − 0.051 1.36 ×  10−5 8.11 ×  10−5

UKB (replication)
 African (N = 6937) 4 −0.124 0.004 0.007 −0.249 5.90 × 10− 5 4.43 × 10− 4 − 0.126 3.93 × 10− 4 0.005

 European (N = 386,813) 4 0.021 0.004 0.006 0.034 5.80 × 10− 4 6.15 × 10− 4 0.013 0.018 0.011

 Asian (N = 9772) 3 −0.087 0.391 0.305 −0.095 0.503 0.514 −0.009 0.906 0.966
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three out of seven SNPs (rs142564622, rs34218348, and 
rs146159696) were observed in both TOPMed EA and 
UKB European, and one SNP (rs770319784) was only 
observed in UKB European. The four SNPs observed in 
UKB European were also observed in UKB African. For 
the four SNPs observed in both TOPMed and UKB, the 
directions of effect in DBP was completely consistent for 
rs142564622 and rs770319784 and nearly consistent for 
rs34218348 and rs146159696.

The p-values in the discovery stage might be inflated 
because linkage analysis and variant selection for associa-
tion analysis were performed within the same pedigrees. 
Our previous simulation study suggested such inflation 
is minimal [8]. However, to be conservative, we used 
the Bonferroni-corrected p-value threshold in the UKB 
replication data (p = 7.72 ×  10− 5) after correcting for 2 
independent BP traits, 2 statistical tests, 3 variant sets, 
and 3 UKB populations (European, African, Asian), and 
18 genes. For the trans-ethnic TOPMed and UKB meta-
analysis, a p-value threshold of 7.62 ×  10− 6 was used to 
declare significance after adjusting for 547 genes, 2 inde-
pendent traits, 3 variant sets and 2 statistical methods. 
Thus, the association evidence of RCN3 with DBP and 
SBP reported in this study is significant in both UKB 
replication data as well as combined TOPMed and UKB 
trans-ethnic data.

There is some genetic evidence supporting the asso-
ciation between RCN3 and BP traits. UKB GWAS by 
Neale et al. [16] found two genome-wide significant SNPs 
associated with hypertension: rs61760904 (missense; 

non-Finnish European allele frequency = 0.007; OR = 1.2; 
p-value = 1.8E ×  10− 9; CADD > 23.4) and rs73046792 (3′ 
UTR variant; non-Finnish European allele frequency = 0.15; 
OR = 0.96; p-value = 3.6 ×  10− 8; CADD > 0.89). One SNP 
downstream of RCN3, rs189349094, is associated with 
systolic blood pressure [17] and linked to RCN3 through 
GeneHancer [18]. None of these previously reported SNPs 
overlap with SNPs selected by linkage evidence, suggesting 
the variants we identified in RCN3 are novel.

One pattern observed in the gene-based association 
analysis was that the strongest association evidence did 
not come from PP, the trait with the linkage signal. One 
possible explanation is that when the directions of effect 
are the same for SBP and DBP, the effect size for PP is 
reduced because PP is the difference of SBP and DBP; 
thus, canceling the association of PP.

There are a number of known imputation challenges 
for rare variants, particularly for non-European indi-
viduals, in the UKB data imputed using the Haplotype 
Reference Consortium [19]. Therefore, it was neces-
sary to re-impute these regions using the multi-ances-
try TOPMed reference panel. Unpublished results 
from our group and recent TOPMed publications have 
shown that the TOPMed reference panel can suc-
cessfully impute rare variants found in populations of 
African ancestry [12, 20, 21]. With the TOPMed impu-
tation, we were able to examine UKB samples with 
European, African, and Asian ancestries.

Common genetic variants discovered from GWAS 
face a challenge of pinpointing causal genes and 

Table 4 Meta‑Analysis p‑values of RCN3 in TOPMed Freeze 8 and UK Biobank

Abbreviations: DF degrees of freedom, SBP systolic blood pressure, DBP diastolic blood pressure, PP pulse pressure, AA African Americans, EA European Americans, 
SKAT Sequence Kernel Association Test

Meta-analysis of TOPMed and UKB were calculated using Fisher’s method with 2 k degrees of freedom, where k = 4 (one TOPMed trans-ancestry analysis and three UKB 
ancestry-specific analyses for individuals of European, African, and Asian ancestries)

Bolded p-values represent significance after Bonferroni correction for multiple comparisons (547 genes × 2 independent traits × 3 variant sets × 2 statistical tests)

PP SBP DBP
DF Burden SKAT Burden SKAT Burden SKAT

Variant set 1 (coding variants with MAF < 5%)
 TOPMed EA + UKB European 4 0.012 0.032 0.001 0.001 3.88 × 10−6 1.29 ×  10−5

 TOPMed AA + UKB African 4 0.010 0.024 4.89 ×  10−4 0.003 3.16 ×  10−5 0.004

 TOPMed + UKB 8 1.15 ×  10−3 0.003 4.49 × 10−6 3.15 ×  10− 5 2.01 × 10− 7 5.43 × 10− 6

Variant set 2 (noncoding variants with MAF < 1%)
 TOPMed EA + UKB European 4 0.285 0.002 0.682 5.04 ×  10− 4 0.691 0.022

 TOPMed AA + UKB African 4 0.630 0.284 0.469 0.943 0.581 0.154

 TOPMed + UKB 8 0.077 9.49 ×  10−4 0.425 0.002 0.930 0.106

Variant set 3 (coding variants with MAF < 5% + noncoding variants with MAF < 1%)
 TOPMed EA + UKB European 4 0.267 0.002 0.692 5.08 ×  10− 4 0.614 0.019

 TOPMed AA + UKB African 4 0.771 0.136 0.621 0.510 0.357 0.063

 TOPMed + UKB 8 0.136 1.12 ×  10−3 0.644 3.91 ×  10−4 0.845 0.017
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therefore are difficult to interpret. On the other hand, 
rare variants may contribute to a trait’s “missing her-
itability” but are extremely difficult to uncover and 
to replicate due to insufficient statistical power for 
currently available samples with WGS data, such as 
TOPMed. The primary goal of this study is to search 
for rare variants using the TOPMed WGS data with 
an approach that is not widely used in WGS associa-
tion analysis. However, our study demonstrates that 
this approach can be successful in identifying rare 
variants and is complementary to purely population-
based approaches. The association of the coding vari-
ants identified in RCN3 gene is replicable and present 
across multiple ancestries, although the original linkage 
evidence was identified from AA families. Additionally, 
these coding variants are more interpretable; however, 
further functional studies are needed to understand the 
mechanisms underlying how these variants contribute 
to BP variation.

There are some limitations of our study. The major 
limitation is the wide range of study designs and phe-
notype collection procedures in the studies included. 
While adjustments were included in analyses for study 
and data collection centers, it was difficult to control 
for the study design differences, which may reduce sta-
tistical power.

Conclusions
This study examined low frequency and rare variants 
under linkage peaks on chromosomes 1 and 19 that 
were detected in AA families. By focusing on linkage 
regions and following up with gene-based and single 
SNP association analyses, multiple genes were found to 

be associated with BP traits. In particular, low frequency 
and rare coding variants from RCN3 were significantly 
associated with DBP in trans-ancestry samples. While 
our finding is supported by genetic evidence, additional 
analyses are warranted to examine the underlying biolog-
ical mechanisms. This study demonstrates that leveraging 
linkage evidence in WGS expedites the process of iden-
tifying functional rare variants associated with complex 
traits. Individually, these rare variants might only explain 
a small portion of heritability in the population level, but 
they could facilitate our understanding of the genetic 
determinants of hypertension in diverse populations. 
Additionally, functional rare variants identified from this 
type of study could further facilitate the identification of 
disease targets.

Methods
Study population
The discovery analysis included all TOPMed Freeze 8 
samples with the harmonized BP phenotype at the time 
of analysis, which consisted of 18 TOPMed studies (32 
ancestry- and study-specific cohorts). These 18 stud-
ies (N = 60,388) included 26,590 EA, 15,284 AA, 3826 
East Asians or Asian Americans (EAS), 13,419 Hispanic 
Americans (HA), and 1269 Samoans from the follow-
ing studies: Genetics of Cardiometabolic Health in the 
Amish (Amish; EA), Atherosclerosis Risk in Communi-
ties Study from the Venous Thromboembolism (VTE) 
project (ARIC; EA and AA), Mount Sinai BioMe Biobank 
(BioMe; EA, AA, EAS, and HA), Coronary Artery Risk 
Development in Young Adults (CARDIA; EA and AA), 
Cleveland Family Study (CFS; EA and AA), Cardiovascu-
lar Health Study (CHS; EA and AA), Framingham Heart 

Fig. 3 Heat map of p‑values from GTEx tissue‑specific gene expression association analysis. Gene expression‑association analyses were conducted 
in EPACTS using variable threshold burden test (BurdenVT) and Sequence Kernel Association Test (SKAT)
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Study (FHS; EA), Genetic Epidemiology Network of Salt 
Sensitivity (GenSalt; EAS), Genetic Studies of Athero-
sclerosis Risk (GeneSTAR; EA and AA), Hispanic Com-
munity Health Study – Study of Latinos (HCHS_SOL; 
HA), Hypertension Genetic Epidemiology Network 
and Genetic Epidemiology Network of Arteriopathy 
(HyperGEN_GENOA; AA), GENOA from the African 
American Coronary Artery Calcification project (part 
of HyperGEN_GENOA; AA), Jackson Heart Study (JHS; 
AA), Multi-Ethnic Study of Atherosclerosis (MESA; EA, 
AA, EAS, and HA), MESA Family Study from the African 
American Coronary Artery Calcification project (MESA-
Fam; AA), San Antonio Family Studies (SAFS; HA), 
Samoan Adiposity Study (Samoan), Taiwanese Study of 
Hypertension using Rare Variants (THRV; EAS), and the 
Women’s Health Initiative (WHI; EA, AA, EAS, and HA). 
These studies vary in design: BioMe, CARDIA, CHS, 
HCHS_SOL, and the Samoan study are primarily com-
munity-based studies; JHS and MESA are community-
based studies that include a nested family-based design; 
Amish, CFS, FHS, GeneSTAR, GenSalt, HyperGEN_
GENOA, MESAFam, SAFS, and THRV are family-based 
studies; and ARIC and WHI are population-based cohort 
studies in which case-control samples were selected for 
TOPMed. Descriptions of these studies and data collec-
tion procedures are included in (Additional  File  1. Sup-
plemental Materials & Methods).

The UK Biobank (UKB) version 3 GWAS data [22] were 
used as the replication cohort. These samples were col-
lected from across the United Kingdom from participants 
between 40 to 69 years old. The UKB replication cohort 
included individuals of European ancestry (N = 417,634), 
African ancestry (N = 7297), and Asian ancestry 
(N = 10,215). Ethnic subgroups were clustered. Individuals 
with ethnic subgroup coding of 1 (White), 1001 (British), 
1002 (Irish), and 1003 (any other white background) were 
considered as European ancestry, those with coding of 4 
(Black or Black British), 4001 (Caribbean), 4002 (African), 
4003 (any other black background) were considered as 
African ancestry, and those with coding of 3 (Asian), 3001 
(Indian), 3002 (Pakistani), 3003 (Bangladeshi), 3004 (any 
other Asian background), and 5 (Chinese) were considered 
as Asian ancestry.

Genotyping and quality control (QC)
The TOPMed Informatics Research Center (IRC) and 
Data Coordinating Center (DCC) centrally performed 
sample and genotype quality control (QC). Detailed 
QC procedures are described in the TOPMed flag-
ship paper [12] and TOPMed Freeze 8 website (https:// 
topmed. nhlbi. nih. gov/ topmed- whole- genome- seque 
ncing- metho ds- freeze-8). The software BCFtools [23] 
was used to apply the following QC filters: 1) bi-allelic 

single nucleotide polymorphisms (SNPs) and small 
insertion-deletion polymorphisms (INDELs) passing all 
genotype filters; 2) a minimum 10x sequencing depth. 
The participant must not have any known identity prob-
lems (such as sex or pedigree mismatches) reported by 
the DCC to be included for analysis. In this study, unique 
participants from 18 TOPMed studies from the Freeze 8 
release (GRCh38) were included, reflecting the May 30, 
2019 sample annotation from the TOPMed DCC. After 
excluding individuals under 18 years old and those with 
missing BP measurements or covariates, the combined 
study sample contained 60,388 individuals. Principal 
components (PCs) and kinship matrix were both made 
available by the TOPMed DCC. As described in the 
TOPMed Flagship paper [12], the PCs were calculated 
using PC-AiR [13], and the kinship matrix was calculated 
using the pcrelate function in the GENESIS R package 
[24]. This approach estimates kinship coefficients and 
identical-by-descent (IBD) sharing probabilities condi-
tional on ancestry. A fourth-degree sparse kinship matrix 
provided by TOPMed was used as the covariance matrix 
in the linear mixed model for optimal computational effi-
ciency. The TOPMed DCC has determined that the top 
11 PCs well represent global ancestry patterns among 
TOPMed Freeze 8 samples. Therefore, these PCs were 
adjusted in the phenotype residuals and linear mixed 
model to account for genetic ancestry background.

The UKB data were genotyped using the Affymetrix 
UK Biobank Axiom array [22]. Principal components 
were calculated by UKB with genotype data within each 
ancestry to account for population structure (http:// 
www. ukbio bank. ac. uk/ wp- conte nt/ uploa ds/ 2014/ 04/ 
UKBio bank_ genot yping_ QC_ docum entat ion- web. pdf ). 
Because the UKB imputed genotype data were originally 
imputed using the Haplotype Reference Consortium 
[25] reference panel, which is predominantly of Euro-
pean ancestry, we re-imputed Europeans, Africans, and 
Asians using the TOPMed reference panel. The TOPMed 
reference panel is a diverse reference panel includ-
ing information from 97,256 deeply sequenced human 
genomes, and we were able to impute rare variants for 
non-European individuals with high confidence  (r2 > 0.3). 
Ancestry-specific genotype imputation was conducted 
on the TOPMed Imputation Server (https:// imput ation. 
bioda tacat alyst. nhlbi. nih. gov/). The software QCTOOL 
v2 (https:// www. well. ox. ac. uk/ ~gav/ qctool_ v2/ index. 
html) was used to convert the BGEN format genotype 
files to VCF format. The following pre-imputation qual-
ity control were done in PLINK 1.9 [26]: variants with 
MAF < 1%, genotyping rate < 97%, or Hardy-Weinberg 
Equilibrium < 1 ×  10− 6 were removed. Variants were 
remapped from GRCh37 to GRCh38 using the TOPMed 
Imputation Server, and those variants that cannot be 

https://topmed.nhlbi.nih.gov/topmed-whole-genome-sequencing-methods-freeze-8
https://topmed.nhlbi.nih.gov/topmed-whole-genome-sequencing-methods-freeze-8
https://topmed.nhlbi.nih.gov/topmed-whole-genome-sequencing-methods-freeze-8
http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf
http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf
http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf
https://imputation.biodatacatalyst.nhlbi.nih.gov/
https://imputation.biodatacatalyst.nhlbi.nih.gov/
https://www.well.ox.ac.uk/~gav/qctool_v2/index.html
https://www.well.ox.ac.uk/~gav/qctool_v2/index.html
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remapped were excluded. Imputed variants with a  r2 > 0.3 
were retained for analysis. Further analysis by increasing 
the threshold to  r2 > 0.5 did not affect the result (Addi-
tional file 1. Supplemental Materials and Methods). Sam-
ple QC was performed for UKB by excluding outliers in 
heterozygosity and missing rates defined by UKB.

The SeqArray R package [27] was used to convert VCF 
format into GDS format to be used in the GENESIS R 
package [13] for association analysis. Related individu-
als with pairwise kinship coefficient greater than 0.0884 
[28], which is the threshold for third degree relatives cal-
culated using software KING [29], were removed from 
analysis, resulting in 386,813 individuals of European 
ancestry, 6937 individuals of African ancestry, and 9772 
individuals of Asian ancestry from the UKB.

Phenotype harmonization
TOPMed phenotype data were collectively harmonized 
by members of the TOPMed BP Working Group. Details 
on TOPMed phenotype harmonization for systolic blood 
pressure (SBP), diastolic blood pressure (DBP), and pulse 
pressure (PP) were described in our previous study [7]. 
Covariates used in the analyses were measured at the 
same visit as the BP measurements.

For the UKB cohort, baseline BP and covariates (Addi-
tional file 2. Table S1) were extracted from the phenotype 
data. Because two SBP and DBP measurements were 
taken at baseline, the average of the two measurements 
was used to generate the phenotypes for association anal-
yses. Individuals with missing BP data at baseline were 
excluded from analysis.

Transformation of phenotype data for association analyses
As each TOPMed project has a different study design 
and sample population, it is important to standardize 
the quantitative trait values by applying data transfor-
mation and rescale to restore the original measurement 
for genetic effects. In this study, the phenotype residu-
als were calculated separately by ancestry and phenotype 
transformation was applied to account for between-study 
heterogeneity. Harmonized BP phenotypes were pooled 
within each ancestry and BP traits were adjusted for anti-
hypertensive medications use by adding 15 mmHg and 
10 mmHg to raw SBP and DBP measurements, respec-
tively [30]. The regression residuals were calculated for 
medication-adjusted SBP, DBP, and PP after adjusting for 
age,  age2, sex, body mass index (BMI), field center (for 
multi-center studies), case-control status for stroke or 
venous thromboembolism (WHI only), and the top 11 
PCs. Next, inverse normal transformation was applied to 
the ancestry-specific residuals. The inverse normal trans-
formed residuals were re-scaled using the standard devi-
ation (SD) of raw BP measurement, prior to medication 

adjustment, in each study. This results in a rescaled 
inverse normal transformation (R-INT) that makes the 
phenotype to follow a normal distribution and restores 
the original scale of measurement [31]. The phenotype 
distributions and transformations are shown in (Addi-
tional files 3, 4, 5, 6 and 7: Figs. S1-S5).

The R-INT residuals of BP phenotypes were analyzed 
in both gene-based and single variant association analy-
ses. The covariates described above were adjusted for 
the second time in the linear mixed model. Previously, 
Softer et al. used TOPMed data to show that a two-stage 
approach to adjust for covariates can improve statistical 
power and reduce type I error [32]. Ancestry-specific 
phenotypes were pooled for the trans-ethnic analysis in 
TOPMed. In the UK Biobank data analysis, SBP and DBP 
were adjusted for anti-hypertensive medications use by 
adding 15 mmHg and 10 mmHg, respectively. Covari-
ates (age, BMI, assessment center) and top 10 PCs were 
included in the same way as described for TOPMed data.

Overview of statistical methods
The overall analysis workflow includes 3 stages and is 
illustrated in Fig.  1. In the preliminary stage, we con-
ducted linkage analysis with AA families in HyperGEN 
and GENOA using TOPMed WGS data. In the discov-
ery stage, we completed gene-based and single variant 
association analyses using the SNPs prioritized by link-
age evidence. In the final stage, we performed replication 
for the top genes identified from the discovery stage in 
the TOPMed-imputed UK Biobank data and meta-ana-
lyzed TOPMed with UK Biobank by ancestry and across 
ancestries.

Linkage analysis of AA families with TOPMed WGS data
We performed multi-point variance-component link-
age analysis of TOPMed WGS data in HyperGEN and 
GENOA families to obtain the family-specific LOD 
scores. Study-specific BP residuals, after adjusting for 
anti-hypertensive medication use, were used in the link-
age analysis. The genetic map for GRCh38 was obtained 
from the University of Washington (http:// bochet. gcc. 
biost at. washi ngton. edu/ beagle/ genet ic_ maps/). The set 
of linkage disequilibrium pruned SNPs that was used 
in the exome array linkage analysis by Wang et  al. [11] 
(MAF > 0.2 and linkage disequilibrium  r2 < 0.1), which 
consists of 813 markers for chr1, 347 markers for chr17, 
and 384 markers for chr19, was used again in the linkage 
analysis with TOPMed WGS data. Linkage region was 
defined as a two-LOD score drop from the linkage peak 
SNP, which has the highest LOD score.

The linkage regions were re-defined using WGS data 
due to two key reasons: 1) only 3085 out of 4394 indi-
viduals (70%) could be found in both FBPP exome array 

http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/
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data analyzed by Wang et  al. [11] and TOPMed WGS 
data; 2) there were several pedigree relatedness problems 
with the exome array data (e.g. half/step siblings were 
separated into different families), which resulted in inac-
curate family-specific LOD scores. After correcting the 
pedigree errors, multi-point variance-component link-
age analysis was conducted using MERLIN [33] for three 
BP traits (SBP, DBP, and PP) on chromosomes 1, 17, and 
19 using 3149 HyperGEN and GENOA individuals in the 
TOPMed Freeze 6a release, the latest release at the time 
of analysis. For HyperGEN and GENOA, the individuals 
are identical for Freeze 6a and Freeze 8. Chromosome 17 
was excluded from further analysis due to a lack of link-
age evidence.

Variant selection from HyperGEN & GENOA families 
in TOPMed WGS
In the preliminary stage, we performed variance com-
ponent linkage analysis in African-American families 
and searched for linkage regions with suggestive linkage 
evidence. Single SNP and gene-based associations for 
selected variants were conducted in protein-coding genes 
within the linkage regions on 1q31 (chr1:188765880–
202,026,147), 1q42 (chr1:232963435–240,632,149), 
19q13.11 (chr19:22332449–36,438,656), and 19q13.33 
(chr19:41978814–53,404,335). We examined two sig-
nificant linkage peaks (maximum LOD > 3) on 1q31 and 
19q13.33 and two additional regions with max LOD that 
are approximately 2. The analyses were limited to vari-
ants residing within protein-coding genes, as defined by 
GENCODE v29 [34], of each linkage region in Hyper-
GEN and GENOA TOPMed Freeze 8 WGS data.

Next, the variants were selected using a two-step 
approach. Step 1, let LODj represent the LOD score 
for the jth family at the max LOD marker of a chromo-
somal region. We selected families with LODj > 0.1 after 
excluding parent-offspring pairs (e.g. family of two with 
mother-child or father-child), which are uninformative 
for linkage analysis. Prior simulations from our group 
have shown that the threshold of 0.1 for variant selec-
tion is optimal in association analysis [8]. We identified 
35 families for 1q31, 18 families for 1q42, 20 families for 
19q13.11 and 25 families for 19q13.33 with LODj > 0.1. 
SNPs or INDELs segregating at least twice in these fami-
lies were selected. Step 2, let MACij be the minor allele 
count for family j and variant i identified from step 1. 
For variant i in gene x, the correlation ri between MACij 
and LODj was calculated. When a portion of the variants 
in the linkage region contribute to linkage evidence, we 
expect that variants contributing to linkage evidence are 
more likely to have ri to be positively correlated. For the 
variants in a gene x, their ri were fitted a mixture of two 
Normal distributions using the mixtools R package. Then 

Fisher’s Discriminant Analysis was used to identify vari-
ants in which their correlation ri is greater than the aver-
age of two component mean. Lastly, the union of variants 
selected by these two steps were included for association 
analysis. This process can be viewed as a weighting pro-
cedure of variants contributing to the observed linkage 
evidence.

The gene region is defined by Ensembl Variant Effect 
Predictor [35] as a part of the functional annotations 
curated by WGSA [36], which was provided by the 
TOPMed DCC. The variants selected for analysis were 
grouped into 2 sets using annotations: 1) functional cod-
ing variants that lead to an amino acid change and 2) 
remaining non-coding variants and synonymous vari-
ants located within the gene region and 10 kb upstream 
and downstream of each gene. Functional coding variants 
were limited to those with MAF < 5% and included splice 
region variant, start lost variant, stop lost/gained vari-
ant, missense variant, inframe deletions/insertions, exon 
loss variant (deletion of an exon), frameshift variant, ini-
tiator codon variant non-canonical start codon, and splice 
acceptor variant. The non-coding variants had a maximum 
MAF of 1% and were further examined for those with 
functional prediction scores [37, 38] (CADD-phred > 10, 
fathmmXF > 0.5). Within each coding and non-coding 
group, variants were aggregated by gene names. Variants 
located in multiple genes with overlapping positions were 
retained in each gene. We separately analyzed variants into 
two independent sets: set 1 includes coding variants with 
MAF < 5% and set 2 includes non-coding variants with 
MAF < 1%. We further combined set 1 and 2 variants (set 
3) but required the set 2 variants with either CADD > 10 or 
fathmmXF > 0.5 [37, 38].

Discovery association analyses with TOPMed WGS data
The focus of this study was performing gene-based asso-
ciation analyses in all four linkage regions for the three 
variant sets prioritized using linkage evidence with the 
GENESIS [24] R package. The majority of the analyses 
were completed on the High Performance Computing 
Cluster (HPCC) at Case Western Reserve University 
and parts of the trans-ancestry analysis were completed 
in Analysis Commons [39] on the cloud computing 
platform DNAnexus (https:// www. dnane xus. com/) 
for computational efficiency. Discovery samples were 
stratified by ancestry (AA, EA, EAS, HA, Samoan) and 
both ancestry-specific and pooled trans-ancestry analy-
ses were completed for SBP, DBP, and PP. A kinship 
matrix was constructed for each stratum and the trans-
ancestry sample using the fourth-degree sparse kinship 
matrix provided by the TOPMed DCC. For each trait 
on each stratum, a null model was fitted using linear 
mixed model with the transformed phenotype residuals, 

https://www.dnanexus.com/
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covariates, and kinship matrix. Next, the three collapsed 
variant sets described previously were used to conduct 
gene-based association analysis using burden (Wald) test 
[40] and sequence kernel association test (SKAT) [41]. 
Variants were weighted using the default parameters 
dbeta [1, 25] to give more weight to the rarer variants. 
Bonferroni correction for the number of genes tested 
in each linkage region was used as a discovery signifi-
cance threshold. After identifying top associated genes, 
we performed single SNP based association in order to 
identify individual variants contributing the gene-based 
association evidence. Single variant association analyses 
were completed using linear mixed model with GENE-
SIS [24].

Replication association analyses of unrelated samples 
in TOPMed‑imputed UK Biobank
For the genes carried forward for replication analyses, we 
used the same gene collapsing groups to perform bur-
den test and SKAT with TOPMed-imputed UK Biobank 
data in the GENESIS R package [24]. Single variant asso-
ciation analyses were only carried out for the top gene 
of interest, RCN3. Association analyses were performed 
without including a kinship matrix after removing indi-
viduals up to the 3rd degree of relatedness.

Meta‑analyses of TOPMed and UK Biobank
For the gene-based analyses, meta-analyses of Euro-
pean cohorts, African cohorts, and trans-ethnic cohorts 
from TOPMed and the UK Biobank were calculated 
using Fisher’s combined p value method. The trans-eth-
nic meta-analysis of TOPMed and UKB was also per-
formed using Fisher’s method with 8 degrees of freedom 
to account for three UKB ancestry-specific analyses for 
individuals of European, African, and Asian ancestries. 
The exome-wide significance threshold (p < 2.5 ×  10− 6) 
was used to determine genome-wide significance.

Gene expression association analysis
Genotype-Tissue Expression (GTEx) expression quanti-
tative trait loci (eQTL) gene expression matrices (GTEx 
V7 cis-eQTL) were downloaded from the GTEx Portal 
(https:// www. gtexp ortal. org/ home/ datas ets) and WGS 
data of 635 individuals were obtained from dbGaP 
phs000424.v7.p2. Tissue-specific gene expression asso-
ciation analyses were completed for genes of interest in 
46 tissues and 2 cell lines. SKAT and burden test were 
completed in the software EPACTS [42] using both cod-
ing and non-coding variants in genes of interest identi-
fied from TOPMed (variant set 3). The residuals of the 
gene expression level were treated as the phenotype, 
after adjusting for sex, platform, PCs 1–3, and tissue-
specific latent factors inferred by GTEx using the PEER 

method [43]. The analyzed variants were limited to 
variants replicated across studies, where we aggregated 
linkage-based selected functional coding variants and 
rare non-coding variants identified from HyperGEN 
and GENOA.
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